6
Explorations in Meteorology 34 Lab 8 Answer Key ANSWER KEY Part I: Introduction to the Skew-T 1. Use the Skew-T in Figure 4 to calculate the relative humidity values for the four levels above 999 mb. Table 3 – Calculations of Relative Humidity from a Greensboro, NC Sounding at 1200 UTC on 4 December 2002 Level Mixing Ratio (w) Saturation Mixing Ratio (w S ) Relative Humidity (RH) 925 mb 0.2 g kg –1 2.5 g kg –1 8% 850 mb 3.3 g kg –1 4.1 g kg –1 80% 700 mb 3.6 g kg –1 3.9 g kg –1 92% 500 mb 2.3 g kg –1 2.6 g kg –1 88% 2. Using Figure 5, plot the following selected observations (Table 4) from Greensboro, NC that were observed on the morning of 5 December 2002. Plot the temperature in red and the dew point in green. Figure 5 – Blank Skew–T Log–P Diagram for Question #2

ANSWER KEY - alcaweb.org 8 Answer Key Explorations in Meteorology 37 12. With your partner, examine your completed thermodynamic diagrams (Figure 6). Are the mandatory level data sufficientto

Embed Size (px)

Citation preview

Explorations in Meteorology 34 Lab 8 Answer Key

ANSWER KEYPart I: Introduction to the Skew-T

1. UsetheSkew-TinFigure4tocalculatetherelativehumidityvaluesforthefourlevelsabove999mb.

Table 3 – Calculations of Relative Humidity from a Greensboro, NC Soundingat 1200 UTC on 4 December 2002

LevelMixing Ratio

(w)Saturation Mixing

Ratio (wS)Relative

Humidity (RH)

925mb 0.2gkg–1 2.5gkg–1 8%

850mb 3.3gkg–1 4.1gkg–1 80%

700mb 3.6gkg–1 3.9gkg–1 92%

500mb 2.3gkg–1 2.6gkg–1 88%

2. UsingFigure5,plotthefollowingselectedobservations(Table4)fromGreensboro,NCthatwereobservedonthemorningof5December2002.Plotthetemperatureinredandthedewpointingreen.

Figure 5 – Blank Skew–T Log–P Diagram for Question #2

Explorations in Meteorology 35 Lab 8 Answer Key

3. WhatistheelevationofthesoundingsiteatGreensboro,NC?

Elevation=270m

4. UsingtheSkew-TdiagramyouplottedonFigure5,calculatetherelativehumidity(RH)at850mb,700mb,and500mb.Showyourwork.

RHat850mb=83%(w=5.7gkg–1;ws=6.9gkg–1)

RHat700mb=100%(w=5.5gkg–1;ws=5.5gkg–1)

RHat500mb=89%(w=2.5gkg–1;ws=2.8gkg–1)

5. Using the Skew-T diagram you plotted on Figure 5, describe the changes that occurred at the surfacebetweenDecember4thandDecember5th.

Thesurfacepressuredecreased,thetemperatureincreased,andthehumidityincreasedtosaturation.

6. InFigure5,whichlevelsorlayersaresaturated,asdepictedontheGreensborosounding?Whichlayershaveinversions?

Levelsorlayersthataresaturated985mb,925mb,and700mb

Layerswithinversions925to850mb

7. WhattypeofweatherlikelywasoccurringatthesurfaceinGreensboroat1200UTCon5December2002?

Freezingrain,lowclouds,andfog.

8. HowcriticalwasthesurfacetemperatureforecasttothecitizensofGreensboro,NCon5December2002?Wouldaforecasterrorof3°C,eithercoolerorwarmer,leadtodifferentactionsordecisionsbyGreensborocitizens?

Asurface temperature thatwas3degreeswarmerwould result inaharmlesscold rain rather thanadangerous icestorm.

9. (Advanced Students/Meteorology Majors) Examine the differences between the soundings plotted inFigures4and5.WhatprocessoccurredbetweenDecember4thandDecember5thtochangethesounding?

Evaporationalcooling(i.e.,thewet-bulbeffect)

Explorations in Meteorology 36 Lab 8 Answer Key

Part II: Sounding Interpretation

Forthispartofthelabexercise,studentsshouldworkinpairs.Onestudentshouldplotthe16April2002soundingfromAberdeen,SD(ABR)whiletheotherstudentplotsthe27January2000soundingfromFortWorth,TX(FWD).Usebothsoundingstoanswerthequestionsinthissection.Listyourpartner’snamebelow.

Nameoflabpartner______________________________

10. UsingdatafromeitherAberdeen,SD(Table5)orfromFortWorth,TX(Table6)andtheblankSkew-TLog–Pdiagram (Figure6), plot temperature anddewpointdata versuspressureat only the mandatory levels(notedinboldontable).Usearedpencilforthetemperaturedataandagreenpencilforthedewpointdata.Lightlycircleeachmandatoryleveldotwithablackpencil.Donotconnectthedotsatthistime.

11. UsingtheSkew–TLog–Pdiagramfromquestion10(Figure6),plottheentiredataset(i.e.,bothmandatoryandsignificantlevels)forABR(Table2)orFWD(Table3).Usearedpencilforthetemperaturedataandagreenpencilforthedewpointdata.Usearulertoconnecteachsetofsuccessiveobservations(redforthetemperaturetrace,greenforthedewpointtrace).

Explorations in Meteorology 37 Lab 8 Answer Key

12. Withyourpartner,examineyourcompletedthermodynamicdiagrams(Figure6).Arethemandatory level datasufficienttodeterminetheverticalstructureoftemperatureanddewpointintheatmosphereovereitherlocation?Whyorwhynot?

Themandatoryleveldataarenotsufficient.Keystructuralcharacteristicsoftheenvironment(moistlayers,drylayers,thecappinginversion,etc.)arenotcapturedwhenonlythemandatoryleveldataareused.

13. Withyourpartner,examineyourcompletedthermodynamicdiagrams(Figure6).Arethesignificant leveldatasufficienttodeterminetheverticalstructureoftemperatureanddewpointintheatmosphereovereitherlocation?Whyorwhynot?

Yes.Bydefinition,significantlevelsarecodedonlywhensignificantchangestothetemperatureandmoisturestructureoccur.Therefore,theessenceofthelayeredstructureoftheatmosphereiscapturedbyusingsignificantlevels.(Note:sometimesmandatorylevelsalsoaresignificant.)

Explorations in Meteorology 38 Lab 8 Answer Key

14. With your partner, label the following levels or layers on both plotted soundings (from ABR and FWD):(a) the lowest freezing level, (b) all inversions (i.e., layers where temperature increases with height), and(c)thetropopause.Useablackpenciltolabelyourfigures.

Explorations in Meteorology 39 Lab 8 Answer Key

15. Withyourpartner,examinebothsoundings.Waseitherlocationexperiencingprecipitationatthetimeoftheradiosondelaunch?

AberdeenSounding–Althoughtheboundarylayerisclosetosaturation,moisturewithinthelowerhalfofthetroposphereisnotsufficient to indicate thatprecipitation is falling.There isvery littlemoisturebetween850and500mb.A fewmeasurementsindicatethattheairisnearsaturationjustabove500mb.Atthemost,somemid-levelclouds,suchasaltocumulus,maybeseenatthistime.

FortWorthSounding–Theatmospherewassaturatedfromnearthesurfacetoalmost700mb(~3kmdepth).Itislikelythatatleastlightprecipitationoccurredatthistime.Basedonthesounding(warm,above-freezingairoverthetopofcold,sub-freezingair),theprecipitationlikelywasfallingintheformoflightfreezingrain.Observationsverifiedthatlightfreezingrainwasoccurringatthetimeofthelaunch.

16. (Advanced Students/Meteorology Majors) Both sets of sounding data in this lab contain height dataalongwiththepressure,temperature,moisture,andwindinformation.Theradiosondeinstrumentpackage,however,doesnotmeasureheight.Describehowtheheightdataareobtained.

Usethetemperature(actuallycalculatethevirtualtemperature)andpressurevaluestosolvethehypsometric(thickness)equation(ahydrostaticassumption)forheight.

17. (Advanced Students/Meteorology Majors)Atmospheric thickness isdefinedas thedifference inheightbetweentwopressurelevels.UsingTables2and3,calculatethe1000–500mbthicknessvaluesforbothsoundings.Howdothethicknessvaluesdifferbetween16April2002and27January2000?Usingconceptsdiscussed in lecture or your textbook, what is the physical reason as to why the two thickness valuesdiffer?

1000–500mb thickness forABRon16April 2002at1200UTC5630m–20m=5610meters

1000–500mbthicknessforFWDon27January2000at1200UTC5660m–166m=5494meters

Warmairislessdensethancoldair.Pressurechangesmuchmorerapidlywithheightincoldairthanitdoesinwarmair.ThesmallerJanuaryvaluemeansthatthe1000–500mblayeroccupieslessspacethandoesthesamelayerinAprilbecauseJanuaryairiscolderandmoredense,henceless“thick”thantheAprilair.

18. (Advanced Students/Meteorology Majors)What is thephysical reason for thedifference in tropopauseheightsbetweenthetwosoundings?

ThetropopauseheightintheAprilsoundingwasnear200mb,whileintheJanuarysoundingthetropopauseheightwasnear260mb.BecausethemeanvirtualtemperatureofthetroposphereintheJanuarysoundingiscolderthanintheAprilsounding,thetropopauseshouldbelowerintheJanuarycase.Remember,coldairtakesuplessspacethandoesthesameamountofwarmair.