5
Analysis of a Dense Broadband Survey Across the Los Angeles Basin Robert W. Clayton and Yiran Ma Caltech Jascha Polet, Raymond Ng and Michael Herrman Cal Poly Pomona Paul M. Davis UCLA This study is based on a dense broadband survey done across the Los Angeles Basin from Long Beach to Puente Hills. The array consisted of 71 stations that were deployed by students and faculty at Cal Poly Pomona (Jascha Polet), UCLA (Paul Davis), USGS/Pasadena (Elizabeth Cochran), Caltech (Robert Clayton), NodalSeismic Inc (Dan Hollis), and Occidental Petroleum – now California Resources. The network was deployed for approximately six weeks in the Fall of 2014. For more details see http://web.gps.caltech.edu/~clay/LASSIE/LASSIE.html The survey is named LASSIE (Los Angeles Seismic Syncline Interferometry Experiment). This component of the study resulted in two published papers listed below. The array crosses the main part of the Los Angeles Basin as shown in Figure 1. The goal is to find the shape and shear- wave velocity of the basin. These are done using surface analysis using virtual sources created by ambient noise correlation, and by receiver functions using teleseismic recordings. The problem of utilizing surface waves in sedimentary basins is discussed in Paper 1, and the chief issue is the presence of higher modes. A method based on the difference between retrograde (fundamental mode) and prograde (1 st overtone mode) motions is used to separate the modes. Both Love and Rayleigh waves are used in constructing the velocity model. The structure and velocity results are presented in Paper 2. The shear wave velocity is determined from a standard dispersion curve inversion. The structure is done with receiver functions, and both the basin-basement interface and Moho are found. Under the Los Angeles Basin, the Moho rises by approximately 10 km, a feature that Figure 1. The LASSIE array used in the study. The yellow dots are a quasi-linear array of 40 broadband stations across the Los Angeles Basin.

Analysis of a Dense Broadband Survey Across the Los

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Analysis of a Dense Broadband Survey Across the Los

Analysis of a Dense Broadband Survey Across the Los Angeles Basin RobertW.ClaytonandYiranMa

CaltechJaschaPolet,RaymondNgandMichaelHerrman

CalPolyPomonaPaulM.Davis

UCLAThisstudyisbasedonadensebroadbandsurveydoneacrosstheLosAngelesBasinfromLongBeachtoPuenteHills.Thearrayconsistedof71stationsthatweredeployedbystudentsandfacultyatCalPolyPomona(JaschaPolet),UCLA(PaulDavis),USGS/Pasadena(ElizabethCochran),Caltech(RobertClayton),NodalSeismicInc(DanHollis),andOccidentalPetroleum–nowCaliforniaResources.ThenetworkwasdeployedforapproximatelysixweeksintheFallof2014.Formoredetailsseehttp://web.gps.caltech.edu/~clay/LASSIE/LASSIE.htmlThesurveyisnamedLASSIE(LosAngelesSeismicSynclineInterferometryExperiment).Thiscomponentofthestudyresultedintwopublishedpaperslistedbelow.ThearraycrossesthemainpartoftheLosAngelesBasinasshowninFigure1.Thegoalistofindtheshapeandshear-wavevelocityofthebasin.Thesearedoneusingsurfaceanalysisusingvirtualsourcescreatedbyambientnoisecorrelation,andbyreceiverfunctionsusingteleseismicrecordings.TheproblemofutilizingsurfacewavesinsedimentarybasinsisdiscussedinPaper1,andthechiefissueisthepresenceofhighermodes.Amethodbasedonthedifferencebetweenretrograde(fundamentalmode)andprograde(1stovertonemode)motionsisusedtoseparatethemodes.BothLoveandRayleighwavesareusedinconstructingthevelocitymodel.ThestructureandvelocityresultsarepresentedinPaper2.Theshearwavevelocityisdeterminedfromastandarddispersioncurveinversion.Thestructureisdonewithreceiverfunctions,andboththebasin-basementinterfaceandMohoarefound.UndertheLosAngelesBasin,theMohorisesbyapproximately10km,afeaturethat

Figure1.TheLASSIEarrayusedinthestudy.Theyellowdotsareaquasi-lineararrayof40broadbandstationsacrosstheLosAngelesBasin.

Page 2: Analysis of a Dense Broadband Survey Across the Los

isnotpresentinanyoftheSCECmodels.Thisisexpectedifthebasinisinisostaticequilibrium.Thisstudyresultedintwopapers:Ma,Y,R.ClaytonandD.Li,(2016a),Higher-modeambient-noiseRayleighwavesin

sedimentarybasins,Geophys.J.Int,206,1634-1644.doi:10.1093/gji/ggw235Ma,Y,andR.Clayton,(2016b),StructureoftheLosAngelesBasinfromambient

noiseandreceiverfunctions,Geophys.J.Int.,206,1645-1651.doi:10.1093/gji/ggw236

Horizontal-to-Vertical(H/V)spectralratioanalysisisawell-establishedapproachtoestimatetheresonanceperiodsandseismicamplificationofasiteandthereforeisusefulforsitecharacterizationandmicro-zonation.Sinceresonanceperiodsareproducedbystrongimpedancecontrastsatdepth,spectralratioanalysismayalsobeusedtomapsubsurfacegeologicalstructuresandisparticularlyadvantageoustoinvestigatesedimentarybasinsandtheinterfacebetweenunconsolidatedsedimentsandthebasementrocks.SinceLASSIEwasashort-termdeployment,nolargeearthquakesoccurredduringthistimewindow,andthereforeweusedthemicro-tremorapproach.Thebasicmethod(e.g.Nakamura,1989;LermoandChavez-Garcia,1993)hasbeenconfirmedtorevealthedominantsoilresonancefrequenciesofasite,althoughtheinterpretationoftheamplificationfactorisnotaswellunderstood(Pilzetal.,2009).TheGeopsysoftware(DiGiulioetal.,2006;Watheletetal.,2008)wasusedtogenerateH/VspectralratiocurvesforallLASSIEstations,andtheSESAMEcriteria(SESAMEEuropeanresearchproject,2004)wereusedtoassessthereliabilityoftheresultingpeakfrequenciesandpeakamplitudes.BasedonthefindingsbyZhaoetal.(1997),H/Vspectraareinsensitivetotheoriginandthepropagationpath,butaresensitivetothesubsurfacestructurelocatedneartheobservationpoint.WefoundseveralcoherentsetsofspectralratiopeaksinourdatasetoftheLASSIEdeployment,withagroupofpeaksthatcouldmosteasilybetrackedalongtheentirenetworkinthefrequencyrangeof0.05Hz-0.17Hz(Figures2and3).ThepeakamplitudeandpeakfrequencybothshowsignificantvariationacrosstheLosAngelesbasin.Highestpeakamplitudes(above5.0)weremeasuredfortheLongBeacharea,withadecreaseinamplitudewithdistancetotheNorth-East.PeakfrequenciesshowadecreasewithdistancetowardstheNorth-East.ThesefrequenciesdonotappeartocorrespondtotheresonanceperiodthatwouldbepredictedfortheinterfacerepresentedbythebasinbasementintheSCECUCVMCVM-Hmodel,butsuggestamoreshallowcontrastinacousticimpedancemayberesponsible.Toinvestigatelateralheterogeneity,weexploreazimuthalvariationsinmicrotremorH/Vratiofortwostations,A134andN118,intheLASSIEtransect.MicrotremorH/Vazimuthalvariationshavebeenusedinpreviousbasinstudiestoqualitativelyinterpretthelocationandeffectofthebasinedge.StationN118is

Page 3: Analysis of a Dense Broadband Survey Across the Los

locatedabovethedeepestportionoftheLAbasinandstationA134islocatednearthebasinedgeoftheCVMmodel.ResultsindicatethattheorthogonalazimuthsthatproduceamaximumdifferenceinamplitudesfordirectionalH/VatA134

correspondwiththemajorandminorhorizontalaxisoftheLAbasin,whereasnosignificantvariationisseenforN118.ThisstudyresultedintwoCPPMSctheses:Ng, R. (Fall 2016), Evaluation of Site Response in the Los Angeles Basin from

SpectralRatioAnalysisofMicrotremorDatafromaHighDensityTemporaryBroadbandDeployment

Herrman,M.(Winter2017),SeismicWaveformModelingofBroadbandDataFromaTemporaryHigh-DensityDeploymentintheLosAngelesBasin

ReferencesDi Giulio, G., C. Cornou, M. Ohrnberger, M. Wathelet, and A. Rovellii (2006). Deriving

WavefieldCharacteristicsandShear-VelocityProfilesfromTwo-DimensionalSmall-Aperture Arrays Analysis of Ambient Vibrations in a Small-Size Alluvial Basin,Colfiorito,Italy.BulletinoftheSeismologicalSocietyofAmerica,96,1915-1933.

Lermo,J.,&Chávez-García,F.J.(1993).Siteeffectevaluationusingspectralratioswithonlyonestation.BulletinoftheseismologicalsocietyofAmerica,83(5),1574-1594.

Nakamura,Y.(1989).Amethodfordynamiccharacteristicsestimationofsubsurfaceusingmicrotremoronthegroundsurface.RailwayTechnicalResearchInstitute,QuarterlyReports,30(1).

Figure2.TypicalspectralratiocurvefortypicalLAbasinstation.Apeakisfoundatafrequencyof.15Hz,withanamplitudeof4.7.

Page 4: Analysis of a Dense Broadband Survey Across the Los

Pilz,M.,Parolai,S.,Leyton,F.,Campos,J.,&Zschau,J.(2009).Acomparisonofsiteresponsetechniques using earthquake data and ambient seismic noise analysis in the largeurban areas of Santiago de Chile. Geophysical Journal International, 178(2), 713-728.

BasinEdgeFocusingBecausefocusingatdamagingseismicfrequenciesrequireshighlyconvexbasinstructuresthemostlikelygeometriesarebasinsedgedbyreversefaultssuchastheLAbasin.Thereversemotioncanunderthrustlow-velocitysedimentsbeneathhighervelocitybedrock.MaandClayton(2015)haveusednoisecorrelationtoobtainphasevelocitiesalongtheLASSIEline.TheyinvertedthatdataforSwavestructureandfindalowvelocityconvexzoneunderthePuenteHills(nexttostation134)thatisacandidatestructureforgeneratingfocusing.Wefindthatlocaleventsexhibitanomalouslylargeamplitudesindicatingfocusinginthisregion.Theseismograms(fromevent657)wereband-passedfiltered,andtheabsoluteamplitudeoftheHilberttransformisplottedtoviewtheenergyintheenvelopes.AnS-wavewindowofabout2seclongwaschosen,andtheRMSamplitudecalculated.TheamplitudeaswellasthenoiseareshowninFigure(4).ApeakoccursatstationsA132-A133-A134-A135(Figure4).Asmoothmodelofspatialdecayandattenuationwasfittothedata.Figure4illustrateshowtheinner

4stationsjustmentionedrobtheenergyofthestationseithersidetoformafocusingpeak.

Figure3.Mapofpeakfrequencyandamplitudeforthelowerfrequencypeaksacrossthenetwork.Colorofthecircleindicatesthefrequencyofthespectralratiopeak,theradiusofthecircletheamplitude.

-118.3˚ -118.25˚ -118.2˚ -118.15˚ -118.1˚ -118.05˚ -118˚ -117.95˚ -117.9˚33.7˚

33.75˚

33.8˚

33.85˚

33.9˚

33.95˚

34˚

34.05˚

34.1˚

0.05 0.07 0.09 0.11 0.13 0.15 0.17

Frequency of low-frequency peak in Hz

0 10

Page 5: Analysis of a Dense Broadband Survey Across the Los

Figure4.Exampleoffocusing.RedcurveisRMSenergyinwindowsofS-waveseismograms.Bluecurveissimplesmoothspatialdecaymodel.BlackcurveisRMSnoiseofseismogramsbeforearrivalofPwaves.FocusingapparentlyoccursatstationsA133-135thatarewithin1kmofthedamagezoneoftheWhittierearthquake.