1
A. Buchheit, M. Grünebaum, M. M. Hiller, K. Schmale, H.-D. Wiemhöfer e-mail: [email protected], [email protected] Institute of Inorganic and Analytical Chemistry, Corrensstr. 28/30, 48149 Münster Anodic deposition of CeO 2 - thin layers on Pt surfaces - redox activity at room temperature [1-4] Acknowledgements: The authors want to acknowledge the Deutsche Forschungsgemeinschaft (DFG) for funding within the project “CeO 2 - basierte Oxide als redoxaktive Funktionsmaterialien für Austausch und Speicherung von Sauerstoff”. Literature: [1] V. V. Kharton, F. M. Figueiredo, L. Navarro et al.; J. Mat. Sci. 2001, 36, 1105-1117 [2] J. R. Jurado; J. Mat. Sci. 2001, 36, 1133-1139 [3] C. Kleinlogel, L. J. Gauckler; Solid State Ionics 2000, 135, 567-573 [4] A. Asati, S. Santra, C. Kaittanis et al.; Angew. Chem. Int. Ed. 2009, 48, 2308-2312 [5] T. D. Golden, A. Q. Wang; J. Electrochem. Soc. 2003, 150, C621-C624 Ceria SOFC Sensors Oxygen permeation Catalysis H 2 N NH 2 H 2 N NH 2 CeO 2 Composition of electrolyte solutions Measurement setup Aqueous Non-aqueous CV measurement without water- electrolysis Anodic deposition Electrolyte solution before and after deposition CeO 2 -thin layer SEM photograph of CeO 2 -thin layer CV measurement Synthesis of organic cerium(III) salt solvent Cerium(III) source pH adjustant Chelating agent Aqueous [5] Water Cerium(III) nitrate hexahydrate Sodium hydroxide Disodium edetate Non-aqueous Propylene carbonate Organic cerium(III) salt Tetrabutylammonium hydroxide - - Change of redox state from cerium(III) to cerium(IV) in an aqueous electrolyte to the solid oxide is possible Microstructured thin-layers of ceria could be obtained in aqueous solutions Thin layers are cracky; water electrolysis during deposition Phase transfer is an easy and cheap method to transfer the cerium(III)-cation to an organic solvent Change of redox state from cerium(III) to cerium(IV) in a non-aqueous electrolyte is possible Redox activity of ceria at high temperatures is extensely researched There are only few investigations of the redox activity at low temperatures Investigation of CeO 2 - thin layers Anodic deposition of CeO 2 - thin layers from solutions containing Ce (III) at room temperature CV measurement without water- electrolysis Reference electrode Ag/AgCl/NaCl (aq) Ag/AgNO 3 (non-aq) Counter electrode Pt-mesh Working electrode Pt-wire (CV) Pt-disc (deposition) Three-electrode setup Working electrode (WE) Counter electrode (CE) Reference electrode (RE) Cyclic voltammetric (CV) measurements to determine the redox potential Use of a measuring cell for liquid electrolytes for CV measurements and anodic depositions frit electrolyte solution silver wire Pt-disc (d = 10 mm)

Anodic deposition of CeO2-thin layers on Pt surfaces ... · on Pt surfaces - redox activity at room temperature [1-4] Acknowledgements: The authors want to acknowledge the Deutsche

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Anodic deposition of CeO2-thin layers on Pt surfaces ... · on Pt surfaces - redox activity at room temperature [1-4] Acknowledgements: The authors want to acknowledge the Deutsche

A. Buchheit, M. Grünebaum, M. M. Hiller, K. Schmale, H.-D. Wiemhöfer

e-mail: [email protected], [email protected]

Institute of Inorganic and Analytical Chemistry, Corrensstr. 28/30, 48149 Münster

Anodic deposition of CeO2-thin layers on Pt surfaces -

redox activity at room temperature

[1-4]

Acknowledgements: The authors want to acknowledge the Deutsche Forschungsgemeinschaft (DFG) for funding within the project “CeO2-basierte Oxide als redoxaktive Funktionsmaterialien für Austausch und Speicherung von Sauerstoff”.

Literature: [1] V. V. Kharton, F. M. Figueiredo, L. Navarro et al.; J. Mat. Sci. 2001, 36, 1105-1117 [2] J. R. Jurado; J. Mat. Sci. 2001, 36, 1133-1139 [3] C. Kleinlogel, L. J. Gauckler; Solid State Ionics 2000, 135, 567-573 [4] A. Asati, S. Santra, C. Kaittanis et al.; Angew. Chem. Int. Ed. 2009, 48, 2308-2312 [5] T. D. Golden, A. Q. Wang; J. Electrochem. Soc. 2003, 150, C621-C624

Ceria

SOFC

Sensors

Oxygen permeation

Catalysis

H2N NH2 H2N NH2

CeO2

Composition of electrolyte solutions

Measurement setup

Aqueous Non-aqueous

CV measurement without water-electrolysis

Anodic deposition

Electrolyte solution before and after deposition CeO2-thin layer SEM photograph of

CeO2-thin layer

CV measurement Synthesis of organic cerium(III) salt

solvent Cerium(III) source pH adjustant Chelating agent

Aqueous [5] Water Cerium(III) nitrate hexahydrate

Sodium hydroxide Disodium edetate

Non-aqueous Propylene carbonate

Organic cerium(III) salt Tetrabutylammonium hydroxide

- -

• Change of redox state from cerium(III) to cerium(IV) in an aqueous electrolyte to the solid oxide is possible

• Microstructured thin-layers of ceria could be obtained in aqueous solutions

• Thin layers are cracky; water electrolysis during deposition • Phase transfer is an easy and cheap method to transfer the cerium(III)-cation

to an organic solvent

• Change of redox state from cerium(III) to cerium(IV) in a non-aqueous electrolyte is possible

Redox activity of ceria at high temperatures is extensely researched

There are only few investigations of the redox activity at low

temperatures

Investigation of CeO2-thin layers

Anodic deposition of CeO2-thin layers from solutions containing Ce(III) at room temperature

CV measurement without water-electrolysis

Reference electrode • Ag/AgCl/NaCl (aq) • Ag/AgNO3 (non-aq)

Counter electrode • Pt-mesh

Working electrode • Pt-wire (CV) • Pt-disc (deposition)

Three-electrode setup • Working electrode (WE) • Counter electrode (CE) • Reference electrode (RE)

Cyclic voltammetric (CV) measurements to determine the redox potential

Use of a measuring cell for liquid electrolytes for CV measurements and anodic depositions

frit

electrolyte solution

silver wire

Pt-disc (d = 10 mm)