20
Analysis of Temperature Distribution and Ablation Gas Concentration Distribution under Consideration of Nozzle Ablation Caused by Spiral Arc Applied Axial Magnetic Field โ—ŽYuki Suzuki, Shoya Nishizawa, Yusuke Yoshifumi Maeda, Toru Iwao (Tokyo City University) Results Arc conductance with time. B z = 10 mT 3D arc temperature distribution (B z = 10 mT). Ablation gas concentration distribution (B z = 10 mT). EPP-20-081 ใƒปYuki Suzukiใƒป Tokyo City University ใƒป 1 /13 1 /12 TA5-S2-015 Current zero Decrement of arc energy and creating the weak point

Analysis of Temperature Distribution and Ablation Gas

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analysis of Temperature Distribution and Ablation Gas

Analysis of Temperature Distribution and Ablation Gas Concentration Distribution under

Consideration of Nozzle Ablation Caused by Spiral Arc Applied Axial Magnetic Field

โ—ŽYuki Suzuki, Shoya Nishizawa, Yusuke Yoshifumi Maeda, Toru Iwao (Tokyo City University)

Results

Arc conductance with time.

Bz = 10 mT

3D arc temperature distribution (Bz = 10 mT). Ablation gas concentration distribution (Bz = 10 mT).

EPP-20-081 ใƒปYuki Suzukiใƒป Tokyo City University ใƒป 1 /13 1 /12TA5-S2-015

Current zero

Decrement of arc energy and creating the weak point

Page 2: Analysis of Temperature Distribution and Ablation Gas

[1] Japan Electric Engineersโ€˜ Association : http://www.jeea.or.jp/course/contents/05301/

Needs Improving interrupting performance of air circuit breakers and increasing voltage

Target 9.4: Reducing Environmental load

Global warming coefficient of SF6 gas

โ†’ 22800 times CO2

HV, UHV: SF6 gas circuit breaker

Voltage tolerance corves of equipment[1] .

Introduction Improvement of circuit air breaker performance

SF6 gas free circuit breaker

EPP-20-081 ใƒปYuki Suzukiใƒป Tokyo City University ใƒป 2 /13 2 /12TA5-S2-015

Page 3: Analysis of Temperature Distribution and Ablation Gas

Low temperature and electrical conductivity Current interruption

[2] Yokomizu Yasunobu๏ผš โ€ใ‚ฌใ‚นๅนไป˜ใ‘ใซใ‚ˆใ‚‹ๅคง้›ปๆตใฎใ‚ขใƒผใ‚ฏ้ฎๆ–ญใซ้–ขใ™ใ‚‹ๅŸบ็คŽ็ ”็ฉถโ€, Nagoya university doctoral paper (1991๏ผ‰[3] Toshiyuki Onchi๏ผŒYasunori Tanaka๏ผŒKei Kawasaki๏ผŒYoshihiko Uesugi๏ผšโ€Thermofluid Simulation of Arc Plasmas Confined by a Polymer

Hollow Cylinderโ€๏ผŒ IEEJ Trans.PE๏ผŒVol.131๏ผŒNo.2๏ผŒpp.196-204 ๏ผˆ2011๏ผ‰

[3]Thermal re-ignition and dielectric re-ignition[2]. Thermodynamic and transport properties of

POM,PTFE vapor and air[3] .

Re-ignitionResearch background

3 /12TA5-S2-015

Page 4: Analysis of Temperature Distribution and Ablation Gas

Axial magnetic fieldResearch background

[4] Satoshi Hirayama, Takayasu Fujino, Motoo Ishikawa, Tadashi Mori, Katsuharu Iwamoto, Hiromichi Kawano, ๏ผš โ€œThree-dimensional Time-dependent Numerical Analysis of SF6 Arc Plasma under Externally Applied

Magnetic Fieldโ€, IEEJ Transactions on Power and Energy, Vol.131, No.10, pp.865-871 (2011)

4 /12TA5-S2-015

Page 5: Analysis of Temperature Distribution and Ablation Gas

Ablation gas and axial magnetic fieldResearch model

Bz

(a) w/o axial magnetic field. (b) w/ axial magnetic field.

Arc

Localized ablation gas

blast and contamination

(b) w/ axial magnetic field.

โœ“ Concentrative cooling

of arc

โœ“ Increment of arc voltage

๏ผ‹

Improvement of arc

interruption performance

5 /12TA5-S2-015

Page 6: Analysis of Temperature Distribution and Ablation Gas

Calculation method

Calculation area.

ใƒป Electrodes material: Cathode-Cu๏ผŒAnode-Cu

ใƒป Gas๏ผš N2 ใƒป Pressure: 0.1 MPa

ใƒป Inter electrode distance: 10 mm

ใƒป Nozzle radius๏ผš 10 mm

ใƒป Nozzle material: POM

ใƒป Current๏ผš 1-100-0 A ใƒป di/dt๏ผš 0.5 A/ฮผs, - 0.5 A/ฮผs

ใƒปAxial magnetic field : 0, 10, 100 mT

Conditions

Basic assumptions

ใƒป 3-D rectangular coordinate system

ใƒป Laminar flow

ใƒป Local thermal equilibrium

ใƒป Optically thin

ใƒปWithout ablation caused by radiation transfer

Governing equation

ใƒปMass conservation ใƒป Current continuity equation

ใƒปMomentum conservation ใƒป Ohms law

ใƒป Energy conservation ใƒปMaxwell Ampere law

ใƒป Advection diffusion equation

3-D rectangular coordinate system

Current with time at -0.5 A/ยตs of current decrement

ratio and 0.5 A/ยตs of current increment ratio.

Bz

External magnetic

field density

6 /12TA5-S2-015

Page 7: Analysis of Temperature Distribution and Ablation Gas

Ablation gas generation from nozzle

Chemical reaction considering mixed gas of

nitrogen and ablation gas.

Structural diagram of POM.

๐œ•

๐œ•๐‘ก๐œŒ๐ถ +

๐œ•

๐œ•๐‘ฅ๐œŒ๐‘ข๐ถ +

๐œ•

๐œ•๐‘ฆ๐œŒ๐‘ฃ๐ถ +

๐œ•

๐œ•๐‘ง๐œŒ๐‘ค๐ถ =

๐œ•

๐œ•๐‘ฅ๐ท

๐œ•๐œŒ๐ถ

๐œ•๐‘ฅ+

๐œ•

๐œ•๐‘ฆ๐ท

๐œ•๐œŒ๐ถ

๐œ•๐‘ฆ+

๐œ•

๐œ•๐‘ง๐ท

๐œ•๐œŒ๐ถ

๐œ•๐‘ง+ ๐‘†๐‘

๐‘

Advection diffusion equation

ฮ“๐‘Ž๐‘๐‘™ =๐‘ƒ๐‘‰

2๐œ‹๐‘špol๐‘˜๐‘‡

(Tโ‰งTmelt)โžข Hertz-Knudsenโ€™s equation[3]

๐‘ƒ๐‘ฃ = ๐‘ƒ0exp๐ฟ๐‘’

๐‘…๐‘‡๐‘๐‘œ๐‘–๐‘™โˆ’

๐ฟ๐‘’๐‘…๐‘‡

โžข Clausius-Clapeyronโ€™s equation[3]

โžข Mass generation[3]

๐‘†๐‘๐‘ = ๐‘špolฮ“๐‘Ž๐‘๐‘™

ฮ”S

ฮ”V

ใƒปP0 [Pa]: Atmospheric pressure

ใƒปLe [J/kg]: Latent heat of evaporation

ใƒปR [J/(Kใƒปmol)]: Gas constant

ใƒปTboil [K]: Boiling point

ใƒปPv [Pa]: Saturated vapor pressure

ใƒปฮ“abl [1/(m2ใƒปs)]: Ablation flux

ใƒปmpol [kg]: Mass of one molecule of polymer material

ใƒปk [(m2ใƒปkg)/(s2ใƒปK)]: Boltzs-mann constant

ใƒป๐‘†๐‘๐‘ kg/(m3ใƒปs) : Mass generation

Calculation method

7 /12TA5-S2-015

Page 8: Analysis of Temperature Distribution and Ablation Gas

Spiral arcResult and discussion

3D arc temperature distribution.

(a) Without Axial magnetic field (b) Bz = 10 mT (c) Bz = 100 mT

8 /12TA5-S2-015

(a) Without Axial magnetic field (b) Bz = 10 mT (c) Bz = 100 mT

3D arc temperature distribution (t = 240 ฮผs, T = 10000-13000 K).

BzBz

โœ“ Confirmation of the spiral arc caused by axial magnetic field

Page 9: Analysis of Temperature Distribution and Ablation Gas

Result and discussion Ablation gas generation

Ablation gas concentration distribution (X axial center).

(a) Without Axial magnetic field (b) Bz = 10 mT (c) Bz = 100 mT

9 /12TA5-S2-015

Page 10: Analysis of Temperature Distribution and Ablation Gas

Result and discussion Ablation gas generation

3D ablation gas concentration distribution.

(a) Without Axial magnetic field (b) Bz = 10 mT (c) Bz = 100 mT

10 /12TA5-S2-015

Page 11: Analysis of Temperature Distribution and Ablation Gas

Result and discussion Arc length and arc conductance

Arc length with time. Arc conductance with time.

11 /12TA5-S2-015

โœ“ Arc conductance greatly decreased in the case of considering AMF and ablation.

Current zero

Page 12: Analysis of Temperature Distribution and Ablation Gas

Summary

โžข The arc was spiraled by applying the axial magnetic field

โžข The ablation gas generation rate increased with the magnetic flux density

because the high temperature part of arc is closer to the nozzle caused by

the spiral arc.

ObjectiveAnalysis of Temperature Distribution and Ablation Gas Concentration Distribution

under Consideration of Nozzle Ablation Caused by Spiral Arc

Applied Axial Magnetic Field

โžข Three-dimensional temperature distributions of spiral arc caused by axial

magnetic field and ablation gas concentration distributions generated from

nozzle were obtained.

โžข The arc conductance decreased the most compared with other conditions in the

case of considering the ablation and axial magnetic field because of the local

cooling of arc and the increment of arc voltage caused by spiral arc

12 /12TA5-S2-015

Page 13: Analysis of Temperature Distribution and Ablation Gas

NOTE

Page 14: Analysis of Temperature Distribution and Ablation Gas

14Supplement

POM:N2 = 10:90

POM:N2 = 20:80

POM:N2 = 90:10

POM:N2 = 80:20

POM:N2 = 70:30

POM:N2 = 60:40

POM:N2 = 50:50

POM:N2 = 40:60

POM:N2 = 30:70POM:N2 = 90:10

POM:N2 = 80:20

POM:N2 = 70:30

POM:N2 = 60:40

POM:N2 = 50:50

POM:N2 = 10:90

POM:N2 = 20:80

POM:N2 = 40:60

POM:N2 = 30:70

POM:N2 = 10:90

POM:N2 = 20:80

POM:N2 = 90:10

POM:N2 = 80:20

POM:N2 = 70:30

POM:N2 = 60:40

POM:N2 = 50:50

POM:N2 = 40:60

POM:N2 = 30:70

POM:N2 = 90:10

POM:N2 = 80:20

POM:N2 = 70:30

POM:N2 = 60:40

POM:N2 = 50:50

POM:N2 = 10:90

POM:N2 = 20:80

POM:N2 = 40:60

POM:N2 = 30:70

Thermodynamic and transport properties

Page 15: Analysis of Temperature Distribution and Ablation Gas

15Supplement

POM:N2 = 20:80

POM:N2 = 60:40

POM:N2 = 50:50

POM:N2 = 40:60

POM:N2 = 30:70

POM:N2 = 10:90

POM:N2 = 90:10

POM:N2 = 80:20

POM:N2 = 70:30

POM:N2 = 10:90

POM:N2 = 20:80

POM:N2 = 90:10

POM:N2 = 80:20

POM:N2 = 70:30

POM:N2 = 60:40

POM:N2 = 50:50

POM:N2 = 40:60

POM:N2 = 30:70

Fig. POM-N2 particle composition 50:50

Thermodynamic and transport properties

Page 16: Analysis of Temperature Distribution and Ablation Gas

16Supplement

Thermodynamic properties of polymer block.

Energy conservation equation

๐œ•

๐œ•๐‘ฅ(๐œŒ๐‘ฃ๐‘ฅโ„Ž) +

๐œ•

๐œ•๐‘ฆ(๐œŒ๐‘ฃ๐‘ฆโ„Ž) +

๐œ•

๐œ•๐‘ง(๐œŒ๐‘ฃ๐‘งโ„Ž)

=๐œ•

๐œ•๐‘ฅ(๐œ…

๐ถ๐‘

๐œ•โ„Ž

๐œ•๐‘ฅ) +

๐œ•

๐œ•๐‘ฆ(๐œ…

๐ถ๐‘

๐œ•โ„Ž

๐œ•๐‘ฆ) +

๐œ•

๐œ•๐‘ง(๐œ…

๐ถ๐‘

๐œ•โ„Ž

๐œ•๐‘ง) + ๐‘—๐‘ฅ๐ธ๐‘ฅ + ๐‘—๐‘ฆ๐ธ๐‘ฆ + ๐‘—๐‘ง๐ธ๐‘ง โˆ’ ๐‘ˆ โˆ’ ๐‘†๐‘ƒ

๐ถ(Le + Lm)

[W/m3] = [J/(m3ใƒปs)]

Page 17: Analysis of Temperature Distribution and Ablation Gas

17Calculation method Governing equation

๐œ•๐œŒ

๐œ•๐‘ก+๐œ• ๐œŒ๐‘ฃ๐‘ฅ๐œ•๐‘ฅ

+๐œ• ๐œŒ๐‘ฃ๐‘ฆ

๐œ•๐‘ฆ+

๐œ• ๐œŒ๐‘ฃ๐‘ง๐œ•๐‘ง

= 0 (1)

๐œ• ๐œŒ๐‘ฃ๐‘ฅ๐œ•๐‘ก

+๐œ• ๐œŒ๐‘ฃ๐‘ฅ

2

๐œ•๐‘ฅ+๐œ• ๐œŒ๐‘ฃ๐‘ฆ๐‘ฃ๐‘ฅ

๐œ•๐‘ฆ+๐œ• ๐œŒ๐‘ฃ๐‘ง๐‘ฃ๐‘ฅ

๐œ•๐‘ง= โˆ’

๐œ•๐‘ƒ

๐œ•๐‘ฅ+ ๐‘—๐‘ฆ ร— ๐ต๐‘ง โˆ’ ๐‘—๐‘ฆ ร— ๐ต๐‘ฆ +

๐œ•

๐œ•๐‘ฅ

๐œ•๐œ‚๐‘ฃ๐‘ฅ๐œ•๐‘ฅ

+๐œ•

๐œ•๐‘ฆ

๐œ•๐œ‚๐‘ฃ๐‘ฅ๐œ•๐‘ฆ

+๐œ•

๐œ•๐‘ง

๐œ•๐œ‚๐‘ฃ๐‘ฅ๐œ•๐‘ง

(2)

๐œ• ๐œŒ๐‘ฃ๐‘ฆ

๐œ•๐‘ก+๐œ• ๐œŒ๐‘ฃ๐‘ฅ๐‘ฃ๐‘ฆ

๐œ•๐‘ฅ+๐œ• ๐œŒ๐‘ฃ๐‘ฆ

2

๐œ•๐‘ฆ+๐œ• ๐œŒ๐‘ฃ๐‘ง๐‘ฃ๐‘ฆ

๐œ•๐‘ง= โˆ’

๐œ•๐‘ƒ

๐œ•๐‘ฆ+ ๐‘—๐‘ง ร— ๐ต๐‘ฅ โˆ’ ๐‘—๐‘ฅ ร— ๐ต๐‘ฅ +

๐œ•

๐œ•๐‘ฅ

๐œ•๐œ‚๐‘ฃ๐‘ฆ

๐œ•๐‘ฅ+

๐œ•

๐œ•๐‘ฆ

๐œ•๐œ‚๐‘ฃ๐‘ฆ

๐œ•๐‘ฆ+

๐œ•

๐œ•๐‘ง

๐œ•๐œ‚๐‘ฃ๐‘ฆ

๐œ•๐‘ง(3)

๐œ• ๐œŒ๐‘ฃ๐‘ง๐œ•๐‘ก

+๐œ• ๐œŒ๐‘ฃ๐‘ฅ

2

๐œ•๐‘ฅ+๐œ• ๐œŒ๐‘ฃ๐‘ฆ๐‘ฃ๐‘ฅ

๐œ•๐‘ฆ+๐œ• ๐œŒ๐‘ฃ๐‘ง๐‘ฃ๐‘ฅ

๐œ•๐‘ง= โˆ’

๐œ•๐‘ƒ

๐œ•๐‘ฅ+ ๐‘—๐‘ฆ ร— ๐ต๐‘ฅ โˆ’ ๐‘—๐‘ฅ ร— ๐ต๐‘ฆ +

๐œ•

๐œ•๐‘ฅ

๐œ•๐œ‚๐‘ฃ๐‘ง๐œ•๐‘ฅ

+๐œ•

๐œ•๐‘ฆ

๐œ•๐œ‚๐‘ฃ๐‘ง๐œ•๐‘ฆ

+๐œ•

๐œ•๐‘ง

๐œ•๐œ‚๐‘ฃ๐‘ง๐œ•๐‘ง

+ ๐œŒ0 โˆ’ ๐œŒ ๐‘” (4)

๐œ• ๐œŒโ„Ž

๐œ•๐‘ก+๐œ• ๐œŒ๐‘ฃ๐‘ฅโ„Ž

๐œ•๐‘ฅ+๐œ• ๐œŒ๐‘ฃ๐‘ฆโ„Ž

๐œ•๐‘ฆ+๐œ• ๐œŒ๐‘ฃ๐‘งโ„Ž

๐œ•๐‘ง=

๐œ•

๐œ•๐‘ฅ

๐œ…

๐ถ๐‘ƒ

๐œ•โ„Ž

๐œ•๐‘ฅ+

๐œ•

๐œ•๐‘ฆ

๐œ…

๐ถ๐‘ƒ

๐œ•โ„Ž

๐œ•๐‘ฆ+

๐œ•

๐œ•๐‘ง

๐œ…

๐ถ๐‘ƒ

๐œ•โ„Ž

๐œ•๐‘ง+ ๐‘—๐‘ฅ๐ธ๐‘ฅ + ๐‘—๐‘ฆ๐ธ๐‘ฆ + ๐‘—๐‘ง๐ธ๐‘ง โˆ’ ๐‘ˆ โˆ’ ๐‘†๐‘

๐‘(๐ฟ๐‘’ + ๐ฟ๐‘š)(5)

Mass conservation equation

Momentum conservation equation๏ผˆX, Y, Z direction๏ผ‰

Energy conservation equation

Page 18: Analysis of Temperature Distribution and Ablation Gas

18Calculation method Governing equation

๐œ• ๐‘—๐‘ฅ

๐œ•๐‘ฅ+

๐œ• ๐‘—๐‘ฆ

๐œ•๐‘ฆ+

๐œ• ๐‘—๐‘ง

๐œ•๐‘ง= 0

(6)

๐‘—๐‘ฅ = ๐œŽ๐ธ๐‘ฅ๏ผŒ๐‘—๐‘ฆ = ๐œŽ๐ธ๐‘ฆ๏ผŒ๐‘—๐‘ง = ๐œŽ๐ธ๐‘ง (7)

๐ธ๐‘ฅ = โˆ’๐œ•๐œ‘

๐œ•๐‘ฅ๏ผŒ๐ธ๐‘ฆ = โˆ’

๐œ•๐œ‘

๐œ•๐‘ฆ๏ผŒ๐ธ๐‘ง = โˆ’

๐œ•๐œ‘

๐œ•๐‘ง(8)

๐œ•2๐ด๐‘ฅ

๐œ•๐‘ฅ2+

๐œ•2๐ด๐‘ฅ

๐œ•๐‘ฆ2+

๐œ•2๐ด๐‘ฅ

๐œ•๐‘ง2= โˆ’ยต๐‘—๐‘ฅ

(9)

๐œ•2๐ด๐‘ฆ

๐œ•๐‘ฅ2+

๐œ•2๐ด๐‘ฆ

๐œ•๐‘ฅ2+

๐œ•2๐ด๐‘ง

๐œ•๐‘ฅ2= โˆ’ยต๐‘—๐‘ฆ

(10)

๐œ•2๐ด๐‘ง

๐œ•๐‘ฅ2+

๐œ•2๐ด๐‘ง

๐œ•๐‘ฆ2+

๐œ•2๐ด๐‘ง

๐œ•๐‘ง2= โˆ’ยต๐‘—๐‘ง

(11)

๐ต๐‘ฅ =๐ด๐‘ง

๐œ•๐‘ฅโˆ’

๐ด๐‘ฆ

๐œ•๐‘ฅ(12)

๐ต๐‘ฆ =๐ด๐‘ฅ

๐œ•๐‘งโˆ’

๐ด๐‘ง

๐œ•๐‘ฅ(13)

๐ต๐‘ง =๐ด๐‘ฆ

๐œ•๐‘ฅโˆ’

๐ด๐‘ฅ

๐œ•๐‘ฆ(14)

Current continuity equation

Maxwell Ampere's law ๏ผˆX, Y, X direction๏ผ‰

๐œ•

๐œ•๐‘ก๐œŒ๐ถ +

๐œ•

๐œ•๐‘ฅ๐œŒ๐‘ฃ๐‘ฅ๐ถ +

๐œ•

๐œ•๐‘ฆ๐œŒ๐‘ฃ๐‘ฆ๐ถ +

๐œ•

๐œ•๐‘ง๐œŒ๐‘ฃ๐‘ง๐ถ =

๐œ•

๐œ•๐‘ฅ๐ท

๐œ•๐œŒ๐ถ

๐œ•๐‘ฅ+

๐œ•

๐œ•๐‘ฆ๐ท

๐œ•๐œŒ๐ถ

๐œ•๐‘ฆ+

๐œ•

๐œ•๐‘ง๐ท

๐œ•๐œŒ๐ถ

๐œ•๐‘ง+ ๐‘†๐‘

๐‘ (15) ๐ท =2 2

1๐‘€1

+1๐‘€2

0.5

๐œŒ12

๐›ฝ12๐œ‚1

2๐‘€1

0.25

+๐œŒ12

๐›ฝ12๐œ‚1

2๐‘€1

0.25 (16)

Advection diffusion equationDiffusion coefficient

Page 19: Analysis of Temperature Distribution and Ablation Gas

Current I = 50 A

Bz = 3 mT

Current I = 50 A

Bz = 3 mT

็›ดๆต้›ปๆตๆ™‚ใซใŠใ‘ใ‚‹็ธฆ็ฃ็•ŒๅฐๅŠ  (Bz = 3 mT)ใŒๅŠใผใ™ใ‚ขใƒผใ‚ฏๆŒ™ๅ‹•Result

Fig. Temperature distribution with time. Fig. Flow velocity distribution with time.

Fig. Current and electric potential with time.

็ธฆ็ฃ็•ŒใฎๅฐๅŠ ใซไผดใ„ๅพ„ๆ–นๅ‘ๆต้€ŸใŒ็™บ็”Ÿใ—๏ผŒใ‚ขใƒผใ‚ฏใŒใ‚นใƒ‘ใ‚คใƒฉใƒซๅŒ– 19/21

Page 20: Analysis of Temperature Distribution and Ablation Gas

็ธฆ็ฃ็•ŒๅฐๅŠ ๆ™‚ใฎใ‚ขใƒผใ‚ฏ้›ปๅœงๅข—ๅŠ ใจ็†ฑ็š„ๅ†็‚นๅผง็™บ็”Ÿใƒขใƒ‡ใƒซModel

Fig. Arc driven model affected by axial magnetic flux density.

Fig. Thermal interruption limit.(a) w/o axial magnetic field. (b) w/ axial magnetic field.

107 ~ 108 A/m2

็ธฆ็ฃ็•ŒๅฐๅŠ ใซไผดใ†ใ‚นใƒ‘ใ‚คใƒฉใƒซใ‚ขใƒผใ‚ฏใฎๅฝขๆˆโ‡’้•ทใ‚ขใƒผใ‚ฏๅŒ–โžข ้›ปๆฅต้–“ใซใŠใ‘ใ‚‹ๅ„่ท้›ขใซๅฏพใ—ใฆไบˆๆƒณใ•ใ‚Œใ‚‹็†ฑ็š„้ฎๆ–ญ้™็•Œใฎ็ฎ—ๅ‡บใซใ‚ˆใ‚Š๏ผŒ็›ฎๆจ™ใฎๆธฉๅบฆใ‚’ๆ˜Ž็ขบๅŒ–

ใƒ—ใƒฉใ‚บใƒžใ‚ธใ‚งใƒƒใƒˆใ‚’ใ‚ณใƒณใƒˆใƒญใƒผใƒซใ™ใ‚‹ใ“ใจใซใ‚ˆใ‚Š๏ผŒใ‚ขใƒผใ‚ฏ้›ปๅœงใฎๅข—ๅŠ ใจๆ€ฅๅณปใชๆธฉๅบฆไฝŽไธ‹ใ‚’ๅฎŸ็พ