40
Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia

Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Embed Size (px)

Citation preview

Page 1: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during

Thunderstorms

N.S. Khaerdinov & A. S. Lidvansky

 Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia

Page 2: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Amplitude spectrum from a layer of scintillators

Two thresholds are used to separate soft and hard components:

Soft component is detected by huts between low (Al) and upper (Ah) thresholds. Electrons – 20%, positrons – 10%, -rays – 50%, admixture of muons is less than 20%.

Hard component is measured by Carpet detectors (under concrete roof 29 g/cm2) above upper threshold (muons 90%)

Page 3: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Full correction of the soft component

Experimentally it is found, using barometric coefficients, that more than a half (59.2 1.5%) of electron-photon component is in equilibrium with muons. Therefore, it reproduces variations of muons. For correct isolation of the soft component behavior during thunderstorms one needs to correct the soft component intensity not only for pressure and temperature, but for muon variations as well.

ComponentРPressure%/(mm Hg)

Та Тelectronics%/deg

Ту Тoutdoor%/deg

ТdТdetector%/deg

N Hard comp.%/%

Soft (10-30 MeV) - 0.3003

0.003 0.178 0.002 0.007 0.001 0.067 0.002 0.996 0.005

Page 4: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

An example of separation of independent variations of hard and

soft components. Thunderstorm on Sept 24, 2000

Intensity for Е > 100 MeV (Hard component )

Intensity for Е > 10 MeV

Soft component (10 < Е < 30 MeV) (after correction)

Soft component (10 < Е < 30 MeV)

Page 5: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Examples of “anomalous” disturbances

Page 6: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Thunderstorm on Sept 11, 2005 (1p – 10 s)

Electric field

Soft component

(10-30 MeV)

Estimated distance to lightning channel

Precipitation

electric current

Page 7: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Pre-lightning enhancement Sept 11, 2005 (1p – 10 s)

Autocorrelation with precipitation current. Charged rain is delayed by 260 s relative to the soft component.

Page 8: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Thunderstorm on Sept 3, 2006 (1p – 36 s)

Electric field

Soft component

(10-30 MeV)

Hard component

(> 100 MeV)

Estimated distance

to lightning channel

Page 9: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Pre-lightning enhancement on

Sept 3, 2006 (1p - 1s)

Electric field

Soft component

(10-30 MeV)

Hard component

(> 100 MeV)

Estimated distance to lightning channel

Page 10: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Correlation of soft component disturbance with field Sept 3, 2006 (1p – 1s)

Electric field

Soft component

(10-30 MeV)

Page 11: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Energy dependence of event on Sept 3, 2006

(1p – 1s)

Electric field

Soft component

(10-17 MeV)

Soft component

(17-30 MeV)

Soft component

(> 30 MeV)

Page 12: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Constancy in time and independence of amplitude of the energy release spectrum in the event on September 3, 2006 (1p – 1s)

Soft component (10-30 MeV). Averaging of 10s intervals.

is exponent of power law spectrum

Page 13: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Modeling the level of generation of photons producing the most substantial disturbances.

Page 14: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Bright events of 2003 – 2008

11.10.2003

11.09.2005 3.09.2006

14.10.2007 and 15.10.2007

Page 15: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Path length for absorption in air ( = 54 g/cm2) in the range below 30 MeV is growing fast. The spectrum become less steep with the propagation through the atmosphere. Measuring the difference between emitted and detected spectra one can determine the distance (the height of generation).

Modeling the generation level

Page 16: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Characteristics of analyzed disturbances

Date δN [m2s)-1] 10 – 30 MeV

δNa [m2s)-1]

10 – 17 MeV

δNb [m2s)-1]

17 – 30MeV

ΔТп ΔТз D kV/m

I nA/m2

11.10.2003 15.78 ± 0.11 12.17 ± 0.08 3.70 ± 0.08 28 96 5.5 9.5

11.09.2005 6.94 ± 0.07 4.97 ± 0.05 2.20 ± 0.05 104 166 6.7 6.6

3.09.2006 6.71 ± 0.12 5.06 ± 0.09 2.02 ± 0.09 100 --- 14.4 > 25

14.10.2007 2.86 ± 0.12 1.77 ± 0.08 1.04 ± 0.08 35 75 1.8 3.9

15.10.2007 2.24 ± 0.06 1.42 ± 0.04 0.73 ± 0.04 140 360 -5.7 -1.1

Page 17: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Event А [(m2sMeV)-1]N1-N2

σ

Δh = 1000 m, h = 740.0 g·cm-2

11.10.2003 4.97*104*(1±.007) 3.07

11.09.2005 2.27*104*(1±.011) 19.97

3.09.2006 2.23*104*(1±.018) 8.03

14.10.2007 8.89*103*(1±.041) 10.99

15.10.2007 6.81*103*(1±.025) 12.44

Δh = 2000 m, h = 650.6 g·cm-2

11.10.2003 2.57*105*(1±.007) -3.50

11.09.2005 1.17*105*(1±.011) 12.18

3.09.2006 1.15*105*(1±.018) 4.05

14.10.2007 4.58*104*(1±.041) 8.07

15.10.2007 3.51*104*(1±.025) 8.57

Δh = 3000 m, h = 570.3 g·cm-2

11.10.2003 1.10*106*(1±.007) -8.58

11.09.2005 4.99*105*(1±.011) 6.15

3.09.2006 4.93*105*(1±.018) 0.97

14.10.2007 1.95*105*(1±.041) 5.81

15.10.2007 1.50*105*(1±.025) 5.59

Approximation by spectrum of photons from cascades of runaway electrons

Jγ = A∙F(E)

Spectrum of background photons

Spectrum of avalanche photons[L.P. Babich et al.]

N1 N2

Page 18: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Comparison of published earlier approximations with the spectrum of avalanche

photons

N1 N2

September 3, 2006

Page 19: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Conclusions from modeling

• It is confirmed that substantial enhancements of gamma rays can be produced due to their generation in a source by avalanches of runaway electrons.

• For the majority of bright events (4 out of 5) the height of source should be more than 3 km above the observation level.

• For the event of October 11, 2003, having the largest amplitude, the source lies 1.5 km above the array (3.2 km above sea level).

Page 20: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Statistical analysis of “fast” disturbances of muon intensity

based on 33 thunderstorms in summer season 2008

Page 21: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Distribution of thunderstorms over noticeable (more than 0.2%) disturbances in the intensity of muons. The data

of 33 thunderstorms during 2008 summer season.

(n) – number of disturbances in a thunserstorm

(m) – number of thunderstorms

The ratio of numbers of negative and positive disturbances in different groups: А - 55 events n/n+ = 1.75, B - 59 events n/n+ = 0.89

group A group B

Page 22: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Distribution of muon variations over duration of effective period

Total distribution of 114 disturbances over duration of their effective period. Vertical line shows mean value Т114 = 7.6 min. Root mean square deviation σ114 = 4.2 min.

Page 23: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Distribution of muon variations over amplitude of disturbance

Amplitudes of 52 positive disturbances (%). The mean value А52 = 0.33%. Root mean square deviation σ52 = 0.11%

Amplitudes of 62 negative disturbances (%). The mean value А62 = 0.39%. Root mean square deviation σ62 = 0.17%.

Page 24: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Summary of statistical analysis of muon events

• Thunderstorms are regularly accompanied by disturbances of muon intensity. Polarity of the first disturbance is negative, then polarity is alternating. Amplitudes are limited by a value of 1%.

• Characteristic duration of disturbances is 8 min.

Page 25: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Estimation of muon variations

Transport of muons is described by the following kinetic equation:

Here, J(z,Т) is intesity of muons with kinetic energy Т at altitude z, = 2 MeV/(g/cm2) is the mean energy loss in air per unit path length, (z) = eD/ρ is electric force normalized to density, b = 1 GeV is decay constant for muons,U(z,E) is the generation function for muons at point z.

TzUTzJzpc

bTzJz

Tz

TzJ,,,

,

Page 26: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Neglecting small terms in the general solution to this equation and using typical features of field profile in the atmosphere, upon some simplifications, we have:

D0 = 259 (kV/m), (z0) is the density of air at altitude z0, 0 is the density under normal conditions.

0D00 zDAA1E,zJJ

1~,

1,1ln

1

0

002

0

0

0

00

zEE

bA

E

hz

h

z

zE

zb

D

zAD

Page 27: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Normalizing by experimentally measured linear regression coefficient with field AID = - 0.0141 ± 0.0007 (%/MV/m), one can derive an estimation of effective value of charge ratio for muons in the range (100 – 1000 MeV):

Iμ+/ Iμ – = 1.197 ± 0.004

Taking this estimate into account, for the total intensity of muons above 100 MeV, we have for the altitude of our array (840 g/cm2): AIФ = 0.0044 (%/MB), and for sea level: AIФ= 0.0037 (%/MB).

Page 28: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Thus, for the event on October 24, 2009, having amplitude of variation -1%, potential difference between the ionosphere and the muon generation level tg is estimated as Ф = 227 MV. The average field strength in this case = 1.5 MeV/(g/cm2) = 0.9с

с = 1.67 MeV/(g/cm2) is the threshold value for electron runaway process in air.

Page 29: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Conclusions from theoretical analysis of origin of muon variations

• Considerable variations of muon intensity (~ 1%) correspond to the mean electric field in the interval between altitude of 15 km up to ionosphere close to the critical field for runaway electrons. The scale of this field is ~ 100 km2.

• Negative variation corresponds to negative charge located near the level of generation so that the field is directed from the ionosphere.

• Positive variation corresponds to positive charge and the field is directed to the ionosphere.

Page 30: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Estimation of possible influence of disturbances on the

geomagnetic field

Page 31: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

When variations of the soft component correlate with considerable variations of muons, one can suppose that avalanches of runaway electrons are multiplied in the region between the ionosphere and the level of muon generation. These avalanches of electrons emit bremsstrahlung gamma rays. If a muon variation is positive, the emission is directed to the ground and a certain part of some of photons can reach the experimental setup and be detected. Knowing the detected excess signal, one can derive the intensity of runaway electrons in the acceleration region corresponding to measured effect.

Model:

Page 32: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

The efficiency of gamma-ray detection is f = 20%.In air, the absorption path length in air of photons with energy 10-30 MeV is λγ = 54 g/cm2.The background intensity detected is I = 80 m-2s-1 and the level of detection is z = 840 g/cm2.Using the literature data for calculated spectra of runaway electron avalanches and their bremsstrahlung one can determine the number of electrons with energy higher than 1 MeV corrsponding to the number of energetic photons (> 10 MeV): g = nе/nγ = 0.6

Substituting appropriate parameters for the level tg = 130 g/cm2, we have for 1% excess ne = 1.23∙106 m-2s-1 at an altitude of 14.5 km.

Page 33: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Relativistic particles move from the ionosphere to the muon generation level, and due to mass ionization (100s) the air conductance becomes equal to 10-8 (S/m). Under usual condition this corresponds to an altitude of 80 km. Produced ions are polarized in the electric field forming electric current and, in turn, magnetic field. Calculating this field using the Bio-Savart-Laplace law, one has the following relationship:

Here, Tcr = 8 min is the typical duration of disturbance.SI = 100 km2 is the cross section of a current channel over the charged region.

0

100% , 0.7 [ ]efI I

cr I

SNB B B nT

N T S

Page 34: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

The process of generation of relativistic particles can prevail for sufficiently long time in spite of mass production of ions, apparently, due to low velocity of ions in critical fields (Ucr = 76 m/s) and large scale of the phenomenon L = (50-14.5) km. But their high concentration is capable of producing powerful displacement currents, when the entire region of the middle atmosphere is filled with them. The time of filling should be determined by the characteristic time Tcr = L/Ucr ≈ 8 min. Observed variations in the muon intensity and in the magnetic field are of the same order.

Page 35: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Event of October 15,

2007. Complex

disturbance in the soft and hard components is

accompanied by pulsations of geomagnetic

field.

h–component with subtracted daily trend

Page 36: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Thunderstorm on July 18, 2008 (1p – 30s)

Electric field

Soft component (10-30 MeV) Hard component (> 100 MeV)Magnetic field: h-component

Precipitation electric current

Page 37: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Disturbances with total characteristic duration

(2 × 8 min). July 18, 2008 (1p – 1s)

Electric field Soft component (10-30 MeV)Hard component (> 100 MeV)

Magnetic field: h–component z-component

Page 38: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Disturbances with total characteristic duration

(2 × 10 min). July 31, 2008 (1p – 5s)

Electric field

Hard component (> 100 MeV)

Magnetic field:

h–component (trend excluded)

d-component

z-component

Page 39: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

Specific Conclusions about Bright Events

• It is confirmed by calculations that significant enhancements of energetic gamma rays can be caused by their generation in a source by avalanches of runaway electrons.

• Detectors of low-energy muons can serve as instruments controlling the electric field in the middle atmosphere. In particular, sharp changes in the muon intensity indicate the periods when near-threshold runaway breakdown becomes possible between the ionosphere and thunderstorms clouds. Ionization caused by this breakdown can generate currents producing geomagnetic pulsations on the ground level with amplitudes ~ 1 nT.

• The experimental indication of a connection between geomagnetic pulsations and generation in the atmosphere of electrons with energies higher than 10 MeV is obtained.

Page 40: Analysis of Parameters of Bright Events in Variations of Secondary Particles of Cosmic Rays during Thunderstorms N.S. Khaerdinov & A. S. Lidvansky Institute

General Conclusions about CR Variations during Thunderstorms

• A variety of effects observed in the behavior of CR intensity during thunderstorms can have different underlying mechanisms.

• There is urgent need in careful observations of different components of CR and other physical parameters during thunderstorms (desirably at different altitudes).