53
Deutsches Forschungszentrum für Künstliche Intelligenz German Research Centre for Artificial Intelligence An AI-driven Malfunction Detection Concept for NFV Instances in 5G ˚ Julian Ahrens Mathias Strufe Lia Ahrens Hans D. Schotten May 17, 2018 ˚ This work was supported by the European Union’s Horizon 2020 Pro- gramme under the 5G-PPP project: Framework for Self-Organized Net- work Management in Virtualized and Software Defined Networks (SELF- NET) with Grant no. H2020-ICT-2014-2/671672.

AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Deutsches Forschungszentrum für Künstliche IntelligenzGerman Research Centre for Artificial Intelligence

An AI-driven Malfunction Detection Concept

for NFV Instances in 5G˚

Julian Ahrens Mathias Strufe

Lia Ahrens Hans D. Schotten

May 17, 2018

˚This work was supported by the European Union’s Horizon 2020 Pro-

gramme under the 5G-PPP project: Framework for Self-Organized Net-

work Management in Virtualized and Software Defined Networks (SELF-

NET) with Grant no. H2020-ICT-2014-2/671672.

Page 2: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Introduction

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 2 / 16

Page 3: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Main Problem

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 3 / 16

Page 4: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Main Problem

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 3 / 16

Challenge: detect previously unencountered problems in

VNFs using network and performance metrics

Page 5: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Example Setup

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 4 / 16

Page 6: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Example Setup

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 4 / 16

Page 7: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Example Setup

Intelligent Networks AI-driven Malfunction Detection 5 / 16

Page 8: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Example Setup

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 6 / 16

Page 9: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Example Setup

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 6 / 16

• Example VNF: virtualized firewall

Page 10: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Example Setup

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 6 / 16

• Example VNF: virtualized firewall

• Data flowing from the sources to the destinations

Page 11: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Example Setup

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 6 / 16

• Example VNF: virtualized firewall

• Data flowing from the sources to the destinations

• Additional traffic between internet and destinations

Page 12: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Example Setup

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 6 / 16

• Example VNF: virtualized firewall

• Data flowing from the sources to the destinations

• Additional traffic between internet and destinations

• Firewalls filtering traffic from source to one of the

destinations

Page 13: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Example Setup

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 7 / 16

Page 14: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Example Setup

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 7 / 16

• Features: CPU utilization, memory utilization, HDD

utilization, network traffic in and out, each on two

interfaces

Page 15: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Example Setup

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 7 / 16

• Features: CPU utilization, memory utilization, HDD

utilization, network traffic in and out, each on two

interfaces

Ñ seven features

Page 16: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Example Setup

Introduction

Main Problem

Example Setup

Intelligence

Evaluation

Intelligent Networks AI-driven Malfunction Detection 7 / 16

• Features: CPU utilization, memory utilization, HDD

utilization, network traffic in and out, each on two

interfaces

Ñ seven features

• Anomaly used for testing: memory leak

Page 17: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Intelligence

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 8 / 16

Page 18: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Semi-supervised learning

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 9 / 16

Page 19: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Semi-supervised learning

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 9 / 16

• Dataset of known good operation

Page 20: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Semi-supervised learning

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 9 / 16

• Dataset of known good operation

• No actual anomalies are used during the training process

Page 21: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Semi-supervised learning

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 9 / 16

• Dataset of known good operation

• No actual anomalies are used during the training process

• Available methods: clustering, dimensionality reduction /

sparsity constraints

Page 22: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Semi-supervised learning

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 9 / 16

• Dataset of known good operation

• No actual anomalies are used during the training process

• Available methods: clustering, dimensionality reduction /

sparsity constraints

Ñ Measure of similarity required

Page 23: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Semi-supervised learning

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 9 / 16

• Dataset of known good operation

• No actual anomalies are used during the training process

• Available methods: clustering, dimensionality reduction /

sparsity constraints

Ñ Measure of similarity required

• Problem: Heterogeneity of data, multiple scales

Page 24: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Semi-supervised learning

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 9 / 16

• Dataset of known good operation

• No actual anomalies are used during the training process

• Available methods: clustering, dimensionality reduction /

sparsity constraints

Ñ Measure of similarity required

• Problem: Heterogeneity of data, multiple scales

Ñ Normalization required

Page 25: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Semi-supervised learning

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 9 / 16

• Dataset of known good operation

• No actual anomalies are used during the training process

• Available methods: clustering, dimensionality reduction /

sparsity constraints

Ñ Measure of similarity required

• Problem: Heterogeneity of data, multiple scales

Ñ Normalization required

• Normalization via parametric and nonparametric

statistical approaches

Page 26: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 10 / 16

Page 27: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 10 / 16

• Dimensionality reduction via Autoencoders

Page 28: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 10 / 16

• Dimensionality reduction via Autoencoders

• Autoencoders are replicating artificial neural networks

Page 29: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 10 / 16

• Dimensionality reduction via Autoencoders

• Autoencoders are replicating artificial neural networks

Page 30: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 10 / 16

• Dimensionality reduction via Autoencoders

• Autoencoders are replicating artificial neural networks

• Both current value and difference to last value used as

features

Page 31: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 10 / 16

• Dimensionality reduction via Autoencoders

• Autoencoders are replicating artificial neural networks

• Both current value and difference to last value used as

features

Ñ 14 features in the example setup

Page 32: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 10 / 16

• Dimensionality reduction via Autoencoders

• Autoencoders are replicating artificial neural networks

• Both current value and difference to last value used as

features

Ñ 14 features in the example setup

• Hyperparameters: number of layers / layer sizes,

activation function, learning rate during training

Page 33: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 11 / 16

Page 34: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 11 / 16

• Measure of similarity: Euclidean distance

Page 35: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 11 / 16

• Measure of similarity: Euclidean distance

• Autoencoder is trained to best approximate its input by

its output in the Euclidean distance over the training data

Page 36: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 11 / 16

• Measure of similarity: Euclidean distance

• Autoencoder is trained to best approximate its input by

its output in the Euclidean distance over the training data

• Measure of normality: Euclidean distance of output of

autoencoder to its input

Page 37: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 11 / 16

• Measure of similarity: Euclidean distance

• Autoencoder is trained to best approximate its input by

its output in the Euclidean distance over the training data

• Measure of normality: Euclidean distance of output of

autoencoder to its input

• If this distance is above a certain threshold, a datapoint is

considered anomalous by the autoencoder

Page 38: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 11 / 16

• Measure of similarity: Euclidean distance

• Autoencoder is trained to best approximate its input by

its output in the Euclidean distance over the training data

• Measure of normality: Euclidean distance of output of

autoencoder to its input

• If this distance is above a certain threshold, a datapoint is

considered anomalous by the autoencoder

• Hyperparameter: anomaly threshold

Page 39: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Autoencoder

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 11 / 16

• Measure of similarity: Euclidean distance

• Autoencoder is trained to best approximate its input by

its output in the Euclidean distance over the training data

• Measure of normality: Euclidean distance of output of

autoencoder to its input

• If this distance is above a certain threshold, a datapoint is

considered anomalous by the autoencoder

• Hyperparameter: anomaly threshold

• Use an additional validation dataset to adjust the

anomaly threshold until the number of false positives

reaches a desirable level

Page 40: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Ensembles

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 12 / 16

Page 41: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Ensembles

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 12 / 16

• Use more than one autoencoder in order to capture

different characteristics of the data

Page 42: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Ensembles

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 12 / 16

• Use more than one autoencoder in order to capture

different characteristics of the data

• Different autoencoders governed by different

hyperparameters

Page 43: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Ensembles

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 12 / 16

• Use more than one autoencoder in order to capture

different characteristics of the data

• Different autoencoders governed by different

hyperparameters

• Allows for diversity in sparsity, nonlinearity, etc.

Page 44: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Ensembles

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 12 / 16

• Use more than one autoencoder in order to capture

different characteristics of the data

• Different autoencoders governed by different

hyperparameters

• Allows for diversity in sparsity, nonlinearity, etc.

• In the test scenario: three to seven layers, central layer

sizes from two to eight neurons, tanh and ReLU activation

functions, total of 216 autoencoders

Page 45: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Ensembles

Introduction

Intelligence

Semi-supervised

learning

Autoencoder

Ensembles

Evaluation

Intelligent Networks AI-driven Malfunction Detection 12 / 16

• Use more than one autoencoder in order to capture

different characteristics of the data

• Different autoencoders governed by different

hyperparameters

• Allows for diversity in sparsity, nonlinearity, etc.

• In the test scenario: three to seven layers, central layer

sizes from two to eight neurons, tanh and ReLU activation

functions, total of 216 autoencoders

• Vote among autoencoders: a datapoint is considered

normal if enough of the autoencoders consider the

datapoint normal; otherwise, it is considered anomalous

Page 46: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Evaluation

Introduction

Intelligence

Evaluation

Results

Intelligent Networks AI-driven Malfunction Detection 13 / 16

Page 47: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Results

Introduction

Intelligence

Evaluation

Results

Intelligent Networks AI-driven Malfunction Detection 14 / 16

0 100 200 300 400 500

3

4

5

6

7

8

Page 48: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Results

Introduction

Intelligence

Evaluation

Results

Intelligent Networks AI-driven Malfunction Detection 14 / 16

• Significant generalization performance

0 100 200 300 400 500

3

4

5

6

7

8

Page 49: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Results

Introduction

Intelligence

Evaluation

Results

Intelligent Networks AI-driven Malfunction Detection 14 / 16

• Significant generalization performance

• Most of the autoencoders converge very well on the

validation dataset

0 100 200 300 400 500

3

4

5

6

7

8

Page 50: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Results

Introduction

Intelligence

Evaluation

Results

Intelligent Networks AI-driven Malfunction Detection 14 / 16

• Significant generalization performance

• Most of the autoencoders converge very well on the

validation dataset

0 100 200 300 400 500

3

4

5

6

7

8

Page 51: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Results

Introduction

Intelligence

Evaluation

Results

Intelligent Networks AI-driven Malfunction Detection 14 / 16

• Significant generalization performance

• Most of the autoencoders converge very well on the

validation dataset

0 100 200 300 400 500

3

4

5

6

7

8

• 80.4% detection rate vs. 0.7% false positives

Page 52: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Questions?

Intelligent Networks AI-driven Malfunction Detection 15 / 16

Page 53: AnAI-drivenMalfunctionDetectionConcept forNFVInstancesin5G

Thank you!

Intelligent Networks AI-driven Malfunction Detection 16 / 16