ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

Embed Size (px)

Citation preview

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    1/52

    © 2011 ANSYS, Inc. All rights reserved. 1  ANSYS, Inc. Proprietary

    © 2010 ANSYS, Inc. All rights reserved. 1  ANSYS, Inc. Proprietary

    ANSYS Fluid

    Structure Interactionfor ThermalManagement andAeroelasticity

    Phil Stopford

    Duxford Air Museum

    11th May 2011

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    2/52

    © 2011 ANSYS, Inc. All rights reserved. 2  ANSYS, Inc. Proprietary

    Fluid Structure Interaction (FSI)

    • What is Fluid Structure Interaction? –  Occurs when fluid flow interacts with solid structures, exerts

    pressure and/or thermal loads that may cause structural

    deformations and thus affecting the fluid flow itself 

    • Why is FSI important?

     – Crucial in understanding many engineering problems• Material selection, fatigue, effect on fluid flow pa

    rameters etc.

     –  For better designs!

     –  Can be catastrophic if neglected

    Wind Turbine

    Turbine

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    3/52

    © 2011 ANSYS, Inc. All rights reserved. 3  ANSYS, Inc. Proprietary

    FSI Modeling Approaches

    • Two-way Coupling

     –  Coupling of FEA and CFD solvers

    • Implicit and Explicit Approaches

    • E.g. Vortex induced vibration, large time scale phenomenon

    • One-way Coupling

     –  One-way interaction

     –  Fluid pressure/temperatures produces structural loads,

    but strains too small to affect fluid flow field

     –  Superposition methods: modal analysis provides

    deformed shape to flow field

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    4/52

    © 2011 ANSYS, Inc. All rights reserved. 4  ANSYS, Inc. Proprietary

    ANSYS Offerings for FSI

    • Two-way Coupling –  ANSYS Mechanical – CFX

    • Iteratively implicit coupling

    • Fully integrated environment

    • Two-way coupling with FLUENT in ANSYS 14

    • One-way Coupling

     –  ANSYS Mechanical – FLUENT or CFX

    • Transient 1-way coupling is best performed using

    the 2-way analysis approach

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    5/52

    © 2011 ANSYS, Inc. All rights reserved. 5  ANSYS, Inc. Proprietary

    One-way Coupling – Overview

    • Couple ANSYS Mechanicalwith FLUENT or CFX

     –  Coupling to thermal and structural

    analysis in ANSYS

    • Applications

     –   Any application involving thermal-

    stresses or transfer of fluid

    pressure/viscous forces

     – 

    Steady state and transient analysis

    Wing

    Graphics Card

    Tank Sloshing

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    6/52

    © 2011 ANSYS, Inc. All rights reserved. 6  ANSYS, Inc. Proprietary

    Integrated Process in Workbench

    CHT Mesh

    Project Schematic

    CFD CHT SolutionGeometry

    Thermal Loads Pressure Loads Thermal Stress Solution

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    7/52© 2011 ANSYS, Inc. All rights reserved. 7  ANSYS, Inc. Proprietary

    1-way Structural

    • Transfer forces from CFD to

    ANSYS

    • Transfer displacements from

    ANSYS to CFD

    • Steady state – Transfer occurs after-the-fact

    • Transient

     – Can use scripting to create a series of

    load files from a completed run• Use APDL or CEL to read the loads in at

    the appropriate time

     – Implemented more easily within the 2-

    way framework by sending data in only

    one direction

    CAD

    Pressure in CFX

    Deformation in Mechanical

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    8/52© 2011 ANSYS, Inc. All rights reserved. 8  ANSYS, Inc. Proprietary

    1-way Time Averaged Data

    • Time-averaged data is

    useful in a number of

    cases, e.g.

     – Averaged pressure loads from

    transient CFD simulations

    • LES, DES, SAS

    • Time-averaged data can

    be generated and passed

    to ANSYS as a static load

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    9/52© 2011 ANSYS, Inc. All rights reserved. 9  ANSYS, Inc. Proprietary

    Two-way Coupling: ANSYS – CFX

    • Couples ANSYS Mechanical solver and ANSYS CFX –  Retains advanced physics capabilities of both solvers

     –  Available in FLUENT in Version 14

    • Option of Steady and Transient Coupling

    • Force and/or Heat Flux/Temperature data transfer 

     –  Any other field variable

    • Unified and fully coupled environment in ANSYSWorkBench

    • Semi-Implicit Matrix Coupling through Multi-field

    Solver 

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    10/52© 2011 ANSYS, Inc. All rights reserved. 10  ANSYS, Inc. Proprietary

    Two-way Coupling: ANSYS – CFX

    Solid Mechanics

    Structural

    Fluid Dynamics

    Mass

    Momentum

    Turbulence

    Heat Transfer 

    • Coupling is achieved by transferring surface loads /displacements across physics interface

    • An iterative coupling approach with in each timestep provides

    implicit coupling at each timestep…

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    11/52© 2011 ANSYS, Inc. All rights reserved. 11  ANSYS, Inc. Proprietary

    • Physics fields calculated

    by separate solvers

     –  Multiple data transfers within

    timestep

     –  Implicit solution at end of

    timestep

    Semi-Implicit Matrix Coupling

    Time Loop

    End Time Loop

    End Coupling / Stagger Loop

    End Field Loop

    Coupling / Stagger Loop

    Field Loop

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    12/52© 2011 ANSYS, Inc. All rights reserved. 12  ANSYS, Inc. Proprietary

    Two-way Coupling: Key Features

    • Easy to setup• Total Forces and Heat Fluxes are conservative across

    FSI interface

    • Non-conformal meshes

    • Automatically morphs CFD mesh• Large Models

     –  Both sides can use parallel computing

    • Third party coupling scheme not required

    • Data transfer across TCP/IP internet sockets –  Efficient; no intermediate files

     –  Heterogeneous architectures (Linux, Windows)

     –  Solvers can run on different machines (LAN, WAN, Internet)

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    13/52© 2011 ANSYS, Inc. All rights reserved. 13  ANSYS, Inc. Proprietary

    Two-way FSI Workflow

    • The workflow is built on the WB Project page

    Streaml ined p rocess integration wi thou t leav ing the Workbench envi ronment 

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    14/52© 2011 ANSYS, Inc. All rights reserved. 14  ANSYS, Inc. Proprietary

    • Solid and Fluid geometry in ANSYS DesignModeler  –  Create and modify CAD geometry

     –  Bi-directional direct CAD connections

    • ProE, SolidWorks, UG, CATIA, etc

     –  Parametric modeling capability

     – Easy fluid volume extraction

    Two-way FSI Workflow – 

    Geometry

    Structural Part Fluid Volume

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    15/52© 2011 ANSYS, Inc. All rights reserved. 15  ANSYS, Inc. Proprietary

    Two-way FSI Workflow – Meshing

    • Single meshing application forstructural and fluid meshes

     –  Swept, Tet, Inflation, Hex Dominant,

    Hex Core, Multi-block

    • Matching or non-matching

    meshes at the FSI interface

     –  Fully conservative transfer

    across interface

    • Can use other Fluid mesh

    generators

     –  ICEM for full Hex mesh

    Fluid Domain

    Solid Domain

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    16/52© 2011 ANSYS, Inc. All rights reserved. 16  ANSYS, Inc. Proprietary

    Two-way FSI Workflow – 

    Structural Setup

    • Structural Problem setup in ANSYS Mechanical –  Easy to use

     –  Setup like any other Transient Structural simulation

    • Tag the FSI interface regions

     –  Library of solid materials, advanced material properties

     –  Also Modal, Random Vibration, Thermal Stress,

    Harmonic Response, …

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    17/52© 2011 ANSYS, Inc. All rights reserved. 17  ANSYS, Inc. Proprietary

    • Coupled simulation set-up in

    ANSYS CFX-Pre

    • 2-way data/load transfer specified

    • Simple & intuitive FSI interface

    panels

     –  User-friendly, easy to use

    Two-way FSI Workflow – Fluid

    and FSI Setup

    Interface transfer quantities

    Coupling controlsTransient controls (common)

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    18/52

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    19/52© 2011 ANSYS, Inc. All rights reserved. 19  ANSYS, Inc. Proprietary

    Turbulence Transition ModelWind Turbine Blade

    Transition

    Transition

    Tu Contour 

    Transition

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    20/52© 2011 ANSYS, Inc. All rights reserved. 20  ANSYS, Inc. Proprietary

    Two-way FSI Workflow – Solving

    • Both solvers automatically started from the CFX Solver Manager 

    CFX-Solver Input ANSYS Solver Input

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    21/52© 2011 ANSYS, Inc. All rights reserved. 21  ANSYS, Inc. Proprietary

    Two-way FSI Workflow – Solving

    • Single environment for solution monitoring

     –  Check interface quantities are converged within each timestep

     –  Monitor forces, displacements, custom expressions

    1 timestep

    Force monitor 

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    22/52

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    23/52

    © 2011 ANSYS, Inc. All rights reserved. 23  ANSYS, Inc. Proprietary

    FSI ExamplesNREL Phase VI rotor 

    Rotor diameter 10.058 m

    Blade are based on an aerofoil (S809)

    Rotational speed 71.9 m/s

    Measurements in NASA Ames wind tunnel

    Cross section: 24.4 m x 36.6 m

    Inlet speed 7 m/s

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    24/52

    © 2011 ANSYS, Inc. All rights reserved. 24  ANSYS, Inc. Proprietary

    FSI ExamplesNREL Phase VI rotor 

    Geometry imported Parasolid

    Min angle > 20 deg

    Nodes pr. passage 100,000

    DirectCAD interfaces can be used

    Using a script a high quality mesh is

    generated in minutes

    Blade region meshed in ICEM

    HEX

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    25/52

    © 2011 ANSYS, Inc. All rights reserved. 25  ANSYS, Inc. Proprietary

    FSI ExamplesNREL Phase VI rotor 

    Tower and nacelle parameterised in

    DesignModeler  Subtract solid from wind tunneldomain and meshed in Workbench

    By using parameters a design change is implemented in a few minutes

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    26/52

    © 2011 ANSYS, Inc. All rights reserved. 26  ANSYS, Inc. Proprietary

    FSI ExamplesNREL Phase VI rotor 

    • Solution

    • Steady state

    • Frozen rotor interface

    • Timestep = 10/w

    • Convergence criteria (RMS): 10-5

    • Turbulence model: SST

    • Transition is important

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    27/52

    © 2011 ANSYS, Inc. All rights reserved. 27  ANSYS, Inc. Proprietary

    FSI ExamplesNREL Phase VI rotor 

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    28/52

    © 2011 ANSYS, Inc. All rights reserved. 28  ANSYS, Inc. Proprietary

    One way FSI – Von Mises Stresses

    FSI ExamplesNREL Phase VI rotor 

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    29/52

    © 2011 ANSYS, Inc. All rights reserved. 29  ANSYS, Inc. ProprietaryOne way FSI

     –

    Deformations

    FSI ExamplesNREL Phase VI rotor 

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    30/52

    © 2011 ANSYS, Inc. All rights reserved. 30  ANSYS, Inc. Proprietary

    Transient Simulation• Steady state simulation as initial guess

    • Temporal variation of fluid and structural

    variables

     –  Temporal variation of wake

     –  FSI between tower and blade (two-way coupling)

     –  Noise (monopole, dipole, quadrupole)

    • Time average quantities also generated –  Expected to be similar to steady state

    FSI ExamplesNREL Phase VI rotor 

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    31/52

    © 2011 ANSYS, Inc. All rights reserved. 31  ANSYS, Inc. Proprietary

    Transient: Max deformation=0.0012 Steady: Max deformation=0.00007

    FSI ExamplesNREL Phase VI rotor 

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    32/52

    © 2011 ANSYS, Inc. All rights reserved. 32  ANSYS, Inc. Proprietary

    FSI Examples – Leaf Valve

    • Pressure pulse passing through a leaf valve

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    33/52

    © 2011 ANSYS, Inc. All rights reserved. 33  ANSYS, Inc. Proprietary

    FSI Examples – “Singing” Hydrofoil

    • Hydrofoil simulated at a

    free stream velocity that

    produces a resonating

    response

    • 2 million cells for CFD

    • DES with y+ ~ 25

    • 22,000 elements for FEA

    • Time step = 1.63 X 10-4 s

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    34/52

    © 2011 ANSYS, Inc. All rights reserved. 34  ANSYS, Inc. Proprietary

    FSI Examples – “Singing” Hydrofoil

    Displacements Magnified 5000x

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    35/52

    © 2011 ANSYS, Inc. All rights reserved. 35  ANSYS, Inc. Proprietary

    FSI Examples – Bore Choking

    • Bore Choking in Solid Rocket Motors

     – Interaction between propellant grain and flow field

    results in the radially inward deformation of the

    propellant

     –  Difference in pressure P1 and P2 results in

    deformation of the solid propellant

     – Result in artificial throat and choking of the flow,leading to pressure build up and case failure

    • Self-Sustaining phenomenon

     –  Deformation results in increase in difference in

    pressure which further increases the deformation

    P1

    P2

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    36/52

    © 2011 ANSYS, Inc. All rights reserved. 36  ANSYS, Inc. Proprietary

    FSI Examples – Bore Choking

    • Results (no FSI)

     –  Pressure differential around corner 

    Pressure Contours

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    37/52

    © 2011 ANSYS, Inc. All rights reserved. 37  ANSYS, Inc. Proprietary

    FSI Examples – Bore Choking

    FSI Solid Deformation (as function of time)

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    38/52

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    39/52

    © 2011 ANSYS, Inc. All rights reserved. 39  ANSYS, Inc. Proprietary

    FSI ExamplesWing Flutter 

    • Modal analysis

     – Bending mode

     – Torsional mode

    Mode Experiment Simulation

    1 9.59 Hz 9.37 Hz

    2 38.16 Hz 39.07 Hz

    S

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    40/52

    © 2011 ANSYS, Inc. All rights reserved. 40  ANSYS, Inc. Proprietary

    FSI ExamplesWing Flutter 

    • Stagger loop: impliciteach timestep

    • Benefit: time-step setby physics, not code

    coupling

    • Large timestep, more

    stagger iterations• Small timestep, less

    stagger iterations

    • Optimize physics,

    robustness, CPU time

    12

    13

    14

    15

    16

    1.E-04 1.E-03 1.E-02

    Time step size [s]

       F   l  u   t   t  e  r   f  r  e  q  u  e  n  c  y   [   H  z

    5 Stagger

    3 Stagger

    1 Stagger

    -6.E-03

    -4.E-03

    -2.E-03

    0.E+00

    2.E-03

    4.E-03

    6.E-03

    0 0.05 0.1 0.15 0.2 0.25Time [s]

       A  m  p   l   i   t  u   d  e   [   ]

    dt=0.00025 [s], 1 Stagger

    dt=0.005 [s], 5 Stagger

    dt=0.005 [s], 1 Stagger

    FSI E l

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    41/52

    © 2011 ANSYS, Inc. All rights reserved. 41  ANSYS, Inc. Proprietary

    FSI ExamplesWing Flutter 

    Deformation increased by factor 200

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    42/52

    © 2011 ANSYS, Inc. All rights reserved. 42  ANSYS, Inc. Proprietary

    FSI ExamplesStatic Aeroelastic Wing/Body Configuration

    • 3D-simulation ofHIRENASD wing

     –  ‘High Re

     Aerostructural

    Dynamics’Workshop

     – Transonic

     – Span = 1.3 m

     – Chord = 0.3445 m

    https://heinrich.lufmech.rwth-aachen.de

    Robert Selent, Technical University Dresden

    Thorsten Hansen, ANSYS Germany

    https://heinrich.lufmech.rwth-aachen.de/https://heinrich.lufmech.rwth-aachen.de/https://heinrich.lufmech.rwth-aachen.de/https://heinrich.lufmech.rwth-aachen.de/

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    43/52

    © 2011 ANSYS, Inc. All rights reserved. 43  ANSYS, Inc. Proprietary

    FSI ExamplesStatic Aeroelastic Wing/Body Configuration

    Solve CFD

    Undeformed GridTransfer loads to CSM

    Transfer deformationsSolve CFD

    Deformed Grid

    FSI E l

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    44/52

    © 2011 ANSYS, Inc. All rights reserved. 44  ANSYS, Inc. Proprietary

    FSI ExamplesStatic Aeroelastic Wing/Body Configuration

    • Aeroelastic Deformations

    • Alpha 0°, 2°, 4° with aerodynamic load

    FSI E l

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    45/52

    © 2011 ANSYS, Inc. All rights reserved. 45  ANSYS, Inc. Proprietary

    FSI ExamplesStatic Aeroelastic Wing/Body Configuration

    Cp @ Sections 1,4,7, a = 2°

    Section 1 Section 4 Section 7

    FSI E l

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    46/52

    © 2011 ANSYS, Inc. All rights reserved. 46  ANSYS, Inc. Proprietary

    FSI ExamplesStatic Aeroelastic Wing/Body Configuration

    Cp @ Sections 1,4,7 ,a

    = 2°Section 1 Section 4 Section 7

    Experiments

    Simulation

    Courtesy of RWTH Aachen

    FSI E l

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    47/52

    © 2011 ANSYS, Inc. All rights reserved. 47  ANSYS, Inc. Proprietary

    FSI ExamplesForced Vibration Analysis Using Mode Shapes

    • Solve modalanalysis in

    ANSYS

    • Export the mode

    shape

    • CFD: transient

    analysis with

    prescribed mesh

    motion

     ANSYS Mode Shape

     Apply as Mesh

    Deformations inCFD

    CFD Results

    FSI E l

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    48/52

    © 2011 ANSYS, Inc. All rights reserved. 48  ANSYS, Inc. Proprietary

    • Can use superposition method to combine mode shapes

    1st mode 683 Hz 4th mode 3707 Hz2nd mode 1707 Hz 3rd mode 2248 Hz

    FSI ExamplesForced Vibration Analysis Using Mode Shapes

    FSI E l

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    49/52

    © 2011 ANSYS, Inc. All rights reserved. 49  ANSYS, Inc. Proprietary

    • Can use superposition method to combine mode shapes

      iiidisp   t  A x        .sin A

    i: constant amplitude for i th mode

     i : frequency for i th mode

     i 

    : i th mode shape

    Deformation, scaled by factor

    200

    31

    32

    33

    34

    35

    36

    37

    0 0.001 0.002 0.003 0.004

    Time [s]

       F  o  r  c  e

       [   N   ]

    Amplitude 1

    Amplitude 2

    Normal force on blade

    FSI ExamplesForced Vibration Analysis Using Mode Shapes

    FSI E l

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    50/52

    © 2011 ANSYS, Inc. All rights reserved. 50  ANSYS, Inc. Proprietary

    FSI ExamplesForced Vibration Analysis Using Mode Shapes

    FSI E l

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    51/52

    © 2011 ANSYS, Inc. All rights reserved. 51  ANSYS, Inc. Proprietary

    • Workbench Project Schematic

     –  1-click project update for entire system!

    FSI ExamplesForced Vibration Analysis Using Mode Shapes

  • 8/20/2019 ANSYS FSI for Thermal Management and Aeroelasticity 11th May 2011.pdf

    52/52

    Summary

    • ANSYS Workbench simplifies FSI simulations withFEA and CFD

     –  Single multiphysics environment

     –  Streamlined workflow

    • Can be combined with industry-leading turbulenceand physical models

    • Extensive experience in wind power and aeroelastic

    simulations