44
Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Embed Size (px)

Citation preview

Page 1: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Anatomy and Physiology

Katie MackeyPeriod 2

September 5th 2013

Page 2: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Anatomy: This is the study of the structure of the body parts and their relationship to each other. Cytology: study of the cells Histology: study of the tissues Developmental anatomy: study of changes in structure Embryology: study of the changes up to birth Pathologic anatomy: study of the changes due to disease and abnormal structures Radiographic anatomy: study of the body using x-rays Regional anatomy: study of the structures associated with the hand or neck Systemic anatomy: study of the body system by each system Surgical anatomy: study of the structures and landmarks of the body which is useful in

surgery Physiology: This is the study of the functions of the body parts.

Neurophysiology: study of the functional properties of nerve cells Endocrinology: study of hormones and how they control body functions Cardiovascular physiology: study of the functions of the heart and blood vessels Immunology: study of how the body defends itself against disease Respiratory physiology: study of the functions of the lungs and air passageways Renal physiology: study of the functions of the kidneys Exercise physiology: study of the functions of the changes in cells and organs as a

result of muscular activity Pathophysiology: study of the functional changes associated with aging and disease

1)Define Anatomy and Physiology and describe their subdivisions

Page 3: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

1. Chemical Level• This is the basic level and includes atoms and how they combine to

form molecules. The two essential molecules are DNA and glucose.

2. Cellular Level• Molecules combine to form cells. The three main cells are muscle,

nerve and epithelial cells.

3. Tissue Level• Tissues are groups of cells that work together to perform functions.

The four main tissues are connective, nervous, muscle and epithelial.

4. Organ Level• This level is when tissues join together; two or more tissues joined

together form a structure that has a specific function and shape.

5. System Level• This level consists of two or more organs that work together for one

purpose. An example is the digestive system, many organs working together.

6. Organismal Level• This is all the organs working together to create a living individual.

2) Name Different levels of structural organization that make up the human body and explain their relationship.

Page 4: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

• Skeletal System• Components – bones and cartilage • Functions – provides support and structure, also stores calcium and other

minerals • Muscular System• Components –skeletal muscle, tendons and ligaments• Functions – provides movement and can help generate heat

• Integumentary System• Components – consists of skin, nails, hair, and sweat glands• Functions – provides protection from outside hazards, maintains body heat and

provides sensory information • Nervous System• Components – consists of brain, spinal chord, and all the nerves in the body• Functions – interprets sensory information, directs immediate responses and

coordinates other organ systems activities • Endocrine System• Components –testes, ovaries, adrenal glands, pituitary glands, pancreas and the

thyroid gland• Functions – his adjusts metabolic activity and regulates hormones during

development

3)List the 11 organs of the body, identify their components and briefly explain the

major functions of each system.

Page 5: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

• Circulatory/Cardiovascular System• Components – this consists of the blood, blood vessels and the heart• Functions – distributes blood, water, oxygen, waste products and other nutrients

through the body• Lymphatic System• Components – consists of the spleen, thymus, tonsils, and lymph nodes• Functions – helps the body defend itself against disease and infection

• Respiratory System• Components – this is the lungs, trachea, larynx, sinuses, bronchi and nasal cavities• Functions - provides the blood stream with oxygen and removes carbon dioxide

• Digestive System• Components – tongue, teeth, stomach, small and large intestines, liver,

gallbladder, pancreas, esophagus and pharynx • Functions – breaks down the food and absorbs its nutrients

• Urinary System• Components – ureters, urethra, kidneys and bladder• Functions – rids the body of waste

• Reproductive System• Components – uterus, ovaries, vagina, clitoris, labia, mammary glands, penis,

testes, scrotum, and epididymis• Functions – produce sperm and eggs and help the body to carry and nurture a child

#3 Continued

Page 6: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

1. Movement2. Responsiveness3. Digestion4. Metabolism5. Excretion6. Reproduction7. Growth

4) List the Functional Characteristics necessary to maintain life in humans

Page 7: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Homeostasis- This is the tendency of a system to maintain internal stability.

Maintenance of internal environments set limitsThis is a dynamic equilibrium not a set rate Without homeostasis there could be no life because

failure of homeostasis leads to disease This keeps your temperature steady not too high or

too low, it keeps the blood flow even, and your heartbeat even, also it keeps the amount of chemicals and nutrients in your body at a correct amount

5) Define Homeostasis and explain its significance

Page 8: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Positive feedback Negative feedback

This is when the response to the stimulus enhances the original stimulus .

This is when the response to the stimulus diminishes the original stimulus. More common.

6) Describe how negative and positive feedback maintain body homeostasis

The two balance each other out to maintain homeostasis.

Page 9: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Anatomical Position- This is a standard position of the body. It is standing erect, facing directly forward, feet pointed forward and slightly apart, and arms hanging down at the sides with palms facing forward. This position is used as a reference to describe sites or motions of various parts of the body.

7) Describe the anatomical position

Page 10: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Anterior: In front of, front Posterior: After, behind, following, toward the rear Distal: Away from, farther from the origin Proximal: Near, closer to the origin Dorsal: Near the upper surface, toward the back Ventral: Toward the bottom, toward the belly Superior: Above, over Inferior: Below, under Lateral: Toward the side, away from the mid-line Medial: Toward the mid-line, middle, away from the side Rostral: Toward the front Caudal: Toward the back, toward the tail Cranial: located near the head Frontal or Coronal Plane- divides the anterior and

posterior parts of the body Sagittal Plane- divides the right and left sides of the body Transverse plane- divides the superior and inferior parts

of the body

8) Use correct anatomical terms to describe body directions, regions and

body planes or sections

Page 11: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Ventral Cavity Dorsal Cavity

Thoracic CavityPleural Cavity• Contains lungsPericardial Cavity• Contains heartAbdominopelvic CavityAbdominal Cavity• Contains liver, gallbladder,

pancreas, spleen, large and small intestines and stomach

Pelvic Cavity• Contains bladder,

reproductive organs and rectum

Cranial Cavity• Contains brain

Vertebral (spinal) Cavity• Contains spine

9) Locate and name the major body cavities and their subdivisions and list major organs

contained within them

Page 12: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Visceral PleuraThis covers the outside of the lungs

Parietal PleuraThis lines the inside of the lungs

Parietal PeritoneumThis lines the inside of the abdominal cavity

Visceral Peritoneum This lines the outside of the abdominal cavity

Visceral PericardiumThis lines the outside of the heart

Parietal Pericardium This lines the inside of the heart

10) Name the serous membranes and indicate their common functions

Page 13: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

4 Quadrants • Left upper• Part of stomach, spleen, small and large intestines

• Right upper• Liver, gallbladder, part of small and large intestines

and stomach• Left lower• Part of large and small intestine

• Right lower • Appendix, cecum, small and large intestine

11) Name the nine regions or four quadrants of the abdominopelvic cavity and list the organs they

contain.

Page 14: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

9 Regions • Left Hypochondriac• Spleen and part of stomach

• Right Hypochondriac• Liver and gallbladder

• Epigastric Region• Liver and part of stomach

• Left Lumbar Region• Left kidney, part of small intestine and part of colon

• Right illiac• Cecum, right ovary, fallopian tube and appendix

• Right lumbar region • Right kidney and part of the colon

• Umbillical region • The umbilicus, part of the colon and small intestine

• Left illiac• Part of the colon, left ovary, and fallopian tubes

• Hypogastric/ Pubic region • The uterus (in females) and bladder

#11 Continued

Page 15: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

There are many forms of energy but the two major forms are Kinetic and Potential.

Kinetic EnergyThis is the energy in a moving object or mass.Ex) wind energy that is produced by wind turbines

Potential EnergyThis is the stored energy an object may have. Ex) a ball being held at the top of a hill has potential energy because when the ball is released it will roll down the hill producing kinetic energy

12) Describe major energy forms

Page 16: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Chemical element- A substance which cannot be broken down or changed by chemical means.

1. Oxygen2. Hydrogen3. Carbon4. NitrogenAre the four most abundant elements found in the human body.

13) Define chemical element and list the four elements that form the bulk of body matter

Page 17: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Solutions

• Homogenous mixtures that cannot be separated by filtration Colloids

• Will not separate into separate substances

• Reflect light instead of letting light pass right through it

Suspensions

•A heterogeneous mixture where you can see two separate substances

•They will separate back if left standing for to long

14) Compare solutions, colloids and suspensions

Page 18: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Polar Compounds SAME Nonpolar Compounds

• Shares electrons unevenly

• Has one lone pair of electrons

• Can only dissolve polar compounds

• The stronger of the two

• Intermolecular forces

• They can both form between non-metals

• Share electrons equally

• No lone pairs • Can only dissolve

nonpolar compounds

15) Compare and contrast polar and non-polar compounds.

Page 19: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Synthesis- two elements come together to form one compound.Decomposition- one single compound breaks apart into the elements that form it.Exchange- one element in each compound switch to form two new compounds.

Oxidation Reduction Reactions is and gain and loss of electrons. Each one counts as half of a reaction.

16) Define three major types of chemical reactions: synthesis, decomposition, and exchange. Comment on the nature of

oxidation reduction reactions and their importance.

Page 20: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Chemical Reactions are often irreversible because …• Many chemical reactions that take place in the

body are open systems, this means different parts of the reaction can escape. To reverse a chemical reaction it needs to be in a close system.

• Also the energy that would fuel the reverse reaction is used up while completing the first reaction.

17) Explain why chemical reactions in the body are often irreversible

Page 21: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Water Salts Water balances salt out When balanced with salt the

body does not become to hydrated

Salt balances water out When balanced with water

the body does not become dehydrated

18) Explain the importance of water and salts to body homeostasis

When this balance is maintained this means that the kidneys are functioning properly and removing bodily waste as they should.

Page 22: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Acid : • ionic compounds that break apart in water to form hydrogen ions (H+)• Has a pH less than 7• the more H+ the stronger it is, meaning a lower number on the pH scale• Proton donors because in chemical reactions they give the protons to basesBase :• Ionic compounds that break apart in water to from hydroxide ions (OH-)• Has a pH greater than 7, most bases are called alkaline • Proton acceptors because they receive protons in chemical reactions from

acids pH :This is the measure of the concentration of hydrogen ions in a solution. The more hydrogen ions the lower the pH is and the more acidic it is. The lower the concentration of hydrogen ions the higher the pH is and more basic it is.

19) Define acid, base and explain the concept of pH

Page 23: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

General Enzyme activity Enzymes speed up reactions

but are very specific so they only work in one reaction.

They can be used multiple times.

Their shape determines their function like in the lock and key analogy.

They only stop working when they are denatured.

20) Describe the general mechanism of enzyme activity

Page 24: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

1. Nucleus or control center, directs cell activity and is necessary for reproduction. The nucleus contains genetic material (DNA), which carries instructions for synthesis of proteins.

2. Plasma membrane is the selective barrier to the movement of substances into and out of the cell. It is composed of a bi-lipid layer containing proteins. The water-impermeable lipid portion forms the basic membrane structure. The proteins (many of which are glycoproteins) act as enzymes or carriers in membrane transport.

3. Cytoplasm is where most cellular activities occur. This contains the all the organelles.

21) List the three major regions of a generalized cell and indicate the function of each

Page 25: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

The cell membrane is a phospholipid bilayer. It consists of hydrophilic polar

phosphate heads pointed outward and hydrophobic nonpolar tails (fatty acids) pointed inward.

The membrane can attract water and other polar substances.

With the help of receptors the membrane regulates what goes in and out of the cells.

The Hydrophilic heads also interact with other cells.

22) Describe the chemical composition of the plasma membrane and relate it to

membrane functions

Page 26: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Tight Junctions: These seal cell membranes together to eliminate space between cells. They hold cells together so they can work as one and they regulate the transfer of substances between cells. Desmosomes: These connect to adjacent cells and hold them together, the part that attaches to the cells are cadherins or adhesive proteins. The cytoskeletal filaments inside of the cytoplasm connect to a cytoplasmic plaque. Gap Junctions: These are small passageways connecting cells where small substances can pass through.

23) Compare the structure and function of tight junctions, desmosomes and gap junctions

Page 27: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Active Transport Passive Transport

• This is when a cell pumps substances into or out of the cell against a concentration gradient by using energy

• Certain pumps and metal ions are used

• Membrane transport proteins control the flow and direction

• This is when no energy is need to move substances into and out of the cell

• Membrane pores determine what will cross but they do not influence the flow

• Diffusion is a form of passive transport. For example it moves water.

24) Relate plasma membrane structure to active and passive transport mechanisms. Differentiate between these transport processes relative to energy source, substances transported,

direction, and mechanism

Page 28: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Glycocalyx is the slime layer or capsule that surrounds the cell and protects the cell from dangers of the environment, helps the cell to adhere to many different environments and contains and hold nutrients that the cell may need to survive.

25) Describe the role of the glycocalyx when cells interact with their environment

Page 29: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Structure • Organelle stored in the cytoplasm• Have an oblong shape with two membranes• They have their own set of DNA

Function • Produce energy for the cell using food molecules• Generates ATP, which is the energy that cells use

26) Discuss the structure and function of the mitochondria

Page 30: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Interrelationships Both Ribosomes and both ERs have similar functions and then proteins and lipids from there are sent to the Golgi.

Endoplasmic Reticulum This single membrane with many sacs produces lipids and proteins. It also transports proteins around the cell. There is the rough ER and smooth ER.

Golgi Apparatus This is a stack of large membrane vesicles surrounded by smaller vesicles. It separates and packages lipids and proteins so they are ready for transport.

Ribosomes They are RNA and proteins and they are present throughout the cell. They are responsible for protein synthesis in cells.

27) Discuss the structure and function of ribosomes, the endoplasmic reticulum and the Golgi apparatus including

functional interrelationships among these organelles

Page 31: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Lysosomes Peroxisomes

o Made in Golgi apparatus o Digest any defective organelles o These vesicles use digestive

enzymes to break down proteins lipids and carbohydrates

o Made in the endoplasmic reticulum

o They self replicate o They are more present in places

like the livero These rid the body of toxic

substances they could cause harm

28) Compare the functions of lysosomes and peroxisomes

Page 32: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

DNA Replication1. The enzyme helicase splits and parental DNA strands apart

with ATP that breaks the hydrogen bonds between the base pairs.

2. RNA primase adds a short sequence of RNA to the template strands.

3. The RNA primer allows the DNA polymerase III to start the synthesis of the new strands.

4. The replication process occurs in a 5prime to 3prime direction.

5. The leading strand is replicated continuously and the lagging strand is replicated using many okazaki fragments.

6. The okazaki fragments are then sealed with ligase.7. DNA polymerase I then removes all the RNA primers and

replaces it with DNA.8. At the end of this you are left with two daughter strands of

DNA.9. Then polymerase proofreads for any mistakes.

29) Describe the process of DNA replication

Page 33: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Transcription Translation

The first phase of protein synthesis and this is when RNA polymerase uses DNA as a template for mRNA in the nucleus. The mRNA moves to the cytoplasm and binds to a ribosome .

This is the second phase of protein synthesis and it begins with the start codon AUG then tRNA translates the other codons to amino acids. The tRNA forms base pairs with the mRNA.

30) Name two phases of protein synthesis and describe the roles of DNA, mRNA, tRNA and rRNA. Compare triplets, codons

and anticodons.

Codons – These are a sequence of three nucleotides that code for amino acids.Triplets – These are the same as condons and they are called this because they are triplets of nucleotides. Anticodons – These are the condons base pairs.

rRNA is ribosomal RNA. This is the part of a ribosome that perfroms protein synthesis.

Page 34: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Structural Functional

• Cells tightly packed together in multiple layers

• No blood vessels within them• Held together by tight junctions,

gap junctions and desmosomes• Lines the outside of the body

and all body cavities • In the bottom section of the cell

the nucleus is located

• This tissue protects the body from outside dangers

• This tissue provides sensory information including smell, touch and taste

• They secrete substances to lubricate some body cavities which makes them function better

31) List several structural and functional characteristics of epithelial tissue.

Page 35: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

• simple squamous: This type is composed of a single layer of flattened, scale- or plate-like cells. It is quite common in the body. The large body cavities and heart, blood vessels and lymph vessels are typically lined by a simple squamous epithelium. The nuclei of the epithelial cells are often flattened and egg-shaped, and they are located close to the center of the cells.

• simple cuboidal: Cells appear cuboidal in sections perpendicular to the surface of the epithelium. Viewed from the surface of the epithelium they look rather like small polygons. Simple cuboidal epithelium occurs in small excretory ducts of many glands, the follicles of the thyroid gland, the tubules of the kidney and on the surface of the ovaries.

• simple columnar: The cells forming a simple columnar epithelium are taller than they are wide. The nuclei of cells within the epithelium are usually located at the same height within the cells - often close to the base of the cells.

• pseudostratified-highly modified: These line the respiratory passages and they clear dust and the particles from the airways.

32) Name, classify and describe various types of epithelia, also indicate their chief

functions and locations.

Page 36: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

• stratified squamous: These cells protect the cells beneath them. They are found on the skin, throat, vagina and mouth.

• stratified cuboidal: These cells line the ducts of mammary, sweat glands and the pancreas. They protect other cells.

• stratified columnar: These cells protect other cells by secreting fluids for lubrication of the body cavities. They are found in parts of the pharynx, the male urethra and vas deferens.

• transitional epitheliums: These are found in the urinary tracts and they expand and contract to protect it.

#32 Continued

Page 37: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Gland: a cell or group of cells that produce a secretion Exocrine Gland: They have ducts aimed toward the surface of the body.Endocrine Gland: They are the glands where hormones are produced. Multicellular Gland: They have much more complex ducts and secretory units than unicellular. Unicellular Gland: These glands are simple and found in the epithelial linings of respiratory and intestinal tracts.

33) Define gland. Differentiate between exocrine and endocrine glands and multicellular and unicellular glands.

Page 38: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

1. Loose Connective Tissue: This tissue connects the epithelia to the tissues beneath it.

2. Adipose Tissue: This stores food and insulates organs.

3. Cartilage: This provides shock absorption for impact and holds bones together.

4. Fibrous Connective Tissue: This is ligaments which connect bone to bone and tendons which connect bone to muscle.

5. Bone: Bones provide structure and support to the body.

6. Blood: Blood clots open wounds so that not much blood is lost.

34) Describe the types of connective tissue found in

the body and indicate their characteristic functions.

Page 39: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Structure Function

Cutaneous They consist of stratified squamous epithelium and the underlying connective tissues.

They cover the surface of the body and are thick, relatively waterproof, and dry.

Mucous This membrane lines cavities that connect with the exterior, including the digestive, respiratory, reproductive, and urinary tracts. The epithelial surfaces are kept moist at all times.

The purpose is to lubricate body cavities through absorption and secretion.

Serous These line the sealed, internal cavities of the body.

Serous fluid covers the surfaces to minimize friction between opposing surfaces.

35) Describe the structure and function of cutaneous, mucous and serous membranes.

Page 40: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

I. The Cell Cyclea) Interphase

1. G1 The cells grows 2. DNA replication occurs 3. G2 molecules needed for division are produced

II. Mitosisb) Prophase is when the nucleolus disappears and the nuclear

membranes disintegrates c) Metaphase is when the chromosomes line up in the middle of

the cell d) Anaphase is when sister chromosomes are pulled to polar ends

of the cell e) Telophase is when nuclear membranes reform around the new

sets of chromosomes III. Cytokinesis

f) The cytoplasm splits to form two new cells IV. The body repeats until the wound is healed

36) Outline the process of tissue repair involved in normal healing of a superficial wound.

Page 41: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

Endoderm is the inner germ layersEctoderm is the outer germ layersMesoderm is the middle germ layers

37) Indicate the embryonic origin of each tissue class.

Connective Class is derived from the mesoderm and ectoderm.

Epithelial Class is derived from all three germ layers. The mesoderm, ectoderm and endoderm.

Muscular Class is derived from the mesoderm and some from the ectoderm.

Nervous Class is derived from the ectoderm germ layer.

Page 42: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

"11 Organ Systems ::." 11 Organ Systems ::. Webs, n.d. Web. 20 Aug. 2012. <http://11organsystems.webs.com/>.

"Abdominal Wall - Dissector Answers." Anatomy.med. University of Michigan Medical School, n.d. Web. 20 Aug. 2012. <http://anatomy.med.umich.edu/gastrointestinal_system/abdo_wall_ans.html>.

"Acid, Base, and PH Tutorial." Acid, Base, and PH Tutorial. N.p., n.d. Web. 22 Aug. 2012. <http://lrs.ed.uiuc.edu/students/erlinger/water/background/ph.html>.

"Anatomical Directional Terms and Body Planes." Biology. About.com, n.d. Web. 20 Aug. 2012. <http://biology.about.com/od/anatomy/a/aa072007a.htm>.

"Anatomic Position." Medical Dictionary. TheFreeDictionary.com, n.d. Web. 20 Aug. 2012. <http://medical-dictionary.thefreedictionary.com/anatomic position>.

"Anatomy and Physiology." Anatom & Physiology Flashcards. Flashcard Machine - Create, Study and Share Online Flash Cards, n.d. Web. 20 Aug. 2012. <http://www.flashcardmachine.com/anatom-physiology.html>.

"Blue Histology - Epithelia and Glands." Blue Histology - Epithelia and Glands. School of Anatomy and Human Biology - The University of Western Australia, n.d. Web. 30 Aug. 2012. <http://www.lab.anhb.uwa.edu.au/mb140/corepages/epithelia/epithel.htm>.

"Body Cavities." Physioweb. N.p., n.d. Web. 20 Aug. 2012. <http://www.physioweb.org/direction/body_cavities.html>.

"Cell Membranes Problem Set." Cell Biology. Arizona.edu, n.d. Web. 28 Aug. 2012. <http://www.biology.arizona.edu/cell_bio/problem_sets/membranes/13t.html>.

"Cell Structure." Angelfire.com, n.d. Web. 28 Aug. 2012.

Bibliography

Page 43: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

"Comparison of Solutions, Suspensions, and Colloids." Science-house.org. NC State University, n.d. Web. 20 Aug. 2012. <http://www.science-house.org/index.php/ctc/85-appendix-a-comparison-of-solutions-suspensions-and-colloids>.

"Chapter 3: Cells and Tissue." Human Anatomy and Physiology. Irn.org, n.d. Web. 22 Aug. 2012. <http://www.lrn.org/Content/Lessons/cells.html>.

"Different Forms of Energy." What Is Energy. Solarschools.net, n.d. Web. 20 Aug. 2012. <http://www.solarschools.net/resources/stuff/different_forms_of_energy.aspx>.

"DNA Replication." IB Biology Notes. Ibguides.com, n.d. Web. 30 Aug. 2012. <http://www.ibguides.com/biology/notes/dna-replication-hl>.

"Element." Encyclopedia2. TheFreeDictionary.com, n.d. Web. 20 Aug. 2012. <http://encyclopedia2.thefreedictionary.com/Chemical Elements>.

"Homeostasis." Biology Online. Biology-Online, n.d. Web. 20 Aug. 2012. <http://www.biology-online.org/biology-forum/about14106.html>.

"Human Physiology/Homeostasis." Wikibooks, Open Books for an Open World. Wikipedia, n.d. Web. 20 Aug. 2012. <http://en.wikibooks.org/wiki/Human_Physiology/Homeostasis>.

"Introduction to Biological Membranes." Biological Membranes and Membrane Transport Mechanisms. Themedicalbiochemistrypage.org, n.d. Web. 28 Aug. 2012. <http://themedicalbiochemistrypage.org/membranes.php>.

Lodish, Harvey. "Messenger RNA Carries Information from DNA in a Three-Letter Genetic Code." The Three Roles of RNA in Protein Synthesis. U.S. National Library of Medicine, 18 Dec. -0001. Web. 30 Aug. 2012. <http://www.ncbi.nlm.nih.gov/books/NBK21603/>.

Bibliography Continued

Page 44: Anatomy and Physiology Katie Mackey Period 2 September 5 th 2013

"Mechanism of Enzyme Action." Enzymes - Lock&Key. Elmhurst.edu, n.d. Web. 22 Aug. 2012. <http://www.elmhurst.edu/~chm/vchembook/571lockkey.html>.

"Membranes." Human Anatomy. Innvista.com, n.d. Web. 30 Aug. 2012. <http://www.innvista.com/health/anatomy/membrane.htm>.

"Molecular Expressions Cell Biology: Plasma Membrane." Molecular Expressions Cell Biology: Plasma Membrane. Fsu.edu, n.d. Web. 22 Aug. 2012. <http://micro.magnet.fsu.edu/cells/plasmamembrane/plasmamembrane.html>.

"Science Clarified." Real-life Applications, n.d. Web. 22 Aug. 2012. <http://www.scienceclarified.com/everyday/Real-Life-Chemistry-Vol-2/Chemical-Reactions-Real-life-applications.html>.

"Serous Membrane." Anatomy and Physiology. Encyclopedia of Science, n.d. Web. 20 Aug. 2012. <http://www.daviddarling.info/encyclopedia/S/serous_membrane.html>.

"Structure of Mitochondria." Mitochondria Structure. Ruf.rice.edu, n.d. Web. 28 Aug. 2012. <http://www.ruf.rice.edu/~bioslabs/studies/mitochondria/mitotheory.html>.

"Quizlet." Levels of Structural Organization in the Human Body Flashcards. Quizlet, n.d. Web. 10 Aug. 2012. <http://quizlet.com/9252009/levels-of-structural-organization-in-the-human-body-flash-cards/>.

"Quizlet." Subdivisions of Anatomy Flashcards. Quizlet, n.d. Web. 10 Aug. 2012. <http://quizlet.com/176017/subdivisions-of-anatomy-flash-cards/>.

"Quizlet." Subdivisions in Physiology Flashcards. Quizlet, n.d. Web. 10 Aug. 2012. <http://quizlet.com/1671038/subdivisions-in-physiology-flash-cards/>.

"Textbook of Basic Nursing." Google Books. Google, n.d. Web. 22 Aug. 2012. <http://books.google.com/books?id=odY9mXicPlYC>.

"Tissues : The Living Fabric." Tissues Chapter. Augustatech.edu, n.d. Web. 30 Aug. 2012. <http://www.augustatech.edu/anatomy/chapter4.html>.

"The Glycocalyx and the S-Layer." Prokaryotic Cell Structure. Ccbcmd.edu, n.d. Web. 28 Aug. 2012. <http://faculty.ccbcmd.edu/courses/bio141/lecguide/unit1/prostruct/glyco.html>.

Bibliography Continued