47
Uniwersytet Lódzki Wydzial Matematyki Andrzej Komisarski O rzutach minimalnych w skończenie wymiarowych przestrzeniach Banacha Skończenie wymiarowe (α, 1) przestrzenie Rozprawa doktorska Marzec 2004 Promotor: prof. dr hab. Adam Paszkiewicz

Andrzej Komisarski O rzutach minimalnych w skończenie

Embed Size (px)

Citation preview

Page 1: Andrzej Komisarski O rzutach minimalnych w skończenie

Uniwersytet Łódzki

Wydział Matematyki

Andrzej Komisarski

O rzutach minimalnych

w skończenie wymiarowych

przestrzeniach Banacha

Skończenie wymiarowe (α, 1) przestrzenie

Rozprawa doktorska

Marzec 2004

Promotor:

prof. dr hab. Adam Paszkiewicz

Page 2: Andrzej Komisarski O rzutach minimalnych w skończenie

Spis treści

1 Wprowadzenie 2

1.1 Oznaczenia i układ pracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Pomocnicze konstrukcje ciał wypukłych 7

3 a-roje 22

4 Prostopadłościany, kostki i ich szczególne podzbiory 25

5 Główny wynik i jego dowód 36

6 Uwagi 44

1

Page 3: Andrzej Komisarski O rzutach minimalnych w skończenie

1 Wprowadzenie

Rzutem minimalnym na podprzestrzeń domkniętą przestrzeni Banacha E nazywamy rzut, który ma

najmniejszą normę spośród wszystkich rzutów na daną podprzestrzeń. Nie dla każdej podprzestrzeni

istnieje rzut minimalny, a nawet gdy istnieje nie musi być wyznaczony jednoznacznie.

Przykładami przestrzeni, w których na każdą podprzestrzeń liniową domkniętą istnieje rzut

minimalny są przestrzenie Hilberta (także skończenie wymiarowe, czyli przestrzenie euklidesowe).

W przestrzeniach tych rzut minimalny na każdą nietrywialną podprzestrzeń ma normę 1. Własność

ta stanowi zarazem cechę wyróżniającą przestrzenie Hilberta wśród wszystkich przestrzeni Banacha

wymiaru różnego od 2. Zachodzi bowiem twierdzenie

Twierdzenie 1.1 (S. Kakutani). Niech E będzie przestrzenią Banacha taką, że dimE 6= 2. Za-

łóżmy, że dla każdej dwuwymiarowej podprzestrzeni N ⊂ E istnieje rzut P = P 2 na N mający

normę 1. Przestrzeń E jest wówczas izometryczna z przestrzenią Hilberta.

Dowód powyższego twierdzenia dla rzeczywistych przestrzeni Banacha znajduje się w pracach

S. Kakutaniego ([3]) i R. S. Phillipsa ([6]). Przypadek zespolony jest udowodniony w pracy F. Boh-

nenblusta ([1]). W niniejszej rozprawie rozważamy tylko rzeczywiste przestrzenie Banacha.

Z rzutami minimalnymi związane jest następujące pojęcie: Mówimy, że przestrzeń Banacha E

ma własność (α, k) (α > 0, k = 1, 2, · · · ), gdy istnieje rzut minimalny na każdą k-kowymiarową

podprzestrzeń przestrzeni E i ma on normę 1 + α.

W pracy [7] S. Rolewicz pokazał, że dla każdego 1 < p <∞ istnieje liczba α > 0 taka, że prze-

strzeń Lp[0, 1] ma własność (α, 1). Okazuje się jednak, że wynik Rolewicza nie pozostaje prawdziwy

jeśli dla p 6= 2 odcinek [0, 1] zastąpimy przestrzenią trzypunktową, tzn. gdy zamiast przestrzeni

Lp[0, 1] będziemy rozważać przestrzeń R3 z p-tą normą (||(x1, x2, x3)||p = (xp1 + xp2 + xp3)1/p). (Gdy

p = 2, wówczas przestrzeń euklidesowa (R3, || · ||2) ma własność (0, 1).) Fakt ten sugerował, że być

może (R3, || · ||2) jest jedyną trójwymiarową przestrzenią Banacha mającą własność (α, 1) dla pew-

nego α > 0. Z twierdzenia Kakutaniego wynika, że (R3, || · ||2) jest jedyną trójwymiarową przestrze-

nią Banacha mającą własność (0, 1).

S. Rolewicz postawił pytanie, czy istotnie (R3, || · ||2) jest jedyną trójwymiarową przestrzenią

Banacha mającą własność (α, 1) dla pewnego α > 0 oraz pytanie ogólniejsze, mianowicie, czy twier-

dzenie Kakutaniego można uogólnić zastępując założenie mówiące, że dla każdej dwuwymiarowej

podprzestrzeni N ⊂ E istnieje rzut P = P 2 na N mający normę 1, założeniem następującym: Ist-

nieje liczba α > 0 taka, że dla każdej dwuwymiarowej podprzestrzeni N ⊂ E istnieje rzut P = P 2

na N mający normę 1 + α.

W pracy [4] napisanej wspólnie z A. Paszkiewiczem odpowiedzieliśmy negatywnie na te pytania

konstruując trójwymiarową przestrzeń Banacha mającą własność (α, 1) dla pewnego α > 0.

2

Page 4: Andrzej Komisarski O rzutach minimalnych w skończenie

W niniejszej rozprawie rezultat ten zostanie rozszerzony. Główny i jedyny wynik to konstrukcje

skończenie wymiarowych przestrzeni Banacha mających własność (α, 1), gdzie α > 0 (por. twier-

dzenie 5.1). Dokładniej, dla każdej liczby naturalnej n > 3 skonstruowana zostanie n-wymiarowa

przestrzeń Banacha mająca własność (α, 1), przy czym liczba α > 0 zależy od wymiaru n. Idea

dowodu jest zbliżona do tej, która użyta została w pracy [4]. Część lematów pochodzi bezpośrednio

z tej pracy (por. rozdział 6). Ich sformułowania zostały jednak poprawione. Podane zostały także

szczegółowe dowody, których zabrakło w pracy [4].

1.1 Oznaczenia i układ pracy

Ustalmy notację stosowaną w dalszej części pracy. Nie wyjaśniamy tu większości oznaczeń i pojęć,

które są powszechnie stosowane i znane, a ich znaczenie nie budzi wątpliwości.

Symbolem Rn będziemy oznaczać rzeczywistą przestrzeń wektorową wymiaru n. Elementy tej

przestrzeni (nazywamy je wektorami lub punktami) będziemy oznaczać literami pogrubionymi.

W szczególności, wektor zerowy 0 = (0, 0, . . . , 0), zaś elementy bazy kanonicznej przestrzeni Rn to

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0),. . . ,en = (0, 0, . . . , 1). Przestrzeń Rn jest wyposażona w iloczyn

skalarny 〈·, ·〉 określony wzorem 〈(x1, x2, . . . , xn), (y1, y2, . . . , yn)〉 =∑n

i=1 xiyi i normę Euklidesową

|| · || (||x|| =√〈x,x〉). Zawsze, ilekroć użyty jest symbol || · || oznacza on normę Euklidesową w Rn.

Prosta to jednowymiarowa podprzestrzeń afinczna przestrzeni liniowej. Kierunkiem prostej

L ⊂ Rn nazwiemy taki wektor a ∈ Rn, że ||a|| = 1 oraz L = {ta + b : t ∈ R} dla pewnego wektora

b ∈ Rn. Kierunek prostej nie jest jednoznacznie wyznaczony, każda prosta ma dwa kierunki będące

wektorami przeciwnymi.

Rodzina prostych w przestrzeni liniowej Rn tworzy przestrzeń metryczną z metryką d określoną

następująco: Jeśli K = {taK +bK : t ∈ R} i L = {taL+bL : t ∈ R} są prostymi mającymi kierunki

odpowiednio aK = (aK1 , aK2 , . . . , a

Kn ) oraz aL = (aL1 , a

L2 , . . . , a

Ln), przy czym aK ⊥ bK i aL ⊥ bL,

wówczas

d(K,L) = min(max(|aK1 − aL1 |, |aK2 − aL2 |, . . . , |aKn − aLn |, ||bK − bL||),

max(|aK1 + aL1 |, |aK2 + aL2 |, . . . , |aKn + aLn |, ||bK − bL||)).

Jeśli ograniczymy się do prostych będących podprzestrzeniami liniowymi Rn (czyli prostych zawie-

rających 0) wówczas uzyskamy przestrzeń rzutową RPn−1. Jest ona przestrzenią zwartą.

Jeśli E jest przestrzenią liniową, wówczas powiemy, że zbiórM jest hiperpłaszczyzną w E, gdyM

jest podprzestrzenią afiniczną kowymiaru 1 przestrzeni E. HiperpłaszczyznaM rozcina przestrzeń E

na dwie półprzestrzenie i jest ich wspólnym brzegiem. O dwóch elementach różnicy E \M powiemy,

że leżą po tej samej stronie hiperpłaszczyzny M , gdy są elementami jednej z tych półprzestrzeni.

W przeciwnym razie powiemy, że leżą po przeciwnych stronach M . Ponieważ hiperpłaszczyzna

3

Page 5: Andrzej Komisarski O rzutach minimalnych w skończenie

w Rn to zbiór {(x1, x2, . . . , xn) ∈ Rn : a1x1 + a2x2 + . . .+ anxn = b}, dla pewnych liczb rzeczywi-

stych a1, a2, . . . , an, b takich, że a21 + a2

2 + . . .+ a2n = 1, więc a1x1 + a2x2 + . . .+ anxn = b będziemy

nazywać równaniem hiperpłaszczyzny. Równanie to nie jest jednoznacznie wyznaczone, każda hi-

perpłaszczyzna ma dwa równania różniące się znakami występujących w nich liczb a1, a2, . . . , an, b.

Rodzina hiperpłaszczyzn w przestrzeni liniowej Rn tworzy przestrzeń metryczną z metryką d

określoną następująco: Jeśli M i N są hiperpłaszczyznami w Rn, a ich równaniami są odpowiednio

aM1 x1 + aM2 x2 + . . .+ aMn xn = bM oraz aN1 x1 + aN2 x2 + . . .+ aNn xn = bN , wówczas

d(M,N) = min(max(|aM1 − aN1 |, |aM2 − aN2 |, . . . , |aMn − aNn |, |bM − bN |),

max(|aM1 + aN1 |, |aM2 + aN2 |, . . . , |aMn + aNn |, |bM + bN |)).

Podprzestrzeń przestrzeni wszystkich hiperpłaszczyzn w Rn, składająca się z tych hiperpłaszczyzn,

które są podprzestrzeniami liniowymi Rn (zawierają 0), jest homeomorficzna z przestrzenią rzutową

RPn−1 i jest zwarta.

Dla dowolnego zbioru A ⊂ Rn przez linA rozumiemy podrzestrzeń liniową generowaną (rozpiętą)

przez zbiór A, czyli zbiór wszystkich kombinacji liniowych elementów zbioru A. W szczególności

lin ∅ = {0}. Dla prostoty przyjmujemy, że jeśli v ∈ Rn, wówczas napis lin v oznacza to samo,

co lin{v}, czyli zbiór {tv : t ∈ R}.

Z kolei symbolem convA dla zbioru A ⊂ Rn oznaczamy uwypuklenie zbioru A, czyli zbiór

wszystkich kombinacji wypukłych elementów A.

Punkty x1,x2, . . . ,xk ∈ Rn są afinicznie niezależne, gdy z tego, że t1x1 + t2x2 + . . .+ tkxk = 0

oraz t1 + t2 + . . .+ tk = 0 wynika, że t1 = t2 = . . . = tk = 0.

Jeśli punkty x1,x2, . . . ,xk ∈ Rn są afinicznie niezależne, wówczas zbiór conv{x1,x2, . . . ,xk}

nazywamy sympleksem k − 1-wymiarowym rozpiętym przez wektory x1,x2, . . . ,xk. Wnętrzem

tego sympleksu nazywamy zbiór {t1x1 + t2x2 + . . . + tkxk : t1 + t2 + . . . + tk = 1, ti > 0 dla

i = 1, 2, . . . , k}. Tak określone wnętrze sympleksu pokrywa się z wnętrzem topologicznym jedynie

wtedy, gdy k = n+ 1.

Symbol S oznacza sferę jednostkową w normie || · ||, tzn. S = {(x ∈ Rn : ||x|| = 1}. Kula

domknięta B(x, r) o środku x ∈ Rn i promieniu r > 0 to zbiór B(x, r) = {y ∈ Rn : ||y − x|| 6 r}.

L⊥ oznacza dopełnienie ortogonalne podprzestrzeni liniowej L ⊂ Rn, to znaczy podprzestrzeń

L⊥ = {x ∈ Rn : ∀y∈L x ⊥ y}.

Jeśli K i L są podprzestrzeniami liniowymi przestrzeni Rn takimi, że K ∩ L = {0} oraz

dimK + dimL = n, wówczas przekształcenie PKL : Rn → L jest rzutem (liniowym) na podprze-

strzeń L z jądrem K. W przypadku rzutu ortogonalnego, czyli wtedy, gdy K = L⊥ zamiast

oznaczenia PL⊥L stosować będziemy krótsze oznaczenie PL.

Dla x ∈ Rn \ {0} oraz liczby a > 0, zbiór

C(x, a) = {y ∈ Rn : | tg∠(x,y)| 6 a} ∪ {0} = {y ∈ Rn : |〈x,y〉| > ||x||||y||/√a2 + 1}

4

Page 6: Andrzej Komisarski O rzutach minimalnych w skończenie

nazywamy stożkiem. Stożek jest zbiorem domkniętym, symetrycznym względem 0, to znaczy

C(x, a) = −C(x, a). Wektor x wyznacza położenie stożka, natomiast liczba a określa jego wiel-

kość, mianowicie prosta lin x jest osią stożka C(x, a), natomiast liczba a to tangens kąta zawartego

między osią i tworzącą stożka.

Dla dowolnego zbioru D ⊂ Rn zbiór C[D] = {λx : x ∈ D,λ ∈ R} również będziemy nazywać

stożkiem. W szczególności C(x, a) jest stożkiem postaci C[D], gdzie D jest pewną kulą. Dokładniej,

C(x, a) = C[B(r√

1+a2

a||x|| x, r)]

, gdzie r jest dowolną liczbą dodatnią.

Zbiór A ⊂ Rn nazywamy ciałem wypukłym, gdy A jest wypukłym, domkniętym i ograniczo-

nym podzbiorem przestrzeni Rn takim, że 0 ∈ IntA oraz A = −A. Przez || · ||A oznaczamy

normę wyznaczoną przez ciało A, określoną jako ||x||A = inf{q > 0 : x ∈ qA}. Zachodzi równość

A = {x ∈ Rn : ||x||A 6 1}.

Jeśli ∅ 6= A ⊂ Rn oraz x ∈ Rn to dist(x, A) jest odległością punktu x od zbioru A, to znaczy

dist(x, A) = inf{||x − y|| : y ∈ A}. Gdy A,B ⊂ Rn oraz A 6= ∅ i B 6= ∅, wówczas odległością

zbiorów A i B nazywamy liczbę dist(A,B) = inf{||x− y|| : x ∈ A,y ∈ B}.

Średnicą niepustego zbioru A ⊂ Rn nazywamy wielkość diamA = sup{||x− y|| : x,y ∈ A}.

Dla dowolnej funkcji f : X → Y przekształcającej zbiór X w zbiór Y oraz podzbiorów A ⊂ X

i B ⊂ Y , obraz zbioru A pod działaniem funkcji f , czyli zbiór {f(x) : x ∈ A}, oznaczamy jako f [A],

natomiast przeciwobraz zbioru B, czyli {x ∈ X : f(x) ∈ B}, jako f−1[B].

Gdy A ⊂ Rn, B ⊂ Rn, x ∈ Rn i t ∈ R, wówczas A + B = {a + b : a ∈ A,b ∈ B},

x +A = {x + a : a ∈ A} oraz tA = {ta : a ∈ A}.

Inne używane pojęcia i oznaczenia, w szczególności te związane z kostkami i prostopadłościanami

w przestrzeniach euklidesowych (por. rozdział 4), wyjaśnione są dokładnie w głównej części pracy.

Układ pracy związany jest ze sposobem konstrukcji żądanych norm. Aby skonstruować normę

||·||D, lub równoważnie, aby skonstruować kulę jednostkowąD w (Rn, ||·||D), będziemy zniekształcać

kulę {x ∈ Rn : ||x|| 6 1}, robiąc w niej skończoną liczbę identycznych deformacji.

W rozdziale 2 pracy opisany jest kształt pojedynczej deformacji i udowodnione jej własności.

Główny wynik tego rozdziału (stwierdzenie 2.5) uzyskany jest w oparciu o lematy dotyczące ele-

mentarnej geometrii przestrzeni Rn z wykorzystaniem aparatu geometrii analitycznej. Dowody

znajdujące się w tym rozdziale wymagają wykonania dużej liczby pomocniczych rachunków. Nie są

one przytaczane w całości. Podajemy jedynie ich wyniki i wskazówki umożliwiające czytelnikowi

samodzielne powtórzenie tychże rachunków.

W rozdziale 3 opisujemy jak powinny być rozmieszczone deformacje, aby uzyskane ciało wypukłe

miało pożądane własności. W tym celu wprowadzone zostaje pojęcie a-roju. Jest to skończony pod-

zbiór przestrzeni Rn spełniający szereg warunków. Elementy takiego podzbioru opisują położenia

poszczególnych deformacji.

5

Page 7: Andrzej Komisarski O rzutach minimalnych w skończenie

Rozdziały 4 i 5 poświęcone są konstrukcji a-roju. Jest ona rozpoczęta w rozdziale 4, gdzie do-

wiedzione jest istnienie pewnego specjalnego rozmieszczenia punktów w n-wymiarowej kostce (por.

stwierdzenie 4.5). Rozmieszczenie to wykorzystane jest w rozdziale 5 do skonstruowania a-roju.

W rozdziale tym zaprezentowany jest także dowód głównego twierdzenia pracy, czyli twierdzenia 5.1.

W rozdziale 6 zamieszczone są dodatkowe uwagi i komentarze.

6

Page 8: Andrzej Komisarski O rzutach minimalnych w skończenie

2 Pomocnicze konstrukcje ciał wypukłych

W niniejszym rozdziale konstruowane są pewne ciała wypukłe, najpierw na płaszczyźnie, a następnie

w przestrzeniach Rn dla n > 2. Ciała takie, najprościej mówiąc, powstają z kuli w przestrzeni eu-

klidesowej (Rn, || · ||) przez zniekształcenie jej w otoczeniu dwóch symetrycznie położonych punktów

na jej powierzchni.

Główną cechą tych ciał jest to, że w wyznaczanych przez nie normach, rzuty ortogonalne

na wszystkie podprzestrzenie liniowe mają normę niewiększą niż 1 + α (liczba α jest związana

z ciałem), a na niektóre podprzestrzenie liniowe – normę dokładnie równą 1 + α. Co więcej, dla

każdej z tych podprzestrzeni rzuty w pewnych kierunkach mają normę większą niż 1 + α.

Zajmijmy się najpierw konstrukcją ciał dwuwymiarowych. Sparametryzujmy zbiór jednowymia-

rowych podprzestrzeni liniowych R2 wprowadzając oznaczenia Lλ = {(x, y) : y = λx} dla λ ∈ R

oraz L∞ = {(x, y) : x = 0}.

Lemat 2.1. Dla dowolnych dwóch liczb 0 < a 6 3/4 oraz α > 0 spełniających zależność

a = 2√

2α(1 + α)/(1− α) oznaczmy

A = {(x, y) : |x| 6 1, y2 6 4(1 + α)(1 + α− |x|)} ∩ B(0, 1 + 3α),

A′ = conv(A ∩ C(e1, a))

(patrz rys. 1). Zachodzą następujące warunki:

A \ C(e1, a) = B(0, 1 + 3α) \ C(e1, a), (2.1)

PLλ [A] ⊂ (1 + α)A gdy −∞ < λ 6∞, (2.2)

PLλ [A] = PLλ [A′] = (1 + α)(Lλ ∩A) gdy 4a/10 6 λ 6 4a/9, (2.3)

PLµLλ

[A′] 6⊂ (1 + α)A gdy 4a/10 6 λ 6 4a/9 oraz − 1/λ < µ < λ. (2.4)

Oba zbiory, A i A′ występujące w lemacie są ciałami wypukłymi. Warunek (2.1) mówi, że zbiór

A różni się od koła B(0, 1+3α) jedynie w bliskim otoczeniu punktów e1 i −e1, dokładniej – w stożku

C(e1, a). Zbiór A′ jest najmniejszym zbiorem wypukłym, który zawiera te fragmenty brzegu zbioru

A, które czynią go różnym od koła. Warunek (2.2) mówi, że normy (pochodzące od || · ||A) rzutów

ortogonalnych na podprzestrzenie jednowymiarowe nie przekraczają 1+α. Z kolei rzuty ortogonalne

na podprzestrzenie Lλ dla 4a/10 6 λ 6 4a/9 mają normę równą 1 + α. Za tą własność odpowiada

warunek (2.3), jednak ze względu na późniejsze zastosowania jest on sformułowany mocniej i oprócz

zbioru A pojawia się w nim także mniejszy zbiór A′. Warunek (2.4) mówi, że jeśli rozważymy

rzut na prostą Lλ dla 4a/10 6 λ 6 4a/9 w kierunku prostej Lµ, gdzie −1/λ < µ < λ, to norma

takiego rzutu jest większa niż 1+α (znowu, ze względu na późniejsze zastosowania, po lewej stronie

7

Page 9: Andrzej Komisarski O rzutach minimalnych w skończenie

1 + 3α

−(1 + 3α)

x2 + y2 = (1 + 3α) 2

x2 + y2 = (1 + 3α)2

x

y

2√

2α(1 + α)

2√α(1 + α)

−2√

2α(1 + α)

−2√α(1 + α)

1− α 1−(1− α)−1

y=f(x)

y=f(x)

y=f(x

)

y=f(x

)

A

x

y

2√

2α(1 + α)

2√α(1 + α)

−2√

2α(1 + α)

−2√α(1 + α)

1− α 1−(1− α)−1

y=f(x)

y=f(x)

y=f(x

)

y=f(x

)

A′f(x) = 2√

(1 + α)(1 + α− |x|)

Rysunek 1: Zbiory A oraz A′ (lemat 2.1).

w (2.4) występuje nie zbiór A, lecz A′). Proste Lλ i L−1/λ są prostopadłe, Lλ = lin{PLλ(e1)} oraz

L−1/λ = L⊥λ = lin{PL⊥λ (e1)}, a warunek −1/λ < µ < λ dla λ > 0 można w sposób równoważny

zapisać następująco: Lµ = lin v dla wektora v ∈ R2 takiego, że 〈v, PLλ(e1)〉〈v, PL⊥λ (e1)〉 > 0 (będzie

nam to pomocne przy dowodzie następnego lematu).

Dowód. Zbiory A i A′ są zbioram wypukłymi, punkt 0 = (0, 0) jest ich środkiem symetrii, a proste

{(x, y) : x = 0} oraz {(x, y) : y = 0} osiami symetrii. Brzegi obu zbiorów są sumami odcinków,

łuków parabol i łuków okręgu. Na rysunkach 1 i 2 przedstawione są oba zbiory, wyznaczone są

także współrzędne punktów będących końcami łuków i odcinków składających się na brzegi A

i A′ (ze względu na symetrię, na rysunku 2 ograniczam się jedynie do pierwszej ćwiartki układu

współrzędnych).

Zbiór A różni się od B(0, 1 + 3α) jedynie wewnątrz stożka C(e1, 2√

2α(1 + α)/(1 − α)), czyli

zachodzi równość (2.1).

Najpierw udowodnimy te własności obu zbiorów, które są związane z rzutami ortogonalnymi.

Ze względu na symetrię wystarczy, że ograniczymy się do rozważania rzutów na proste Lλ dla λ > 0.

Dla dowolnej liczby λ rzut ortogonalny zbioru A na Lλ jest odcinkiem symetrycznym względem

0 = (0, 0). Niech Qλ będzie tym końcem tego odcinka, który leży w pierwszej ćwiartce układu

współrzędnych, a Pλ ∈ A niech będzie takim punktem, że PLλ(Pλ) = Qλ. Przecięcie zbioru A

z prostą Lλ również jest odcinkiem o środku 0. Leżący w pierwszej ćwiartce układu współrzędnych

8

Page 10: Andrzej Komisarski O rzutach minimalnych w skończenie

koniec tego odcinka oznaczmy symbolem Rλ. Stosunek długości obu tych odcinków, który jest za-

razem równy stosunkowi odległości punktów Qλ i Rλ od początku układu współrzędnych oznaczmy

jako qλ.

Naszym celem jest pokazanie, że qλ 6 1 + α. Zobaczmy co się dzieje, gdy λ rośnie od 0

do nieskończoności. Przy wyznaczaniu położenia punktów Pλ i Qλ opieram się na tym, że prosta

zawierająca oba te punkty jest prostopadła do Lλ i podpiera zbiór A w punkcie Pλ. Co za tym

idzie, punkt Pλ jest albo punktem, w którym brzeg zbioru A nie jest gładki (w pierwszej ćwiartce

układu współrzędnych są dwa takie punkty, L i M, por. rys. 2), albo też jest punktem, w którym

prosta podpierająca jest styczna do brzegu A.

x

y

1 + 3α

2√

2α(1 + α)

2√α(1 + α)

1− α 1 1 + α

K

L

M

N

Rλ Qλ

x

y

1 + 3α

2√

2α(1 + α)

2√α(1 + α)

1− α 1 1 + α

K

L

M

N

L√ α1+α

L√ 2α1+α

Rysunek 2:Część brzegu zbioru A, znajdująca się w pierwszej ćwiartce układu współrzędnych (gruba linia). Cienka

krzywa (pokrywająca się częściowo z brzegiem zbioru A) to zbiór możliwych położeń punktu Qλ dla λ > 0.

Z lewej: Punkty Pλ, Qλ oraz Rλ dla przykładowo wybranego położenia prostej Lλ. Z prawej: Skrajne z tych

położeń prostej Lλ, dla których qλ = 1 + α.

Gdy λ = 0 wówczas punkt P0 leży na odcinku KL będącym częścią brzegu zbioru A i nie jest

wyznaczony jednoznacznie (gdyż zbiór A nie jest ściśle wypukły). Punkty Q0 i R0 pokrywają się

i mają współrzędne (1, 0). Współczynnik q0 = 1 jest mniejszy niż 1 + α.

Gdy λ ∈(

0,√α/(1 + α)

], wówczas Pλ = L = (1, 2

√α(1 + α)) jest końcem odcinka KL (por.

rysunek 2). Punkt Qλ =(

1+2λ√α(1+α)

1+λ2 , λ1+2λ√α(1+α)

1+λ2

), a punkt Rλ = (1, λ) leży na odcinku KL.

Gdy λ rośnie od wartości 0 do√α/(1 + α), wówczas wartość współczynnika qλ wzrasta od q0 = 1

do q√α/(1+α)

= 1 + α.

Następnie, gdy λ zwiększa się od√α/(1 + α) do

√2α/(1 + α), wówczas punkt

Pλ =((1 + α)(1− λ2), 2λ(1 + α)

)znajduje się na łuku

_LM paraboli, a punkt Qλ = (1 + α, λ(1 + α)).

9

Page 11: Andrzej Komisarski O rzutach minimalnych w skończenie

Punkt Rλ = (1, λ) nadal leży na odcinku KL. Współczynnik qλ ma stałą wartość równą 1 + α.

Następnie, dla λ ∈[√

2α/(1 + α), 2√α(1 + α)

], punkt Pλ = M = (1 − α, 2

√2α(1 + α)) jest

wspólnym końcem łuków paraboli i okręgu, ograniczających zbiór A, zaś punkt Qλ ma współrzędne

Qλ =(

1−α+2λ√

2α(1+α)

1+λ2 , λ1−α+2λ

√2α(1+α)

1+λ2

). Punkt Rλ = (1, λ) w dalszym ciągu leży na odcinku

KL. Współczynnik qλ = 1−α+2λ√

2α(1+α)

1+λ2 maleje od wartości 1 + α do wartości 1−α+4√

2α(1+α)(1+2α)2

.

Gdy λ rośnie od 2√α(1 + α) do a = 2

√2α(1 + α)/(1 − α), wówczas nadal Pλ = M =(

1− α, 2√

2α(1 + α))jest wspólnym końcem łuków paraboli i okręgu. Jego odległość od początku

układu współrzędnych wynosi 1 + 3α. Ponieważ odcinek 0Pλ jest przeciwprostokątną trójkąta

prostokątnego 40PλQλ (być może zdegenerowanego), więc odległość punktu Qλ od punktu 0

nie przekracza 1 + 3α. Punkt Rλ znajduje się teraz na łuku_

LM paraboli i jego odległość od po-

czątku układu współrzędnych nie jest mniejsza od 1 + 2α (wartość najmniejszą, równą właśnie

1 + 2α odległość ta przyjmuje dla λ = 2√α(1 + α)). Współczynnik qλ jest zatem niewiększy niż

1+3α1+2α < 1 + α.

Wreszcie, gdy λ zwiększa się od a = 2√

2α(1 + α)/(1 − α) do nieskończoności, wtedy punkt

Pλ = Qλ = Rλ leży na łuku_

MN okręgu {(x, y) : x2 + y2 = (1 + 3α)2} i qλ = 1.

Z tego, że niezależnie od wartości λ ∈ [0,∞] zachodzi nierówność qλ 6 1 + α wynika zawiera-

nie (2.2).

Zauważmy, że fragment rozumowania, z którego wynika, że dla λ ∈[√

α1+α ,

√2α

1+α

]liczba qλ

jest równa 1 + α można zastosować bez żadnych zmian nie tylko do zbioru A, ale także do zbioru

A′.

Z warunków nałożonych w treści lematu na liczby a i α wynika, że 0 < α 6 1/17, co pozwala

dowieść zawierania przedziałów

[4a/10, 4a/9] =

[8√

2α(1 + α)10(1− α)

,8√

2α(1 + α)9(1− α)

]⊂[√

α

1 + α,

√2

α

1 + α

].

Zestawienie tych dwóch obserwacji dowodzi prawdziwości (2.3).

Pozostało dowieść warunek (2.4). W tym celu zauważmy, iż sprawdziliśmy już, że dla

λ ∈ [4a/10, 4a/9] punkt Pλ jest elementem zbioru A′, zaś punkt Qλ = PLλ(Pλ) jest końcem odcinka

(1+α)(A∩Lλ). Zmiana kierunku rzutowania z prostopadłego na kierunek Lµ, gdzie −1/λ < µ < λ

powoduje, że PLµLλ (Pλ) 6∈ (1 + α)(A ∩ Lλ), czyli zachodzi (2.4).

W dalszej części rozdziału będziemy się zajmować zbiorami w przestrzeni n-wymiarowej (Rn),

gdzie n>2. Przyjmijmy oznaczenia

Mλ = {(x1, x2, x3, . . . , xn) ∈ Rn : x2 = λx1} dla −∞ < λ <∞

oraz

M∞ = {(x1, x2, x3, . . . , xn) ∈ Rn : x1 = 0}.

10

Page 12: Andrzej Komisarski O rzutach minimalnych w skończenie

Zbiory Mλ dla λ ∈ R oraz M∞ są podprzestreniami liniowymi Rn kowymiaru 1.

Lemat 2.2. Niech n > 2 będzie liczbą naturalną i niech liczby rzeczywiste 0 < a 6 3/4 oraz α > 0

spełniają równość a = 2√

2α(1 + α)/(1− α). Określmy zbiory

B = {(x1, x2, x3, . . . , xn) ∈ Rn : |x1| 6 1, x22 +x2

3 + . . .+x2n 6 4(1 +α)(1 +α−|x1|)}∩B(0, 1 + 3α),

B′ = conv(B ∩ C(e1, a)).

Zachodzą następujące warunki:

B \ C(e1, a) = B(0, 1 + 3α) \ C(e1, a), (2.5)

PMλ[B] ⊂ (1 + α)B gdy −∞ < λ 6∞, (2.6)

PMλ[B′] 6⊂ βB gdy 4a/10 6 λ 6 4a/9 oraz 0 < β < 1 + α (2.7)

oraz

P linvMλ

[B′] 6⊂ (1 + α)B

dla 4a/10 6 λ 6 4a/9 oraz każdego niezerowego wektora v ∈ R3

spełniającego 〈v, PMλ(e1)〉〈v, PM⊥λ (e1)〉 > 0.

(2.8)

Zbiór B jest n-wymiarowym odpowiednikiem zbioru A skonstruowanego w lemacie 2.1. Jest to

zbiór wypukły, symetryczny względem 0 = (0, 0, . . . , 0). Jego przecięcie z dowolną dwuwymiarową

podprzestrzenią liniową Rn zawierającą punkt e1 jest izometryczny ze zbiorem A. W podobny spo-

sób zbiór B′ jest n-wymiarowym odpowiednikiem zbioru A′. Przekroje obu tych zbiorów hiperpłasz-

czyznami prostopadłymi do lin e1 są kulami (możliwe, że zdegenerowanymi do punktu lub zbioru

pustego) o środkach leżących na lin e1. Wynika stąd, że B i B′ są niezmiennicze ze względu na izo-

metrie zachowujące 0 i lin e1.

Podobnie, jak w poprzednim lemacie, warunek (2.5) mówi, że zbiórB różni się od kuli B(0, 1 + 3α)

jedynie w bliskim otoczeniu punktów e1 i −e1, mianowicie w stożku C(e1, a). Zbiór B′ jest naj-

mniejszym zbiorem wypukłym, który zawiera te fragmenty brzegu zbioru B, które czynią go róż-

nym od kuli. Warunek (2.6) mówi, że normy (pochodzące od || · ||B) rzutów ortogonalnych na

n− 1-wymiarowe podprzestrzenie liniowe Mλ ⊂ Rn nie przekraczają 1 + α. Z kolei rzuty ortogo-

nalne na podprzestrzenieMλ dla 4a/10 6 λ 6 4a/9 mają normę niemniejszą niż 1+α (a więc równą

1 +α). Za tą własność odpowiada warunek (2.7), jednak tak, jak poprzednio, z uwagi na późniejsze

zastosowania jest on wysłowiony silniej i zamiast zbioru B pojawia się w nim jego podzbiór B′.

Z (2.8) wynika, że jeśli rozważymy rzut na podprzestrzeń Mλ dla 4a/10 6 λ 6 4a/9 w kierunku,

który spełnia podany w treści lematu warunek, to norma takiego rzutu jest większa niż 1 + α.

11

Page 13: Andrzej Komisarski O rzutach minimalnych w skończenie

Dowód. Gdy n = 2, wówczas lemat sprowadza się do lematu 2.1. Dalej zakładamy, że n > 2.

Równość (2.5) wynika natychmiast z (2.1) oraz z tego, że każdy przekrój zbioru B płaszczyzną

zawierającą 0 i e1 jest izometryczny ze zbiorem A.

Przejdźmy do dowodu (2.7). Będziemy utożsamiać przestrzeń R2 z podprzestrzenią N =

lin{e1, e2} = {(x1, x2, . . . , xn) : x3 = x4 = . . . = xn = 0} ⊂ Rn. Niech 4a/10 6 λ 6 4a/9 oraz

0 < β < 1 + α. Popatrzmy na przekroje zbiorów B, B′ i Mλ płaszczyzną N . Zachodzą zależności:

Mλ ∩N = Lλ, PN [B] = B ∩N = A, PN [B′] = B′ ∩N = A′, a także (wobec M⊥λ ⊂ N)

N ∩ PMλ[B′] = PMλ

[N ∩B′] = PLλ [A′].

Ponieważ z (2.3) mamy PLλ [A′] = (1+α)(Lλ∩A) oraz wiemy, że Lλ∩A 6⊂ {0}, więc dla 0 < β < 1+α

zbiór PLλ [A′] nie jest zawarty w β(Lλ ∩ A), a więc nie jest też zawarty w zbiorze βA. Oznacza to,

że

N ∩ PMλ[B′] 6⊂ β(N ∩B) = N ∩ (βB).

Wynika stąd, że PMλ[B′] 6⊂ βB i własność (2.7) jest udowodniona.

Zajmijmy się teraz własnością (2.8). Ustalmy liczbę λ ∈ [4a/10, 4a/9] oraz wektor v ∈ Rn taki,

że 〈v, PMλ(e1)〉〈v, PM⊥λ (e1)〉 > 0. Mamy pokazać, że P linv

Mλ[B′] 6⊂ (1 + α)B. Wektor w = PN (v)

należy do płaszczyzny N , przy czym (w − v) ⊥ N . Ponieważ zarówno PMλ(e1) = PLλ(e1), jak

i PM⊥λ (e1) = PL⊥λ(e1) należą do N , więc

〈w, PLλ(e1)〉〈w, PL⊥λ (e1)〉 = 〈w, PMλ(e1)〉〈w, PM⊥λ (e1)〉 = 〈v, PMλ

(e1)〉〈v, PM⊥λ (e1)〉 > 0

Wynika stąd, że wektor w jest niezerowy oraz (zgodnie z komentarzem poprzedzającym dowód

lematu 2.1) prosta lin w ⊂ N jest prostą Lµ dla pewnego −1/λ < µ < λ. Z lematu 2.1 mamy

P linwLλ

[A′] 6⊂ (1 + α)A (własność (2.4) zbioru A). Gdyby zachodziło zawieranie P linvMλ

[B′] ⊂ (1+α)B

wówczas po przyłożeniu do obu jego stron rzutu ortogonalnego na N mielibyśmy PNPlinvMλ

[B′] ⊂

⊂ (1 + α)PN [B]. Zachodzi jednak następująca równość złożeń rzutów PNPlinvMλ

= P linwMλ

PN (wyni-

kająca z tego, że N⊥ ⊂Mλ), czyli otrzymalibyśmy

P linwMλ

PN [B′] ⊂ (1 + α)PN [B], czyli P linwLλ

[A′] ⊂ (1 + α)A.

Otrzymana sprzeczność pokazuje, że P linvMλ

[B′] 6⊂ (1 + α)B, co kończy dowód własności (2.8).

Dowód zawierania (2.6) wymaga trochę więcej pracy, gdyż nie jest prostym przeniesieniem wła-

sności zbiorów A i A′ na zbiory B i B′, jak to było z pozostałymi własnościami. Ze względu

na symetrię zbioru B wystarczy przy dowodzeniu warunku (2.6) ograniczyć się do rozważenia rzu-

tów ortogonalnych na płaszczyzny Mλ dla 0 6 λ 6∞.

Dla dowolnego zbioru Z ⊂ Rn i wektora ρ = (ρ3, ρ4, . . . , ρn) ∈ Rn−2 oznaczmy

Zρ = {(x, y) : (x, y, ρ3, ρ4, . . . , ρn) ∈ Z}.

12

Page 14: Andrzej Komisarski O rzutach minimalnych w skończenie

Zbiór Zρ można utożsamić z przekrojem zbioru Z płaszczyzną {(x1, x2, . . . , xn) : xk = ρk dla

k = 3, 4, . . . , n}, równoległą do płaszczyzny N . Zachodzą następujące zależności:

(βZ)ρ ={(x, y) : (x, y, ρ3, ρ4, . . . , ρn) ∈ βZ} =

={(x, y) : (x/β, y/β, ρ3/β, ρ4/β, . . . /β, ρn/β) ∈ Z} =

={(βx, βy) : (x, y, ρ3/β, ρ4/β, . . . /β, ρn/β) ∈ Z} = βZρ/β

(2.9)

dla Z ⊂ Rn, ρ ∈ Rn−2 i β ∈ R \ {0},

Mρλ = Lλ, dla ρ ∈ Rn−2 oraz λ ∈ R ∪ {∞},

Bρ = {(x, y) : |x| 6 1, y2 + ||ρ||2 6 4(1 + α)(1 + α− |x|)} ∩ B(0,√

(1 + 3α)2 − ||ρ||2), (2.10)

B0 = A oraz Bρ ⊂ Bτ gdy ||ρ|| > ||τ ||, ρ, τ ∈ Rn−2.

W zależności od ρ postać zbioru Bρ zmienia się (patrz rys. 3). Gdy 0 6 ||ρ|| < 2√α(1 + α)

wówczas brzeg zbioru Bρ (ze względu na symetrię ograniczam się tu tylko do tej części brzegu

zbioru Bρ, która leży w pierwszej ćwiartce układu współrzędnych) składa się z odcinka KL prostej

{(x, y) : x = 1}, łuku_

MN okręgu o środku (0, 0) i promieniu√

(1 + 3α)2 − ||ρ||2 oraz łuku_

LM

paraboli {(x, y) : y2 + ||ρ||2 = 4(1 +α)(1 +α−x)}. Gdy 2√α(1 + α) 6 ||ρ|| < 2

√2α(1 + α), brzeg

ten składa się już tylko z łuku okręgu i łuku paraboli, a gdy 2√

2α(1 + α) 6 ||ρ|| < 1+3α, to Bρ jest

kołem o środku (0, 0) i promieniu√

(1 + 3α)2 − ||ρ||2. Wreszcie Bρ = {(0, 0)}, gdy ||ρ|| = 1 + 3α

oraz Bρ = ∅, gdy ||ρ|| > 1 + 3α.

Aby wykazać zawieranie PMλ[B] ⊂ (1 + α)B, wystarczy dla każdego ρ ∈ Rn−2 udowodnić

zawieranie PLλ [Bρ] = (PMλ[B])ρ ⊂ ((1 + α)B)ρ = (1 + α)Bρ/(1+α) (por. 2.9) lub mocniejsze od

niego zawieranie

PLλ [Bρ] ⊂ (1 + α)Bρ. (2.11)

Dla ρ = 0 zawieranie (2.11) zostało wykazane w lemacie 2.1. Istotnie (por. 2.2),

PLλ [B0] = PLλ [A] ⊂ (1 + α)A = (1 + α)B0. Fakt ten wykorzystamy następująco: ponieważ dla

dowolnego ρ ∈ Rn−2 mamy Bρ ⊂ B0 = A, więc

PLλ [Bρ] ⊂ PLλ [A] ⊂ (1 + α)A ⊂ (1 + α) {(x, y) : |x| 6 1}. (2.12)

Ze względu na zawieranie Bρ ⊂ B(0,√

(1 + 3α)2 − ||ρ||2) mamy też

PLλ [Bρ] ⊂ PLλ [B(0,√

(1 + 3α)2 − ||ρ||2)] ⊂ B(0,√

(1 + 3α)2 − ||ρ||2) ⊂

⊂ (1 + α) B(0,√

(1 + 3α)2 − ||ρ||2).(2.13)

Z (2.12) i (2.13) wynika, że

PLλ [Bρ] ⊂ (1 + α)({(x, y) : |x| 6 1} ∩ B(0,

√(1 + 3α)2 − ||ρ||2)

).

13

Page 15: Andrzej Komisarski O rzutach minimalnych w skończenie

‖ρ‖ = 0

1 + 3α

2√

2α(1 + α)

2√α(1 + α)

1− α 1 1 + α

K

L

M

N

0 < ‖ρ‖ < 2√α(1 + α)

√(1 + 3α)2 − ‖ρ‖2

2√

2α(1 + α)− ‖ρ‖2

4

2√α(1 + α)− ‖ρ‖

2

4

1− α 1 1 + α

K

L

M

N

RλQλ

‖ρ‖ = 2√α(1 + α)

√1 + 2α+ 5α2

2√α(1 + α)

1− α 1 1 + α

L

M

N

2√α(1 + α) < ‖ρ‖ < 2

√2α(1 + α)

√(1 + 3α)2 − ‖ρ‖2

2√

2α(1 + α)− ‖ρ‖2

4

1− α 1 1 + α

L

M

N

‖ρ‖ = 2√

2α(1 + α)

1− α

1− α 1M

N

2√

2α(1 + α) < ‖ρ‖ < 1 + 3α

1− α

√(1 + 3α)2 − ‖ρ‖2

1− α 1M

N

Rysunek 3:Fragment brzegu zbioru Bρ zawarty w pierwszej ćwiartce układu współrzędnych dla różnych wartości ||ρ||

(linia gruba). Jedna z linii cienkich to fragment brzeg zbioru (1 +α)Bρ, druga zaś – zbiór możliwych położeń

punktu Qλ dla λ > 0 (ta ostatnia pokrywa się częściowo z linią grubą).

14

Page 16: Andrzej Komisarski O rzutach minimalnych w skończenie

Wobec (2.10), aby udowodnić (2.11) pozostaje sprawdzić, że zachodzi zawieranie

PLλ [Bρ] ⊂ Eρ, (2.14)

gdzie Eρ =(1 + α) {(x, y) : y2 + ||ρ||2 6 4(1 + α)(1 + α− |x|)} =

={(x, y) : (y

1 + α)2 + ||ρ||2 6 4(1 + α)(1 + α− | x

1 + α|)} =

={(x, y) : y2 6 4(1 + α)2((1 + α)2 − |x| − ||ρ||2

4)}.

Gdy ||ρ|| > 1 + 3α, czyli gdy Bρ = ∅ wówczas zawieranie (2.14) oczywiście zachodzi.

Gdy 2√

2α(1 + α) 6 ||ρ|| 6 1 + 3α, czyli gdy zbiór Bρ jest kołem lub punktem, wówczas

PLλ [Bρ] ⊂ Bρ ⊂ (1 + α)Bρ ⊂ (1 + α) {(x, y) : y2 + ||ρ||2 6 4(1 + α)(1 + α− |x|)}

i (2.14) również zachodzi. Sytuacja jest bardziej złożona, gdy ||ρ|| < 2√

2α(1 + α). Aby nie

rozpatrywać oddzielnie przypadków ||ρ|| < 2√α(1 + α) oraz 2

√α(1 + α) 6 ||ρ|| < 2

√2α(1 + α)

(por. rys. 3), a dodatkowo, by uniknąć kłopotliwych rachunków, rozważmy dla ||ρ|| < 2√

2α(1 + α)

zbiór Cρ ⊂ R2 określony wzorem

Cρ = {(x, y) : y2 + ||ρ||2 6 4(1 + α)(1 + α− |x|)} ∩ B(0,√

(1 + 3α)2 − ||ρ||2).

Z powyższego określenia oraz z (2.10) wynika, że Bρ = Cρ ∩ {(x, y) : |x| 6 1}, w szczególności

Bρ ⊂ Cρ. Gdy ||ρ|| > 2√α(1 + α), wówczas Cρ = Bρ. Pokażemy, że

PLλ [Cρ] ⊂ Eρ,

co wobec Bρ ⊂ Cρ implikuje (2.14).

Przeprowadzimy rozumowanie podobne, jak w dowodzie lematu 2.1. Ustalmy ρ ∈ Rn−2 takie,

że ||ρ|| < 2√

2α(1 + α). Dla 0 6 λ 6∞ (ze względu na symetrię wystarczy ograniczyć się jedynie

do rozważenia rzutów PLλ dla λ > 0) rzut ortogonalny zbioru Cρ na Lλ jest odcinkiem syme-

trycznym względem 0 = (0, 0). Niech Qλ będzie tym końcem tego odcinka, który leży w pierwszej

ćwiartce układu współrzędnych, a Pλ ∈ Cρ niech będzie takim punktem, że PLλ(Pλ) = Qλ. Na-

szym celem jest pokazanie, że punkt Qλ jest elementem zbioru Eρ. Zobaczmy co się dzieje, gdy λ

rośnie od 0 do nieskończoności.

Gdy λ ∈[0,√

2α(1+α)−||ρ||2/41+α

], wówczas punkt Pλ leży na łuku paraboli ograniczającej zbiór Cρ,

zaś punkt Qλ ma współrzędne Qλ =(

1 + α− ||ρ||24(1+λ2)(1+α)

, λ(1 + α− ||ρ||24(1+λ2)(1+α)

)). Obie współ-

rzędne punktu Qλ są liczbami nieujemnymi i są rosnące, jako funkcje parametru λ. Z obserwacji

tej i z określenia zbioru Eρ wynika, że jeśli dla pewnego λ ∈[0,√

2α(1+α)−||ρ||2/41+α

]punkt Qλ 6∈ Eρ,

to także punkt Q√2α(1+α)−||ρ||2/41+α

6∈ Eρ. Za chwilę pokażemy, że ten ostatni punkt jest elementem

zbioru Eρ, a tym samym wszystkie punkty Qλ dla λ z rozważanego przedziału są elementami Eρ.

15

Page 17: Andrzej Komisarski O rzutach minimalnych w skończenie

x

y

0

M

N

O

F

Rysunek 4:Zbiory Cρ, Eρ oraz okrąg, którego średnicą jest odcinek 0M. Środek tego okręgu ma współrzędne„

1−α2,

q2α(1 + α)− ||ρ||2

4

«, zaś jego promień ma długość

√(1+3α)2−||ρ||2

2. Zbiór Eρ jest ograniczony łukami

parabol {(x, y) : y2 = 4(1 + α)2((1 + α)2 − x− ||ρ||2

4)} oraz {(x, y) : y2 = 4(1 + α)2((1 + α)2 + x− ||ρ||

2

4)}.

Gdy λ ∈[√

2α(1+α)−||ρ||2/41+α ,

2√

2α(1+α)−||ρ||2/41−α

], wówczas punkt Pλ = M ma współrzędne

(1− α, 2√

2α(1 + α)− ||ρ||2/4), zaś punkt Qλ znajduje się na okręgu o, którego średnicą jest od-

cinek 0M (gdyż kąt ∠0QλM jest kątem prostym). Okazuje się, że cały ten okrąg zawarty jest

w zbiorze Eρ. W szczególności punkty Qλ dla λ z rozważanego przedziału są elementami Eρ. Rów-

nież Q√2α(1+α)−||ρ||2/41+α

∈ Eρ. Aby pokazać, że okrąg o jest zawarty w zbiorze Eρ należy pokazać,

że dla każdego punktu X = (x, y) ∈ o zachodzą nierówności y2 6 4(1+α)2((1+α)2−x− ||ρ||2

4 ) oraz

y2 6 4(1+α)2((1+α)2 +x− ||ρ||2

4 ). Ponieważ obie nierówności pokazuje się podobnie, przedstawimy

tylko skrócone rachunki prowadzące do pierwszej (trudniejszej) z nich.

Liczby x, y spełniają nierówność y2 6 4(1 + α)2((1 + α)2 − x − ||ρ||2

4 ), wtedy i tylko wtedy,

gdy odległość punktu X = (x, y) od ogniska paraboli {(x, y) : y2 = 4(1 + α)2((1 + α)2 − x− ||ρ||2

4 )}

jest niemniejsza niż odległość punktu X od kierownicy tejże paraboli.

Oznaczmy środek(

1−α2 ,

√2α(1 + α)− ||ρ||

2

4

)okręgu o literą O, jego promień

√(1+3α)2−||ρ||2

2 literą

r, ogisko paraboli literą F = (− ||ρ||2

4 , 0), zaś jej kierownicę {(x, y) : x = 2(1 + α)2 − ||ρ||2

4 } literą k.

16

Page 18: Andrzej Komisarski O rzutach minimalnych w skończenie

Jeśli X = (x, y) ∈ o, wówczas

dist(X, k)− ||X− F|| > (dist(O, k)− r)− (||O− F||+ r) = dist(O, k)− ||O− F|| − 2r =

=

„2(1 + α)2 − ||ρ||

2

4− 1− α

2

«−

s„1− α

2+||ρ||2

4

«2

+ 2α(1 + α)− ||ρ||2

4− 2

p(1 + 3α)2 − ||ρ||2

2=

=1

4

“6 + 2α(9 + 4α)− ||ρ||2 −

p4(1 + 3α)2 − 4α||ρ||2 + ||ρ||4 − 4

p(1 + 3α)2 − ||ρ||2

”>

>1

4

6 + 2α(9 + 4α)− ||ρ||2 −

s4(1 + 3α)2 − 4α||ρ||2 + ||ρ||4 +

„−4α||ρ||2 + ||ρ||4

4(1 + 3α)

«2

− 4

s(1 + 3α)2 − ||ρ||2 +

„||ρ||2

2(1 + 3α)

«2!

=

=1

4

„6 + 2α(9 + 4α)− ||ρ||2 −

„2(1 + 3α) +

−4α||ρ||2 + ||ρ||4

4(1 + 3α)

«− 4

„1 + 3α− ||ρ||2

2(1 + 3α)

««=

=2α2 +(4− 8α− ||ρ||2)||ρ||2

16 + 48α>

(4− 8α− 8α(1 + α))||ρ||2

16 + 48α>

(4− 24α)||ρ||2

16 + 48α> 0

W powyższych szacowaniach wykorzystaliśmy to, że założeń lematu wynika, że α 6 1/11 oraz to,

że w rozpatrywanym przez nas przypadku ||ρ|| < 2√

2α(1 + α). Otrzymaliśmy, że każdy punkt

okręgu o znajduje się bliżej ogniska paraboli {(x, y) : y2 = 4(1 + α)2((1 + α)2 − x− ||ρ||2

4 )}, niż jej

kierownicy. To kończy rozważania prowadzące do dowodu należenia Qλ ∈ Eρ dla λ z przedziału[√2α(1+α)−||ρ||2/4

1+α ,2√

2α(1+α)−||ρ||2/41−α

].

Wreszcie, gdy λ > 2√

2α(1+α)−||ρ||2/41−α , punkt Pλ = Qλ leży na łuku

_MN okręgu ograniczającego

Cρ i zachodzi

Qλ ∈Cρ ⊂ {(x, y) : y2 + ||ρ||2 6 4(1 + α)(1 + α− |x|)} ⊂

⊂(1 + α) {(x, y) : y2 + ||ρ||2 6 4(1 + α)(1 + α− |x|)} = Eρ.

Ostatecznie, dla każdej wartości λ zachodzi zawieranie PLλ [Cρ] ⊂ Eρ, a to, na podstawie prze-

prowadzonego rozumowania, pociąga za sobą (2.14), (2.11), a w konsekwencji (2.6).

W lemacie 2.2 rozważane są wyłącznie rzuty na podprzestrzenie liniowe kowymiaru 1. Uogólnimy

go teraz rozważając rzuty na dowolne podprzestrzenie liniowe przestrzeni Rn, których wymiar wynosi

co najmniej 2. W tym celu rozszerzmy dotychczasowe oznaczenia podprzestrzeni Rn następująco:

dla 1 6 k 6 n niech

Mkλ = {(x1, x2, x3, . . . , xn) ∈ Rn : x2 = λx1, xk+2 = xk+3 = . . . = xn = 0} gdy −∞ < λ <∞

oraz

Mk∞ = {(x1, x2, x3, . . . , xn) ∈ Rn : x1 = 0, xk+2 = xk+3 = . . . = xn = 0}.

Dla ustalonego 1 6 k 6 n oraz λ ∈ R∪{∞} zbiórMkλ jest k-wymiarową podprzestrzenią liniową Rn.

Lemat 2.3. Niech n > 2 będzie liczbą naturalną i niech liczby rzeczywiste 0 < a 6 3/4 oraz α > 0

spełniają równość a = 2√

2α(1 + α)/(1−α). Ciała wypukłe B i B′ określone w lemacie 2.2 spełniają

17

Page 19: Andrzej Komisarski O rzutach minimalnych w skończenie

dla dowolnego 1 6 k < n następujące warunki:

B \ C(e1, a) = B(0, 1 + 3α) \ C(e1, a), (2.15)

PMkλ[B] ⊂ (1 + α)B gdy −∞ < λ 6∞, (2.16)

PMkλ[B′] 6⊂ βB gdy 4a/10 6 λ 6 4a/9 oraz 0 < β < 1 + α (2.17)

oraz

PKMkλ[B′] 6⊂ (1 + α)B gdy 4a/10 6λ 6 4a/9 i jądro K

rozważanego rzutu zawiera wektor v ∈K ∩ lin(Mkλ , e1) taki, że

〈v, PMkλ(e1)〉〈v, P(Mk

λ )⊥(e1)〉 > 0.

(2.18)

Dowód. Równość (2.15) wynika z lematu 2.2 (równość 2.5). Dowodzimy zawieranie (2.16). Ustalmy

liczby k i λ. Jeśli λ = 0, wówczas PMkλ[B] = B∩Mk

λ ⊂ (1+α)B. Jeśli zaś λ 6= 0, wówczas e1 6∈Mkλ ,

podprzestrzeń lin(Mkλ ∪ {e1}) ma wymiar o jeden większy niż Mk

λ oraz PMkλ

= PMkλPlin(Mk

λ∪{e1}).

Podprzestrzeń

lin(Mkλ ∪ {e1}) ={(x1, x2, x3, . . . , xn) ∈ Rn : xk+2 = xk+3 = . . . = xn = 0} =

= lin{e1, e2, . . . , ek+1} = Rk+1 × {0}n−k−1

możemy utożsamić z przestrzenią Rk+1. Zbiór B ∩ lin(Mkλ ∪ {e1}) = Plin(Mk

λ∪{e1})[B] jest w niej

opisany tymi samymi równaniami, co zbiór B w przestrzeni Rk+1. Stosując lemat 2.2 (wła-

sność (2.6)) dla zbioru B ∩ lin(Mkλ ∪ {e1}) i podprzestrzeni Mk

λ ⊂ lin(Mkλ ∪ {e1}) dostajemy

PMkλ[B ∩ lin(Mk

λ ∪ {e1})] ⊂ (1 + α)B ∩ lin(Mkλ ∪ {e1}). Zachodzi zatem

PMkλ[B] =PMk

λPlin(Mk

λ∪{e1})[B] = PMkλ[B ∩ lin(Mk

λ ∪ {e1})] ⊂

⊂(1 + α)B ∩ lin(Mkλ ∪ {e1}) ⊂ (1 + α)B.

Własność (2.16) zbioru B została udowodniona.

Dowód własności (2.17) jest identyczny, jak dowód własności (2.7) w lemacie 2.2.

Pozostało dowieść, że ciała B i B′ spełniają warunek (2.18). Ustalmy podprzestrzenie Mkλ i K

oraz wektor v. Wektor v jest niezerowy, natomiast wektor e1 6∈ Mkλ (gdyż λ > 4a/10 > 0). Po-

dobnie, jak poprzednio, przestrzeń lin(Mkλ ∪{e1}) możemy utożsamiać z przestrzenią Rk+1. Zbiory

B ∩ lin(Mkλ ∪{e1}) i B′ ∩ lin(Mk

λ ∪{e1}) są w niej opisane identycznie, jak k+ 1-wymiarowe zbiory

B i B′ w przestrzeni Rk+1. Ponieważ Mkλ jest zbiorem wartości rzutu PK

Mkλ

, zaś K jest jego jądrem,

więc K∩Mkλ = {0}, a K∩ lin(Mk

λ ∪{e1}) jest jednowymiarową podprzestrzenią liniową zawierającą

niezerowy wektor v, czyli K ∩ lin(Mkλ ∪ {e1}) = lin v.

Rozważmy obcięcie rzutu PKMkλ

do przestrzeni lin(Mkλ ∪ {e1}). Zbiorem wartości tego obcięcia

jest podprzestrzeńMkλ , zaś jądrem K∩lin(Mk

λ∪{e1}) = lin v. Zastosujmy do tego obcięcia, zbiorów

18

Page 20: Andrzej Komisarski O rzutach minimalnych w skończenie

B ∩ lin(Mkλ ∪ {e1}) oraz B′ ∩ lin(Mk

λ ∪ {e1}) lemat 2.2 (własność (2.8)). Otrzymamy wówczas, że

P linvMkλ

[B′ ∩ lin(Mkλ ∪ {e1})] 6⊂ (1 + α)(B ∩ lin(Mk

λ ∪ {e1})).

Wynika stąd, że PKMkλ

[B′ ∩ lin(Mkλ ∪ {e1})] 6⊂ (1 + α)B, czyli warunek (2.18) zachodzi.

W lematach 2.2 i 2.3 rozważane były szczególne położenia ciała wypukłego i podprzestrzeni,

na które wykonywane były rzutowania. Przeformułujemy teraz lemat 2.3, dopuszczając dowolne

położenia tych zbiorów.

Dla dowolnego wektora e ∈ Rn długości ||e|| = 1 i dowolnej podprzestrzeni liniowej M ⊂ Rn

wymiaru k > 1, symbolem λ(M, e) oznaczmy taki element λ zbioru [0,+∞], że istniejeje zacho-

wująca punkt 0 izometria Φ przestrzeni Rn, która przekształca podprzestrzeń M na podprzestrzeń

Mkλ , a wektor e na e1. Wartość λ(M, e) jest jednoznacznie określona i λ(M, e) = ||M⊥e||/||Me||.

Niech e ∈ Rn będzie wektorem o długości 1, a Ψ : Rn → Rn izometrią taką, że Ψ(0) = 0 oraz

Ψ(e1) = e. Wówczas dla ustalonej liczby 0 < a 6 3/4 oraz zbiorów B i B′ określonych w lemacie 2.2,

wzory

D(e, a) = Ψ[B]

i

D′(e, a) = Ψ[B′] = conv(D(e, a) ∩ C(e, a)),

(2.19)

jednoznacznie definiują ciała wypukłe D(e, a) i D′(e, a) (ze względu na symetrię ciał B i B′ nie ma

znaczenia wybór izometrii Ψ). Lemat 2.3 może być przeformułowany następująco:

Wniosek 2.4. Niech n > 2 będzie liczbą naturalną, liczby rzeczywiste 0 < a 6 3/4 oraz α > 0

spełniają równość a = 2√

2α(1 + α)/(1−α) i niech D(e, a) oraz D′(e, a) będą ciałami określonymi

wzorami (2.19). Wówczas dla dowolnej liczby naturalnej 1 6 k < n i k-wymiarowej podprzestrzeni

liniowej M ⊂ Rn

D(e, a) \ C(e, a) = B(0, 1 + 3α) \ C(e, a),

PM [D(e, a)] ⊂ (1 + α)D(e, a), (2.20)

PM [D′(e, a)] 6⊂ βD(e, a) gdy 4a/10 6 λ(M, e) 6 4a/9 oraz 0 < β < 1 + α (2.21)

oraz

PKM [D′(e, a)] 6⊂ (1 + α)D(e, a) gdy 4a/10 6 λ(M, e) 6 4a/9 i jądro K

rozważanego rzutu zawiera wektor v ∈ K ∩ lin(M, e) taki, że 〈v, PM (e)〉〈v, PM⊥(e)〉 > 0.(2.22)

Dotychczas podane lematy opisują własności ciał wypukłych, które powstają z kuli w przestrzeni

euklidesowej przez zniekształcenie jej w okolicach dwóch ustalonych, antypodycznie względem siebie

19

Page 21: Andrzej Komisarski O rzutach minimalnych w skończenie

położonych punktów. Na przykład występujące w ostatnim lemacie ciała D(e, a) różnią się od kuli

B(0, 1 + 3α) jedynie wewnątrz stożka C(e, a), w pobliżu punktów e i −e. W stwierdzeniu 2.5,

kończącym ten rozdział pracy podane zotaną podobne własności dla ciał, w których wspomniane

zniekształcenia występują w okolicach większej liczby punktów. Treść stwierdzenia 2.5 jest sformu-

łowana, w odróżnieniu od wcześniejszych lematów, nie w języku zawierania się zbiorów, lecz poprzez

podanie pewnych własności normy ||.||D na Rn, pochodzącej od ciała wypukłego D i wyznaczonej

przez nią normy rzutów na podprzestrzenie liniowe.

Stwierdzenie 2.5. Dany jest skończony zbiór Z, będący podzbiorem sfery jednostkowej w przestrzeni

euklidesowj Rn oraz liczby α > 0 i a = 2√

2α(1 + α)/(1 − α) 6 3/4. Załóżmy dodatkowo, że dla

dowolnych dwóch różnych punktów x,y ∈ Z przecięcie stożków C(x, a) i C(y, a) składa się wyłącznie

z punktu 0. Wówczas istnieje ciało wypukłe D ⊂ R3 spełniające warunek:

||PM ||D 6 1 + α dla każdej liniowej podprzestrzeni M ⊂ Rn.

Ponadto dla dowolnej liczby naturalnej 1 6 k < n i k-wymiarowej podprzestrzeni liniowej M ⊂ Rn

||PM ||D > 1 + α jeśli dla pewnego x ∈ Z zachodzi 4a/10 6 λ(M,x) 6 4a/9

oraz

||PKM ||D > 1 + α gdy dla pewnego x ∈ Z zachodzi 4a/10 6 λ(M,x) 6 4a/9, a jądro K

rozważanego rzutu zawiera wektor v ∈ K ∩ lin(M,x) taki, że 〈v, PM (x)〉〈v, PM⊥(x)〉 > 0.

Dowód. Ciało D określamy formułą

D =⋂x∈Z

D(x, a),

gdzie D(x, a) jest zdefiniowane przez (2.19). Ze względu na to, że dla dowolnych różnych punktów

x,y ∈ Z przecięcie stożków C(x, a) ∩ C(y, a) = {0}, zachodzi ∀x∈Z D ∩ C(x, a) = D(x, a) ∩ C(x, a),

co z kolei, ze względu na wypukłość ciała D daje ∀x∈Z D′(x, a) = conv(D(x, a) ∩ C(x, a)) =

conv(D ∩ C(x, a)) ⊂ D. Mamy więc

∀x∈Z D′(x, a) ⊂ D ⊂ D(x, a).

Na podstawie (2.20) dla każdego x ∈ Z i dla każdej k-wymiarowej podprzestrzeni liniowej

M ⊂ R3 zachodzi

PM [D] ⊂ PM [D(x, a)] ⊂ (1 + α)D(x, a),

a stąd

PM [D] ⊂⋂x∈Z

(1 + α)D(x, a) = (1 + α)D, a więc ||PM ||D 6 1 + α.

20

Page 22: Andrzej Komisarski O rzutach minimalnych w skończenie

Załóżmy teraz, że podprzestrzeń M ⊂ Rn ma wymiar k (1 6 k < n) i dla pewnego x ∈ Z

zachodzi 4a/10 6 λ(M,x) 6 4a/9. Wówczas z (2.21) wynika, że

PM [D] ⊃ PM [D′(x, a)] 6⊂ βD(x, a) ⊃ βD dla 0 < β < 1 + α,

a więc PM [D] 6⊂ βD, czyli ||PM ||D > 1 + α.

Podobnie, jeśli dodatkowo założymy, że jądro rzutu PKM zawiera wektor v ∈ K ∩ lin(M,x),

dla którego 〈v, PM (x)〉〈v, PM⊥(x)〉 > 0, to z (2.22) wynika, że

PKM [D] ⊃ PKM [D′(x, a)] 6⊂ (1 + α)D(x, a) ⊃ (1 + α)D.

Zatem PKM [D] 6⊂ (1 + α)(M ∩D), czyli ||PKM ||D > 1 + α.

Dalsze rozdziały pracy poświęcone są konstrukcjom zbiorów Z, które spełniają warunki podane

w treści stwierdzenia 2.5 dla możliwie bogatych rodzin rzutów na podprzestrzenie Rn. Dokładniej,

zbiory Z zostaną skonstruowane w ten sposób, by przestrzenie (Rn, || · ||D) określone w stwierdze-

niu 2.5 miały własność (α, 1).

21

Page 23: Andrzej Komisarski O rzutach minimalnych w skończenie

3 a-roje

W sformułowaniu stwierdzenia 2.5 występują pewne warunki, wiążące zbiór Z z rzutami na pod-

przestrzenie liniowe przestrzeni Rn. Postaramy się obecnie przyjrzeć bliżej tym warunkom i uprościć

je tak, by możliwa była konstrukcja spełniającego je zbioru Z. Wprowadzimy w tym celu kilka pojęć,

z których szczególnie użyteczne będzie pojęcie a-roju dla podprzestrzeni liniowej Rn kowymiaru 1.

Zacznijmy jednak od pewnych rozważań pomocniczych.

Definicja 3.1. Powiemy, że wektor x ∈ Rn leży pomiędzy wektorami x1,x2, . . . ,xk ∈ Rn gdy

x =∑k

i=1 tixi dla jednoznacznie wyznaczonych liczb ti > 0.

W szczególności, jeśli wektor x leży pomiędzy wektorami x1,x2, . . . ,xk ∈ Rn, to wszystkie te

wektory (łącznie z x) leżą w jednej k-wymiarowej podprzestrzeni liniowej przestrzeni Rn, każdy

z nich jest wektorem niezerowym i każde k z nich jest liniowo niezależnych. Musi zatem zachodzić

nierówność k 6 n.

Uwaga 3.2. Jeśli wektor x leży pomiędzy wektorami x1, x2,. . . , xk ∈ Rn oraz liczby s, s1, s2,. . . ,

sk są dodatnie, wówczas wektor sx leży pomiędzy wektorami s1x1, s2x2,. . . , skxk.

Uwaga 3.3. Załóżmy, że wektory x1, x2,. . . ,xk ∈ Rn są afinicznie niezależne, podprzestrzeń afiniczna

rozpięta przez x1,x2, . . . ,xk nie zawiera punktu 0, a ponadto x znajduje się we wnętrzu sympleksu

conv{x1,x2, . . . ,xk}. Wówczas x leży pomiędzy x1, x2,. . . ,xk.

Dowód. Istotnie, skoro x znajduje się we wnętrzu sympleksu conv{x1,x2, . . . ,xk}, to x =∑k

i=1 tixi

dla pewnych liczb t1, t2, . . . , tk > 0 takich, że∑k

i=1 ti = 1. Pozostaje pokazać, że jeśli x =∑k

i=1 t′ixi

dla t′1, t′2, . . . , t′k > 0, to t′1 = t1, t′2 = t2,. . . , t′k = tk.

Zachodzą równości

k∑i=1

(ti − t′i)xi =k∑i=1

tixi −k∑i=1

t′ixi = x− x = 0. (3.1)

Nie może przy tym być∑k

i=1(ti − t′i) 6= 0. Gdyby bowiem tak było, to dla a =∑k

i=1(ti − t′i)

mielibyśmy∑k

i=1ti−t′ia xi = 0 oraz

∑ki=1

ti−t′ia = 1, a to przeczy założeniu mówiącemu, że 0 nie

należy do podprzestrzeni afinicznej rozpiętej przez x1,x2, . . . ,xk.

Zatem∑k

i=1(ti − t′i) = 0, co biorąc pod uwagę (3.1) i to, że wektory xi są afinicznie niezależne,

daje ti − t′i = 0 dla i=1, 2, . . . , k, a stąd t′1 = t1, t′2 = t2,. . . , t′k = tk.

Lemat 3.4. Niech y1, y2,. . . ,yn ∈ M i z1, z2,. . . ,zn ∈ M⊥ dla pewnej n − 1-wymiarowej pod-

przestrzeni liniowej M ⊂ Rn. Jeśli yn leży pomiędzy y1, y2,. . . , yn−1 oraz 〈zi, zn〉 < 0, dla

i = 1, 2, . . . , n−1, wówczas dla każdego wektora v ∈ Rn, v 6∈M ∪M⊥ istnieje 1 6 i 6 n spełniające

〈v,yi〉〈v, zi〉 > 0.

22

Page 24: Andrzej Komisarski O rzutach minimalnych w skończenie

Dowód. Wektor yn leży pomiędzy y1, y2,. . . ,yn−1, a więc yn =∑n−1

i=1 tiyi dla dodatnich liczb

t1, t2, . . . , tn−1. Ponieważ wektory y1, y2,. . . ,yn−1 są liniowo niezależne, jest ich n − 1 i należą do

n − 1-wymiarowej przestrzeni M , więc lin(y1,y2, . . . ,yn−1) = M . Ponieważ z kolei v 6∈ M⊥, więc

〈v,yi〉 6= 0 dla pewnego 1 6 i 6 n− 1. Bez zmniejszania ogólności załóżmy, że 〈v,y1〉 6= 0. Lemat

zostanie udowodniony, jeśli pokażemy, że z nierówności

〈v,y1〉〈v, z1〉 < 0 oraz 〈v,yi〉〈v, zi〉 6 0 dla 2 6 i 6 n− 1 (3.2)

wynika nierówność

〈v,yn〉〈v, zn〉 > 0. (3.3)

Warunek 〈zi, zn〉 > 0, dla i = 1, 2, . . . , n − 1 oznacza, że wszystkie wektory zi są niezerowe

i zn leży po przeciwnej stronie hiperpłaszczyzny M niż z1, z2, . . . , zn−1. Ponieważ zaś v 6∈ M ,

więc, w zależności od tego, po której stronie hiperpłaszczyzny M leży v, albo 〈v, zi〉 > 0 dla

i = 1, 2, . . . , n− 1 oraz 〈v, zn〉 < 0, albo 〈v, zi〉 < 0 dla i = 1, 2, . . . , n− 1 oraz 〈v, zn〉 > 0.

Dalej rozważamy pierwszy z tych przypadków (w drugim postępowanie jest analogiczne). Wa-

runek (3.2) implikuje

〈v,y1〉 < 0 oraz 〈v,yi〉 6 0 dla 2 6 i 6 n− 1,

a zatem

〈v,yn〉 = 〈v,n−1∑i=1

tiyi〉 =n−1∑i=1

ti〈v,yi〉 < 0.

Ostatecznie, wobec 〈v, zn〉 < 0, dostajemy (3.3), co kończy dowód lematu.

Następujące pojęcie będzie kluczowe dla reszty pracy.

Definicja 3.5. Dla ustalonego a > 0 powiemy, że skończony zbiór Z ⊂ Rn jest a-rojem dla

podprzestrzeni liniowejM ⊂ Rn kowymiaru 1, jeśli dla dowolnych dwóch różnych punktów x,y ∈ Z

przecięcie stożków C(x, a) i C(y, a) składa się wyłącznie z punktu 0, a ponadto można wybrać punkty

x1,x2, . . . ,xn ∈ Z takie, że

PM (xn) leży pomiędzy PM (x1), PM (x2), . . . , PM (xn−1),

xn leży po przeciwnej stronie hiperpłaszczyzny M niż x1,x2, . . . ,xn−1,

M ∩ C(xi, 4a/10) = {0} oraz M ∩ C(xi, 4a/9) 6= {0} dla 1 6 i 6 n.

Ostatni z powyższych warunków można zapisać używając funkcji λ zdefiniowanej w poprzednim

rozdziale (por. wniosek 2.4 i poprzedzający go komentarz). Można mianowicie zapisać go jako

4a/10 < λ(M,xi) 6 4a/9 dla 1 6 i 6 n.

Następujący wniosek wynika z lematu 3.4 i stwierdzenia 2.5:

23

Page 25: Andrzej Komisarski O rzutach minimalnych w skończenie

Wniosek 3.6. Niech liczby α > 0 i a 6 3/4 spełniają zależność a = 2√

2α(1 + α)/(1 − α). Jeśli

zbiór Z jest a-rojem dla n− 1 wymiarowej podprzestrzeni liniowej M ⊂ Rn, wówczas istnieje ciało

wypukłe D ⊂ R3 spełniające warunki:

||PN ||D 6 1 + α dla każdej liniowej podprzestrzeni N ⊂ Rn,

||PM ||D = 1 + α,

oraz

||PKM ||D > 1 + α dla każdego nieortogonalnego rzutu PKM na M.

Dowód. Określmy zbiór Z ′ = {y/||y|| : y ∈ Z}. Jest on, podobnie, jak Z, a-rojem dla hiperpłasz-

czyzny M , przy czym wszystkie jego elementy mają długość 1. Dla tak określonego zbioru Z ′ niech

D będzie ciałem zdefiniowanym w stwierdzeniu 2.5. Norma rzutu ortogonalnego na dowolną liniową

podprzestrzeń N ⊂ Rn nie przekracza wówczas 1 + α.

Ponieważ Z ′ jest a-rojem dla M , więc dla pewnego x ∈ Z ′ zachodzi 4a/10 < λ(M,x) 6 4a/9,

a zatem ||PM ||D = 1 + α.

Rozważmy rzut nieortogonalny Plin(v)M na M . Wektor v 6∈ M ∪ M⊥. Z tego, że Z ′ jest

a-rojem dla M wynika, że istnieją punkty x1,x2, . . . ,xn ∈ Z ′ takie, że PM (xn) leży pomię-

dzy PM (x1), PM (x2), . . . , PM (xn−1) oraz xn leży po przeciwnej stronie hiperpłaszczyzny M niż

x1,x2, . . . ,xn−1. Stosując lemat 3.4 dla yi = PM (xi), zi = PM⊥(xi) oraz wektora v dosta-

jemy 1 6 i 6 n takie, że 〈v, PM (xi)〉〈v, PM⊥(xi)〉 > 0. Ponieważ zachodzą również nierówności

4a/10 < λ(M,xi) 6 4a/9 dla 1 6 i 6 n, więc na podstawie stwierdzenia 2.5 mamy ||P linvM || > 1 + α.

24

Page 26: Andrzej Komisarski O rzutach minimalnych w skończenie

4 Prostopadłościany, kostki i ich szczególne podzbiory

Aby wykorzystać wniosek 3.6 musimy znaleźć liczbę 0 < a 6 3/4 i skonstruować skończony podzbiór

Z przestrzeni Rn, który jest a-rojem dla każdej n− 1-wymiarowej podprzestrzeni liniowej M ⊂ Rn.

Najpierw skonstruujemy jednak pewne podzbiory przestrzeni euklidesowej spełniające pewien

warunek podobny do tego występującego w definicji a-roju (por. definicje 3.5 i 4.1). W następnym

rozdziale w oparciu o uzyskane teraz wyniki zostanie skonstruowany żądany a-rój Z ⊂ Rn.

Prostopadłościanem n-wymiarowym nazwiemy każdy podzbiór przestrzeni euklidesowej, który

jest izometryczny ze zbiorem [c1, d1]× [c2, d2]× · · · × [cn, dn] ⊂ Rn, gdzie ci < di dla i = 1, 2, . . . , n.

Jeśli R = Φ[[c1, d1] × [c2, d2] × · · · × [cn, dn]] jest prostopadłościanem (a Φ izometrią występu-

jącą w jego definicji), wówczas ścianami (n − 1-wymiarowymi) prostopadłościanu R są zbiory

Φ[[c1, d1]× · · · × [ck−1, dk−1]× {ck} × [ck+1, dk+1]× · · · × [cn, dn]] oraz Φ[[c1, d1]×· · ·×[ck−1, dk−1]×

×{dk}× [ck+1, dk+1]×· · ·× [cn, dn]] dla k = 1, 2 . . . , n. Ściany Φ[[c1, d1]×· · ·× [ck−1, dk−1]×{ck}×

×[ck+1, dk+1]× · · · × [cn, dn]] oraz Φ[[c1, d1]× · · · × [ck−1, dk−1]×{dk}× [ck+1, dk+1]× · · · × [cn, dn]]

nazywamy ścianami przeciwległymi.

Wnętrze prostopadłościanu R to zbiór IntR = Φ[(c1, d1)×(c2, d2)×· · ·×(cn, dn)]. Jego brzeg zaś,

∂R = R \ IntR, jest równy sumie mnogościowej wszystkich ścian prostopadłościanu R. Zauważmy,

że w sytuacji, gdy prostopadłościan R jest podzbiorem przestrzeni euklidesowej wymiaru większego

niż n, wówczas tak zdefiniowane pojęcia wnętrza i brzegu prostopadłościanu nie pokrywają się

z pojęciami wnętrza i brzegu topologicznego.

Symbolem Rδ będziemy oznaczać zbiór Rδ = {x ∈ R : dist(x, ∂R) > δ}. W zależności od

wielkości δ, zbiór Rδ ⊂ R jest prostopadłościanem (być może wymiaru mniejszego niż n), zbiorem

jednopunktowym lub zbiorem pustym.

Prostopadłościan R = Φ[[c1, d1]×[c2, d2]×· · ·×[cn, dn]] nazwiemy kostką, gdy d1−c1 = d2−c2 =

= · · · = dn − cn.

W rozdziale tym będzie nas interesowało pewne szczególne położenie hiperpłaszczyzny i n + 1

punktów w n-wymiarowej przestrzeni euklidesowej:

Definicja 4.1. Powiemy, że hiperpłaszczyzna M i punkty x1, x2,. . . , xn+1 w n-wymiarowej prze-

strzeni euklidesowej i liczby r > 0 oraz 0 < p < q < 1 spełniają warunek F, gdy

(i). ||xi − xj || > 3r gdy 1 6 i < j 6 n+ 1,

(ii). xn+1 znajduje się po przeciwnej stronie hiperpłaszczyzny M niż x1, x2,. . . , xn,

(iii). pr < dist(xi,M) < qr dla i = 1, 2, . . . , n+ 1,

(iv). jeśli y1,y2, . . . ,yn+1 ∈M są punktami takimi, że ||xi−yi|| 6 r dla i = 1, 2, . . . , n+1, wówczas

y1,y2, . . . ,yn są afinicznie niezależne oraz yn+1 ∈ Int conv{y1,y2, . . . ,yn}.

25

Page 27: Andrzej Komisarski O rzutach minimalnych w skończenie

Ostatni warunek można przeformułować następująco: Jeśli y1,y2, . . . ,yn+1 ∈ M są punk-

tami takimi, że ||xi − yi|| 6 r dla i = 1, 2, . . . , n + 1, wówczas istnieje dokładnie jedna n-ka

(t1, t2, . . . , tn) ∈ Rn taka, że t1, t2, . . . , tn > 0,∑n

i=1 ti = 1 oraz yn+1 =∑n

i=1 tiyi.

Rozważmy przykład sytuacji, w której warunek F zachodzi.

Przykład 4.2. Ustalmy dowolnie liczby 0 < p < q < 1. Niech r = 1/(3n), hiperpłaszczyzna

M = {(x1, x2, . . . , xn) : x1 + x2 + . . .+ xn = 1}, a ponadto

xi = ei + rp+ q

2

(1√n,

1√n, . . . ,

1√n

)dla i = 1, 2, . . . , n

xn+1 =(

1n,

1n, . . . ,

1n

)− rp+ q

2

(1√n,

1√n, . . . ,

1√n

).

Ze względu na dalsze wykorzystanie oznaczmy H = {x1,x2, . . . ,xn+1}. Dla tak określonych M ,

x1,x2, . . . ,xn+1, r, p i q warunek F jest spełniony.

Aby upewnić się, że tak jest istotnie, zaobserwujmy, że wektory ei (i = 1, 2, . . . , n) są afinicznie

(a nawet liniowo) niezależne, wszystkie należą do hiperpłaszczyznyM , a także (1/n, 1/n, . . . , 1/n) =

= (e1+e1+. . .+e1)/n ∈M . Wszystkie punkty xi znajdują się w odległości r(p+q)/2 od hiperpłasz-

czyznyM , przy czym xn+1 znajduje się po przeciwnej stronieM niż x1,x2, . . . ,xn. Części (ii) i (iii)

warunkuF są zatem spełnione. Prosty rachunek pokazuje, że min{||xi−xj || : 1 6 i < j 6 n+1} >

> 1/√

2 > 3/5 > 3r, zatem również część (i) jest spełniona. Liczba r = 1/(3n) jest przy tym tak

mała, że występujące w (iv) punkty y1, y2,. . . ,yn, znajdują się na tyle blisko punktów e1, e2,. . . ,en,

zaś punkt yn+1 blisko (1/n, 1/n, . . . , 1/n), że (iv) jest spełnione. Dodatkowo można sprawdzić,

że średnica zbioru H = {x1,x2, . . . ,xn+1} wynosi√

2 (informacja ta będzie dalej przydatna).

Następujące dwie obserwacje również będą potrzebne w dalszej części rozdziału:

Uwaga 4.3. Warunek F jest warunkiem otwartym ze względu na hiperpłaszczyznę M , to znaczy

dla ustalonych punktów x1, x2,. . . , xn+1 oraz liczb r > 0 i 0 < p < q < 1 zbiór {M : warunek F

jest spełniony dla M,x1,x2, . . . ,xn+1, r, p, q} jest zbiorem otwartym w przestrzeni hiperpłaszczyzn.

Inaczej mówiąc, jeśli warunek F jest spełniony dla hiperpłaszczyzny M , punktów x1, x2,. . . , xn+1

oraz liczb r > 0 i 0 < p < q < 1, to będzie on spełniony także wtedy, gdy hiperpłaszczyznę M

zatąpimy dowolną hiperpłaszczyzną M ′ dostatecznie bliską M , w sensie określonej w rozdziale 1

metryki w przestrzeni hiperpłaszczyzn.

Uwaga 4.4. Niech Ψ : Rn → Rn będzie podobieństwem o skali t > 0, czyli złożeniem pewnej

izometrii przestrzeni Rn i homotetii x 7→ tx. Jeśli warunek F jest spełniony dla hiperpłaszczyzny

M , punktów x1, x2,. . . ,xn+1 oraz liczb r, p i q, to jest spełniony także dla hiperpłaszczyzny Ψ[M ],

punktów Ψ(x1), Ψ(x2),. . . ,Ψ(xn+1) oraz liczb tr, p i q.

Sformułujemy teraz główny rezultat niniejszego rozdziału, który pozwoli nam w kolejnym roz-

dziale skonstruować zbiór, będący a-rojem dla każdej podprzestrzeni liniowej Rn kowymiaru 1.

26

Page 28: Andrzej Komisarski O rzutach minimalnych w skończenie

Stwierdzenie 4.5. Dla dowolnej liczby naturalnej n > 2, kostki Q ⊂ Rn i liczb 0 < p < q < 1,

δ > 0 istnieje skończony zbiór X ⊂ Rn oraz liczba 0 < r < δ/3 takie, że

(a). X ⊂ Q2δ/3,

(b). ||x1 − x2|| > 3r dla dowolnych dwóch różnych punktów x1,x2 ∈ X,

(c). jeśli hiperpłaszczyzna M ⊂ Rn przecina zbiór Qδ wówczas dla hiperpłaszczyzny M , pewnych

punktów x1, x2,. . . ,xn+1 ∈ X oraz liczb r, p i q spełniony jest warunek F.

Użyjemy następujących trzech lematów:

Lemat 4.6. Niech n > 2 będzie liczbą naturalną. Dla dowolnych liczb rzeczywistych 0 < k 6 1 oraz

0 < p < q < 1 istnieje liczba K > 0 i zbiór Y ⊂ {(x1, x2, . . . , xn) ∈ Rn : 0 6 x1 6 K} taki, że

• ||x1 − x2|| > 3/5 dla dowolnych dwóch różnych punktów x1,x2 ∈ Y ,

• Jeśli M ⊂ Rn jest hiperpłaszczyzną, a L ⊂ M prostą, której kierunek (a1, a2, . . . , an) spełnia

warunek |a1| > k, wówczas istnieją punkty x1, x2,. . . ,xn+1 ∈ Y takie, że dist(xi, L) < 2 dla

i = 1, 2, . . . , n+ 1 oraz hiperpłaszczyzna M , punkty x1, x2,. . . ,xn+1 oraz liczby r = 1/(3n), p

i q spełniają warunek F.

Dowód. Zbiór Y będziemy konstruować etapami. Kolejno określimy zbiory YL,M,0, YL,M, YL,

by wreszcie zdefiniować żądany zbiór Y . Występujące w indeksach L i M są odpowiednio 1-

i n− 1-wymiarową podprzestrzenią liniową przestrzeni Rn. Zbiory YL,M,0, YL,M, YL mają własno-

ści nieco słabsze od tych, które ma mieć zbiór Y . Spełniają pierwszą część tezy lematu, jednak

drugą spełniają dopiero po nałożeniu dodatkowych warunków na prostą L i hiperpłaszczyznę M .

W przypadku zbioru YL,M,0 druga część tezy lematu jest spełniona jedynie wtedy, gdy prosta L

jest równoległa do L, hiprpłaszczyzna M jest równoległa doM oraz 0 ∈ L (czyli, mówiąc prościej,

L = L i M = M). W przypadku zbioru YL,M jest ona spełniona gdy prosta L jest równoległa

do L a hiperpłaszczyzna M jest równoległa doM. W przypadku zbioru YL wymagana jest jedynie

równoległość prostej L do podprzestrzeni L.

Niech F ⊂ RPn−1 będzie rodziną 1-wymiarowych podprzestrzeni przestrzeni Rn takich, że L ∈ F

wtedy i tylko wtedy, gdy kierunek (a1, a2, . . . , an) prostej L spełnia nierówność |a1| > k (liczba

0 < k 6 1 jest dana w założeniach dowodzonego lematu). Zbiór F jest zwarty, gdyż jest domkniętym

podzbiorem przestrzeni RPn−1, która jest zwarta.

Dla ustalonej 1-wymiarowej podprzestrzeni liniowej L ∈ F i n − 1 wymiarowej podprzestrzeni

liniowej M ⊂ Rn, takiej, że L ⊂ M zdefiniujemy zbiór YL,M,0. Wykorzystamy w tym celu po-

dany wcześniej przykład. Niech χ : Rn → Rn będzie izometrią przekształcającą hiperpłaszczyznę

27

Page 29: Andrzej Komisarski O rzutach minimalnych w skończenie

{(x1, x2, . . . , xn) : x1 + x2 + . . .+ xn = 1} na podprzestrzeńM, prostą przechodzącą przez punkty

e1 i e2 na podprzestrzeń L i taką, że χ[H] ⊂ {(x1, x2, . . . , xn) : 0 6 x1 6 2}. Niech

YL,M,0 = χ[H] + 3({0} × Zn).

Zbiór ten składa się z przeliczalnie wielu izometrycznych kopii zbioru H, których położenie uzależ-

nione jest od podprzestrzeni M i L. Jest on zawarty w zbiorze {(x1, x2, . . . , xn) : 0 6 x1 6 2},

jest okresowy w tym sensie, że dla każdego wektora x ∈ 3({0}×Zn) zachodzi x + YL,M,0 = YL,M,0

i odległość dowolnych dwóch różnych jego punktów jest niemniejsza niż min(3/5, 3 −√

2) = 3/5

(√

2 jest średnicą zbioruH). Ponadto hiperpłaszczyznaM, pewne punkty x1, x2,. . . , xn+1 ∈ YL,M,0

odległe od prostej L o mniej niż 2 oraz liczby 1/(3n), p i q spełniają warunek F (jako x1, x2,. . . ,

xn+1 można wybrać elementy zbioru χ[H]).

Niech zbiór UL,M,0 ⊂ {0}×Rn−1 będzie zbiorem takich wektorów y, że hiperpłaszczyzna y+M,

pewne punkty x1, x2,. . . , xn+1 ∈ YL,M,0 odległe od prostej y+L o mniej niż 2 oraz liczby 1/(3n), p

i q spełniają warunekF. Zbiór ten jest otwartym podzbiorem {0}×Rn−1, 0 ∈ UL,M,0 i dla każdego

wektora x ∈ 3({0}×Zn) zachodzi x+UL,M,0 = UL,M,0. Zauważmy, że ten sam zbiór otwarty otrzy-

mamy, gdy w powyższym jego opisie zastąpimy YL,M,0 przez ta+YL,M,0, gdzie a = (a1, a2, . . . , an)

jest kierunkiem prostej L oraz t ∈ R, czyli gdy przesuniemy zbiór YL,M,0 o dowolny wektor równo-

legły do prostej L.

Ponieważ zbiór {0} × [0, 3]n−1 jest zbiorem zwartym, a zbiór UL,M,0 ⊂ {0} × Rn−1 niepustym

zbiorem otwartym, więc istnieje skończony zbiór punktów {f1, f2, . . . , fj} ⊂ {0} × Rn−1 taki, że za-

chodzi zawieranie

{0} × [0, 3]n−1 ⊂j⋃i=1

(fi + UL,M,0).

Z uwagi na okresowość zbioru UL,M,0 oznacza to, że⋃ji=1(fi + UL,M,0) = {0} × Rn−1. Określmy

zbiór YL,M formułą

YL,M =j⋃i=1

(fi +3i|a1|

a + YL,M,0).

Zdefiniowany zbiór YL,M jest zawarty w {(x1, x2, . . . , xn) : 0 6 x1 6 3(j + 1)}, Zbiór ten składa

się ze skończonej liczby odpowiednio przesuniętych kopii zbioru YL,M,0. Odległość między nimi

jest niemniejsza niż 1, a zatem odległość dowolnych dwóch różnych punktów zbioru YL,M jest

niemniejsza niż 3/5. Jeśli hiperpłaszczyzna M ⊂ Rn jest równoległa do M, a prosta L ⊂ Rn jest

równoległa do L oraz L ⊂ M , wówczas M , pewne punkty x1, x2,. . . , xn+1 ∈ YL,M odległe od

prostej L o mniej niż 2 oraz liczby 1/(3n), p i q spełniają warunek F. (Jeśli punkt przecięcia

prostej L i zbioru {0} ×Rn−1 jest elementem fi +UL,M,0, wówczas punkty x1, x2,. . . , xn+1 można

wybrać ze zbioru fi + 3i|a1|a + YL,M,0.) Tą samą własność ma dowolny zbiór powstały z YL,M przez

przesunięcie go o dowolny wektor.

28

Page 30: Andrzej Komisarski O rzutach minimalnych w skończenie

Dla ustalonej podprzestrzeni 1-wymiarowej L ∈ F niech FL będzie rodziną n− 1-wymiarowych

podprzestrzeni liniowych zawierających L. Zbiór FL jest zwarty, gdyż jest domkniętym podzbiorem

zwartej przestrzeni wszystkich n−1-wymiarowych podprzestrzeni liniowych Rn (która to przestrzeń

jest homeomorficzna z przestrzenią rzutową RPn−1, por. rozdział 1.1).

Niech L ∈ F iM⊃ L będą odpowiednio 1- i n− 1-wymiarowymi podprzestrzeniami liniowymi

Rn. Symbolem UL,M oznaczmy zbiór takich podprzestrzeni N ∈ FL, że jeśli hiperpłaszczyzna

M ⊂ Rn jest równoległa do N , a prosta L ⊂ Rn jest równoległa do L oraz L ⊂ M , wówczas

M , pewne punkty x1, x2,. . . , xn+1 ∈ YL,M odległe od prostej L o mniej niż 2 oraz liczby 1/(3n),

p i q spełniają warunek F. Oczywiście M ∈ UL,M. Co więcej, zbiór UL,M jest otwarty w FL

(uzasadnimy to później), a zatem rodzina {UL,M : M ∈ FL} stanowi pokrycie otwarte zwartego

zbioru FL. Można z niego wybrać podpokrycie skończone {UL,M1 , UL,M2 , . . . , UL,Ml}.

Zbiór YL określmy formułą:

YL =l⋃

i=1

(i(c+ 1)e1 + YL,Mi),

gdzie c jest taką liczbą, że wszystkie zbiory YL,Mi są zawarte w {(x1, x2, . . . , xn) : 0 6 x1 6 c}.

Zachodzi zawieranie YL ⊂ {(x1, x2, . . . , xn) : 0 6 x1 6 (l + 1)(c + 1)}. Zbiór YL składa się

ze skończonej liczby odpowiednio przesuniętych kopii zbioru YL,M. Odległość między nimi jest

niemniejsza niż 1. Odległość dowolnych dwóch różnych punktów zbioru YL,M jest niemniejsza

niż 3/5. Jeśli prosta L ⊂ Rn jest równoległa do L, a hiperpłaszczyzna M ⊂ Rn zawiera prostą

L, wówczas M , pewne punkty x1, x2,. . . , xn+1 ∈ YL odległe od prostej L o mniej niż 2 oraz

liczby 1/(3n), p i q spełniają warunek F. (Jeśli hiperpłaszczyzna M ⊂ Rn jest równoległa do

podprzestrzeni liniowej N ∈ UL,Mi , wówczas punkty x1, x2,. . . , xn+1 można wybrać ze zbioru

i(c+1)e1+YL,Mi .) Tą samą własność ma każdy zbiór powstały z YL przez przesunięcie go o dowolny

wektor.

Raz jeszcze wykonajmy podobne rozumowanie, tym razem wykorzystując zwartość rodziny pro-

stych F .

Niech L będzie 1-wymiarową podprzestrzeią liniową Rn, należącą do rodziny F . Symbolem

UL oznaczmy zbiór takich prostych K ∈ RPn−1, że jeśli prosta L ⊂ Rn jest równoległa do K

i hiperpłaszczyzna M ⊂ Rn zawiera prostą L, wówczas M , pewne punkty x1, x2,. . . , xn+1 ∈ YL

odległe od prostej L o mniej niż 2 oraz liczby 1/(3n), p i q spełniają warunek F. Oczywiście

L ∈ UL. Co więcej, zbiór UL jest otwarty w RPn−1 (uzasadnimy to później), a zatem rodzina

{UL : L ∈ F} stanowi pokrycie otwarte zwartego zbioru F . Można wybrać podpokrycie skończone

{UL1 , UL2 , . . . , ULm}.

29

Page 31: Andrzej Komisarski O rzutach minimalnych w skończenie

Zbiór Y i liczbę K określmy formułą:

Y =m⋃i=1

(i(d+ 1)e1 + YLi),

K = (m+ 1)(d+ 1),

gdzie d jest taką liczbą, że wszystkie zbiory YLi są zawarte w {(x1, x2, . . . , xn) : 0 6 x1 6 d}.

Zachodzi zawieranie Y ⊂ {(x1, x2, . . . , xn) : 0 6 x1 6 K}. Odległość dowolnych dwóch różnych

punktów zbioru Y jest niemniejsza niż 3/5. Jeśli prosta L ⊂ Rn ma kierunek (a1, a2, . . . , an) taki,

że |a1| > k a hiperpłaszczyzna M ⊂ Rn zawiera prostą L, wówczas M , pewne punkty x1, x2,. . . ,

xn+1 ∈ YL,M odległe od prostej L o mniej niż 2 oraz liczby 1/(3n), p i q spełniają warunek F.

(Jeśli prosta L ⊂ Rn jest równoległa do prostej K ∈ ULi , wówczas punkty x1, x2,. . . , xn+1 można

wybrać ze zbioru i(d+ 1)e1 + YLi .)

Pozostało udowodnić otwartość zbiorów UL,M oraz UL. Oba rozumowania są podobne, więc

ograniczymy się jedynie do pokazania, że zbiór UL,M jest otwarty w FL. Przeprowadzimy dowód

nie wprost. Załóżmy w tym celu, że istnieje ciąg N1,N2, . . . elementów FL zbieżny do N ∈ FL taki,

że N ∈ UL,M, podczas gdy Ni 6∈ UL,M dla i = 1, 2, . . .. Oznacza to, że istnieją hiperpłaszczyzny

Mi ⊂ Rn oraz proste Li ⊂Mi takie, że dla i = 1, 2, . . . hiperpłaszczyzna Mi jest równoległa do Ni,

prosta Li jest równoległa do L i nie istnieją punkty x1, x2,. . . , xn+1 ∈ YL,M odległe od prostej L

o mniej niż 2 takie, że Mi, punkty x1, x2,. . . , xn+1 oraz liczby 1/(3n), p i q spełniają warunek F.

Ponieważ proste Li są równoległe do L, więc istnieją punkty b1,b2, . . . ∈ {0} × Rn−1 takie,

że Li = bi + L. Wówczas także Mi = bi + Ni. Ze względu na to, że zbiór YL,M jest okresowy

można założyć, że b1,b2, . . . ∈ {0}×[0, 3]n−1 (przesuwając ewentualnie proste Li i hiperpłaszczyzny

Mi o wektory będące elementami 3({0} × Zn−1)).

Ze zwartości zbioru {0} × [0, 3]n−1 wynika, że ciąg (bi) ma podciąg zbieżny (bki). Oznaczmy

b = limi→∞ bki . Zachodzą zbieżności:

Lki = bki + L → b + L,

Mki = bki +Nki → b +N .

Ponieważ hiperpłaszczyzna b + N jest równoległa do N , prosta b + L jest równoległa do L,

b + L ⊂ b +N oraz N ∈ UL,M, więc istnieją punkty x̂1, x̂2,. . . ,x̂n+1 ∈ YL,M odległe od pro-

stej b +L o mniej niż 2 takie, że b +N , punkty x̂1, x̂2,. . . ,x̂n+1 oraz liczby 1/(3n), p i q spełniają

warunek F.

Z uwagi 4.3 (dotyczącej otwartości warunku F) i wypisanych wyżej zbieżności wynika, że dla

dostatecznie dużych i punkty x̂1, x̂2,. . . ,x̂n+1 ∈ YL,M są odległe od prostej Lki o mniej niż 2,

zaś hiperpłaszczyzna Mki , punkty x̂1, x̂2,. . . ,x̂n+1 oraz liczby 1/(3n), p i q spełniają warunek F.

Doszliśmy do sprzeczności. Uzyskana sprzeczność dowodzi, że zbiór UL,M jest otwarty w FL.

30

Page 32: Andrzej Komisarski O rzutach minimalnych w skończenie

Lemat 4.7. Niech n > 2 będzie liczbą naturalną oraz niech R1 i R2 będą przeciwległymi ścianami

n-wymiarowego prostopadłościanu R ⊂ Rn. Dla dowolnych liczb 0 < p < q < 1 oraz δ > 0 istnieje

liczba 0 < r < δ/3 i skończony podzbiór Z ⊂ Rn takie, że

• dist(x, R) 6 δ/3 dla każdego x ∈ Z,

• ||x1 − x2|| > 3r dla dowolnych dwóch różnych punktów x1,x2 ∈ Z,

• jeśli hiperpłaszczyzna M ⊂ Rn przecina jednocześnie ściany R1 i R2, wówczas warunek F jest

spełniony dla M , pewnych punktów x1, x2,. . . , xn+1 ∈ Z oraz liczb r, p i q.

Dowód. Można założyć (wprowadzając odpowiednio układ współrzędnych), żeR = [c1, d1]×[c2, d2]×

× · · · × [cn, dn], R1 = {c1} × [c2, d2]× · · · × [cn, dn] oraz R2 = {d1} × [c2, d2]× · · · × [cn, dn].

Rozważmy dowolną hiperpłaszczyznę M przecinającą jednocześnie R1 i R2. Istnieją punkty

x = (x1, x2, . . . , xn) oraz y = (y1, y2, . . . , yn) takie, że x ∈ R1 ∩M i y ∈ R2 ∩M . Wynika stąd,

że x1 = c1, y1 = d1 oraz xi, yi ∈ [ci, di] dla i = 2, 3 . . . , n. Niech L będzie prostą zawierającą oba te

punkty. Prosta ta ma kierunek (a1, a2, . . . , an) = (y − x)/||y − x||. Szacując |a1| dostajemy

|a1| = a1 =(y1 − x1)/||y − x|| =

=(d1 − c1)/√

(y1 − x1)2 + (y2 − x2)2 + . . .+ (yn − xn)2 >

>(d1 − c1)/√

(d1 − c1)2 + (d2 − c2)2 + . . .+ (dn − cn)2.

Zatem jeśli hiperpłaszczyzna M przecina jednocześnie ściany R1 i R2 prostopadłościanu R, to

zawiera ona prostą L, która również przecina R1 i R2 i której kierunek (a1, a2, . . . , an) spełnia

warunek |a1| > (d1 − c1)/√

(d1 − c1)2 + (d2 − c2)2 + . . .+ (dn − cn)2.

Zastosujmy lemat 4.6 przyjmując k = (d1−c1)/√

(d1 − c1)2 + (d2 − c2)2 + . . .+ (dn − cn)2 oraz

p, q dane w założeniach dowodzonego lematu. Otrzymujemy w ten sposób pewną liczbęK > 0 i zbiór

Y ⊂ {(x1, x2, . . . , xn) ∈ Rn : 0 6 x1 6 K} spełniające warunki podane w sformułowaniu lematu 4.6.

Ustalmy liczbę 0 < t < min(δ, (d1 − c1)/K) na tyle małą, by dla każdej prostej L przeci-

nającej jednocześnie R1 i R2 oraz punktu x ∈ {(x1, x2, . . . , xn) ∈ Rn : x1 ∈ [c1, d1]} z wa-

runku dist(x, L) < 2t wynikało, że dist(x, R) 6 δ/3 (jest to możliwe, wystarczy w tym celu,

by t 6 δ(d1 − c1)/(6√

(d1 − c1)2 + (d2 − c2)2 + . . .+ (dn − cn)2)).

Określmy podobieństwo Ψ : Rn → Rn wzorem Ψ(x) = tx + (c1, 0, 0, . . . , 0). Ma ono skalę t,

a ponadto Ψ[Y ] ⊂ {(x1, x2, . . . , xn) ∈ Rn : x1 ∈ [c1, d1]}. Szukany zbiór Z i liczbę r określam przy

pomocy formuł

Z = Ψ[Y ] ∩ {x ∈ Rn : dist(x, R) 6 δ/3}, r =t

3n.

Natychmiast otrzymujemy, że r = t/(3n) < δ/(3n) < δ/3 oraz dist(x, R) 6 δ/3 dla każdego x ∈ Z.

Jeśli x1,x2 ∈ Z, to ||x1 − x2|| > 35 t > 3 t

3n = 3r.

31

Page 33: Andrzej Komisarski O rzutach minimalnych w skończenie

Niech M będzie dowolną hiperpłaszczyzną przecinającą ściany R1 i R2 prostopadłościanu R.

Jak już zauważyliśmy, istnieje prosta L ⊂ M , która także przecina R1 i R2 i która ma kie-

runek (a1, a2, . . . , an) taki, że |a1| > k. Zbiór Ψ−1[M ] jest także hiperpłaszczyzną, a prosta

Ψ−1[L] ⊂ Ψ−1[M ] ma ten sam kierunek, co prosta L. Z lematu 4.6 wynika, że istnieją punkty x1,

x2,. . . , xn+1 ∈ Y takie, że ich odległość od prostej Ψ−1[L] jest mniejsza niż 2, a ponadto hiperpłasz-

czyzna Ψ−1[M ], punkty x1, x2,. . . , xn+1 oraz liczby 1/(3n), p i q spełniają warunekF. Korzystając

z uwagi 4.4 wnioskujemy, że hiperpłaszczyzna M = Ψ[Ψ−1[M ]], punkty Ψ(x1), Ψ(x2),. . . ,Ψ(xn+1)

oraz liczby t/(3n) = r, p i q spełniają warunek F. Punkty Ψ(xi) są elementami zbioru

Ψ[Y ] ⊂ {(x1, x2, . . . , xn) ∈ Rn : x1 ∈ [c1, d1]}, a ponadto odległość każdego z nich od prostej

L = Ψ[Ψ−1[L]] jest mniejsza niż 2t. Wynika stąd, że są one elementami zbioru

Ψ[Y ] ∩ {x ∈ Rn : dist(x, R) 6 δ/3} = Z.

Lemat 4.8. Dla dowolnej liczby naturalnej n > 2, n-wymiarowej kostki Q ⊂ Rn oraz liczby δ > 0

można wybrać parami przystające, rozłączne, n-wymiarowe prostopadłościany R1, . . . , R5 ⊂ IntQ2δ/3

i wyróżnić po jednej parze przeciwległych n− 1-wymiarowych ścian każdego z tych prostopadłościa-

nów tak, by spełniony był warunek: Jeśli hiperpłaszczyzna M ⊂ Rn przecina kostkę Qδ, to przecina

obie wyróżnione ściany któregoś z prostopadłościanów R1, . . . , R5.

Dowód. Wyróżnione, przeciwległe ściany prostopadłościanu Ri będziemy oznaczać Ri1 oraz Ri2. Kon-

strukcję przeprowadzimy najpierw dla n = 2.

Dla n = 2 stosowny wybór prostopadłościanów (prostokątów) i par ich przeciwległych ścian

(boków prostokątów) przedstawia rysunek 5a. Zauważmy, że jeśli prosta M przecina kwadrat Qδ

i nie przecina jednocześnie którejś pary odcinków Ri1, Ri2 dla i = 1, 2, 3, 4, to musi ona przechodzić

w pobliżu dwóch przeciwległych wierzchołków kwadratu Qδ, a wówczas przecina odcinki R51, R

52.

δ3

2δ3

Q

R2

R3

R4

R1

R5

δ3

2δ3

Q ∩N

Qδ ∩N

R2∩N

R3 ∩N

R4∩

N

R1 ∩N

R5 ∩N

a) b)

Ri1 i Ri2 to dłuższe boki prostokąta Ri.

Rysunek 5:

32

Page 34: Andrzej Komisarski O rzutach minimalnych w skończenie

Gdy natomiast n > 2 wówczas postępujemy następująco: Można założyć (wprowadzając od-

powiednio układ współrzędnych), że Q = [c, d]n. Wówczas Qδ = [c + δ, d − δ]n oraz Q2δ/3 =

= [c + 2δ/3, d − 2δ/3]n. Niech R̃1, . . . , R̃5 wraz z wyróżnionymi przeciwległymi bokami R̃i1, R̃i2,

i = 1, 2, 3, 4, 5 będą prostokątami skonstruowanymi przed chwilą dla kwadratu Q̃ = [c, d]2. Żądane

prostopadłościany Ri definiujemy formułą

Ri = R̃i × [c+ δ, d− δ]n−2 i = 1, 2, 3, 4, 5,

i wyróżniamy ich ściany

Ri1 = R̃i1 × [c+ δ, d− δ]n−2

Ri2 = R̃i2 × [c+ δ, d− δ]n−2i = 1, 2, 3, 4, 5.

Oczywiście R1, . . . , R5 ⊂ IntQ2δ/3. Jeśli hiperpłaszczyzna M przecina kostkę Qδ, to istnieje punkt

y = (y1, y2, . . . , yn) taki, że y ∈ Qδ ∩ M . Literą N oznaczmy płaszczyznę (dwuwymiarową)

N = {(x1, x2, y3, . . . , yn) : x1, x2 ∈ R}. Przecięcie Qδ ∩ M ∩ N jest niepuste, gdyż jego elemen-

tem jest punkt y. Rozważmy przekroje kostki Q, prostopadłościanów Ri oraz hiperpłaszczyzny

M płaszczyzną N . Ponieważ y3, y4, . . . , yn ∈ [c + δ, d − δ], więc przekrój ten wygląda tak, jak

na rysunku 5b.

Z tego, że M ma kowymiar 1 wynika, że przecięcie N ∩M jest albo całą płaszczyzną N , albo

pewną prostą zawartą w N , taką jednak, że (N ∩M)∩ (N ∩Qδ) 6= ∅. W pierwszym z tych przypad-

ków (N ∩M = N) hiperpłaszczyzna M przecina wszystkie zbiory R11, R

12, . . . , R

51, R

52. W drugim

przypadku, jak wynika z rozważań dla n = 2, istnieje i ∈ {1, 2, 3, 4, 5} takie, że prosta N ∩ M

przecina odcinki N ∩ Ri1 oraz N ∩ Ri2, a tym samym hiperpłaszczyzna M przecina ściany Ri1 i Ri2

prostodłościanu Ri.

Jesteśmy teraz gotowi do udowodnienia stwierdzenia 4.5.

Dowód stwiedzenia 4.5. Ustalmy n, liczby p, q, δ i kostkę Q, jak w treści stwierdzenia. W oparciu

o lemat 4.8 znajdujemy rozłączne prostopadłościany R1, . . . , R5 ⊂ IntQ2δ/3 i w każdym z nich

wyróżniamy po jednej parze przeciwległych ścian w taki sposób, że jeśli hiperpłaszczyzna przecina

kostkę Qδ, to przecina wyróżnioną parę przeciwległych ścian któregoś z prostopadłościanów.

Niech liczba 0 < δ′ < δ będzie taka, że δ′ < dist(Ri,Rn \ Q2δ/3) oraz δ′ < 12 dist(Ri, Rj),

gdy i 6= j. Zastosujmy lemat 4.7 do każdego z prostopadłościanów Ri, wyróżnionych ścian Ri1, Ri2

oraz liczb p, q, δ′. Otrzymujemy w ten sposób zbiory skończone Z1, . . . , Z5 i liczby dodatnie

r1, . . . , r5 < δ′/3 takie, że odległość dowolnych dwóch różnych punktów zbioru Zi jest niemniejsza

niż 3ri oraz dist(x, Ri) 6 δ′/3 dla każdego x ∈ Zi. Ponadto, jeśli hiperpłaszczyznaM ⊂ Rn przecina

jednocześnie obie wyróżnione ściany prostopadłościanu Ri, wówczas warunek F jest spełniony dla

33

Page 35: Andrzej Komisarski O rzutach minimalnych w skończenie

M , pewnych punktów x1, x2,. . . , xn+1 ∈ Zi oraz liczb ri, p i q. Ponieważ prostopadłościany

R1, . . . , R5 są przystające, więc można założyć, że r1 = . . . = r5. Określmy

X = Z1 ∪ . . . ∪ Z5, r = r1 = . . . = r5.

Zachodzi nierówność r < δ′/3 < δ/3. Warunek (c) z treści stwierdzenia dla tak określonych X

i r jest spełniony. Warunek (a) także jest spełniony, gdyż jeśli x ∈ X, to x ∈ Zi dla pewnego

i = 1, 2, 3, 4, 5. Wówczas dist(x, Ri) 6 δ′/3 < δ′, a ponieważ δ′ < dist(Ri,Rn \ Q2δ/3), więc

x ∈ Q2δ/3. Sprawdźmy warunek (b). Jeśli punkty x1,x2 ∈ X są różne, to albo oba należą do

jednego zbioru Zi, a wtedy ||x1 − x2|| > 3ri = 3r, albo należą do dwóch różnych zbiorów Zi oraz

Zj . Wiemy jednak, że dist(x1, Ri) 6 δ′/3, dist(x2, R

j) 6 δ′/3 oraz dist(Ri, Rj) > 2δ′, a stąd

||x1 − x2|| > (2− 2/3)δ′ > δ′ > 3r.

W następnym rozdziale będziemy chcieli korzystać ze stwierdzenia 4.5 dla kostki, która ma

wymiar o jeden mniejszy niż przestrzeń euklidesowa, w której się znajduje. W tym celu sformułujmy

następujący wniosek:

Wniosek 4.9. Niech n > 2 będzie liczbą naturalną Dla dowolnej n-wymiarowej podprzestrzeni afi-

nicznej K ⊂ Rn+1 takiej, że 0 6∈ K, n-wymiarowej kostki Q ⊂ K i liczb 0 < p < q < 1 oraz δ > 0

istnieje skończony zbiór X ⊂ K i liczba 0 < r < δ/3 takie, że

(a). X ⊂ Q2δ/3,

(b). ||x1 − x2|| > 3r dla dowolnych dwóch różnych punktów x1,x2 ∈ X,

(c). jeśli podprzestrzeń liniowa M ⊂ Rn+1 kowymiaru 1 przecina zbiór Qδ, wówczas dla hiperpłasz-

czyzny M oraz pewnych punktów x1, x2,. . . ,xn+1 ∈ X zachodzi:

(c1) xn+1 znajduje się po przeciwnej stronie podprzestrzeni M niż x1, x2,. . . , xn,

(c2) pr < dist(xi,M ∩K) < qr dla i = 1, 2, . . . , n+ 1,

(c3) jeśli y1,y2, . . . ,yn+1 ∈M∩K są punktami takimi, że ||xi−yi|| 6 r dla i = 1, 2,. . . , n+ 1,

wówczas y1,y2, . . . ,yn są afinicznie niezależne oraz yn+1 znajduje się we wnętrzu sym-

pleksu conv{y1,y2, . . . ,yn}.

Dowód. Kostka Q jest izometrycznym obrazem zbioru [c, d]n ⊂ Rn. Niech Φ : Rn → Rn+1 będzie

izometrią taką, że Φ[[c, d]n] = Q i niech Φ̃ : Rn → Rn+1 będzie częścią liniową izometrii Φ, to zna-

czy przekształceniem liniowym określonym wzorem Φ̃(x) = Φ(x) − Φ(0). Wówczas Φ[Rn] = K.

Zastosujmy stwierdzenie 4.5 dla kostki [c, d]n ⊂ Rn oraz liczb p, q, δ. Otrzymamy wówczas liczbę

r i skończony zbiór X ′ spełniający podane w stwierdzeniu 4.5 warunki. Musimy określić zbiór X.

Uczyńmy to przyjmując X = Φ[X ′]. Oczywiście X ⊂ K, spełnione są także warunki (a) i (b).

34

Page 36: Andrzej Komisarski O rzutach minimalnych w skończenie

Upewnijmy się, że spełniony jest także warunek (c). Niech M ⊂ Rn+1 będzie dowolną pod-

przestrzenią liniową kowymiaru 1 przecinającą kostkę Qδ ⊂ K. Wówczas podprzestrzeń afiniczna

M ∩K ⊂ Rn+1 ma wymiar n− 1, zaś Φ−1[M ∩K] jest hiperpłaszczyzną w Rn przecinającą kostkę

([c, d]n)δ. Wiemy jednak, że wówczas istnieją punkty x′1, x′2,. . . ,x′n+1 ∈ X ′ takie, że Φ−1[M ∩K],

punkty x′1, x′2,. . . ,x′n+1 ∈ X ′ oraz liczby r, p i q spełniają warunek F. Przyjmijmy xi = Φ(x′i) ∈ X

dla i = 1, 2, . . . , n + 1. Punkty te w sposób oczywisty spełniają (c1) i (c2). Jeśli y1, y2,. . . ,

yn+1 ∈M ∩K są punktami takimi, że ||xi − yi|| 6 r dla i = 1, 2, . . . , n + 1, wówczas Φ−1(y1),

Φ−1(y2),. . . , Φ−1(yn+1) ∈ Φ−1[M ∩ K] oraz ||x′i − Φ−1(yi)|| 6 r dla i = 1, 2, . . . , n + 1. Z wa-

runku F wiemy, że w takim razie Φ−1(yn+1) =∑n

i=1 tiΦ−1(yi) dla jednoznacznie wyznaczonej n-ki

(t1, t2, . . . , tn) ∈ Rn takiej, że t1, t2, . . . , tn > 0 oraz∑n

i=1 ti = 1. Wówczas

yn+1 =Φ(Φ−1(yn+1)) = Φ

(n∑i=1

tiΦ−1(yi)

)=

=Φ̃

(n∑i=1

tiΦ−1(yi)

)+ Φ(0) =

n∑i=1

tiΦ̃(Φ−1(yi)) +n∑i=1

tiΦ(0) =

=n∑i=1

ti(Φ̃(Φ−1(yi)) + Φ(0)) =n∑i=1

tiΦ(Φ−1(yi)) =n∑i=1

tiyi.

Liczby ti są przy tym wyznaczone jednoznacznie. Warunek (c3) jest spełniony.

35

Page 37: Andrzej Komisarski O rzutach minimalnych w skończenie

5 Główny wynik i jego dowód

W tym rozdziale przedstawiamy główny wynik pracy.

Twierdzenie 5.1. Niech n > 3 będzie liczbą naturalną. Istnieje ciało wypukłe D ⊂ Rn i liczba

α > 0 takie, że przestrzeń Banacha (Rn, || · ||D) ma następującą własność: Dla każdej podprzestrzeni

liniowej M ⊂ Rn zachodzi

min ||P ||D 6 1 + α,

minimum w powyższej nierówności jest brane po wszystkich rzutach P przestrzeni Rn na podprze-

strzeń M . Co więcej, jeśli podprzestrzeń M ma kowymiar 1, wówczas powyższa nierówność staje się

równością.

Twierdzenie zostanie dowiedzione w oparciu o wniosek 3.6. W tym celu skonstruujemy zbiór

Z ⊂ Rn, który dla pewnego a ∈ (0, 3/4) będzie a-rojem dla każdej n−1 wymiarowej podprzestrzeni

liniowej M ⊂ Rn (lemat 5.5). Wykorzystane zostaną konstrukcje zbiorów z poprzedniego rozdziału.

Lemat 5.2. Niech n > 3 będzie liczbą naturalną. Dla każdej liczby ξ > 1 istnieją m ∈ N,

0 < δ < 9ξ/4 oraz n − 1-wymiarowe, przystające kostki Q1, . . . , Qm ⊂ Rn \ {0} takie, że jeśli sym-

bolem Ki (i = 1, 2, . . . ,m) oznaczymy hiperpłaszczyznę w Rn zawierającą kostkę Qi, to

(i). gdy i 6= j, wówczas C[IntQi] ∩ C[IntQj ] = {0} dla i, j = 1, . . . ,m,

(ii). 0 6∈ Ki dla i = 1, . . . ,m,

(iii). dla każdej n − 1-wymiarowej podprzestrzeni liniowej M ⊂ Rn istnieje i ∈ {1, . . . ,m} takie,

że M ∩Qδi 6= ∅,

(iv). jeśli i ∈ {1, . . . ,m}, x ∈ Qi oraz 0 < r < δ, to zachodzi zawieranie

B(x, r/ξ) ∩Ki ⊂ C(x, r) ∩Ki ⊂ B(x, ξr) ∩Ki,

(v). jeśli M jest n− 1 wymiarową podprzestrzenią liniową Rn przecinającą kostkę Qi oraz x ∈ Qi,

to istnieje punkt y ∈ Ki oraz liczba s > 0 takie, że PM (x) = sy, a ponadto dla dowolnego

wektora z 6= 0 równoległego do Ki zachodzi nierówność |〈y , z〉| 6 (ξ − 1)||y|| ||z||.

Zanim przejdziemy do właściwej konstrukcji, omówmy dokładniej warunki (iv) i (v) powyższego

lematu. Wyobraźmy sobie podprzestrzeń afiniczną K ⊂ Rn kowymiaru 1 taką, że 0 6∈ K. Odległość

punktów tej podprzestrzeni można mierzyć na wiele sposobów. Można na przykład używać euklide-

sowej odległości pochodzącej z Rn, wtedy o tym jak daleko od siebie znajdują się punkty x i y ∈ K

mówi liczba ||x− y||. Inną miarą odległości jest miara kąta ∠x0y zawartego pomiędzy wektorami−→0x i

−→0y. Wreszcie do wyrażania odległości można użyć tangensa tegoż kąta, czyli tg(∠x0y).

36

Page 38: Andrzej Komisarski O rzutach minimalnych w skończenie

Ostatnia z tych miar odległości nie jest metryką na K (gdyż nie spełnia warunku trójkąta). Ma

ona jednak związek z rozważaniami prowadzonymi w rozdziałach 2 oraz 3 i wykorzystywanym w tych

rozważaniach pojęciem stożka. Wielkość takiego stożka opisuje parametr, którym jest tangens kąta

zawartego między osią i tworzącą stożka. Wybór taki był wygodny ze względu na wykorzystanie

w rozdziale 2 aparatu geometrii analitycznej. Z kolei rozważania rozdziału 4 wykorzystują wyłącznie

odległość euklidesową punktów. W niniejszym rozdziale oba te podejścia schodzą się, a odpowiada

za to właśnie część (iv) lematu.

Spróbujmy sformułować pewien warunek wiążący hiperpłaszczyznę K i leżące na niej punkty x

i y, który zapewniałby, że błąd względny, wynikający z mierzenia odległości między tymi punktami

za pomocą tangensa kąta ∠x0y zamiast odległości euklidesowej (lub na odwrót), był możliwie mały.

Precyzyjniej mówiąc, dla ustalonej liczby ξ > 1 sformułujemy warunek, którego spełnienie zagwa-

rantuje, że ||x−y||/ξ 6 tg(∠x0y) 6 ξ||x−y||. Nierówności te zachodzą zawsze, gdy x = y, dlatego

dalej zakładam, że x 6= y. Wówczas pożądane nierówności przyjmują postać 1/ξ 6 tg(∠x0y)||x−y|| 6 ξ,

czyli 1/ξ 6 sin(∠0yx)||x|| cos(∠x0y) 6 ξ (korzystam tu z twierdzenia sinusów dla trójkąta 0xy). Jeśli odległość

(euklidesowa) hiperpłaszczyzny K od punktu 0 jest bliska 1 oraz punkty x i y znajdują się blisko

rzutu prostokątnego punktu 0 na hiperpłaszczyznę K (oznaczmy go literą u), a więc także blisko

siebie nawzajem, wówczas kąt ∠x0y ma miarę bliską 0, kąt ∠0yx jest bliski kątowi prostemu oraz

||x|| jest bliskie 1. Wtedy zarówno cos(∠x0y), sin(∠0yx), jak i sin(∠0yx)||x|| cos(∠x0y) są bliskie 1. Wynika

stąd, że

istnieje liczba ε > 0 taka, że jeśli ||x− u|| < ε, ||y − u|| < ε

oraz ||u|| ∈ (1− ε, 1 + ε),wówczas ||x− y||/ξ 6 tg(∠x0y) 6 ξ||x− y||.(5.1)

Niech terazQ ⊂ K będzie n−1-wymiarową kostką zawierającą punkt u, przy czym diamQ < ε/2

oraz ||u|| ∈ (1 − ε, 1 + ε). Dobierzmy liczbę 0 < δ < ε/2 tak małą, by z warunków x ∈ Q, y ∈ K

i tg(∠x0y) < δ wynikało, że ||x − y|| < ε/2. Pokażemy, że dla ustalonego punktu x ∈ Q i liczby

0 < r < δ zachodzą zawierania B(x, r/ξ) ∩K ⊂ C(x, r) ∩K ⊂ B(x, ξr) ∩K.

Istotnie, jeśli y ∈ B(x, r/ξ) ∩K, to y ∈ K oraz ||x− y|| 6 r/ξ < δ < ε/2. Ponieważ

||x− u|| 6 diamQ < ε/2 < ε, ||y−u|| 6 ||y−x||+ ||x−u|| < ε/2+ε/2 = ε oraz ||u|| ∈ (1−ε, 1+ε),

więc z (5.1) dostajemy tg(∠x0y) 6 ξ||x − y|| 6 r. Ostatecznie y ∈ C(x, r) ∩ K i zawieranie

B(x, r/ξ) ∩K ⊂ C(x, r) ∩K jest wykazane.

Niech z kolei y ∈ C(x, r)∩K. Ponieważ x ∈ Q, y ∈ K i tg(∠x0y) 6 r < δ, więc ||x−y|| < ε/2.

Z tego, że x ∈ Q wynika, że ||x− u|| < ε/2 < ε. Otrzymujemy ||y − u|| 6 ||y − x||+ ||x− u|| < ε.

Zatem na podstawie (5.1) mamy ||x − y|| 6 ξ tg(∠x0y) 6 ξr i y ∈ B(x, ξr) ∩ K. Pokazalśmy,

że C(x, r) ∩K ⊂ B(x, ξr) ∩K.

Wobec powyższego rozumowania mamy:

37

Page 39: Andrzej Komisarski O rzutach minimalnych w skończenie

Uwaga 5.3. Aby warunek (iv) lematu 5.2 był spełniony, wystarczy zapewnić by każda z kostek Qi

miała odpowiednio małą średnicę, zawierała rzut prostokątny punktu 0 na hiperpłaszczyznę Ki,

by odległość punktu 0 od hiperpłaszczyzny Ki była bliska 1 oraz by liczba δ > 0 była dostatecznie

mała.

Zajmijmy się teraz warunkiem (v). Podobnie, jak przed chwilą, rozważmy hiperpłaszczyznę

K ⊂ Rn taką, że 0 6∈ K, zaś literą u oznaczmy rzut prostokątny punktu 0 na hiperpłaszczyznę

K. Ustalmy liczbę ξ > 1 oraz n − 1 parami prostopadłych wektorów z1, z2,. . . , zn−1 z których

każdy ma długość 1 i jest równoległy do hiperpłaszczyzny K. Każdy wektor z równoległy do K

można przedstawić w postaci z =∑n−1

i=1 tizi, gdzie t1, t2, . . . , tn−1 ∈ R, przy czym |ti| 6 ||z|| dla

i = 1, 2, . . . , n− 1.

Pokażemy, że jeśli n − 1-wymiarowa kostka Q ⊂ K zawiera punkt u i jej średnica jest mała

w porównaniu z ||u||, wówczas dla dowolnej n − 1 wymiarowej podprzestrzeni liniowej M ⊂ Rn

przecinającej kostkę Q oraz punktu x ∈ Q, istnieje punkt y ∈ K i liczba s > 0 takie, że PM (x) = sy

oraz dla dowolnego wektora z równoległego do K zachodzi |〈y , z〉| 6 (ξ − 1)||y|| ||z||.

Załóżmy, że diamQ < ε||u||, gdzie 0 < ε < 1/10 oraz u ∈ Q. Niech M ⊂ Rn będzie dowolną

n−1 wymiarową podprzestrzenią liniową przecinającą kostkę Q i niech x ∈ Q. Wybierzmy dowolny

punkt v ∈ Q ∩M . Wówczas ||v − u|| < ε||u||, PM (v) = v, ||x− v|| < ε||u|| oraz

||PM (x)− u|| 6||PM (x)− v||+ ||v − u|| < ||PM (x)− v||+ ε||u|| =

=||PM (x)− PM (v)||+ ε||u|| 6 ||x− v||+ ε||u|| < 2ε||u||.

Rozważmy odległości punktów 0 i PM (x) od hiperpłaszczyzny K. Zachodzą zależności

dist(PM (x),K) 6 ||PM (x)− u|| < 2ε||u|| < ||u|| = dist(0,K).

Odległości te są różne, co oznacza, że prosta przechodząca przez 0 i PM (x) nie jest równoległa do hi-

perpłaszczyznyK i przecina ją w pewnym punkcie y. Co więcej, z tego, że dist(PM (x),K) < dist(0,K)

wynika, że liczba s taka, że PM (x) = sy jest dodatnia. O położeniu punktu y możemy powiedzieć

więcej. Zachodzi||PM (x)− y||||0− y||

=dist(PM (x),K)

dist(0,K)6||PM (x)− u||

||u||< 2ε,

a stąd ||PM (x)− y|| < 2ε||y||. Następnie

||PM (x)− y|| < 2ε||y|| 6 2ε(||u||+ ||PM (x)− u||+ ||PM (x)− y||)

i przekształcając:

(1− 2ε)||PM (x)− y|| < 2ε(||u||+ ||PM (x)− u||) < 2ε(||u||+ 2ε||u||) = 2ε(1 + 2ε)||u||,

||PM (x)− y|| < 2ε1 + 2ε1− 2ε

||u|| < 3ε||u||.

38

Page 40: Andrzej Komisarski O rzutach minimalnych w skończenie

Ostatnia nierówność wynika stąd, że założyliśmy, że 0 < ε < 1/10, co pociąga za sobą 1+2ε1−2ε <

32 .

Wreszcie

||y − u|| 6 ||PM (x)− y||+ ||PM (x)− u|| < 3ε||u||+ 2ε||u|| = 5ε||u||.

Zatem punkt y znajduje się również relatywnie blisko punktu u, czyli rzutu prostokątnego punktu

0 na hiperpłaszczyznę K, podobnie, jak punkty x i PM (x).

Z ciągłości normy i iloczynu skalarnego wynika, że można dobrać liczbę ε na tyle małą, by dla

i = 1, 2, . . . , n− 1 zachodziło

∀w∈Rn

(||w − u|| < 5ε ⇒ |〈w , zi〉|

||w||=∣∣∣∣〈w , zi〉||w||

− 〈u , zi〉||u||

∣∣∣∣ < ξ − 1n− 1

).

Wykorzystujemy tu prostopadłość wektorów zi do wektora u.

Gdy liczba ε jest tak mała, jak to jest opisane w poprzednim akapicie, wówczas dla dowolnego

wektora z =∑n−1

i=1 tizi równoległego do hiperpłaszczyzny K zachodzi

|〈y , z〉| =|〈y ,

n−1∑i=1

tizi〉| 6n−1∑i=1

|ti| |〈y , zi〉| 6n−1∑i=1

|ti|ξ − 1n− 1

||y|| 6

6ξ − 1n− 1

||y||(n− 1) max(|t1|, |t2|, . . . , |tn−1|) 6 (ξ − 1)||y|| ||z||.

Z powyższego rozumawania wynika:

Uwaga 5.4. Jeśli chcemy zapewnić, by warunek (v) lematu 5.2 był spełniony, wystarczy zapew-

nić by każda z kostek Qi miała odpowiednio małą średnicę, zawierała rzut prostopadły punktu 0

na hiperpłaszczyznę Ki i by odległość punktu 0 od hiperpłaszczyzny Ki była bliska 1.

Dowód lematu 5.2. Możemy przejść do konstrukcji wymaganych kostek. Zacznijmy od przypadku

gdy n = 3. Dla zadanej liczby ξ musimy wskazać skończoną liczbę kwadratów i liczbę dodatnią δ

takie, by spełniona była teza lematu.

Dla liczby naturalnej k rozważmy 2k kwadraty Q̃i, które określamy podając ich wierzchołki. Dla

i = 1, . . . , 2k wierzchołkami kwadratu Q̃i są punkty (cos iπk , siniπk , sin

π2k ), (cos iπk , sin

iπk ,− sin π

2k ),

(cos (i+1)πk , sin (i+1)π

k , sin π2k ) oraz (cos (i+1)π

k , sin (i+1)πk ,− sin π

2k ). Ponadto, niech Q̃+ będzie kwadra-

tem o wierzchołkach (± sin π2k ,± sin π

2k , 1), a Q̃− kwadratem o wierzchołkach (± sin π2k ,± sin π

2k ,−1).

Wszystkie te kwadraty są przystające (bok każdego z nich ma długość 2 sin π2k ), Q̃− = −Q̃+ oraz

Q̃k+i = −Q̃i dla i = 1, . . . , k (a zatem C[Q̃−] = C[Q̃−] oraz C[Q̃k+i] = C[Q̃i]). Kwadraty Q̃i znajdują

się w pobliżu „równika” sfery jednostkowej S ⊂ R3, podczas gdy Q̃+ i Q̃− leżą w pobliżu „biegunów”

tejże sfery.

Niech m = k+ 1, Qi = Q̃i dla i = 1, 2, . . . , k = m− 1 oraz Qm = Q̃+. Dla tak określonych kwa-

dratów warunki (i) oraz (ii) są spełnione, jeśli tylko k > 1 (czyli m > 2). Odległości płaszczyzn K1,

K2,. . . , Km−1 od punktu 0 wynoszą cos π2k . Wartość ta zbiega do 1, gdy k zbiega do nieskończoności.

Odległość płaszczyzny Km od punktu 0 wynosi 1. Rzutem prostokątnym punktu 0 na płaszczyznę

39

Page 41: Andrzej Komisarski O rzutach minimalnych w skończenie

Q̃−

Q̃1Q̃2

Q̃3Q̃4

Q̃2k

Q̃2k−3 Q̃2k−2 Q̃2k−1

Q̃+

Rysunek 6: Orientacyjne położenie kwadratów Q̃1, Q̃2,. . . ,Q̃2k, Q̃+ oraz Q̃− w przypadku trójwy-

miarowym.

Ki dla i = 1, 2, . . . ,m jest środek kwadratu Qi. Średnica tego kwadratu wynosi 2√

2 sin π2k i zbiega

do 0 gdy k zbiega do nieskończoności. Z uwag 5.3 oraz 5.4 wynika, że można dobrać odpowiednio

duże k oraz δ dostatecznie bliskie 0, by spełnione były warunki (iv) i (v) lematu.

Jeśli chcemy, by spełniony był także warunek (iii), należy dodatkowo pomniejszyć wybraną już

liczbę δ. Zauważmy bowiem, że jeśli δ jest wystarczająco małe, wówczas każda dwuwymiarowa

podprzestrzeń liniowa M ⊂ R3, która nie przecina żadnego z kwadratów Qδi dla i = 1, 2, ...,m − 1

(a więc żadnego z kwadratów Q̃δi , i = 1, 2, ..., 2k), przechodzi w pobliżu biegunów sfery S i przecina

kwadrat Qδm = Q̃δ+.

Niech z kolei n ∈ N będzie większe od 3. Będziemy utożsamiać przestrzeń R3 z podprzestrzenią

Rn wyznaczoną przez piersze trzy współrzędne (czyli z lin{e1, e2, e3}). W podprzestrzeni tej znaj-

dują się rozważane poprzednio kwadraty Q1, . . . , Qm (parametrym i δ nie są jeszcze ustalone). Jako

n − 1-wymiarowe kostki, które mamy skonstruować przyjmijmy kostki Q1 × [sin π2k , sin

π2k ]n−3,. . . ,

Qm × [sin π2k , sin

π2k ]n−3. Identycznie, jak w przypadku gdy n = 3 dobieramy m na tyle duże, zaś δ

na tyle bliskie 0 by spełnione były warunki (i), (ii), (iv) oraz (v) lematu.

Podobnie, jak w przypadku, gdy n = 3 zmniejszamy w razie potrzeby δ w taki sposób, by każda

dwuwymiarowa podprzestrzeń liniowa L ⊂ lin{e1, e2, e3}, przecinała któryś z kwadratów Qδi dla

i = 1, 2, ...,m. Niech M ⊂ Rn będzie dowolną podprzestrzenią liniową kowymiaru 1. Pod-

przestrzeń ta może zawierać podprzestrzeń lin{e1, e2, e3} lub też jej nie zawierać. W pierwszym

z tych dwóch przypadków M przecina wszystkie kostki (Q1 × [sin π2k , sin

π2k ]n−3)δ, gdyż zawiera ich

środki będące elementami lin{e1, e2, e3}. Z kolei w drugim przypadku przecięcie M ∩ lin{e1, e2, e3}

40

Page 42: Andrzej Komisarski O rzutach minimalnych w skończenie

jest dwuwymiarową podprzestrzenią liniową lin{e1, e2, e3}. Istnieje zatem i ∈ {1, 2, . . . ,m} takie,

że M ∩ lin{e1, e2, e3} przecina kwadrat Qδi . Tym bardziej więc podprzestrzeń M przecina kostkę

(Q1 × [sin π2k , sin

π2k ]n−3)δ. Warunek (iii) jest spełniony.

Jesteśmy gotowi do udowodnienia ostatniego potrzebnego lematu zawierającego konstrukcję pod-

zbioru Rn, który dla pewnej liczby a ∈ (0, 3/4] jest a-rojem dla każdej n− 1-wymiarowej podprze-

strzeni liniowej Rn.

Lemat 5.5. Dla dowolnej liczby naturalnej n > 3 istnieje skończony zbiór Z ⊂ Rn i liczba

0 < a 6 3/4 takie, że Z jest a-rojem dla każdej n− 1-wymiarowej podprzestrzeni liniowej M ⊂ Rn.

Dowód. Ustalmy n i wybierzmy liczbę ξ > 1 spełniającą nierówność 9ξ2 < 10. Zastosowanie

lematu 5.2 daje nam liczby m ∈ N i 0 < δ < 9ξ/4 oraz kostki Q1, Q2, . . . , Qm. Zastosujmy dla

każdej z kostek Q1, . . . , Qm wniosek 4.9, przyjmując

p =410, q =

49ξ2

(5.2)

i przed chwilą wyznaczoną liczbę δ. Otrzymujemy skończone zbiory Xk ⊂ Q2δ/3k i liczby rk,

(k = 1, . . . ,m). Ponieważ kostki Qk są przystające, więc można założyć, że r1 = · · · = rm =: r,

gdzie 0 < r < δ/3 < 3ξ/4.

Pokażemy, że zbiór Z =⋃mk=1Xk jest a-rojem dla każdej podprzestrzeni liniowej M ⊂ Rn

kowymiaru 1, gdzie

a =r

ξ<

34. (5.3)

Po pierwsze, niech x,y ∈ Z i x 6= y. Wówczas x ∈ Xi oraz y ∈ Xj dla pewnych 1 6 i, j 6 m.

Chcemy pokazać, że C(x, a) ∩ C(y, a) = {0}. Zachodzą zawierania

C(x, a) ⊂ C[B(x, ξa) ∩Ki] = C[B(x, r) ∩Ki] ⊂ C[Int(Qi)].

Pierwsze zawieranie wynika z warunku (iv) lematu 5.2 natomiast drugie jest konsekwencją własności

zbioru Xi (ponieważ r < δ/3 oraz x ∈ Q2δ/3i , więc B(x, r) ∩Ki ⊂ Int(Qi), por. wniosek 4.9 (a)).

Podobnie

C(y, a) ⊂ C[B(y, ξa) ∩Kj ] = C[B(y, r) ∩Kj ] ⊂ C[Int(Qj)].

Jeśli i = j, wówczas C(x, a)∩C(y, a) ⊂ C[B(x, r)∩Ki]∩C[B(y, r)∩Ki] = {0}, gdyż B(x, r) ∩ B(y, r) = ∅,

co wynika z własności zbioru Xi (wniosek 4.9, warunek (b)).

Jeśli natomiast i 6= j, wtedy C(x, a) ∩ C(y, a) ⊂ C[Int(Qi)] ∩ C[Int(Qj)] = {0} (ostatnia równość

zachodzi na mocy warunku (i) lematu 5.2).

Ostatecznie C(x, a) ∩ C(y, a) = {0}.

41

Page 43: Andrzej Komisarski O rzutach minimalnych w skończenie

Niech z kolei M ⊂ Rn będzie dowolną podprzestrzenią liniową kowymiaru 1. Pokażemy, że ist-

nieją wówczas punkty x1,x2, . . . ,xn ∈ Z świadczące o tym, że Z jest a-rojem dla podprzestrzeni

M (por. definicja 3.5).

Wybierzmy liczbę k ∈ {1, 2, . . . ,m} taką, by M ∩Qδk 6= ∅. Jest to możliwe wobec warunku (iii)

lematu 5.2. Z określenia zbioru Xk i wniosku 4.9 wynika, że istnieją punkty x1,x2, . . . ,xn ∈ Xk ⊂ Z

takie, że

xn leży po przeciwnej stronie podprzestrzeni M niż x1,x2, . . . ,xn−1, (5.4)

M ∩Kk ∩ B(xi, pr) = ∅

M ∩Kk ∩ IntB(xi, qr) 6= ∅dla i = 1, 2, . . . , n (5.5)

oraz jeśli y1,y2, . . . ,yn ∈M ∩Kk są punktami takimi, że ||xi−yi|| 6 r dla i = 1, 2, . . . , n, wówczas

y1,y2, . . . ,yn−1 są afinicznie niezależne oraz yn znajduje się we wnętrzu sympleksu conv{y1,y2, . . . ,yn−1}.

Wobec (5.5) i warunku (iv) lematu 5.2 mamy

M ∩C(xi, 4a/10)∩Kk ⊂M ∩B(xi, 4ξa/10)∩Kk = M ∩Kk∩B(xi, 4r/10) = M ∩Kk∩B(xi, pr) = ∅,

a więc

M ∩ C(xi, 4a/10) = {0} dla i = 1, 2, . . . , n. (5.6)

Podobnie

M∩C(xi, 4a/9)∩Kk ⊃M∩B(xi, 4a/(9ξ))∩Kk = M∩Kk∩B(xi, 4r/(9ξ2)) = M∩Kk∩B(xi, qr) 6= ∅,

czyli

M ∩ C(xi, 4a/9) 6= {0} dla i = 1, 2, . . . , n. (5.7)

Pozostało sprawdzić, że PM (xn) leży pomiędzy PM (x1), PM (x2),. . . ,PM (xn−1). Z części (v)

lematu 5.2 wynika, że istnieją punkty y1, y2,. . . , yn ∈ Kk i liczby s1, s2,. . . , sn > 0 takie,

że PM (xi) = siyi dla i = 1, 2, . . . , n. Oczywiście y1, y2,. . . , yn ∈M∩Kk. Pokażemy, że ||xi − yi|| 6 r

dla i = 1, 2, . . . , n. Rozważmy w tym celu trójkąt, którego wierzchołkami są punkty xi, yi oraz

PM (xi). Ponieważ PM (xi) − yi ∈ M , zaś PM (xi) − xi ⊥ M , więc jest to trójkąt prostokątny, być

może zdegenerowany, jeśli PM (xi) = yi, czyli si = 1. Jeśli jest to trójkąt zdegenerowany, wówczas

||xi − yi|| = ||xi − PM (xi)|| = dist(xi,M) 6 dist(xi,M ∩ Kk) < qr < r. Jeśli natomiast trój-

kąt 4xiyiPM (xi) nie jest zdegenerowany wówczas ||PM (xi) − yi|| = ||xi − yi|| cos(∠PM (xi)yixi).

Jednocześnie mamy

cos(∠PM (xi)yixi) =〈PM (xi)− yi , xi − yi〉||PM (xi)− yi|| ||xi − yi||

=〈(si − 1)yi , xi − yi〉||(si − 1)yi|| ||xi − yi||

=|〈yi , xi − yi〉|||yi|| ||xi − yi||

< ξ − 1

(ostatnia nierówność wynika z lematu 5.2 (v)). Zachodzi więc

||xi − yi|| 6||xi − PM (xi)||+ ||PM (xi)− yi|| =

=||xi − PM (xi)||+ ||xi − yi|| cos(∠PM (xi) yi xi) < ||xi − PM (xi)||+ ||xi − yi||(ξ − 1),

42

Page 44: Andrzej Komisarski O rzutach minimalnych w skończenie

a stąd

||xi − yi|| <||xi − PM (xi)||/(2− ξ) = dist(xi,M)/(2− ξ) 6

6dist(xi,M ∩Kk)/(2− ξ) < qr/(2− ξ) < 49(2− ξ)

r < r.

Ostatnia nierówność wynika stąd, że ξ <√

10/9 < 2 − 4/9. Wykorzystujemy również nierówność

dist(xi,M ∩Kk) < qr wynikającą z (5.5).

Pokazaliśmy, że dla i = 1, 2, . . . , n zachodzi ||xi − yi|| 6 r. Zatem punkty y1,y2, . . . ,yn−1

są afinicznie niezależne i yn należy do wnętrza sympleksu conv{y1,y2, . . . ,yn−1}. Z uwagi 3.3

wynika, że yn leży między y1,y2, . . . ,yn−1 zaś z uwagi 3.2 wynika, że PM (xn) = snyn leży między

PM (x1) = s1y1, PM (x2) = s2y2,. . . , PM (xn−1) = sn−1yn−1.

Dla dowolnej podprzestrzeni liniowej M ⊂ Rn dowiedliśmy, że zbiór Z jest a-rojem dla M .

W ten sposób zakończyliśmy dowód lematu.

Dowód twierdzenia 5.1. Twierdzenie jest bezpośrednią konsekwencją lematu 5.5 i wniosku 3.6.

43

Page 45: Andrzej Komisarski O rzutach minimalnych w skończenie

6 Uwagi

Idea przedstawionego dowodu pochodzi z pracy [4] napisanej przez autora wspólnie z A. Paszkie-

wiczem. Rozumowania zamieszczone w rozdziałach 3, 4 i 5 są w całości dziełem autora. Lematy

znajdujące się w rozdziale 2 są uogólnieniami na przypadki więcej niż trójwymiarowe lematów

z pracy [4] (ta część pracy [4] była dziełem A. Paszkiewicza). Ich treści zostały jednak uproszczone

i częściowo zmienione. Podane zostały także pełne dowody tych lematów. Praca [4] wymaga pew-

nych korekt i uzupełnień. W obecnej wersji pracy [4] odpowiedniki lematów 2.1 i 2.2 są błędnie

sformułowane, co uniemożliwia udowodnienie występujących w nich odpowiedników warunków (2.2)

i (2.6).

Zauważmy, że przeprowadzone rozumowanie bez wprowadzania istotnych zmian dowodzi trochę

mocniejszego wyniku. Nie tylko dla każnego n > 3 istnieje liczba α > 0 i n-wymiarowa przestrzeń,

mająca własność (α, 1), ale istnieje liczba α0 > 0 (zależna od n) taka, że dla wszystkich α ∈ (0, α0]

istnieje n-wymiarowa przestrzeń mająca własność (α, 1). Przedstawiony dowód nie pozwala jednak

podać dokładnej wartości α0, nawet dla małych n. Pokrewne wyniki związane ze stałymi rzutowymi

przestrzeni skończenie wymiarowych (por. prace [2], [5]) dają pewność, że α0 <√n. Oszacowanie

to prawdopodobnie może być jednak znacznie wzmocnione.

Skonstruowane w pracy przestrzenie (Rn, || · ||D) są nowymi przykładami skończenie wymia-

rowych przestrzeni Banacha, nie mających bazy Schaudera o stałej równej 1. Przypomnijmy po-

jęcia bazy Schaudera skończenie wymiarowej przestrzeni Banacha oraz stałej takiej bazy. n-ka

(x1,x2, . . . ,xn) elementów n-wymiarowej przestrzeni Banacha E jest bazą Schaudera przestrzeni

E, gdy zbiór {x1,x2, . . . ,xn} jest jej bazą algebraiczną. Innymi słowy, w przypadku przestrzeni

skończenie wymiarowych bazy Schaudera różną się od baz algebraicznych jedynie tym, że stanowią

one uporządkowane n-ki, podczas gdy bazy liniowe są tylko zbiorami. Stała bazy (x1,x2, . . . ,xn)

to supremum norm rzutów Plin{xk+1,x2,...,xn}lin{x1,x2,...,xk} , gdzie k przyjmuje wartości 0, 1, . . . , n.

Dla n > 3 rozważmy dowolną bazę (x1,x2, . . . ,xn) skonstruowanej w pracy przestrzeni (Rn, || · ||D).

Ponieważ rzut minimalny na każdą podprzestrzeń kowymiaru 1 ma w tej przestzeni normę 1 + α,

więc w szczególności norma rzutu P linxnlin{x1,x2,...,xn−1} jest nie mniejsza niż 1 + α. Tym samym stała

bazy (x1,x2, . . . ,xn) jest równa co najmniej 1 +α > 1. Przestrzenie takie były znane już wcześniej.

Uzyskany wynik i użyta metoda skłaniają do zastanowienia, czy w podobny sposób, jak w niniej-

szej pracy dałoby się udowodnić istnienie skończenie wymiarowych przestrzeni Banacha mających

własność (α, k) dla α > 0 oraz k większego od jedynki (lecz oczywiście mniejszego niż n−1; z twier-

dzenia Hahna–Banacha wynika, że jeśli przestrzeń Banacha ma wymiar n i własność (α, n− 1), to

α = 0). W ewentualnych dowodach można by wykorzystać ciała wypukłe skonstruowane w roz-

dziale 2. Lematy dotyczące tych ciał uwzględniają nie tylko rzuty na podprzestrzenie kowymiaru 1,

lecz także rzuty na podprzestrzenie mające większe kowymiary. Trudności zaczynają się w chwili,

44

Page 46: Andrzej Komisarski O rzutach minimalnych w skończenie

gdy chce się z użyciem tychże ciał skonstruować odpowiednią przestrzeń Banacha. O ile jest moż-

liwe sformułowanie i udowodnienie odpowiedników lematów z rozdziałów 3 i 4, o tyle trudności

pojawiają się w chwili, gdy próbuje się zaadaptować wyniki rozdziału 5. Rozstrzygnięcie pytania

o istnienie skończenie wymiarowych przestrzeni Banacha mających własność (α, k) dla α > 0 oraz

1 < k < n− 1 wymaga więc dalszych badań.

Innym sposobem rozszerzenia uzyskanych wyników byłoby udowodnienie wersji zespolonej twier-

dzenia 5.1. Również w tym przypadku, możliwe są konstrukcje zespolonych ciał wypukłych mają-

cych własności analogiczne do tych, rozważanych w rozdziale 2. Konstrukcje te nie zostały przedsta-

wione w niniejszej rozprawie. Dowód wersji zespolonej twierdzenia 5.1 oraz konstrukcja zespolonych

skończenie wymiarowych przestrzeni Banacha mających własność (α, k) dla α > 0 wymagają dal-

szych badań.

45

Page 47: Andrzej Komisarski O rzutach minimalnych w skończenie

Literatura

[1] F. Bohnenblust, A characterization of complex Hilbert spaces, Portugaliae Math. 3(1942), 103–

109.

[2] M.I. Kadec, M.G. Snobar, Certain functionals on the Minkowski compactum, Mat. Zametki 10

(1971), 453–457 (w języku rosyjskim), Math. Notes 10 (1971), 694–696 (w języku angielskim).

[3] S. Kakutani, Some characterizations of Euclidean space, Jap. J. Math. 16(1939), 93–97.

[4] A. Komisarski, A. Paszkiewicz, On minimal projections in three-dimensional Banach spaces,

preprint.

[5] H. König, N. Tomczak-Jaegermann, Norms of minimal projections, J. Funct. Anal. 119 (1994),

no. 2, 253–280.

[6] R. S. Phillips, A characterization of Euclidean spaces, Bull. Amer. Math. Soc. 46(1940), 930–933.

[7] S. Rolewicz, On minimal projections of the space Lp[0, 1] on 1-codimensional subspace, Bull.

Polish Acad. Sci. Math. 34(1986), no. 3-4, 151–153.

46