22
Analysis and Design of Linear Control System –Part2- Instructor: Prof. Masayuki Fujita

Analysis and Design of Linear Control System –Part2-...3rd Lecture 11.4 Feedback Design via Loop Shaping Loop Shaping Bode’s Relations Keyword : 11 Frequency Domain Design (9.4

  • Upload
    others

  • View
    5

  • Download
    2

Embed Size (px)

Citation preview

  • Analysis and Design of Linear Control System –Part2-

    Instructor: Prof. Masayuki Fujita

  • 3rd Lecture

    11.4 Feedback Design via Loop Shaping

    Loop ShapingBode’s Relations

    Keyword :

    11 Frequency Domain Design

    (9.4 Bode’s Relations and Minimum Phase Systems)

    11.5 Fundamental LimitationsRight Half-Plane Poles and ZerosGain Crossover Frequency Inequality

    Keyword :

    (pp.326 to 331)

    (pp.283 to 285)

    (pp.331 to 340)

  • 11.4 Feedback Design via Loop Shaping

    Loop transfer function

    Sensitivity Complementary Sensitivity

    • Load disturbance

    • Tracking

    • Robust stability

    • Measurement noise(11.8) (12.11)

    (12.15)

    (12.6)

    (12.13)

    )()()( sCsPsL =

    LLsT+

    =1

    )(L

    sS+

    =1

    1)(

    PSGyd = PdPS

    GdG

    yd

    yd = /1 T

  • improve not only stability (Nyquist) but also performanceand robustness

    Loop shapingChoosing a compensator that gives a loop transfer function with a desired shape

    )( ωjC)( ωjL

    11.4 Feedback Design via Loop Shaping

    Loop transfer function)()()( sCsPsL =

    Fig. 11.1

    ur yη)(sC )(sPe ν ∑∑∑

    1−

    d n

  • (a) Frequency response ( ) (b) Frequency esponse ( )Fig. 11.8

    • Load disturbances will be attenuated by a factor of 100

    At low frequencies

    Loop Gain Feedback Performance

    1001

    )(11)( <

    +=

    ωω

    jLjS

    <

    −≤

    + 1001

    11

    11

    LL101)( >ωjL

    )( ωjL )( ωjS

    Load DisturbanceAttenuation

    )( ωjL)( ωjS

    Loop Shaping

  • Loop Shaping

    At high frequencies

    (a) Frequency response ( ) (b) Frequency response ( )

    High-frequency Measurement Noise

    Loop Gain01.0

    991

    )(1)()( ≈<

    +=

    ωωωjL

    jLjT

    <

    −≤

    + 991

    11 LL

    LL

    01.0)(

  • )( ωjL

    )( ωjL∠mϕ

    gcngcω

    Bode’s Relations (§9.4)

    the phase is uniquely given by

    at gain crossover frequency

    (9.8)[rad]

    ωωπω

    log)(log

    2)(arg 0 d

    jGdjG ≈

    gcm n2πϕπ =+− gcn : slope of the gain curve at

    gain crossover frequency

    (minimum phase systems)the shape of the gain curve

    gcω

    gcω

    Loop Shaping

    Fig. 11.8

  • )90(2/1 °=→−= πϕmgcn)0(02 °=→−= mgcn ϕ

    )( ωjL

    )( ωjL∠mϕ

    gcngcω

    mg

    : slope of the gain curve at gain crossover

    : phase margin

    the slope of the gain curve at gain crossover cannot be too steep

    (11.11)

    gcm n2πϕπ =+−

    πϕm

    gcn22+−=

    Bode’s Relations (§9.4)

    gcngcω

    Fig. 11.8

    gcω

    ( )°−°= 9030mϕ

    −≤≤− 1

    35

    gcn: gain marginmg( )52−=mg

    pcω

  • Bode’s Relations

    High-frequency Measurement Noise

    Load DisturbanceAttenuation

    gcω)( ωjL

    (a) Frequency response ( ))(sL

    Loop Shaping

    Fig. 11.8

    )(/1 pcm iLg ω=

    )(arg gcm iL ωπϕ +=

    • Gain Margin

    • Phase Margin

    • Stability Margin

    )52( −

    )6030( °−°

    )8.05.0( −Sm Ms /1=

  • Sensitivity Function )( ωjS

    A

    bSω

    2

  • ImportantRelations

    2

  • [Ex. 11.9] Balance system (§6.3)

    Fig. 6.2 (a) Segway (b) Cart-pendulum system

    Equations of motion( ) FmlpcmlpmM +−−=−+ 2sincos θθθθ ( ) θθγθθ sincos2 mglpmlmlJ +−=−+

    11.5 Fundamental Limitations

    (6.4)

  • ))(( 22222

    ttt

    tpF mglMslmJMs

    mglsJH+−−

    +−=

    from to

    *

    poles:

    RHP poleRHP zero

    Fig. 6.2 (b)

    from to

    [Ex. 11.9] Balance system (§6.3)

    zeros:

    tttF mglMslmJM

    mlH+−−

    = 222 )(θ

    mMM t +=2mlJJt +=

    { }tJmgl /±68.2=p09.2=z

    ×Pole ○Zero

    Im

    Re

    F θ

    F p

    ( ){ }22/,0,0 lmJMmglM ttt −±

    :pFH

  • Effect of RHP Poles

    Zero(○): 0

    Pole(×) : 1 ,1−

    sssC 1)( −=

    0)1)(1()(

    11)( y

    ssssr

    ssy

    −++

    +=

    11

    )()()(

    −==

    ssusysP

    Unstable0y : initial value

    Im

    Re01− 1

    ))()()(()( sysrsCsu −=

    1 2 3 4 5 6

    5.1

    5.0

    2

    0

    1

    t0

    )(ty

    Step response

    yr )(sC )(sP−

    du

    00 =y

    01.00 =y

  • t

    1.0=a

    0 2 4 86 10

    0

    5.0

    1

    5.1

    Effect of RHP Zeros

    )12)(1(1)(++

    +=

    ssassG

    Zero(○):a1

    Pole(×) : ,1− 5.0−

    :Small No Effect

    :Large Overshoot

    0

  • (11.13)

    : minimum phase part: all-pass system

    Factor the process transfer function as

    Ex. )

    minimum phase part all-pass system

    *

    RHP poles, zeros and time delay

    Gain Crossover Frequency Inequality

    (nonminimum phase part s.t. : negative)

    )()()( sPsPsP apmp=

    mpP

    apP1)( =ωjPap apParg

    ss

    sss

    ssssP

    +−

    ⋅++

    +=

    ++−

    =11

    11

    11)( 22

    11

    )(111)(

    22

    22

    =+

    −+=

    +−

    ωωωω

    jjjPap

    mpP apP

  • Ex. )

    minimum phase part all-pass system

    Q??=

    -270

    ss

    sss

    ssssP

    +−

    ⋅++

    +=

    ++−

    =11

    11

    11)( 22

    apP

    mpP=P

    mpP apP

    mpParg

    apPargParg

  • (11.14)

    *

    *

    Phase of

    Slope of at

    Derivation of the Gain Crossover Frequency Inequality

    )( gcjL ω CPPPCL apmp==

    m

    gcgcmpgcap

    gc

    jCjPjPjL

    ϕπ

    ωωω

    ω

    +−≥

    ++= )(arg)(arg)(arg

    )(arg

    )( gcjL ω

    )( ωjL

    )(arg ωjL

    gcngcω

    gc

    gc

    djCjPd

    djLd

    n

    mp

    gc

    ωω

    ωω

    ωωω

    ωω

    =

    =

    =

    =

    log)()(log

    log)(log

    1)( =ωjPap

    gcω

  • )( ωjL

    )(arg ωjL

    gcngcω

    Derivation of the Gain Crossover Frequency Inequality

    (11.15)

    Bode’s Relations

    holds for minimum phase systems

    Combining it with (11.14)(11.14)

    ωωπω

    log)(log

    2)(arg 0 d

    jGdjG ≈

    ( )

    2

    log)()(log

    2

    )()(arg

    π

    ωωωπ

    ωω

    gc

    gc

    gcgcmp

    gcgcmp

    n

    djCjPd

    jCjP

    =

    (9.8)

    mgcgcmpgcap jCjPjP ϕπωωω +−≥++ )(arg)(arg)(arg( )

    2 )()(arg πωω gcgcgcmp njCjP ≈

    lgcmgcap njP ϕπϕπω :2

    )(arg =+−≤−

  • mpParg

    apPargParg

    Gain Crossover Frequency Inequality

    (11.15)

    Gain Crossover Frequency Inequality

    lgcmgcap njP ϕπϕπω :2

    )(arg =+−≤−

    : slope at

    : gain crossover freq.

    : required phasemargin

    )( ωjL

    )(arg ωjLmϕ

    gcn

    gcωgcω

    • The phase lag of the nonminimum phase component must not betoo large at the crossover frequency.• Nonminimum phase components imposes severe restrictions on possible crossover frequencies.

  • Gain Crossover Frequency Inequality

    slope:

    • for high robustness required phase margin :

    slope :

    • for lower robustness required phase margin :

    30

    90

    allowable phase lag of at : °° −= 6030mϕapP gcω lϕ

    gcω

    °= 60mϕ1−=gcn

    °= 30lϕ

    °= 45mϕ2/1−=gcn

    °= 90lϕ

    apParg

    mpParg

    Parggcω

    Gain Crossover Frequency Inequality

    (11.15)lgcmgcap njP ϕπϕπω :2

    )(arg =+−≤−

  • 3rd Lecture

    11.4 Feedback Design via Loop Shaping

    Loop ShapingBode’s Relations

    Keyword :

    11 Frequency Domain Design

    (9.4 Bode’s Relations and Minimum Phase Systems)

    11.5 Fundamental LimitationsRight Half-Plane Poles and ZerosGain Crossover Frequency Inequality

    Keyword :

    (pp.326 to 331)

    (pp.283 to 285)

    (pp.331 to 340)

    Analysis and Design of Linear Control System –Part2-スライド番号 2スライド番号 3スライド番号 4スライド番号 5スライド番号 6スライド番号 7スライド番号 8スライド番号 9スライド番号 10スライド番号 11スライド番号 12スライド番号 13スライド番号 14スライド番号 15スライド番号 16スライド番号 17スライド番号 18スライド番号 19スライド番号 20スライド番号 21スライド番号 22