23
1 An Alterna)ve Mathema)cal Model for Oxygen Transfer Evalua)on in Clean Water John He, PE, BCEE, Process Engineer – Kruger Inc. NC AWWAWEA Annual Conference, Nov. 18, 2014

An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

1  

An  Alterna)ve  Mathema)cal  Model  for  Oxygen  Transfer  Evalua)on  in  Clean  

Water      

John  He,  PE,  BCEE,  Process  Engineer  –  Kruger  Inc.    

NC  AWWA-­‐WEA  Annual  Conference,  Nov.  18,  2014  

 

Page 2: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Energy  Consump)on  for  WWTP  

2  

Aera)on  process  consumes  more  energy  than  other  processes  by  far,  so  reducing  energy  consump)on  during  aera)on  is  usually  the  best  ini)al  step  to  minimize  energy  cost.    

Page 3: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Goals    To  learn  the  theory  to  understand  oxygen  transfer  and  aera5on  process  in  clean  water  

 To  evaluate  the  accuracy  of  the  standard  method  for  oxygen  transfer  efficiency  test  

   To  present  an  alterna5ve  mathema5cal  model  including  more  parameters  than  standard  method.    

3  

Page 4: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Nomenclature    OTR  =  Oxygen  Transfer  rate  in  clean  water    SOTR  =  Oxygen  transfer  rate  in  standard  condi)on  in  clean  water    OTE  =  Oxygen  transfer  efficiency  in  clean  water    SOTE  =  Oxygen  transfer  efficiency  in  standard  condi)ons  in  clean  water    KLa  =  Liquid-­‐side  mass  transfer  coefficient  (Measured  in  clean  water  tests)      α  =  Alpha  factor,  ra)o  of  process  -­‐  to  clean  water  mass  transfer  =  αSOTE/SOTE  or  =  KLa  in  process  water  /  KLa  in  clean  water  

4  

Standard  condi+ons  are  defined  as  20  °C,  I  atm,  zero  salinity,  zero  DO  in  water  

Page 5: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Theory  –  Two  Film  Theory  Oxygen  transfer  and  transfer  of  other  sparingly  soluble  gases  can  be  modeled  using  the  two  film  theory  (Lewis  and  Whitman’s  paper  in  1924)    

OTR  =  KLa*(DOSat-­‐DO)*V  Where:    KLa  =  Liquid-­‐side  mass  transfer  coefficient  (hr-­‐1)    DO  =  dissolved  oxygen  in  water  (kg  O2/m3)  DOSAT  =  dissolved  oxygen  in  water  at  satura)on  (kg  O2/m3)  V  =  Water  Volume  (m3)    The  OTR  is  the  actual  mass  of  oxygen  transferred  per  unit  )me  and  it  is  the  key  process  variable  for  process  design    

5  

Page 6: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Oxygen  Transfer  Efficiency  Oxygen  transfer  efficiency  is  defined  as  follows:    

 OTE  =  (O2,IN  -­‐  O2,OUT)/O2,IN  

Where:  O2,IN  and  O2,OUT  are  mass  flow  rates      In  order  for  manufacturers  to  provide  equipment  without  bias  for  site  specific  condi)ons,  it  is  common  to  report  OTE  at  standard  condi)ons.      SOTE  =SOTR/Oxygen  In  Standard  Condi)on    

SOTR  =  KLa*Ѳ(20-­‐t)*Csat,20*V  

6  

Page 7: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Standard  Oxygen  Transfer  Procedure    Step  1:  Analyze  DO  measurement  data  to  es5mate  volumetric  mass  transfer  coefficient  

   Step  2:  Once  KLɑ  value  at  site  condi5ons  is  determined  by  Eq.  2,  the  SOTR  can  be  readily  calculated  by  the  following  equa5on:    

 Step  3:  Oxygen  In  from  Blowers  

ACFM  (Measured)                              ICFM  (Adiaba5c  Eq.)                      SCFM  (Universal  Gas  Law)                          Oxygen  Mass  Rate    Step  4:  SOTE  =  SOTR/Oxygen  Mass  rate  x  100%  

7  

)C-(C×αK=dtdC

t∞L

( )( ) ( )0t∞

0∞L t-t

C-CC-C

In=αK

( ) V×C×θ×αK = SOTR 20 S,t-20

L

Page 8: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

A  Typical  DO  Concentra)on  Curve    

8  

0

2

4

6

8

10

12

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00

DO

(mg/

L)

Time (min)

Page 9: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Standard  Model  -­‐  Assump5ons  Water  in  the  tank  is  completely  mixed    The  overall  oxygen  transfer  is  only  from  air  bubbles,  oxygen  transfer  from  water  surface  is  not  taken  into  considera5on    Equilibrium  DO  concentra5ons  are  the  same  everywhere  in  the  tank,  the  effect  of  SWD  on  DO  satura5on  concentra5on  is  not  taken  into  considera5on    The  effect  of  tank  geometry  on  KLa  is  also  not  taken  into  considera5on.    

 9  

Page 10: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Reality    

10  

Water  in  the  tank  is  not  completely  mixed  –  the  degree  of  mixing  depends  on  tank  geometry  and  diffuser  floor  coverage    Oxygen  transfer  from  air  phase  is  inevitable    DO  satura5on  concentra5on  varies  with  sta5c  pressure    

 

Page 11: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Modified  Standard  Model  #1    

11  

Oxygen  transfer  exists  in  two  phases  –  water  surface  and  gas  bubble  surface    In  order  to  describe  two  oxygen  transfer  in  two  phases,  the  following  formula  is  proposed:    

 

Where:    KLɑs  is  volumetric  mass  transfer  coefficient  (T-­‐1)  at  water  surface  CSC  is  the  satura)on  concentra)on  at  site  temperature  and  atmospheric,  which  is  equal  to  C∞  

Ct  is  the  dissolved  oxygen  at  )me  t.        

( )tSCsLst∞L C-CαK+)C-(C×αK=dtdC

Page 12: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Modified  Standard  Model  #1  -­‐  2    

12  

Integra5on  and  re-­‐arrangement  of  Eq.  yields:          Where:      ξ=  KLa  ×  CSC  +  KLsas  ×  CSC    λ=  -­‐  KLa  -­‐  KLsas,    C0  is  DO  concentra5on  at  5me  zero.      

 

( )( ) ( ) λ=

00

t

t-t1

×C×λ+ξξ+λ×C

ln

Page 13: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Modified  Standard  Model  #1  -­‐  3    

13  

If  the  ini5al  DO  concentra5on  is  0  mg/L  at  5me  zero,  the  above  Eq.  becomes:    

   When  system  is  at  the  steady  state  condi5on,  C(t)                CSC,  the  above  Eq.  can  be  simplified  as:    

   KLas  can  be  measured  in  field  and  in  lab  and  it  can  also  be  calculated.  Note  is  ra5o  of  total  water  surface  area  (As)  to  total  tank  volume  (V),  KLs  is  air-­‐water  transfer  coefficient      

( )( ) λ

ξ=

0

t

t-t1

×ξ+λ×C

ln

( )0sLSL

sLS t-t=a K+aK

a K×2ln ×λ

Page 14: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Modified  Standard  Model  #2  

14  

This  is  a  model  that  combines  Standard  Model  and  Modified  Model  #1  

   Where    Zd  is  side  water  depth  to  aera5on  system  (L),    Z  is  side  water  depth  (L),    Co*  is  dissolved  equilibrium  concentra5on  (mg/L).    

( ) ( )tSCsL*0

d

L C-CαK+)dzC-z(C×ZαK

=dtdC

Page 15: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Modified  Standard  Model  #2  -­‐  2  

15  

DO  equilibrium  concentra5on,  Co*  can  be  es5mated  by  following  equa5on  (McWhirter  and  Huper,  1989):    

 Where    y  =  kmol  O2/kmol  N2  in  gas  phase    PWV  (atm)  is  water  vapor  pressure    P  (atm)  is  atmospheric  pressure,  0.266  (kmol  O2/kmol  N2)  at  z  =  0  when  the  bubbles  released  from  the  diffusers.      

( ) [( )

]0.266y

P-110.33

Z-Z+P-P

×C=zCWV

dWV

SC*0 ×

Page 16: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Modified  Standard  Model  #2  -­‐  3  

16  

Integra5on  of  above  Eq.  yields:    

   In  order  to  solve  above  Eq.,  Co*  must  be  computed.  Because  y  must  be  determined  to  be  able  to  calculate  C0*  in  Equa5on  8,  and  y  is  also  depth  dependent,  it  makes  the  computa5on  of  Eq.    extremely  complicated.    

( ) ( )tSCsLt*0

0d

L C-CαK+)dzC-zCZαK

=dtdC ∫ s

Z

Page 17: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Modified  Standard  Model  #2  -­‐  4  

17  

Because  at  the  steady  state  condi5on,  C(t)        CSC  and                                  ,  the  above  Eq.  can  be  simplified  as:    

Re-­‐arrangement  of  this  Eq.  gives:        

 

 

0→dtdC

( ) 0=)dzC-z(CZαK

t*0

Z

0d

L ∫

( ) dt*0

Z

0L Z)dzC-z(CαK ∫ ×=

Page 18: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Field  Oxygen  Transfer  Test    

18  

Page 19: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

DO  Concentra5on  Curve  Over  Time    

19  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

2

4

6

8

10

12

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00

DO

(mg/

L)

Time (min)

DO Probe #1 DO Probe #2 DO Probe #3 % of DO Saturation

% D

O S

atur

atio

n C

once

ntra

tion

Page 20: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Results  Comparison    

20  0

5

10

15

20

25

30

35

40

KLa  

Liq

uid-

side

mas

s tra

nsfe

r co

effic

ient

(KL

a, h

r-1)

Methods

Standard Modified Standard #1 Modified Standard #2

Page 21: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Results  Comparison  -­‐  2  

21  

0

200

400

600

800

1000

1200

KLa  

SOT

R (l

b/hr

)

Methods

Standard Modified Standard #1 Modified Standard #2

Page 22: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Take-­‐home  messages  

22  

Standard  method  oversimplified  the  oxygen  transfer  process  by  assuming  surface  oxygen  transfer  is  negligible    Standard  method  oversimplified  the  oxygen  transfer  process  by  assuming  DO  Equilibrium  DO  concentra5ons  are  independent  of  SWD  In  order  to  get  comparable  results,  all  inves5ga5ons  must  use  the  same  method  at  the  same  condi5ons.    

Page 23: An#Alterna)ve#Mathema)cal#Model#for ...€¦ · EnergyConsumponforWWTP# 2 Aera)on#process#consumes#more#energy#than# other#processesbyfar,soreducing#energy consumponduringaeraonisusuallythebest#

Ques5ons.    

23  

                           ?  

Contact  Informa5on:  [email protected]