21
Combinatorial Differential Algebra of x p Anna-Laura Sattelberger (MPI-MiS Leipzig) based on joint work with Rida Ait El Manssour (MPI–MiS Leipzig) arXiv:2102.03182 MEGA 2021 UiT – The Arctic University of Tromsø June 7–11, 2021

Anna-Laura Sattelberger (MPI-MiS Leipzig)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Combinatorial Differential Algebra of xp

Anna-Laura Sattelberger (MPI-MiS Leipzig)

based on joint work with Rida Ait El Manssour (MPI–MiS Leipzig)arXiv:2102.03182

MEGA 2021UiT – The Arctic University of Tromsø

June 7–11, 2021

Page 2: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Combinatorial Differential Algebra of xp

I at the interface of geometric combinatorics and differential algebra

Linking. . .

1 differential ideals

2 lattice polytopes arising from graphs

3 regular triangulations

2 / 21

Page 3: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Differential algebra

I study of polynomial O/PDEs with methods from Commutative Algebra

Differential rings and ideals

I C[x (∞)] the ring of differential polynomials in x over C, i.e.,(C[x , x (1), x (2), . . .], ∂), ∂(x (k)) = x (k+1), ∂|C ≡ 0, Leibniz’ rule

I I / C[x (∞)] is a differential ideal if ∂(I ) ⊆ I

I For S ⊆ C[x (∞)], 〈S〉∞ denotes the differential ideal generated by S .

Bivariate case

C[x (∞,∞)] := C[{x (k,`)}, {∂s , ∂t}] with

∂s(x (k,`)) = x (k+1,`), ∂t(x(k,`)) = x (k,`+1), ∂s |C ≡ 0, ∂t |C ≡ 0

the ring of partial differential polynomials in x over C in the two independentvariables s and t.

3 / 21

Page 4: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Differential Grobner bases

Definition

G ⊆ C[x (∞)] is a differential Grobner basis of 〈G 〉(∞) if{∂k(g) | k ∈ N, g ∈ G} is an algebraic Grobner basis of 〈G 〉(∞) w.r.t. ≺.

Theorem (Zobnin, 2009)

The singleton {xp} is a differential Grobner basis of 〈xp〉(∞) with respect to thereverse lexicographical ordering.

4 / 21

Page 5: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Jets of the fat point xp on the affine line

Rn the polynomial ring C[x0, . . . , xn]fp,n ∈ Rn[t] the polynomial (x0 + x1t + · · ·+ xnt

n)p in tCp,n / Rn the ideal generated by the coefficients of fp,n

Ip,n / C[x (∞)] the differential ideal generated by xp and x (n)

Truncating Taylor series

Cp,n encodes certain n-jets of the fat point xp on the affine line

Linking Cp,n and Ip,n

Rn/Cp,n∼=−→ C[x (∞)]/Ip,n+1, xk 7→

1

k!x (k).

Question

For fixed n, is dimC(Rn/Cp,n) a polynomial in p of degree n + 1?

5 / 21

Page 6: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Example: dimC(R6/Cp,6)p∈N

The first 13 entries of the sequence dimC(R6/Cp,6)p∈N are1

0, 1, 34, 353, 2037, 8272, 26585, 72302, 173502, 377739, 760804, 1437799, 2576795,

coinciding with the sequence https://oeis.org/A244881.

Interpolating polynomial (computed on the values for p = 1, . . . , 20):

17

315p7 +

17

90p6 +

53

180p5 +

19

72p4 +

13

90p3 +

17

360p2 +

1

140p,

of degree 7 = 6 + 1.

1computed with Singular6 / 21

Page 7: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Counting lattice points of polytopes

C an integral d-dimensional polytopetC the polytope dilated by t ∈ N

Then: |tC ∩ Zn| is a polynomial in t of degree d , the Ehrhart polynomial of C .

Theorem (Ait El Manssour–S., 2021)

The number dimC(Rn/Cp,n) is the Ehrhart polynomial of the polytope

Pn :={

(w0, . . . ,wn) ∈ (R≥0)n+1∣∣wi + wi+1 ≤ 1 for all 0 ≤ i ≤ n − 1

}evaluated at p − 1.

Proof: Results from graph theory +

Proposition (Bruschek–Mourtada–Schepers, 2013)

in≺revlex(Cp,n) is generated by

{xuii xui+1

i+1 | ui + ui+1 = p, 0 ≤ i ≤ n − 1}.

I graph G with V = {0, 1, . . . , n} and E = {[i , i + 1]}i=0,...,n−1

7 / 21

Page 8: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Fractional stable set polytope of a graph

G an undirected graph with vertices V and edges EC (G ) the cliques of G

Two polytopes

I Stab(G ) := conv{χS ∈ RV | S ⊆ V stable

}the stable set polytope of G ,

with χS = (χSv )v∈V ∈ RV incidence vectors

I QStab(G ) :={x ∈ RV | 0 ≤ x(v)∀v ∈ V ,

∑v∈Q x(v) ≤ 1 ∀Q ∈ C (G )

}the fractional stable set polytope of G

Then: Stab(G ) = conv{{0, 1}V ∩ QStab(G )}.

Theorem (Chvatal, 1975)

A graph G is perfect iff Stab(G ) = QStab(G )

8 / 21

Page 9: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Bivariate case

Rm,n the polynomial ring C[{xk,`}0≤k≤m,0≤`≤n]fp,(m,n) ∈ Rm,n[s, t] the polynomial (x00 + x10s + · · ·+ xmns

mtn)p in s and tCp,(m,n) / Rm,n the ideal generated by the coefficients of fp,(m,n)

Ip,(m,n) / C[x (∞,∞)] the differential ideal generated by xp, x (m,0), and x (0,n)

Linking Cp,(m,n) and Ip,(m,n)

Rm,n/Cp,(m,n)

∼=−→ C[x (∞,∞)]/Ip,(m+1,n+1), xk,` 7→1

k!`!x (k,`).

Looking for monomial orderings. . .

. . . for which the coefficients of fp,(m,n) are a Grobner basis of Cp,(m,n).

9 / 21

Page 10: Anna-Laura Sattelberger (MPI-MiS Leipzig)

The regular triangulation Tm,2

Tm,2 the placing triangulation of the m × 2-rectangle for the point configuration[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), . . . , (m, 0), (m, 1), (m, 2)] inducedby the vector (1, 2, . . . , 23m+2) (lower hull convention)

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2) (1, 2) (2, 2) (3, 2) · · ·

(m, 1)

(m, 2)

(3, 0) · · · (m, 0)

Figure: The regular triangulation Tm,2

10 / 21

Page 11: Anna-Laura Sattelberger (MPI-MiS Leipzig)

The regular triangulation Tm,n

Tm,n the placing triangulation of the m × n-rectangle for the point configuration[(0, 0), (0, 1), . . . , (0, n), (1, 0), . . . , (1, n), . . . , (m, 0), . . . , (m, n)]

(0, 0) (1, 0)

(0, 1)

(0, 2)

...

(0, n) (1, n)

...

(1, 1)

(1, 2)

Figure: The regular triangulation T1,n

11 / 21

Page 12: Anna-Laura Sattelberger (MPI-MiS Leipzig)

T-orderings

T a triangulation of the m × n-rectangle

Definition

A monomial ordering ≺ on C[{x (≤k,≤`)}0≤k≤m,0≤`≤n] is called T-ordering if eachof the leading monomials of (xp)(k,`) is supported on a triangle of T .

Proposition (Ait El Manssour–S., 2021)

For all k, `, (xp)(k,`) ∈ C[x (≤m,≤n)] has a unique monomial supported on atriangle of Tm,n. The reverse lexicographical ordering ≺ on C[x (≤m,≤n)] is aTm,n-ordering for all p.

12 / 21

Page 13: Anna-Laura Sattelberger (MPI-MiS Leipzig)

A higher-dimensional analog of Zobnin’s result

≺ a Tm,2-ordering

Theorem (Ait El Manssour–S., 2021)

For all m, p ∈ N, {(xp)(k,`)}0≤k≤mp, 0≤`≤2p is a Grobner basis of 〈xp〉(∞,∞) inC[x (≤m,≤2)] with respect to any Tm,2-ordering.

Theorem (Ait El Manssour–S., 2021)

For all m ∈ N, dimC(Rm,2/Cp,(m,2)) is the Ehrhart polynomial of the3(m + 1)-dimensional lattice polytope

P(m,2) :={

(u00, u01, u02, . . . , um0, um1, um2) ∈ (R≥0)3(m+1)∣∣uk1,`1 + uk2,`2 + uk3,`3 ≤ 1

for all indices s.t. {(k1, `1), (k2, `2), (k3, `3)} is a triangle of Tm,2

}evaluated at p − 1.

13 / 21

Page 14: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Example: C3,(2,2)

Cp,(2,2) the ideal in R2,2 = C[x00, x10, x01, x02, x11, x12, x20, x21, x22] generatedby the (2p + 1)2 many coefficients of fp,(2,2) ∈ R2,2[s, t]

≺ the weighted reverse lexicographical ordering on R2,2 forw2,2 :=

(28 + 1, . . . , 28 + 1

)−(20, 21, . . . 28

)∈ N9

In the leading monomials of the coefficients of f3,(2,2), the following triples ofvariables show up:

{x00, x01, x10}, {x01, x02, x10}, {x02, x10, x11}, {x02, x11, x12},{x10, x11, x20}, {x11, x12, x20}, {x12, x20, x21}, {x12, x21, x22}.

The indices of those define the triangles of the regular triangulation T2,2:

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2) (1, 2)

(2, 1)

(2, 2)

14 / 21

Page 15: Anna-Laura Sattelberger (MPI-MiS Leipzig)

m = 3, n = 2

Figure: For height vectors inducing those four regular unimodular triangulations of the3× 2-rectangle, the weighted reverse lexicographical ordering turns the coefficients offp,(3,2) into a Grobner basis of Cp,(3,2).

15 / 21

Page 16: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Open problems

Question 1For which m, n, p ∈ N does there exist a regular unimodular triangulation T of them × n-rectangle such that the coefficients of fp,(m,n) are a Grobner basis ofCp,(m,n) with respect to the weighted reverse lexicographical ordering for a vectorinducing that triangulation in the upper hull convention?

Question 2Are the four triangulations depicted on slide 15, continued to the m× 2-rectangle,all regular unimodular triangulations that give rise to a Grobner basis?

Question 3

As p varies, is dimC(Rm,n/Cp,(m,n)) the Ehrhart polynomial of the (fractional)stable set polytope of the edge graph of T and is this graph perfect?

Inc(N)-stable ideals [KLS16, HS09, NR17]

Parallels to be worked out

16 / 21

Page 17: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Supplementary material

A“geometrical provocation” inspired by T2,2.

Find more of them on www.alsattelberger.de!

17 / 21

Page 18: Anna-Laura Sattelberger (MPI-MiS Leipzig)

Thank you very much for your attention!

Page 19: Anna-Laura Sattelberger (MPI-MiS Leipzig)

References I

[Afs20] Pooneh Afsharijoo.Looking for a new member of Gordon’s identitites.arXiv:2006.0921, 2020.

[Ber62] Claude Berge.Sur une conjecture relative au probleme des codes optimaux.Comm. 13e assemblee generale de l’URSI, Tokyo, 1962.

[BJMS15] Sarah Brodsky, Michael Joswig, Ralph Morrison, and Bernd Sturmfels.Moduli of tropical plane curves.Research in the Mathematical Sciences, 2(4), 2015.

[BMS13] Clemens Bruschek, Hussein Mourtada, and Jan Schepers.Arc spaces and Rogers–Ramanujan identities.Ramanujan J., 30:9–38, 2013.

[Chv75] Vaclav Chvatal.On certain polytopes associated with graphs.J. Combin. Theory Ser. B, 18:138–154, 1975.

[DGPS20] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schonemann.Singular 4-1-3—A computer algebra system for polynomial computations.http://www.singular.uni-kl.de, 2020.

[DLRS10] Jesus A. De Loera, Jorg Rambau, and Francisco Santos.Triangulations, volume 25 of Algorithms and computations in Mathematics.Springer-Verlag Berlin Heidelberg, 2010.

[Ful72] Delbert R. Fulkerson.Anti-blocking polyhedra.J. Combin. Theory Ser. B, 12:50–71, 1972.

[GJ00] Ewgenij Gawrilow and Michael Joswig.polymake: A framework for analyzing convex polytopes.In Polytopes—combinatorics and computation (Oberwolfach, 1997), volume 29 of DMV Sem., pages 43–73. Birkhauser, Basel, 2000.

19 / 21

Page 20: Anna-Laura Sattelberger (MPI-MiS Leipzig)

References II

[GJS06] Russell A. Goward Jr. and Karen E. Smith.The jet scheme of a monomial scheme.Comm. Algebra, 34:1591–1598, 2006.

[Gro99] Martin Grotschel.My Favorite Theorem.OPTIMA, 62:2–5, 1999.

[HS09] Christopher Hillar and Seth Sullivant.Finite Grobner bases in infinite dimensional polynomial rings and applications.Adv. Math., 229, 2009.

[KLS16] Robert Krone, Anton Leykin, and Andrew Snowden.Hilbert series of symmetric ideals in infinite polynomial rings via formal languages.J. Algebra, 485, 2016.

[Kol73] Ellis R. Kolchin.Differential Algebra and Algebraic Groups.Pure and applied mathematics. Academic Press, 1973.

[Lev42] Howard Levi.On the structure of differential polynomials and on their theory of ideals.Trans. Amer. Math. Soc., 51(3):532–568, 1942.

[Lov71] Laszlo Lovasz.Normal hypergraphs and the perfect graph conjecture.Discrete Math., 2, 1971.

[MS10] Rahim Moosa and Thomas Scanlon.Jet and prolongation spaces.J. Inst. Math. Jussieu, 9:391–430, 2010.

[NR17] Uwe Nagel and Tim Romer.Equivariant Hilbert Series in non-Noetherian Polynomial Rings.J. Algebra, 486, 2017.

20 / 21

Page 21: Anna-Laura Sattelberger (MPI-MiS Leipzig)

References III

[Oll90] Francois Ollivier.Standard Bases of Differential Ideals.Lecture Notes in Comput. Sci., 508:304–321, 1990.

[OSC] OSCAR Computer Algebra System.https://oscar.computeralgebra.de.

[Rit50] Joseph F. Ritt.Differential Algebra, volume 14 of American Mathematical Society: Colloquium publications.American Mathematical Society, 1950.

[Stu96] Bernd Sturmfels.Grobner bases and convex polytopes, volume 8 of University lecture series.American Mathematical Society, Providence, R.I., 1996.

[Yue06] Cornelia Yuen.One higher dimensional analog of jet schemes.arXiv:math/0608633, 2006.

21 / 21