An timisting Fuel System Kerosene JT3 Engine Integration Study

Embed Size (px)

DESCRIPTION

NASA Contractor Report 4033

Citation preview

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    1/48

    -.

    I

    N A S A Contractor Report 4 33

    I

    An

    timisting

    Fuel System

    Kerosene

    JT3 Engine

    Integration Study

    A.

    Fiorentino

    CONTK CIb N A b3 - 2 4 2 17, N A S3 - 2 4 3 5 3 ,

    and D T F A 03-8 1-A-001 54

    J A N U A R Y 1987

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    2/48

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    3/48

    PREFACE

    T h i s r e p o r t d e s c r i b e s th e work c o n du c te d by t h e P r a t t 8 W h i tn e y E n g i n e e r i n g

    D i v i s i o n

    o f

    U n i t e d T e c h n ol o gi e s C o r p o r a t i o n t o a s s i s t NASA Ames-Dryden F l igh t

    Research F a c i l i t y i n t h e i r p r ep a ra t io n for t h e F u l l - s c a l e T r a n s p o r t C o n t r o l l e d

    I m p a c t D e m o n s t r a t i o n T e s t .

    T h i s e f f o r t was s po n so re d b y t h e N a t i o n a l

    Ae ro na ut i cs and Space A d m in is t r a t i o n under Co nt ra c t s NAS3-24217 and NAS3-24353

    and f unded by t he

    F A A

    t h rough I n te ragency Ag reemen t No.

    DTFA03-81-A-00154.

    The au thor w ishes t o acknowledge the gu idance o f

    M r . L .

    Dean Webb o f N A S A

    Am es-Dryden F l i g h t R e s ea rc h F a c i l i t y whose k ee n i n t e r e s t a nd s u p p o r t we re

    p a r t i c u l a r l y i n s t r u m e n t a l

    i n t h e s u c c e ss fu l c o m p l e t io n of t h i s s u p p o r t p r o g r a m .

    m m AGE BLANK

    NOT FILMED

    iii

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    4/48

    TABLE OF

    C O N T E N T S

    S e c t i n

    P R E F A C E

    SUMMARY

    I N T R O D U C T I O N

    E Q U I P M E N T

    AND PROCEDURES

    E n g i n e D e s c r i p t i o n

    Engine Fuel System

    Fuel Pump

    F u e l C o n t r o l

    Fuel F i l t e r Systems

    Combu

    s

    t o r

    De

    s

    c

    r

    i

    t

    i

    n

    E ng in e M o d i f i c a t i o n s f o r

    AMK

    B-720 F l i g h t T e s t E ng in es

    F A A Techn ica l Center Ground T e s t Engine

    L a b o r a t o r y

    F1

    ow Ch ar ac te r i za t i o n Equi pmen

    t

    Fue l

    S y s t e m

    a n d E n g i n e O p e r a b i l i t y

    F u e l C h a r a c t e r i z a t i o n T e s ts an d A n a ly s e s

    Engine Per formance

    RESULTS

    AND

    D I S C U S S I O N

    CONCLUDING

    REMARKS

    A P P E N D I C E S

    Appendix

    A

    JT3C-7 Engine

    Appendix B-1

    Appendix 8-2

    Appendix C

    Procedure

    f o r

    D e te rm i ni ng F i l t e r R a t i o

    Procedure for D e t e r m i n in g t h e T r a n s i t i o n

    V e l o c i t y A Measure

    o f

    AMK D e g r a da t i on L e v e l )

    T r a n s i t i o n V e l o c i t y and F i l t e r R a t i o A pp ar at us

    REFERENCES

    i v

    Page

    iii

    1

    1

    2

    2

    4

    4

    4

    9

    9

    10

    10

    17

    20

    20

    20

    23

    27

    31

    32

    38

    40

    42

    1

    43

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    5/48

    SUMMARY

    An a n a l y t i c a l s t u d y and l a b o r a t o r y t e s t s w e r e conduc ted

    t o

    a s s i s t NASA i n

    d e te r m in i ng t h e s a f e t y and m is s io n s u i t a b i l i t y

    o f

    t h e m o d i f i e d f u e l s y st em and

    f l i g h t t e s t s fo r t h e F u l l - s c a l e T r a n s p o r t C o n t r o l l e d I m p ac t D e m o s t ra t i on ( C I D )

    Program. Th is 12 month s tu dy rev iewe d and ana lyz ed bo th the use of a n t i m i s t i n g

    kerosene ( A M K ) f u e l a n d t h e i n c o r p o r a t i o n o f a " f u e l d e g r a d er " o n t h e o p e ra -

    t i o n a l a nd p e rf or m an ce c h a r a c t e r i s t i c s o f t he e n gi ne s t e s t e d . P o t e n t i a l

    d e f i c i e n c i e s a n d / o r f a i l u r e s w ere i d e n t i f i e d and a pp ro ac he s to accommodate

    t h e s e d e f i c i e n c i e s w e r e recommended t o NASA Ames-Dryden F l i g h t Research

    F a c i 1

    i

    y .

    T h e r e s u l t s o f f l o w c h a r a c t e r i z a t i o n t e s t s on degraded AMK f u e l s a m p l e s

    i n d i c a t e d l e v e l s o f d e g r a d a t i o n s a t i s f a c t o r y fo r t h e p l a n n e d m i s s i o n s o f t h e

    6-720 a i r c r a f t . The o p e r a b i l i t y and pe rf or ma nc e w i t h t h e

    AMK

    i n a g ro un d t e s t

    e ng in e and i n t h e a i r c r a f t e n gin es d u r i n g t he t e s t f l i g h t s were c om parab le t o

    t ho se w i t h u n m o d i f ie d J e t A . For t he f i n a l

    C I D

    t e s t , t he JT3C-7 eng ines

    p er fo rm ed s a t i s f a c t o r i l y w h i l e o p e r a t i n g on AMK r i g h t up t o i m p a c t .

    I N T R O D U C T I O N

    I n

    a

    t y p i c a l a i r c r a f t c ra sh , f u e l s p i l l e d f rom r u p t u r e d f u e l t an ks forms a

    f i n e m i s t w h ic h can be i g n i t e d by a number o f s ou rc es a t t h e c ra s h s i t e .

    I f

    f o r m a t i o n

    o f

    t h i s m i s t can be suppressed, f i r e hazards can be reduced and

    l i v e s can be saved. FM-9, a h ig h mo lecu la r -w e igh t , l o ng ch a i n po lym er , when

    b le n de d w i t h J et -A f u e l i n c o n c e n t r a t i o n s i n t h e ra ng e

    o f 0.3

    p e r c e n t b y

    w e ig h t, ha s d em o ns tr at ed t h e a b i l i t y t o i n h i b i t

    i g n i t i o n and f la me p r o p a g a t io n

    o f

    t h e r e l e a s e d f u e l i n s i m u la t e d cr as h

    t e s t s .

    T h i s a n t i m i s t i n g ke ro se ne (AMK), when subjected t o t h e s h ea r l e v e l s e x p ec t ed

    i n a i r c r a f t e ng i n e sy st em s, c an ha ve u n d e s i r a b l e f l o w c h a r a c t e r i s t i c s s u c h a s

    p oo r f u e l a t o m iz a t io n and f i l t e r a b i l i t y . Th is p r ec lu d es

    i t s

    d i r e c t use i n a

    g as t u r b i n e e n g i n e b e ca us e

    o f

    p o s s i b l e c l o g g i n g

    o f

    f i l t e r s , u n a c c e p t a b l e s p r a y

    q u a l i t y

    o f

    f u e l n o z z l e s / i n j e c t o r s and redu ced h e a t t r a n s f e r c o e f f i c i e n t s i n

    f u e l hea t exchange rs (Re f . 1 ) . The re fo re , t he

    AMK

    f u e l m u st be a l t e r e d

    t o

    r e s t o r e

    i t s

    p a r e n t J et -A p r o p e r t i e s for p ro pe r o p e r a t i o n i n t h e e n gi ne f u e l

    system.

    F u el a l t e r a t i o n c an be a c co mp li sh ed b y t h e a p p l i c a t i o n o f s u f f i c i e n t m o l e c u l a r

    s t r e s s

    t o

    r u p t u r e t h e p o l y m er i c a d d i t i v e c on ta in ed i n t h e AMK. T h i s p r o c e s s o r

    a l t e r a t i o n

    of

    t h e

    AMK

    f u e l

    i s

    r e f e r r e d

    t o

    as " de g ra da t i on " . The t e ch n i ca l

    f e a s i b i 1

    i

    y o f d e v i c e s d e s i g n a t e d " de g r ad e r s" w h i c h u t i 1 i z e e i t h e r m e c h a n

    or

    c a v i t a t i o n p r i n c i p l e s ha s been de mo ns tra te d ( R e f s.

    1 ,

    2,

    3 ) .

    Th i s r e p o r t documen ts a twe lve -mon th

    AMK

    E ng in e S ys te m I n t e g r a t i o n s t u d y

    e v a l u a t e d t h e u s e o f a n t i m i s t i n a k er os e ne and t h e i n c o r p o r a t i o n o f a " fue

    c a l

    h a t

    d e g ra d e r" o n t h e b e r f o r m a n c e , re1 a b i 1i y and s a f e t y

    o f

    t he P r a t t & Whi tney

    JT3C-7 engines for s h o r t d u r a t i o n f l i g h t s o f a B-720

    t e s t

    a i r p l a n e d u r i n g t h e

    F u l l - S c a l e T r a n s p o r t C o n t r o l l e d I m p ac t D e m o ns t ra t io n ( C I D ) P ro gra m h e l d a t t h e

    D ry de n F l i g h t R e se ar ch

    F a c i l i t y

    o f

    t h e NASA Ames Research Ce nte r . T hi s s tu dy

    was co nd uc ted und er co n t r a c t s NAS3-24217 and NAS3-24353 and fo cu se d on two

    1

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    6/48

    major a reas of a c t i v i t y : T a s k

    I-

    y st em I n t e g r a t i o n St u dy a n d Ta sk

    I 1 -

    Des ign

    R ev ie ws and F l i g h t T e s t P l a n n i n g .

    I n Task

    I f

    th e program, a rev ie w and an a ly s i s were made

    o f

    the JT3C-7 AMK

    eng ine f ue l system wh i ch i nc l ud ed t h e deg rade r system, hea t exchange rs , eng ine

    f u e l pump and f i l t e r s , f u e l c o n t r o l s a nd t h e r e s u l t i n g o p e r a t i o n a l a nd

    p er fo rm an ce c h a r a c t e r i s t i c s o f t h e e n g i n e s . T he 8-720 i n s t r u m e n t a t i o n was

    re vi ew ed and recommendations were made for a d d i t i o n a l d e g r a d e r a n d e n g i n e

    i n s t r u m e n t a t i o n

    t o

    i d e n t i f y p ro b le m s t h a t may o c c u r .

    As

    p a r t o f the Task I

    f f o r t ,

    l a b o r a t o r y f u e l c h a r a c t e r i z a t i o n t e s t s were

    conduc ted

    t o

    de te rm ine whe the r t he AMK f u e l was s u f f i c i e n t l y pr oc e ss ed or

    d e g r a d e d b e f o r e i n t r o d u c t i o n to t h e e ng i ne f u e l s ys te m. These f u e l c h a r a c t e r i -

    z a t i o n

    t e s t s

    c o n s i s t e d o f f i l t e r r a t i o a nd t r a n s i t i o n v e l o c i t y m easurements

    w hich p ro v id e d a c o r r e l a t i o n w i t h t h e f i l t e r s , f u e l n o z z l e s / i n j e c to r s ,

    c om b us to r p e rf o rm a n c e, e t c . , p r e v i o u s l y e v a l u a t e d un d e r NASA C o n t r a c t

    NAS3-22045 ( R e f .

    1

    )

    .

    I n Task 11, P r a t t

    &

    W hitn ey p a r t i c i p a t e d i n d e si g n re v i ew s and t e s t p l a n ni n g .

    A

    majo r bu t necessa ry gene ra l

    e f f o r t was t h e a s s i s t a n c e r en d er e d t o

    NASA

    Ames-Dryden F l i g h t R ese arch F a c i l i t y i n t h e p l a n n i n g and i n s t a l l a t i o n o f b o t h

    i n s t r u m e n t a t i o n and m o d i f i c a t i o n s

    t o

    t h e e n g i n e f u e l s ys te m f o r s t r u c t u r a l a n d

    o p e r a t i o n a l c o n s i d e ra t i on s . T h is a c t i v i t y i n v o l v e d c o n s u l t a t i o n w i t h v e nd or s,

    procurement of p r i n t s , s ch em at ic s and p a r t s , s e v er a l v i s i t s

    t o

    N A S A Ames-Dryden

    F l i g h t Research F a c i l i t y and d i a lo g u e w i t h

    NASA

    Ames-Dryden F l i g h t Research

    F a c i l i t y on a lm os t a d a i l y b a s i s .

    T h i s r e p o r t d e s c r i b e s t h e b a s e l i n e JT3C-7 e n gi n e and i t s m o d i f i c a t i o n s

    f o r

    t h e

    use o f AMK. T h e l e v e l s

    o f

    d e g r a d a t i o n a d e q u a t e f o r o p e r a b i l i t y i n t h e t e s t

    a i r p l an e a re i d e n t i f i e d

    f rom

    f u e l c h a r a c t e r i z a t io n t e s t s . F i n a l l y , e ng in e

    pe r fo rmance w i t h AMK d u r i n g t he se g ro un d and f l i g h t t e s t s

    i s compared

    t o

    t h e

    b a s e l i n e sea l e v e l p e r f or m a nc e e xp e c t ed w i t h J e t A .

    EQUIPMENT

    AND

    PROCEDURES

    T h i s

    se c t i on des c r i b es t h e JT3C-7 eng ine and i t s components wh i ch wou ld be

    a f f e c t e d

    by

    t he use

    o f

    a n t i m i s t i n g k ero se ne f u e l . I n a d d i t i o n , m o d i f i ca t i o n s

    t o t h e b i l l - o f - m a t e r i a l e n gi n e f u e l s ys te m an d s p e c i a l t e s t e q ui pm e nt u se d

    t o

    a n a ly z e t h e a n t i m i s t i n g ke ro se n e w i l l

    be d i scussed .

    E N G I N E D E S C R I P T I O N

    Four Pr a t t and Whi tney JT3C-7 eng ine s powered the C I D B-720-027(S/N 18066)

    t e s t a i r p l a n e . The JT3C-7 e n g in e d e p i c t e d s c h e m a t i c a l l y i n F i g u r e

    1

    and

    i l l u s t r a t e d i n d e t a i l i n Appendix A r e p r e s e n t s f i r s t - g e n e r a t i o n co mm ercia l

    t r a n s p o r t t ec h n o lo g y . T h i s e n gi n e i s a d ua l- sp oo l, a x i a l - f l o w t u r b o j e t , w i t h a

    16-stage compressor,

    a c o - a nn u l a r c o m b u s ti o n s e c t i o n a nd a 3 - st a ge t u r b i n e . I n

    t h e Bo ein g 7 20 a i rf r am e i n s t a l l a t i o n ,

    t h e e n g in e i s 1 1. 4 f t l o n g ,

    38 .9 i nches

    i n d i ame te r and we ighs

    3495 pounds. Key sp ec i f i c a t i o ns for t h i s e n gi ne a r e

    shown i n Tab le I.

    2

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    7/48

    ORIGINAL

    PAGE

    IS

    OF P O O R

    QUALITY

    I

    V

    m

    I--

    cc

    W

    >

    C

    rd

    c

    .-

    v

    W

    I/

    I

    V

    3

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    8/48

    TABLE

    I

    S P E C I F I C A T I O N S OF T HE JT3C-7 E N G I N E

    T ak e- of f R a t in g ( a t sea l e v e l )

    Maximum C o nt in u ou s R a t i n g ( a t s ea l e v e l )

    Maximum S pe c i f i c Fue l Consumption

    T o t a l

    A i r f low

    P r e s s u r e R a t i o

    Dry

    Weight

    Engi ne Diamete r

    Engine Length

    12,000 l b . t h r u s t

    10,000 l b . t h r u s t

    .785 p p h l l b . t h r u s t

    182 pps

    13.0

    3495 lbs .

    38 .9 inches

    11 .4

    f t

    Engine Fue l

    S y s t e m

    T h e p r i n c i p a l f u n c t i o n

    o f

    t h e a i r c r a f t f u e l system

    i s

    to s up p ly c l ea n l i q u i d

    f u e l , f r e e

    from

    v ap o r, a t t h e r e q u i r e d p r e s s u r e s and r a t e s

    o f

    f l o w ,

    t o

    t h e

    e n g i ne und er a l l o p e r a t i n g c o n d i t i o n s . F i g u r e 2 shows t h e b a s i c JT3C-7 f u e l

    sys tem for a c om me rc ia l i n s t a l l a t i o n . F u e l

    i s

    s u p p l i e d f rom t he a i r c r a f t t an ks

    t h r o u g h t h e n e c e s s a r y

    f i l t e r s

    a n d v a l v e s

    t o

    t h e e n g i n e - d r i v e n f u e l

    pump which

    i s a t wo -s ta ge , b y-p as s e q u i pp e d u n i t t h a t di s c h a r g e s f u e l

    a t p r e de t e rm i n e d

    p r e ss u r es and q u a n t i t i e s t h r o u g h a f u e l d e - i c i n g s ys te m ( c us t om e r o p t i o n a l )

    t o

    t h e f u e l c o n t r o l . T he f u e l d e - i c i n g f i l t e r a ss em bly c o n s i s t s o f a

    40

    m i c r o n

    paper

    f i l t e r

    e le men t en cl os ed i n a c y l i n d r i c a l h ou si ng . A f t e r p r e s s u r i z a t i o n ,

    t h e f u e l p a s s e s

    t o

    t h e f u e l c o n t r o l t h ro u gh a c oa rs e mesh i n l e t f i l t e r . The

    f u e l c o n t r o l

    i s

    a h y d ro m e ch a n ic a l f u e l m e t e r i n g d e v ic e d e s i g n e d t o s c h e d u l e

    t h e p r o p e r

    f l o w o f

    f u e l

    t o

    m a i n t a i n t h e e n g i n e s p e e d s e l e c t e d . T h e m e t e r e d

    f u e l f lows t hro ug h th e a i r c r a f t f u e l - o i l

    c o o l e r

    t o

    t h e p r e s s u r i z i n g a n d d u m p

    v a l v e w h i c h s c h e d u l e s f l o w

    t o

    t h e f u e l n o z z l e s ec on da ry m a n i f o l d as a f u n c t i o n

    o f p r i m a r y f u e l n o z z l e p r e s s u r e d r o p. T h i s e n su re s t h e p r o p e r f u e l s p r ay

    q u a l i t y and d i s t r i b u t i o n

    f o r

    e f f i c i e n t c om b us ti on . The f u e l m a n i f o l d c o n s i s t s

    o f e i g h t c i r c u l a r c l u s t e r s , each c l u s t e r h a v in g

    s i x

    d ua l o r i f i c e no z z l e s,

    l o c a t e d i n t h e d i f f u s e r c ase a n nu lu s. The f u e l i s i n j e c t e d t h ro u g h each

    c l u s t e r i n t o each

    o f

    e igh t combus t ion chambers where

    i t m i x e s

    w i t h a i r and

    b u r n s .

    Fuel Pump

    -

    The m a in f u e l pump ( F i g u r e 3 ) c o n s i s t s

    o f

    two p o s i t i v e d i s p l a c e m e n t

    g e a r -t y p e p um pin g e le me nt s ( b o o s t s t a ge a n d m ai n s t a g e ) o p e r a t i n g i n s e r i e s t o

    s u p p l y f u e l

    t o

    t h e e ng in e f u e l c o n t r o l . Power t o d r i v e t h e pump i s s u pp l ed

    d i r e c t l y by t h e m ain d r i v e s h a f t . U nder no rm al o p e r a t i n g c o n d i t i o n s , f u e l f l ows

    t h r o u g h

    t h e

    pump

    f rom

    t h e f u e l i n p o r t t o t h e i n l e t f u e l f i l t e r e lem e n t

    c o n t a i n i n g a

    s e l f - r e l i e v i n g v a l v e to t h e b o o s t s t a g e . B et we en t h e b o o s t a n d

    m ain stage i s t h e i n t e r s t a g e 40 m i c ro n p l e a t e d p ap er f i l t e r and o p t i o n a l

    de- icer sys tem.

    The bo o st s t ag e p r e s s u r e r e g u l a t i n g v a l v e c o n t r o l s t h e p r e s s u r e

    o f

    t h e f u e l d e l i v e r e d

    to

    t h e m a i n s ta g e i n l e t a t b et we en 45 a nd 65 p s i a b ov e

    pump i n l e t pr e s s u r e . The r a t e d c a p a c i t y of th e pump i s 41.6 gpm a t 3260 rpm

    and a d i scharge p ressu re

    o f

    1 0 0 0 p s i g .

    Fue l Con t ro l

    -

    The H a m i l t o n S t a n d a r d JFC25-10 f u e l c o n t r o l ( F i g u r e 4 )

    i s

    a

    h y dr o me c ha n ic a l h i g h c a p a c i t y f u e l

    f low

    m e t e r i n g u n i t d es ig ne d

    to

    p e r m i t

    s e l e c t i o n o f t he d e s i r e d e ng in e t h r u s t l e v e l t hr ou gh ou t t h e f l i g h t en ve lo pe

    o f

    4

    I

    ~

    I

    I

    I

    I

    I

    I

    i

    I

    I

    i

    I

    i

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    9/48

    ORIGINAL

    PAGE

    IS

    OF

    POOR

    QUALITY

    T H I S P A S S A O C

    L O C K C D

    WNEU

    O C T I W A L C U L

    H L A l L R

    USED-

    ENGINE WCCLICD

    A I R r R A U C

    SUPPLIED

    FUEL-OIL COOLER

    OPTIONAL EQUIP

    OPTIONAL

    ---

    C W l P Y C M l 1

    I

    IR CONTROL

    VALYC

    a

    I I I

    I ' I

    OVCRBOARO

    I

    i

    r

    C YC R G C U C V

    CUCL

    SHUT-WC

    VALVES

    L

    Figure

    2 B a s i c

    JT3C-7 Fuel System

    5

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    10/48

    PUMP INLET PRESSURE

    I 1 UMP

    BOOST

    PRESSURE

    -

    UMP OUTLET PRESSURE

    MAIN DRAIN

    F i g u r e

    3

    Two-Stage

    Main

    Fuel Pump

    6

    ORIGINAL

    PAGE

    IS

    OF

    POOR QUALITY

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    11/48

    ORIGIN L PAGE

    IS

    O POOR QUALITY

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    12/48

    t he J T3C- 7 e ng i ne equi pped ai r c ra f t . Two manua l l y ope ra t e d l e ve rs a r e pr ovi ded

    on each cont r ol : a power l ever f or r egul a t i ng e ng i ne t hr us t i n t he r ange f r om

    ful l

    r ever se t hr ough i dl e

    t o

    t akeof f ; t he o t h er , a shut o f f l ever t o r egul at e

    f uel f o r engi ne s t a r t i ng and shut down. The var i abl e s se nse d

    by

    t he f uel c ont r ol

    ar e power l ever ang l e , bur ner pr essur e and engi ne

    N Z

    r ot or s peed. By ut i l i z -

    i ng t hes e v ar i a bl es , t he f uel c ont r ol a c c ur a t e l y go ve r n s t he engi ne s t ea dy

    s t a t e s el ec t ed s peed and l i m t s f uel f l o w f or a cc el er at i o n and dec el er a t i o n

    t hr ough a speed- governi ng sys t em of t he pr opor t i onal o r dr o op t y pe.

    .

    f

    T

    The f uel cont r ol may be cons i dered as cons i s t i ng of a f uel - met er i ng s y s t em and

    a comput i ng syst em

    The met e r i ng sys t e m r e gul a t es t he f uel suppl i e d t o t he

    f uel c ont r o l

    by

    t he eng i ne dr i ven f uel pump t o prov i de t he eng i ne t h rust

    out put demanded by t he p i l ot , but s ubj ec t t o engi ne oper at i ng l i m t at i ons as

    sensed and schedul ed by t he f uel cont r ol comput i ng sys t em The comput i ng sys t em

    senses and combi nes var i ous oper at i ona l par amet er s t o gover n t he out put of t he

    met er i ng syst em

    of

    t he f uel c ont r ol dur i ng al l e ngi ne o pe r a t i ng r egi mes .

    F i gur e

    5

    i ndi cat es t he f uel cont r o l pa ramet er s

    and

    schedul i ng accur acy

    r equi r ement s f or t hese par amet er s .

    '2.5

    SPEED GOVERNOR

    DECELERATION SCHEDULEI

    T

    ~~ ~ ~

    ENGINE HIGH

    ROTOR

    SPEED, N2 RPM

    F i gur e

    5

    J T3C 7

    Fuel Cont r o l Schedu l i ng Accur acy Requi r ement s

    8

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    13/48

    f i l

    i

    ng

    f

    ue

    The

    J T3C 7

    combus t o r sec t i on cons i s t s

    of

    ei ght separ at e t ubu l ar combust i on

    chamber s i n

    a

    co- annul ar a r r angement . The chamber s , as v i ewed f r om t he r ear

    of

    t he e ngi ne ,

    ar e number ed c l ockwi se st art i ng wi t h t he upper most chamber as No.

    1 .

    These chamber s ar e i nt er connect ed by cross - over t ubes f o r f l ame pr opagat i on

    dur i ng s t a r t i ng.

    L i ght i ng o r s t ar t i ng i s i ni t i at ed f r om s par k i gni t er s l ocat e d

    i n t he No.

    4

    and

    No.

    5 combust i on chamber s. Each combust i on chamber compr i ses

    a s er i es

    o f

    f or med sheet - met al , ai r c ool ed c yl i ndr i c al l i ner s .

    The f or t y- ei ght f uel

    nozz l e assembl i es ar e suppor t ed i n t he f uel mani f o l d and

    a r e a r r anged i n ei ght c l us t er s

    of

    s i x noz zl es eac h. Eac h c l us t e r pr oj ec t s i nt o

    accommodat i ng aper t ur es i n t he upst r eam e n d o r dome of each combust i on

    chamber . The

    J T3C 7

    combus t o r empl oys a dual - or i f i ce pr essure a t om z i ng f uel

    F i l t er Sy st ems

    -

    The J T3C- 7 engi ne

    f uel

    s y s t e m i nc or por at es s ev er al f uel

    t er s di f f er i ng i n c ons t r uc t i on, f i l t e r ar e a and f i l t r at i on qual i t y depend-

    on t he subsys t em component pr o tec t i on r equi r ement s . Tab l e I 1 pr ovi des

    a

    s y s t e m f i l t er t abul at i on f or t he J T3C- 7 engi ne. I t s h oul d be not ed t h e

    i nt er s t age

    40

    m c r o n pl eat ed paper f i l t er p r o vi des t he pr i mar y pr ot ec t i on f o r

    al l s ubs y s t e m c omponent s . I t a l s o ac t s as a c ol l ec t o r of f uel bor ne i c e

    c r ys t a l s . An opt i ona l f uel de i c i ng sys t emcan be added t o t he engi ne t o

    i nc r eas e f uel f i l t er i nl et t emper a t ur e s, c l ear i ng t he f i l t er of c ol l ec t e d i c e

    TABLE I 1

    J T3C 7 FUEL SYSTEM FI LT ER SURVEY

    Component

    Loca t

    i on

    Mat er i al

    Por e Si ze Ar ea (in)

    Fuel Pump I nl et St ai nl es s St eel 400 m c r o ns

    5. 15

    Fuel Cont r ol I nl et St ai nl es s St eel

    200

    m c r o ns

    18. 8

    Fuel Cont r ol S er v o St ai nl e s s St e el 40 m c r o ns 7. 1

    P r e s s ur e and I nl e t St ai nl e s s St e el 74 m c r o ns 8. 5

    Dump Val ve

    Fuel Nozzl e Pr mar y

    St ai nl es s St eel

    007

    -

    .009

    Di a.

    0. 39

    Fuel Nozzl e Secondar y

    St ai nl es s St eel

    007

    -

    .009

    Di a.

    0. 47

    openi ng

    openi ng

    *Repl aced for CI D Tes t - See Engi ne Modi f i cat i ons f o r AMK Sect i on

    Combust or Descr i pt i on

    9

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    14/48

    n o z z l e ( F i g u r e 6)

    to o b t a i n t h e r e q u i re d turndown r a t i o ( r a t i o o f maximum to

    min imum fue l f l o w ) . The nozz les a re des igned

    t o

    d i s c h a r g e a p r e d e t e r m i ne d

    amount

    o f

    f u e l when s p e c i f i e d p r e s s u r e d r op s a r e m a i n t a i n e d a cr o s s t h e p r i m a r y

    and secondary s tages,

    a c t i n g b o t h as an a t o m i z i n g an d m e t e r i n g d e v i c e . The

    r e l a t i o n s h i p betw een f u e l

    f low

    a n d n o z z l e p r e s s u r e d r o p

    for

    a t yp ica l JT3C-7

    e n g i n e

    i s

    shown i n F i g u r e

    7 .

    The p r es su r i z in g and dump va lv e i s used

    t o

    channe l f l ow t o t h e p r im a r y

    or

    secondary

    sys tem.

    When the secondary c rack ing

    or

    s t a g in g p o i n t

    i s

    reached , th e secondary va lv e opens and

    f l o w i s

    a d m i t t e d t o

    t h e s ec on da ry s y st e m. U n t i l t h e n t h e s y s te m

    f l o w

    i s

    t o

    t h e p r i m a r y o n l y . T h i s

    s t a g i n g p o i n t

    i s

    c o n t r o l l e d b y a s p r i n g l o ad e d v a l v e , w h ic h i s s e n s i t i v e t o

    t h e d i f f e r e n c e b et we en

    f u e l

    p r es su re and combus to r p ress u re .

    1. SPRING

    6.

    PRIMARY STRAINER 11. NOZZ LE BOD Y INSERT

    2. 1OWERPR)MARY FERRULE

    7. S P R I N G S EA T S N A P R I N G 1 2 . P R IM A R Y

    PLUG

    3.

    UPPER PRIMARY FERRULE

    8. I N N E R S E C OND A R Y S TR A IN E R S N A P R I N G 1 3. N OZZL E B OD Y

    4. SPRING SEAT

    9

    OU TE R S E C ON D A R Y S TR A IN E R S N A P R I N G

    14.

    I N S E R T S N A P R I N G

    5.

    PRIMARY STRAINER SNA PR ING 10. SECONDAR Y STRAINER

    1 5 . R E T A I N I N G N U T

    F i g u r e

    6

    Fue l Nozz le

    E N G I N E M O D I F I C A T I O N S F O R A M K

    8-720

    F l i g h t

    T e s t

    Engines

    The approach fohlowed by the

    F A A

    has been

    t o

    b l e n d J e t A and FM-9 ad d i t i v e

    i n - l i n e a t th e a i r c r a f t f u e l i n g p o i n t

    t o

    produce an

    AMK

    f u e l w i t h a c ce p ta b le

    f i r e s up re ss io n p r o p e r t i e s i n th e a i r c r a f t ' s f u e l t an ks . T h is ap pr oa ch r e q u i r e s

    t h a t t h e

    AMK

    be a c c e p t a b l e and us e ab l e w i t h i n t h e a i r c r a f t ' s f u e l and e n gi ne

    s y st e m s. C o m p a t a b i l i t y s t u d i e s

    ( R e f s . 1,4 ,5 ,6>

    e v a lu a t in g t h e e f f e c t s

    of

    u s i n g

    AMK

    o n

    the per formance

    o f

    a i r f r am e fue l sys tems and eng ine components showed

    10

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    15/48

    1.000

    1o.ooo

    NOZZLE PRESSURE DROP, PSlD

    (FUEL PRESSURE-BURNER PRESSURE)

    F ig u re 7 JT3C-7 Fuel

    Flow

    Schedu le

    t h a t t h e

    AMK

    needed

    t o

    be processed

    or

    degraded

    t o

    a f u e l s u i t a b l e

    t o

    meet t he

    r e q u i r e m e n t s o f t h e JT3C-7 eng ine s f o r th e 8-720 a i r c r a f t for t h e p l a n n e d

    F u l l - s c a l e T r a n s p o r t C o n t r o l l e d I m pa c t De m on s tr at io n ( C I D ) t e s t . S p e c i f i c a l l y ,

    t h e s e r e q u i r e m e n t s

    i n v o lv e d e ng in e o p e r a b i l i t y ( s t a r t i n g , a c c e l e ra t i o n /

    d e c e l e r a t i o n , r e l i g h t ) a nd p er fo rm a nc e ( e f f i c i e n c i e s ,

    e x i t

    t empera tu re

    d i s t r i b u t i o n , f i l t e r a b i l i t y ) .

    S e v e ra l s t u d i e s n t h e U n i t e d S t a t e s and U n i t e d K in gdo m i n d i c a t e d t h a t t h e

    FM-9 po lymer can be h i g h l y degraded and t h e AMK r e s t o r e d to n e a r J e t A

    p r o p e r t i e s ( R e f s 1 ,2 ,3 ).

    A

    p r o t o t y p e

    AMK

    f u e l d e g r a d e r

    for

    t h e

    C I D

    a i r c r a f t

    was deve loped by t h e Gene ra l E l e c t r i c Company based on a h i g h speed , a i r

    d r i ve n c e n t r i f u g 1 pump. F o ur d e g ra d e r s o f t h i s t y p e , n e c e s s a r y for t he 8720 ,

    were to be eng ine n a c e l l e mounted and capab le

    o f

    r u n n i n g o n J e t

    A

    and /o r

    degraded AMK for t h e r e q u i r e d g ro un d and f l i g h t t e s t m i s s i o n s.

    NASA

    Ames-Dryden F l i g h t R es ea rc h F a c i l i t y was r e s p o n s i b l e

    f o r

    t he i n s t a l l a t i o n

    o f

    t h e f o u r d e g r a de r s ys te ms o n t h e 8 720 a i r c r a f t as

    w e l l as necessary

    m o d i f i c a t i o n s t o t he a i r c r a f t .

    F i g u r e 8

    i s

    a schemat ic

    of

    t h e

    AMK

    d eg ra de r s ys te m i n s t a l l e d

    f o u r e n g i n e s

    o f the 8-720

    C I D

    a i r c r a f t .

    Th e

    p r i m a r y d e g ra d e r

    c o n s i s t e d of t h e

    F l O l

    eng ine augmentor ce n t r i f u ga l pump, t he

    a u x i l i a r y power a i r t u r b i n e m ot or , and f u e l p r e ss u r e t h r o t t l

    11

    on each o f t h e

    components

    C5A a i r c r a f t

    n g v a l v e . The a i r

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    16/48

    8 7 2 0 A MK I N S T A L L A T I O N PA RT S L I S 1

    I T E M

    40

    4 1

    4 2

    4 3

    4 4

    4 5

    50

    5 1

    5 2

    53

    54

    5 5

    5 7

    58

    5 9

    6 2

    6 3

    6 4

    65

    66

    6 7

    68

    69

    7 0

    7 1

    7 2

    7 3

    7 4

    7 5

    7 6

    7 7

    7 8

    7 9

    8 2

    8 3

    8 4

    85

    86

    0 7

    88

    89

    90

    9 1

    9 2

    9 3

    94

    9 5

    96

    9 7

    98

    99

    1 0 0

    1 0 1

    1 0 2

    1 0 3

    1 0 4

    105

    1 0 6

    1 0 7

    1 0 8

    1 0 9

    1 1 0

    1 1 1

    1 1 2

    1 1 3

    1 1 4

    D ESC R I PTI O N

    DEGRADER SPEED CONTROL FUEL FLOW SENSOR

    DEGRADER ASSEMBLY. PUMP AND A I R TU RBINE MOTOR (AT M)

    DEGRADER MOUNTING BRACKET

    FUEL LIN E ADAPTER ( INCLUDE S TWO - 4 N I P P L E S )

    FUEL HOSE. 3 00 0 P S I OPERATING (0. 75 - IN CH NOM)

    FUEL TUBE, 10 00 P S I OPERATING (0. 75 - IN CH NOM)

    FLO W O R I F I C E ( 0 . 75

    -

    0. 50 INCH MS REDUCER)

    FUEL RECIRCULA TION HOSE, 10 00 P S I OPERATING (0. 75 - IN CH NOM)

    FUEL/AIR HEAT EXCHANGER

    HEAT EXCHANGER MOUNTING BRACKET

    HEAT EXCHANGER AI R FLANGE CLAMPS

    HEAT EXCHANGER AI R DUCT

    BELLMOUTH AI R SCOOP

    FAN AND RELAY (1 1 5 VAC, 3 PH, 4 00 HZ, 11 A, INRUSH 90 A/PH

    FAN MOUNTING BRACKET

    QTY/

    ENGINE

    1

    1

    1

    2

    1

    1

    1

    1

    1

    1

    2

    1

    1

    FOR 1 SEC) 1

    1

    FAN WIRING AN0 CIRCUIT BREAKER

    ATM OI L COOLER

    ATM O I L COOLER MOUNTING BRACKET

    ATM O I L HO SE, 100 0 P S I OPERATING (0. 50 - IN CH NOM)

    A T M O I L F I L T E R

    ATM OI L F IL TE R MOUNTING BRACKET

    ATM O I L PUMP ( 2 8 VOC.

    22

    A, INRUSH 135 A FOR 0 .5 SEC)

    ATM O I L PUMP BYPASS FLOW ORI FI CE ( 0. 50 - IN CH NOM)

    ATM OI L PUMP MOUNTING BRACKET WI RING AN 0 RELAY

    ATM O IL PRE SSURIZA TION HOSE (0.25- I NCH NOM)

    ATM SEAL DRAI N HOSE (0. 37 5- INC H NOM)

    FUEL THROTTLING VALVE

    FUEL THROTT LING VALV E MOUNTING BRACKET

    COP A IR BLEED REG CHK AND

    S / O

    VALVE WI TH C LAM PS ( C V880)

    ENGINE FUEL SUPPLY HOSE, 1 00 0

    P S I

    OPERATING (1.5 - INCH NOM)

    FU EL BYPASS VALVE ( 1 . 5 - I N C H , 14 / 2 8 VDC . 1 A )

    FUEL BYPASS VA VE MOUNTING BRACKET

    ATM SPEED SIGNAL CABLE AN0 CONNECTORS

    ATM AI R SU PPLY DU CT ( 3 . 5 - I N C H N OM, 0 . 04 0 WALL STAI N LESS STEEL)

    ATM AI R REGULATOR AND SHUTOFF VALVE CLAMPS

    ATM A I R REGULATOR AN0 SHUTOFF VALVE ( 2 8 VDC. 1 A

    ATM AIR SHUTOFF VALVE AND ATM AIR INLET CLAMPS

    C DP AI R BLEED t A LV E SWI TCH ( C O C KPI T)

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    3

    ATM AI R SHUTOFF VALVE ( 2 8 VOC. 1 A ) 1

    ATM A IR EXHAUST OUCT CLAMP 1

    ATM A IR EXHAUST OUCT (4.0 - INCH NOM, 0. 02 0 WALL STAINL ESS STEE L) 1

    FUEL THROTTLING VALVE SERVO PRESS. TUBE. 300 0 PS I OPERATING (0 .25 - IN . ) 1

    FUEL HEATER JUMPER TUBE 1

    SIGNAL CONVERTER (FUEL SENSOR SIGNAL TO VDC) 1

    ATM O I L PRESSUR E ( 0 - 2 00 PSI G ) 1

    DEGRADER FUEL DISCHARGE PRESSURE (0 -2 00 0 PS IG) 1

    DEGRADER FUEL DISCHARGE TEMPERATURE (O o- 25 O0 F) 1

    THROTTLING VALVE INTERSTAGE PRESSURE (0- ?5 0 PSIG) 1

    FAU LT CONVERTER (SENSOR SIGNA L TO VOC) 6

    ENGINE FUEL PUMP INLET PRESSURE (0-150

    P S I G )

    1

    PRIMARY FUEL NOZZLE PRESSURE (0-1000

    P S I G )

    1

    SECONDARY FUEL NOZZLE PRESSURE (0 -1 00 0 P S I G ) 1

    EN G IN E FU EL F I LT ER D I FFER EN T I AL PRESSU RE ( 0 - 5 0 PSI O ) 1

    DEGRADER FUEL INL ET TEMPERATURE (0 " - 17 5" F) 1

    DEGRADER FUEL INL ET PRESSURE (0 -50 PS IG) 1

    ENGINE FUEL PUMP INLET TEMPERATURE

    ( 0 " - 2 0 0 " F )

    1

    ENGINE SCAVENGE O I L TEMPERATURE (O0 -35O "F) 1

    ATM O I L TEMPERATU RE ( 0 - 300 " F) 1

    FUEL CONTROL WASH SCREEN DIF FE RE NTI AL PRESSURE ( 0- 50

    P S I O )

    1

    THROTTL ING VALVE LEAKAGE CHECK VALVE 1

    THROTTLING VALVE LEAKAGE HOSE, 1000

    P S I

    O PER ATI N G ( 0 . 50- I N C H ) 1

    CHECK VALVE 1

    PRESSURE TRANSDUCER. 50 P S I 0 MFP INLET-MF P INL ET SCREEN ENG

    2 3

    DIFFERENTIAL PRESSURE TRANSDUCER

    RESTRAINED BELLOWS

    ATM AI R SUPPLY DUCT ( 3 . 5 NOM,

    0 .040

    WALL WITH 2- . 3- INCH BELLOWS)

    SU PPLI ED

    BY

    NASA

    NASA

    NASA

    NASA

    GE

    GE

    NASA

    GE

    NASA

    GE

    NASA

    GE

    GE

    NASA

    GE

    GE

    NASA

    GE

    GE

    NASA

    GE

    NASA

    NASA

    GE

    GE

    GE

    NASA

    GE

    GE

    GE

    GE

    GE

    NASA

    NASA

    GE

    NASA

    NASA

    NASA

    NASA

    NASA

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    GE

    NASA

    GE

    GE

    COCKFIT

    ( A > D E G R AD E R P A R T S

    Figure

    8 8720

    Anti-Misting Kerosene Degrader Installation Schematic

    ORIGINAL PAGE IS

    OF POOR QUALITY

    12

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    17/48

    ORIGINAL PAGE Is

    OF POOR

    QUALnvl

    8EEcQo w

    NOZZLE8

    ( B > D E G R A D E R S C H E MA T I C

    F i g u r e

    8

    8720

    A n t i - M i s t i n g K er os en e D egrader I n s t a l l a t i o n Sc he m at ic ( C o n t ' d )

    13

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    18/48

    ORIGIN L P GE S

    OF POOR QU LITY

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    19/48

    ORIGIN L

    P GE

    IS

    OF

    POOR QU LITY

    a

    n

    K

    7

    .

    5

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    20/48

    ORIGIN L P GE S

    OF POOR QU LITY

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    21/48

    t u r b i n e w as d r i v e n b y co mp re ss or b l e e d a i r d u r i n g e n g i n e o p e r a t i o n a nd was

    capab le

    o f

    p r o v i d i n g d eg ra de d AMK

    for

    e ng in e s t a r t t h r o u g h t h e u se o f h i g h

    p re ss ur e a i r f rom g r o u n d c a r t s or eng ine c ross b l ee d . The

    F l O l

    engine pump

    u t i l i z e d b y

    G . E .

    as the degrader had a des ign

    f low

    c a p a c i t y much h i g h e r t h a n

    t h a t r e q u i r e d

    b y

    th e JT3C-7 eng in e . There fore , i t was necessary t o i n c l u d e a

    r e c i r c u l a t i o n l o o p t h r ou g h an a i r - f u e l h ea t e x ch a ng e r, m ou nte d i n a n e x t e r n a l

    wing mounted pod, to d i s s i p a t e e x ce ss h e a t g e n e r a t e d b y t h e d e g r a d e r t o t h e

    f u e l .

    A

    t h r o t t l i n g v a l v e l o c a te d a t t h e degrader e x i t r ed uc es t h e f u e l

    p r e s s u r e b e f o r e t h e m a in f u e l e n g i n e pump

    to

    a c c e p t a b l e l e v e l s

    (

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    22/48

    I n p r ep a ra t io n for o n e s e r i e s of t e s t s c on du ct ed a t t h e F A A T e c h n i c a l C e n t e r ,

    t h e JT3C-6 f u e l c o n t r o l was m o d i f i e d b y b l o c k i n g s h u t t h e s e r v o f i l t e r bypass

    and r e p l a c i n g t h e 74 m i c r o n i n l e t f i l t e r s c re e n w i t h a n ew l y f a b r i c a t e d 2 00

    m ic ro n s iz e f i l t e r . A t t h e r e q u e s t of

    N A S A I F A A ,

    a n o t h e r s e r i e s o f t e s t s w e r e

    schedu led to e v a l u a t e th e o p e r a b i l i t y

    of

    t h e JT3C-7 co n t ro l

    o f

    t h e B-720 t e s t

    a i r p l a n e when o p e r a t i n g o n AMK f u e l .

    P r a t t & W hi tn ey a s s i s t e d i n t h e

    p r e p a r a t i o n a nd

    i n s t a l l a t i o n of a JT3C-7 fu e l c on t r o l on th e JT3C-6 eng ine .

    The JT3C-7 f u e l co n t ro l was i nsp ec t ed , r e pa i r ed and m od i f i ed w i t h a down

    c ha nge a c c e l e r a t i o n cam i n o r d e r to m a k e t h e c o n t r o l

    c o m pa t ib l e w i t h t h e

    JT3C-6 t e s t e n g i n e . I n s t a l l a t i o n of the cam and checkout was accompl ished by

    Hami l t on S tanda rd . A mockup of t h e JT3C-7 c o n t r o l a nd s e v e r a l s p e c i a l f i t t i n g s

    were prov ided

    to

    a s s i s t i n p l um b i ng t h e m o d i f i e d JT3C-7 f u e l c o n t r o l to t h e

    JT3C-6 eng ine . The re s u l t i n g schedu le

    i s

    shown i n F i g u r e 1 2 w i t h t h e B i l l - o f -

    M a t e r ia l JT3C-6 and JT3C-7 sch edu les.

    CONTROL SPEED - Nc, RPM

    x l o

    F i g u r e 12 F u e l C o n t r o l A c c e l e r a t i o n S c h ed u le s

    18

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    23/48

    UNDEGRADED

    104,

    A M K

    ,

    -

    5 81

    I I

    I I I 1 1 1 1 1 1 I I11111 I I 1 1 1 1 1 1 1 I

    I

    l l l W

    C

    106

    1 0 5

    CONDITIONS

    m O A

    PUMPSPEED IRPMI 2400 3000 3000

    FUEL

    FLOW

    (kg/hr) 750 1590 1590

    DISCHARGE PRESSURE IkPa) 207 0 3450 345 0

    - \

    3.6

    1.6

    1.4 1.2 1.2

    - A . .

    m

    I V

    I

    i I

    1

    i f i I I

    1 2 4 5

    6

    7

    8

    9 1 0 11 12 13 14 1 5 1 6

    NUMBER OF PASSES THROUGH J T ID FUEL PUMP

    F i g u r e

    13

    Fi l te r R a t i o S en s i t i v i t y

    Undegraded AMK Degraded AMK

    E

    Transition

    velocity

    E

    0.01 0.1 1 o 10 100

    Velocity

    approaching

    f i l ter, cm /sec

    F i g u r e 1 4

    T r a n s i t io n V e l o c i t y

    19

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    24/48

    LABORATORY FLOW C H A R A C T E R I Z A T I O N E Q U I P M E N T

    Under N A S A / F A A sponso rsh ip ,

    P r a t t & W h it ne y i n v e s t i g a t e d t h e e x t e n t o f

    AMK

    p r e - s h e a r i n g or d e g r a d a t i o n r e q u i r e d t o e na bl e s a t i s f a c t o r y o p e r a t i o n of t h e

    e n g in e com ponents a t v a r i o u s f u e l t e m p e ra t u re s . F u e l c h a r a c t e r i z a t i o n t e s t s ,

    d e v e l o p e d b y P r a t t & W h it ne y an d o t h e r i n v e s t i g a t o r s , w er e u se d to de te rm ine a

    c o r r e l a t i o n w i t h t h e pe rfo rm an ce r e q u i r e d

    o f

    t h e f i l t e r s , f u e l n o z z l e s a nd

    combustor o f th e JT3C-7 eng ine for t h e C I D m i s s i o n . Because t h e a n t i m i s t i n g

    a d d i t i v e i nc re as es t h e e f f e c t i v e v i s c o s i t y o f t h e b l e n d e d AMK f u e l , t e c h n i q u e s

    t h a t measured v i s c o s i t y a nd f i l t e r a b i l i t y were u sed t o q u a n t i f y t h e e x t e n t t o

    which

    AMK

    was degra ded fr o m i t s i n i t i a l o r i g i n o r unshea red s t a te .

    For

    low

    l e v e l s o f p ol ym e r d e g r a d a t i o n , t h e d e g r a d a t i o n l e v e l was e v a l u a t e d b y a f i l t e r

    r a t i o o b t a i ne d f rom a s i n g l e f l o w f i l t r a t i o n t e s t . T hi s t e s t

    i s

    a r a t i o o f t h e

    t i m e s

    r e q u i r e d

    f o r

    a k n o w n q u a n t i t y of t e s t f u e l and t h e same q u a n t i t y

    o f J e t

    A

    f u e l

    t o

    f l o w t hr ou g h a s p e c i f i e d f i l t e r (1 7 m i c ro n sc re en ) ( s e e Appendix 6-1

    f o r a d e t a i l e d p r oc e du r e) .

    I n an e a r l i e r p ro gra m

    ( R e f .

    1 > , AMK was degraded by in c re a s in g number

    o f

    passes t h rough a JT8D fue l pump . The sens i t i v i t y o f f i l t e r r a t i o t o the number

    of

    passes through the pump

    i s

    shown i n F i g u r e 1 3 . T h i s p l o t an d su b se qu e nt

    t e s t s

    showed t h a t a l t ho ug h f i l t e r r a t i o i s an adequate measurement techn ique

    f o r

    d e g r a d a t i o n l e v e l s e q u i v a l e n t

    t o f i l t e r

    r a t i o s d o w n t o a p p r o x i m a t e l y two,

    i t d i d n o t p ro v i de s u f f i c i e n t r e s o l u t i o n t o d e s c r ib e l e v e l s b elo w t h a t p o i n t .

    F i l t e r a b i l i t y , f u e l s pr ay q u a l i t y , and c om bu st io n t e s t s r ec or de d i n R e f. 1

    i n d i c a t e d t h a t t h e r e w e r e s i g n i f i c a n t d i f f e re n c e s i n t h e way AMK deg raded

    between the

    3

    and 16 passes per fo rmed a l though

    f i l t e r

    r a t i o s showed a l m o s t n o

    d i s t i n c t i o n .

    I n f i l t r a t i o n e xp er im en ts , when

    AMK

    v o l u m e t r i c f l o w r a t e p er u n i t

    a rea or v e l o c i t y i s p l o t t e d a g a i n s t i n c r e a s i n g d i f f e r e n t i a l p r e ss u r e a cr os s a

    v er y f i n e f i l t e r , t h e r e

    i s

    a n o t i c e a b l e i n cr e a se i n f l o w r e s is t a n ce a t a

    p a r t i c u l a r v e l o c i t y a s shown i n F ig u r e 14. The s h i f t p o i n t

    i s

    a f u n c t i o n

    o f

    f u e l t y pe o r l e v e l o f AMK d e g r a d a t io n and has been l a b e l e d t r a n s i t i o n v e l o c i

    ( V , ) .

    I t has been hypo thes i zed t ha t t hese

    s h i f t s

    or

    t r a n s i t i o n v e l o c i t i e s

    are analogous t o t r a n s i t i o n

    from

    l a m i n a r t o t u r b u l e n t f l o w w i t h i n t h e

    f i l t e r

    P r a t t & Whi tney has found t h i s measurement tech n iqu e t o be a va luab le and

    rep rod uc ib l e means o f c a t e g o r i z i n g h i g h l y d eg ra de d AMK f u e l s .

    A

    d e t a i l e d

    l a b o r a t o r y p r o c e du r e

    f o r

    m ea su rin g t r a n s i t i o n v e l o c i t y

    i s

    i n c l u d e d i n A ppend

    6-2.

    T h e l e v e l s

    of AMK

    deg rad a t i o n recommended by P r a t t & Whi tney

    t o

    s a t i s f y t h e

    f i l t e r a b i l i t y and combus to r pe r f o rmance re qu i r e d

    for

    t h e C I D program

    w i l l

    be

    assessed

    i n

    t h e n e x t s e c t i o n of t h i s r e p o r t .

    RESULTS AND D I S C U S S I O N

    FUEL

    SYSTEM

    AND E N G I N E OPERABILITY

    P r a t t

    &

    Whi tney ass i s t ed

    N A S A

    i n d e t e rm i n i n g th e s a f e t y and m i s s i o n s u i t -

    a b i l i t y o f t h e m od i f ie d f u e l

    s y s t e m

    f o r t h e p r o p o s e d e n g i n e t e s t s a n d

    s ub se qu en t f l i g h t s . T h i s s t u d y re v i ew e d an d a n a l yz e d i n f o r m a t i o n and t e s t d a t a

    r e c e i v e d from

    N A S A / F A A

    r e g a r d i n g t h e d e g r a d e r s y st em , h e a t e x c ha n g e rs , e n g i n e

    fu e l sys tem and subsequent e f f e c t s t o eng ine o i l a n d f u e l a s t h e y p e r t a i n e d t o

    operab i l i t y . Recommended l i m i t s f o r f u e l d e g r a d a t io n and e ng in e c o n d i t i o n

    ( 5 )

    were de termined and presented t o

    N A S A / F A A .

    20

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    25/48

    The f i 1 e r a b i

    1

    i y c h a r a c t e r i s t i c s of a l l t he f u e l

    system components were

    su rveyed t o a s s e s s c l o g g i n g for s u b s e q u e n t e n g i n e t e s t s .

    A summary o f t h e

    J T 3 C - 7 b i l l - o f - m a t e r i a l f u e l s y s t e m f i l t e r s and s c re en s i s t a b u l a t e d i n T ab le

    11. These f i l t e r s w ere i n c l u d e d i n t h e as se ssm en t e x c e p t fo r t h e f u e l p u m p

    i n t e r s t a g e w h i c h was r e p l a c e d by a

    G E

    5-79 metal f i l t e r o f s m a l l e r a r e a b u t

    s l i g h t l y c oa r se r mesh s i z e

    ( 4 4 m i c r o n s ) . Based o n known f i l t e r c h a r a c t e r i s t i c s

    ( a r e a , m esh s i z e , f u e l flow r eq ui re m en ts ) and t h e f i l t e r a b i l i t y e x p er im e nt s

    per fo rmed under

    NASA

    c o n t r a c t NAS3-22045 and documented i n

    R e f .

    1 , t h e

    pressure and dump ( P & D ) , a n d f u e l

    c o n t r o l s er vo f i l t e r s were ju dg e d t o be

    most

    s u s c e p t i b l e t o cl og g in g . The c l og g in g phenomena due t o g e l f o r m a t i o n was f o u n d

    t o

    b e a f u n c t i o n

    of

    i n c re a s e d f u e l

    flow

    o r v e l o c i t y , d ec re as ed f u e l t e m pe r at u re

    a n d c u m u l a t i v e

    t i m e

    (Ref. 1 ) . T h e r e f o r e , i t was p r o j e c t e d t h a t f o r s h o r t

    d u r a t i o n s , low a l t i t u d e f l i g h t s and e nv ir on me nt al c o n d i t i o n s f o r t h e

    C I D

    program, AMK degraded t o f i l t e r r a t i o s o f a p p r o x i m a t e l y 1 . 2 or t r a n s i t i o n

    v e l o c i t i e s a t l e a s t 2-3 cm /sec.,

    w ou ld pr e cl u de c l o g g i n g i n t h e e n gi n e f u e l

    system. Based on f u e l no zz le sp ray q u a l i t y and subsequen t combus t i on t e s t s

    ( R e f .

    1 > ,

    t h i s l e v e l

    o f

    de gr ad at io n was judged

    t o

    b e a c c e p t a b l e

    for

    e n g i n e

    c om bu st or r e q u i r e m e nt s as w e l l . I n a d d i t i o n , t h e e n g i n e two stage gear pump

    c o u ld p r o v i d e f u r t h e r d e g ra d a t i o n m ar gi n t o t h e AMK f u e l

    d e l i v e r e d from t h e

    d e g r a d e r s ys te m. I n

    t h e ev en t t h a t s i g n i f i c a n t c l o g g i n g o f t h e se r v o f i l t e r

    ta ke s p la c e , t h e f u e l c o n t r o l c o ul d be g in t o r e a c t s l u g g i s h l y , e s p e c i a l l y a t

    low power . Comp le te b l ock i ng o f t h e s e r vo f i l t e r w o ul d c au se

    loss

    o f s e r v o

    p r e s s u r e w i t h s ub se qu en t f u e l

    flow

    r e d u c t i o n

    t o

    a min imum set t ing . The min imum

    flow l e v e l

    for

    th e JT3C-7 eng ine i s 640 pph which i s be low i d l e . Remova l of

    t h e s e r v o

    f i l t e r

    was n o t p r a c t i c a l b eca use c o n ta m i na n t s c o u l d a f f e c t t h e

    v a r i o u s s e rv os r e s u l t i n g i n u n p r e d i c ta b l e m e t e r i n g and g o v e rn i n g e f f e c t s . For

    r easons

    o f

    s a f e t y ,

    i t

    was s t r o n g l y recommended t h a t f i l t e r s l s c r e e n s w i t h o u t

    p r o v i s i o n s for a u t o m a ti c b yp as s, ( f u e l c o n t r o l s e r v o a nd f u e l n o z z l e s ) be

    m o n it o re d on a l l f o u r e n g i n e s

    for

    p r e s s u r e r i s e .

    I t

    was a l s o recommended th a t

    a p p r o p r i a t e f u e l samples be a na ly ze d f o r d e g ra d at io n l e v e l b y f i l t e r r a t i o and

    t r a n s i t i o n v e l o c i t y t e s t s .

    I n f o r m a t i o n was s u b m i t t e d

    to

    NASA Ames-Dryden F l i g h t R es ea rc h F a c i l i t y i n t h e

    areas o f e n g in e and com ponent o p e r a b i l i t y and d u r a b i l i t y , a i r b l e e d , p lu m b in g ,

    i n s t r u m e n t a t i o n , e t c . T h i s s e c t i o n summarizes o n l y t h e more c r i t i c a l a re a s

    t h a t r e qu i r e d s i g n i f i c a n t s tu dy or ana l ys i s . One o f t h e f i r s t a reas o f

    i n v e s t i g a t i o n con cern ed t h e a v a i l a b i l i t y and e f f e c t s

    of

    e ng in e b le e d a i r

    r e q u i r e d t o d r i v e t h e a i r t u r b in e motor d r i v e f o r t h e d e g r a d e r . A i r b l e e d

    f l o w s a nd p re s s u r e l e v e l s p r e d i c t e d

    for

    d e g r a d e r o p e r a t i o n

    (G.E.

    computer

    model) were compared

    t o

    t hose av a i l a b l e fr om th e JT3C-7 eng ine . Tab le

    I11

    shows t h e r e s u l t s

    o f

    t h i s c om pa rison w hic h i n d i c a t e s t h a t t h e a i r b l e e d

    r eq ui re m en ts were o n l y s l i g h t l y h i g h e r t ha n t ho se a v a i l a b l e

    f rom

    a t y p i c a l

    i n - s e r v i ce JT3C-7 eng ine .

    I n r eg a r d

    t o

    t h e p o s s i b i l i t y

    of

    l o c k i n g e n gi ne b l e e d op en o r c l o s e d ,

    i t was

    con vey ed t h a t t h i s c o u l d be d e t r i m e n t a l t o e ng in e t r a n s i e n t o p e r a t i o n . I n

    p a r t i c u l a r , t h e JT3C-7 e n g in e t h r u s t l o s s when t h e a u t o m a t i c su r g e b l e e d s a r e

    opened on a

    low

    p ow er a p pr oa c h c o n d i t i o n a t 30 00 f e e t an d 15 0 k n o t s t r u e a i r

    speed was es t i m at ed

    t o

    be ap pr ox im at e l y 327 pounds

    or

    10%.

    21

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    26/48

    TABLE

    I11

    AND

    TEMPERATURES

    V S . P R E D I C T E D

    QUANTITIES

    AVAILABLE JT3C-7 BLEED FLOWS, PRESSURES

    P R E D I C T E D

    -

    G . E .

    MODEL

    C A S E ( 1 )

    C A S E

    ( 2 )

    ( i d l e ) ( m a x )

    6 3% 98%

    ( T a m b ( O R ) 550

    565

    565 550

    ( B l e e d P r e s s u r e

    ((Bleed Temp ( O R ) ) 725 725 1181 1181

    )

    44.9 44.9 174.9 174.9

    7;;;;

    Flow)

    1

    .o

    1

    .o

    1.9 1 .9

    (Bleed Rat io ) 0.027 0.027 0.012* 0.012*

    p s i a )

    A v a i l a b l e

    HPC

    Bleed Pressures and Tempera tures

    ( f r om

    JT3C-7 eng ine a t t he

    above b leed

    flows)

    PTX 30.5 30.5 16 8.3 17 1.9

    a t

    B leed

    P o r t

    Blee d Temp. a t

    )

    737 737 1243 1228

    B leed

    Port

    ( O R )

    TTX

    * =

    S l i g h t l y e xc ee ds JT3C-7 s p e c i f i c a t i o n

    l i m i t o f

    0.012 f o r

    HPC

    b le ed a i r

    f o r maximum cont inuous

    to

    t a k e o f f p o w e r

    Seve ra l recommendat ions were made by P r a t t

    &

    W h i t n e y r e l a t i n g

    t o

    f u e l

    p r e s s u r e , f u e l t e m p e r a t u r e a n d

    o i l

    t e m p e r a t u r e

    l i m i t s

    fo r th e JT3C-7 en gin e.

    D u r i n g e ng in e o p e r a t i o n s , f u e l p r e ss u re a t t h e e n gi ne f u e l pump i n l e t s h o u l d

    be m a i n t a in e d a t n o t l e s s t h a n 7 .5 p s i a bov e t h e t r u e v a p o r p r e s s u r e

    of

    t h e

    f u e l

    to

    p reven t vapo r

    l o c k a n d /o r pump c a v i t a t i o n

    from

    o c c u r r i n g a t e l e va t e d

    f u e l t e mp e ra t ur es . F u el p r e s s u r e s h o u l d be k e p t b e lo w 55 p s i g d u r i n g e n g i n e

    o p e r a t i o n and s h o u l d n o t be a l l o w e d t o e x ce e d 8 5 p s i g a f t e r s hu td ow n when t h e

    f u e l p ressu re may i nc r ea se due

    t o

    t he rma l expans ion o f t h e f u e l . The e n g i n e

    f u e l

    system

    c a n. to le ra te s h o r t d u r a t i o n ( m i l l i s e c o n d s ) p r e s s u r e e x c u r s i o n s

    or

    s p i k e s o f 10 0 p s i a bo ve t h e pump i n l e t p r e s s u r e . The l i m i t i n g a r e a i s a

    s e c t i o n

    of

    t h e f u e l c o n t r o l w h ic h s ee s pump i n l e t p r e s s u r e an d

    i s

    capab le

    o f

    s u s t a i n e d o p e r a t i o n o n l y up

    t o

    1 1 5 p s i a .

    22

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    27/48

    F ue l t e m pe r at u re l i m i t s w ere e s t a b l i s h e d w i t h t h e a s su m pt io n t h a t l o n g

    descen ts from h i g h a l t i t u d e s were b ey on d t h e s l o p e o f t h e f l i g h t t e s t s p la nn ed

    so t h a t e x t r e m e l y h i g h t e m p er a tu r e r i s e s t hr o ug h t h e f u e l pumps c o u l d b e

    avo ided .

    I t

    was recommended t h a t pump i n l e t t empe ra tu re be l i m i t e d

    t o

    160F

    w i t h o v e rs h o ot s

    t o

    170F

    for

    s h o r t p e r i o d s

    o f

    t i m e o n l y . T h i s

    l i m i t

    was se t

    because

    o f

    t h e u n k n o w n c o n d i t i o n of t h e l o w t e m p e r a t u r e e l a s t o m e r s e a l s t h a t

    w ere p r e s e n t i n t h e e n gi n e f u e l pumps and f u e l c o n t r o l . P r a t t

    &

    Whi tney

    recommends mai n t a i n i ng eng ine o i 1 i l e t tempe ra tures be tween 176 and 21 2F for

    e x t en d e d s e r v i c e l i f e . H ow ev er, o i l t e m p e r a tu r e s w er e p e r m i s s i b l e to 270F

    w i t h o v e rs h o o ts t o 290F

    for

    10 m in ut es f o r b o t h g ro un d and i n - f l i g h t

    o p e r a t i o n s .

    FUEL C H A R A C T E R I Z A T I O N TESTS

    AND

    ANALYSES

    The purpose

    of

    t h e

    l a b o r a t o r y f u el c h a r a c t e r i z a t i o n t e s t s was t o v e r i f y AMK

    f u e l b l e n d e d

    f o r

    t h e C I D p r o gr a m r e a c t e d i n t h e same ma nn er as t h e p r e v i o u s l y

    e v a l u a t e d AMK (Ref.

    1 ) for f i l t e r a b i l i t y and c om bu st or p e rf or m an c e, a n d t o

    a s s e s s t h e d e g r a d a t i o n l e v e l a c h i e v e d by the degrader sys tem

    f o r

    subsequen t

    e n g i n e t e s t s . Two s e t s of f i l t e r r a t i o and t r a n s i t i o n v e l o c i t y mea su r in g

    e qu ip me nt we re f a b r i c a t e d b y P r a t t & Whitney for NASA Ames-Dryden F l i g h t

    R ese arch F a c i l i t y and t h e F A A Techn i ca l Cen te r . A l i s t o f t he equ ipmen t

    c o m p r i s i n g e a c h

    o f

    t h e

    flow

    m e as u ri ng d e v ic e s i s p r o v i d e d i n T a bl e C-1

    o f

    Appendix

    C .

    Degraded AMK was o b t a i n e d from t h e

    F A A

    f o r u se i n c a l i b r a t i n g t h e n ew ly

    f a b r i c a t e d e qu ip m en t a g a i n s t e qu ip me nt used i n e a r l i e r p ro gra ms a t P r a t t &

    Whitney . The f ue l was f u r t h e r deg raded us i ng a Ga u l i n D i s pe r se r or homogenizer

    f o r

    one pass a t

    8000

    p s i

    ( N A S A

    CR - 168081 ) be fo re compara t i ve expe r imen ts we re

    conduc ted . Resu l t s o f t h e c a l i b r a t i o n s i n d i c a t e d go od a gr ee me nt be tw e en t h e

    equipment fo r t h e h i g h l y d eg ra de d

    AMK

    t es ted . Tab le I V i s a t a b u l a t i o n o f t h e

    d a t a r e c or d e d and subsequ ent c a l i b r a t e d f i l t e r r a t i o s . The t r a n s i t i o n

    v e l o c i t i e s f o r t h e t h r e e u n i t s o b t a i n e d fro m t h e p l o t s shown i n F i g u r e s 1 5, 1 6

    and 17 ar e shown i n Tab le

    V .

    Tab le I V

    FILTER R A T I O S

    n i t J e t A T i m e

    AMK

    Time F i 1 t e r R a t i o

    # 1 ( P r a t t

    &

    Whit ney) 5.33 sec 5.86 1 . 1

    #2 ( N A S A Ames-Dryden) 5.41 sec 5.9 3

    1 . 1

    #3 ( F A A Tech Ce nte r) 5.13 sec 5.68

    1 . 1

    23

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    28/48

    r

    2

    P

    15

    2

    I

    I

    u-

    g

    10

    2

    5

    u

    U

    u.

    LL

    5

    0

    0 5 10

    15 2

    25

    VELOCITY, CMiSEC

    F i g u r e 15 D e t e r m i n a t i o n o f T r a n s i t i o n

    V e l o c i t y . U n i t 1

    0 15

    20

    25

    VELOCITY, CMlSEC

    F i g u r e 1 6 D e t e r m i n a t i o n o f T r a n s i t i o n

    V e l o c i t y . U n i t

    #2

    24

    P

    2

    8 1 5 ,

    4

    I

    $

    u-

    a

    g

    10

    5

    U

    kk

    Y

    n

    5

    0 5

    10

    15

    20

    25

    VELOCITY, CMlSEC

    F i g u r e 17 D e t e r m i n a t i o n

    o f

    T r a n s i t i o n

    V e l o c i t y . U n i t 3

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    29/48

    TABLE V

    T R A N S I T I O N

    VELOCITY

    T r a n s i t i o n V e l o c i t y

    # 1 ( P r a t t

    &

    Whi tney) 10.5 cm/sec

    #2 ( N A S A Ames-Dryden) 10.7 cm/sec

    #3 ( F A A Tech Ce nt er ) 10 .5 cm/sec

    The f i l t e r r a t i o and t r a n s i t i o n v e l o c i t y m easurement e qu ip m en t w ere d e l i v e r e d ,

    s e t

    up and demonst ra ted f o r b o t h

    NASA

    Ames-Dryden F l i g h t R e se a rc h F a c i l i t y a nd

    F A A T e c h n i c a l C e n t e r p e r s o n n e l for t h e i r s ub se qu en t u se o n - s i t e .

    A

    sample

    o f

    AMK

    f u e l , t y p i c a l

    of

    t h a t u sed i n t h e

    C I D

    t e s t , was t e s t e d

    t o

    e s t a b l i s h t h e f l o w c h a r a c t e r i s t i c s and f i l t r a t i o n p r o pe r t ie s as a f u n c t i o n o f

    d e gr a da t i on l e v e l a nd t o compare t h e f i l t e r a b i l i t y c h a r a c t e r i s t i c s

    o f

    t h e

    r e c e n t l y b le nd ed f u e l w i t h f u e l t e s t e d d u r in g e a r l i e r

    N A S A / P & W

    p rog rams . Two

    b a tc h es o f f u e l were t e s t e d as a r e s u l t

    o f

    a bn or ma l l y h i gh f i l t e r r a t i o s f ou nd

    i n t h e f i r s t b a t c h

    o f

    AMK f u e l . I n i t i a l t e s t i n g

    o f

    t h e f u e l t o d et er mi ne i t s

    f i l t e r r a t i o showed u n u su a l l y h i g h

    l e v e l s o f f i l t e r r a t i o ( o v e r 5 00 ) . A

    p o r t i o n

    o f

    t h i s f u e l was d e gr ad e d t o a t r a n s i t i o n v e l o c i t y o f 4 .5 and t he n

    s u b j e c t e d t o f i l t e r a b i l i t y t e s t i n g . Immediate f i l t e r c l o gg i ng o cc u r re d , even

    a t t h e l ow e s t

    f l o w

    r a t e s . The u n u su a l l y h igh f i l t e r r a t i o s o b ta in e d p r i o r

    t o

    t he f i l t e r a b i l i t y t e s t i n g was a s cr ib e d t o c on ta m in a t io n from a sample be ing

    d ra wn f r o m t h e b o t t o m

    o f

    a s t o r a q e t a n k . E v a l u a t i o n

    of

    t h e i n i t i a l b a tc h o f

    AMK

    f u e l was d i s c o n t i n u e d an d a

    e v a l u a t i o n

    o f

    th e AMK fu e l . The

    I m p e r i a l C he mic al I n d u s t r i e s I

    A second ba t ch

    o f

    AMK

    fue l samp

    c o n s i d e r e d t o be a no rma l l eve l

    d i v i d ed i n t o two p o r t i o n s w h i c h

    l e v e l s

    of

    2.0 and 2.7 cm/sec. F

    t h e p r e s s u r e d r o p a c r o s s a 1 6

    m

    i e w

    f u e l sample was req ues ted to c o n t i n u e t h e

    r e m a in d e r o f t h e c o n t a m i n a te d f u e l w as s e n t

    t o

    1) f o r a n a l y s i s .

    e recorded f i l t e r r a t i o s

    o f

    57 w h i c h

    i s

    f o r

    unsheared o r v i r g i n AMK. The sample was

    were degraded t o t r a n s i t i o n v e l o c i t y ( V T )

    l t e r a b i l i t y t e s t s were conduc ted t o measure

    c r o n s t a i n l e s s s t e e l s c re e n as a f u n c t i o n

    o f

    ~ ~

    AMK

    f u e l

    flow

    a t a m b ie n t t e m p e r a t u re

    ( R e f . 1 ) .

    The f i l t e r t e s t i s de sc r i b ed i n

    NASA CR-168081.

    Tab le

    V I

    p r e s e n t s t h e r e s u l t s

    o f

    t he f i l t e r a b i l i t y t e s t i n g

    c o n d u c t e d o n t h e

    AMK

    f u e l d u r i n g t h i s prog ra m. T a bl e

    V I 1

    p r e s e n t s t h e d a t a

    r e co r de d u nd er c o n t r a c t NAS3-22045. I n t he t a b l e s , f i l t e r c l o g g i n g i s

    i n d i c a t e d

    fo r

    t h o s e v e l o c i t y e n t r i e s w here t h e p r e s s u r e dr o p i s shown as a

    r a ng e , r a t h e r th a n as a s i n g l e v a lu e .

    R e s u l t s o f t h e f i l t e r a b i l i t y t e s t i n g conducted on t h e second b a t ch

    o f AMK

    f u e l

    i n d i c a t e d t h a t t h e c l o g g in g c h a r a c t e r i s t i c s o f t h e o n - l i n e b l e nd e d

    AMK

    made

    f o r t h e

    C I D

    p ro gr am a r e v e r y s i m i l a r to

    t h e

    b a t c h b l e n de d f u e l u n de r

    NASA

    c o n t r a c t NAS3-22045. T h is t e s t i n g e s t a b l i s h e d t h e c r i t e r i a f o r f i l t e r a b i l i t y

    a nd c om b us to r r e q u i r e m e n t s d u r i n g t h e C I D program. Fue l samples ta ke n

    downstream

    o f

    a de gr ad er , w h i l e t h e e ngine o p e r at e d a t i d l e , r e s u l t e d i n

    t r a n s i t i o n v e l o c i t y l e v e l s

    o f

    2 .9 and 3.2 cm/sec whic h was co ns ide red

    s a t i s f a c t o r y

    for

    t h e p l a n n e d m i s s i o n s

    o f

    the

    8-720

    a i r c r a f t .

    25

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    30/48

    V T

    = 2.0

    c l o g g i n g

    V T = 2 . 1

    c l ogg i ng

    TABLE V I

    FILTERABILITY

    T E S T ( 1

    6 /J m ABSOLUTE

    SCREEN)

    1984

    A P

    psi

    0 . 20

    0 . 4 0

    0 . 6 0

    0 . 80

    0 . 90

    1.30-1 .40

    1.60-1.80

    2.10-2.30

    3.00-3.40

    4.00-4.40

    5.80-9.40

    0 . 10

    0 . 3 0

    0.50

    0 . 80

    1 . 10

    1.20-1.30

    1 .50-1.60

    1.90-1.20

    2.10-2.60

    3.60-4.60

    F low Rate

    c c l s e c l

    1 . o

    2 .0

    2.7

    3.6

    4 . 1

    5 . 4

    6.0

    6 . 5

    8 . 0

    8 . 8

    10.4

    1 .o

    2 . 0

    2.8

    4 . 0

    5.6

    6 . 1

    1.7

    9 . 0

    10 . 0

    13.4

    S u p e r f i c i a l (

    V e l o c i t y , c m l s e c

    3.1

    6 . 3

    8.4

    11.3

    12.8

    16.9

    18.8

    20.3

    25.0

    21.5

    32.5

    3.5

    6.3

    8 . 8

    12.5

    11.5

    19.1

    24.1

    28.1

    31.3

    41.9

    T r u e V e l o c i t y ( )

    cmlsec.

    141

    210

    241

    290

    312

    367

    392

    406

    463

    49

    1

    551

    141

    210

    251

    31 3

    380

    398

    455

    502

    331

    665

    .............................................................................

    I ) S u p e r f i c i a l v e l o c i t y i s b as ed o n p i p e c r o s s - s e c ti o n a l a r e a i n w h ic h t h e

    ( )

    T r u e v e l o c i t y i s based on flow c o e f f i c i e n t c o r re c t ed f l o w a re a from a

    f i l t e r

    i s

    p l a c e d .

    J e t

    A

    c a l i b r a t i o n

    for

    t h e f i l t e r b e in g te st ed .

    TABLE

    V I 1

    1981 FILTERABILITY T E S T ( 1 6 p m ABSOLUTE S CRE E N) 1981

    TEST #45

    AP F lo w R a te S u D e r f i c l a l

    I

    T r u e V e l o c i t v ( )

    psi c c l s e c l

    VT

    =

    1.9 0 .30 1 .6

    0 . 52 2 . 1

    0.69 3.0

    c log g ing 0 .94-1 .10 3 .8

    1.21-1.49 4.1

    2.43-3.80 5.8

    v e i o c i ty, cm lsec

    5.0

    8 . 4

    9 . 4

    11.9

    12.8

    18.1

    Tes t #34

    cm lsec

    179

    290

    303

    350

    366

    44 1

    VT

    =

    2.5 0.65

    1.03

    c logg ing 1 .28-1 .61

    1.62-2.48

    2.9-3.1

    4.2-5.5

    6.9-9.9

    12.2-15.6

    15.6-1 8.2

    3.5

    5.3

    4.2

    8.2

    9.4

    11.1

    13.6

    16.4

    18.0

    10.9

    16.6

    19.4

    25.6

    29.4

    3 4 . 1

    42.5

    51.3

    56.3

    32

    1

    41 5

    451

    533

    516

    643

    1 2 0

    802

    853

    .............................................................................

    S u p e r f i c i a l

    v e l o c i t y i s based on p i p e c r o ss - s e c t io n a l a r e a i n w hi c h t h e

    ( * ) T ru e v e l o c i t y i s b as ed on

    flow

    c o e f f i c i e n t c o r re c t ed flow a r e a from a

    I )

    f i l t e r i s p l a c e d .

    J e t A c a l i b r a t i o n for t he f i l t e r b e i n g te st ed .

    26

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    31/48

    ENG I NE PERF O RM ANCE

    The B-720/JT3C-7 s im u la t io n

    for

    t h e C I D f l i g h t p l a n s u p p l ie d b y NASA

    Ames-Dryden F l i g h t Resea rch F a c i l i t y was rev i ewed and assessed t o be

    s a t i s f a c t o r y

    from

    a n e n g i n e o p e r a b i 1

    i

    y s t a n d p o i n t . E ng in e s im u l a t e d p a r t

    power and t akeo f f power pa rame te rs

    w e r e

    compared w i t h s i m i l a r p ow er c o n d i t i o n

    d a t a f rom in-house and FAA T ec h C e n t e r g e n er a te d g r o un d t e s t d a t a a nd t h e

    agreement was good.

    I t was n o t e d t h a t t h e r e was some e n g i n e o p e r a t i o n i n t h e

    c om pr es so r " b l e e d s o pe n' ' po we r r e g i o n d u r i n g a i r c r a f t a p p ro a c h .

    F i gu re 18 shows t y p i c a l JT3C-7 eng in e perfo rmance da ta used as a ba se l i ne

    r e f e r e n c e t a k e n

    f o r

    s tanda r d day a t sea l e v e l s t a t i c c o n d i t i o ns . I n F i gu r e 18,

    N ,

    r e p r e s e n t s t h e low rotor speed, and N 2 t h e h i g h

    rotor

    s pe ed , i n RPM,

    c o r r e c t e d

    t o

    sea l e v e l s t a t i c s ta n da r d day c o n d i t i o n s a s a f u n c t i o n

    of

    e n g i n e

    p r e s s u r e r a t i o , P T 7 / P T Z . F igu re 18 p resen t s t he eng ine exhaus t gas

    tempera tu re i n deg rees Rank ine , and W F r e p r e s e n ts e ng in e f u e l

    f l o w ,

    i n

    l b s / h r , w i t h b o t h p a ra m et er s c o r r e c t e d

    t o

    sea l e v e l s t a t i c s t a n d a r d day

    c o n d i t i o n s .

    h

    pc

    SLTO

    97

    N2

    EPR

    I

    2.672

    N2 9670

    12,000-

    1o.ooO

    -

    a

    I,

    9

    8000-

    2

    5

    v

    B

    I-

    a

    a

    ImJO-

    V

    4000-

    SLTO

    104.8% N 1

    IDLE 235

    4000 A 1 1

    1

    1 o

    1.5 2.0

    2.5 3.c

    Y ENGINE

    PRESSURE

    RATIO, PT~ /PT:

    Fi gu re 18 Ty p i ca l JT3C-7 Eng

    W

    ENGINE PRESSURE RA TIO,

    PT7/PT2

    ne Per fo rmance (S ta nda rd Day Sea Leve l S t a t i c )

    27

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    32/48

    T h e s i g n i f i c a n c e

    o f

    t h e e n g i n e f u e l flow, exhaus t gas t empera tu re , and t he

    ro to r speeds i s t h a t t he s e pa ra m et er s d e f i n e t h e p er fo rm a nc e c h a r a c t e r i s t i c s

    o f t h e e ng in e and a r e t h u s an i n d i c a t i o n

    o f

    e n g i n e " h e a l t h " .

    For

    example, i f

    t h e f u e l flow a nd e x h a u st ga s t e m p e r a tu r e s a r e h i g h e r t h a n n o rm a l a t a g i v e n

    e n g i n e p r e s s u r e r a t i o ,

    i t i n d i c a t e s a l o s s i n en gi ne e f f i c i e n c y . The b e h a v io r

    o f

    t h e low and h i gh p res su r e compressor

    ro tor

    speeds, N , and

    N Z ,

    p r o v i d e s

    an i n d i c a t i o n w h et he r t h e l o s s

    o f

    e f f i c i e n c y

    i s

    i n t h e lo w o r i n t h e h i g h

    s p o o l .

    The expe cted rang e

    o f

    va lues above and be low the ave rage

    of

    each

    o f

    t h e f o u r

    per formance

    pa rame te rs for a new pr od uc t i on JT3C-7 eng in e has been es t im at ed

    t o be as f o l l o w s a t a g i v e n e n gi ne p r e s s u r e r a t i o :

    Low

    Rotor Speed,

    N , -

    1.2%

    H i g h

    Rotor

    Speed,

    N 2

    -

    1.2%

    Exhaust Gas Temperature

    -

    30"R

    Fuel F low, W F - 2.5%

    I t

    ho

    I d

    be n o te d t h a t t h e a bove v a r i a t i o n s r e l a t i v e

    t o

    a n a v e r a g e p r o d u c t i o n

    e n g i n e ar e f o r a n u n i n s t a l l e d e n g in e and do not r e f l e c t a i r f r am e i n s t a l l a t i o n

    e f f e c t s , p ower e x t r a c t i o n , e n g in e sy ste m a i r b le e d , and e n gi ne d e t e r i o r a t i o n .

    The f o l l o w i n g d i s c u s s i o n c o v e rs t h r e e g ro u ps

    o f

    p e r f o r m a n c e r e s u l t s :

    o b s e r v a t i o n s f o r g ro un d e n gi ne t e s t s a t t h e F A A T ec hn ic al C en te r, f l i g h t t e s t

    made

    on

    September 18, 1984 w i t h bo th

    J e t

    A

    and AMK, and

    C I D

    o f

    December 1,

    1984

    w i t h A M K o n l y .

    FAA Technical Center T e s t s

    I n o rd er

    t o

    e v a l u a t e t h e e n g i ne p e r fo r ma n ce t h a t c o u l d o cc u r i f h e f u e l

    d e g r a d e r s h u t down d u r i n g f l i g h t , a JT3C-6 e n g i n e t e s t was c o n d u ct e d w i t h J e t

    A

    and undegraded AMK f u e l s a t t h e

    F A A

    T e c h n i ca l C e n t e r . D u r i n g t h e t e s t , f u e l

    was

    s u p p l i e d from a tan k us in g s tan dar d 6-707 boo s t pumps.

    A s

    p r e v i o u s l y

    d e s c r ib e d , t h e JT3C-6 f u e l c o n t r o l was m o d i f i e d to i n co rp or a t e f i l t r a t i o n

    f e a t u r e s m o r e i n l i n e w i t h t h e JFC25-10 C-7 c o n t r o l u s e d i n t h e JT3C-7 e n g i n e s

    i n t h e

    C I D

    a i r c r a f t .

    The engine appeared to p e r fo r m s u r p r i s i n g l y w e l l on AMK

    t h a t was o n l y s l i g h t l y deg raded (F .R .=30 ) by t he 6-707 boos t pumps. S teady

    s t a t e pe rfo rm an ce a t

    EPRS

    o f 1.5

    t o

    2 .5 a nd t r a n s i e n t re sp on se c a l i b r a t i o n s ,

    w h i l e b u r n i n g AMK, i n d i c a t e d no s i g n i f i c a n t d i f f e r e n c e s f rom b a s e l i n e t e s t s

    c o n d u c t e d w i t h

    Jet A

    f u e l . The o n l y o p e r a t i o n a l a b n o r m a l i t y n o t e d was t h e

    immedia te p ressure r i s e i n c re a s e a c ro s s t he i ns tr um e nt ed f u e l f i l t e r l s c r e e n s

    up

    t o

    a s te ad y, l i m i t e d v a l u e ( 5 ) as t h e f u e l was sw i t ched from J e t A to

    undegraded AMK.

    A s e c o n d t e s t was pe r fo rmed w i t h t he JT3C-6 eng ine us i ng a JT3C-7 f u e l c o n t r o l

    s i m i l a r t o t h a t used on t h e C I D a i r c r a f t to e v a l ua te t h e o p e r a b i l i t y of t h e

    JT3C-7 c o n t r o l s o n t h e t h e 6 -7 20 t e s t a i r p l a n e when o p e r a t i n g o n u nd e gr ad ed

    AMK f u e l . NASA Ames-Dryden F l i g h t R es ea rc h F a c i l i t y r e p o r t e d t h e e n g in e

    28

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    33/48

    o pe ra te d s a t i s f a c t o r i l y fo r 41

    minutes on undegraded AMK f u e l . P os t t e s t

    i n s p e c t i o n

    o f

    t h e f u e l c o n t r o l

    s e r v o

    f i l t e r

    r e v e a l e d s i g n i f i c a n t a m o u n t s o f

    s o f t ge l on t he downs t ream s i de o f t he sc reen . F i l t e r r a t i o m ea su re me nts o f

    t h e f u e l i n d i c a t e d l e v e l s

    o f

    40

    f rom

    t h e

    f u e l

    tank and

    1 1

    f rom

    l o c a t i o n s

    downstream of t h e boost pumps.

    F l i g h t T es ts

    F l i g h t

    t e s t

    da ta was an a lyzed

    f rom

    t h e 6-720 a i r c r a f t o p e r a t i n g a l t e r n a t i v e l y

    w i t h J e t

    A

    and

    AMK

    du r i ng f l i g h t 9 on Sep tember 18,1984 . F i g u r e 19 shows Je t

    A

    a nd de gr ad ed AMK t e s t p o i n t s p l o t t e d w i t h

    a

    t y p i c a l b a s e l i n e JT3C-7 e n g i n e

    pe r fo rmance cu rve

    f o r

    a s t a n d a r d d ay a t s e a l e v e l

    s t a t i c c o n d i t i o n s . The

    per fo rmance o f t h e f o u r f l i g h t

    t e s t

    p o i n t s i n te rm s of t s p e e d , f u e l

    flow

    W F ) , and exhaus t gas tempera ture ( E . G . T . )

    i s

    h i g h e r t h e n t h e t y p i c a l J T 3 C - 7

    sea l e v e l s t a t i c (S.L.S.) per fo rmance. Th is d i f fe re n ce was expec ted because:

    1 )

    t h e f l i g h t t e s t d a t a a re a t a pp ro xi ma te ly

    0.3

    Mn r a t h e r t h a n a t

    S . L . S . ,

    2)

    t h e f l i g h t e n g in e s h ad un d o ub t ed l y d e t e r i o r a t e d due t o age and h igh-eng ine

    t imes and

    3)

    t h e f l i g h t e ng in es c o u l d d i f f e r due t o i n s t a l l e d e f f e c t s ( a i r

    b l e e d , p o we r e x t r a c t i o n e t c . ) . H ow ev er, t he s l o p e o f t h e f l i g h t t e s t d a ta

    a gr ee s c l o s e l y w i t h t h e t y p i c a l

    eng ine s l ope and t he re i s e s s e n t i a l l y n o

    d i f f e r e n c e i n p e r fo rm a nc e b etw een

    AMK

    and Jet

    A

    f u e l .

    12,000

    10,000

    a

    I,

    5

    8000

    2

    5

    2.

    8 6000-

    u

    4000

    2000

    0

    4

    160

    M

    a

    u

    ;

    400-

    3

    Q:

    5

    2 1200-

    v

    c1

    1.5

    2 0 2 5

    3.0

    ENGINE PRESSURE RATIO, PT,/PT,

    1 o

    -

    -

    -

    -

    -

    FLIGHT

    TEST

    DATA 9~18-84

    ET A

    MN=.3

    A AMK MNZ.3

    0 0 0 ~.5 3.0

    I 1 0 1 5 2.0

    ENGINE PRESSURERATIO. PT,IP~,

    F i g u r e 1 9

    F l i g h t T e s t Data Compared

    t o

    B a s e l i n e P e r fo r m a nc e

    29

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    34/48

    C I D T e s t

    Data taken f rom t h e 8-720 t e s t a

    t h e C I D

    t e s t

    on December 1 , 1984

    be fo re q round impac t . Th ree da ta

    r c r a f t o p er a t in g

    were ana lyzed

    t o

    p o i n t s r e p r e s e n t

    s e l e c t e d f o r each o f t h e f o u r e n q i n es . The D o i n t s

    w i t h AMK d u r i ng f l i g h t 15 o f

    e v a l u a t e e n g i n e p e r f o r m a n c e

    n g t h r e e p ow er l e v e l s w ere

    r a n g e d from Mn 0.15 t o 0.25

    a t a l t i t u d e s o f

    2000

    to

    4500

    fee t . The lowest p ow er p o i n t s e l e c t e d was r e c o r d e d

    t h r e e seconds b e f o r e g ro un d i m p a ct . The r e s u l t s a r e p l o t t e d i n F i g u r e 20 and

    were compared t o t h e d a t a ta ke n d u r i n g f l i g h t 9 and t o a t y p i c a l u n i n s t a l l e d

    b a s e l i n e

    for

    a JT3C-7 en gin e. Th is

    c om pa ris on showed n o s i g n i f i c a n t d i f f e r e n c e

    i n e n g in e p er fo rm a nc e f o r C I D f l i g h t s 9 and 15.

    The f o u r f l i g h t e ng in e s us ed

    d u r i n g t h e

    C I D

    pe r fo rmed as expec ted .

    NPICA L JT3C-7 ENGINE

    PERFORMANCE (STANDARD

    DAY SEA LEVEL STATIC)

    10.000

    U

    FLIGHT TEST DATA

    9-18-84

    ET A MN I O

    A MK MN= 0 3

    v

    m

    V

    6

    CID FLIGHT 15

    12-1-84

    MN

    0 15 TO 0

    5

    NG NO 1

    NG NO 2

    h NG NO 3

    6 NG NO 4

    I I

    I -I

    2 0 2 5 3 0

    1 5

    5000

    10

    ENGINE PRESSURE RATIO, P T ~ / P T ~

    l 2 * O o 0 r

    FLIGHT TEST

    D A T A

    9-18-84

    /

    PERFORMANCE (STANDARD

    ET A MN 0.3

    A

    MK

    MN o 3 WPICA L JT3C-7 ENGINE

    I

    DAY SEA L EVEL STATIC)

    10,000

    CID FLIGHT 15 12-1 84

    MN 0.15 TO 0.25

    v)

    9 8000 ENG NO. 2

    ENG NO. 3

    0 ENG NO. 4

    -

    U

    U

    8 6000

    I,

    5

    4000

    I a

    3

    SECONDS

    RFFORE IMPACT

    600

    /

    YPICAL JT3C-7 ENGINE

    PERFORMANCE STANDARD

    DAY SEA LEVEL STATIC)

    I

    I 1

    2 0

    2 5

    3.0

    1 0 1.5

    ENGINE PRESSURE

    RATIO,

    PT,/PT12

    F igu re 20

    F l i g h t a n d C I D T e s t Data Compared to Base l i ne Pe r fo rmance

    30

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    35/48

    CONCLUDING

    REMARKS

    f u e l c h a r a c t e r i z a t i o n s and a re v i e w

    o f

    JT3C-7 eng,ne pe r form anc e a r e

    documented for a B-720 t e s t a i r p l a n e o p er at ed on an a n t i m i s t i n g k er os en e

    AMK )

    f u e l .

    The f o u r e n g i n e s w e r e m o d i f i e d b y a dd in g a f u e l d e g r ad i n g s y st em t o

    i m p r o v e t h e

    f l o w

    q u a l i t i e s

    o f

    t h e f u e l i n t h e en g in e . These e v a l u a t i o n s w e r e

    made

    fo r

    a g r o u n d t e s t e n g i n e a n d

    for

    t h e f l i g h t e ng in es , c u l m in a t in g i n th e

    C o n t r o l l e d I m p a c t D e m o n s t r a t i o n ( C I D ) December 1 , 1984 . The fo l l o w in g r e s u l t s

    w e r e o b t a i n e d :

    o

    Flow

    c h a r a c t e r i z a t i o n t e s t s on de gra ded

    AMK

    f u e l sa mples i n d i c a t e d l e v e l s

    o f d e g r a d a t i o n s a t i s f a c t o r y

    for

    t h e p l a n n e d s e a l e v e l

    e n g i n e t e s t s a n d

    s h o r t f l i g h t t im e, low a l t i t u d e m i s s i o n s of t h e 8-720 a i r c r a f t .

    o

    T h e o p e r a b i l i t y a n d p e r f o r m a n c e

    of

    t he JT3C-7 eng ines op er a t in g on

    degraded

    AMK

    were comparable

    to

    r e s u l t s w i t h J e t

    A

    f o r

    t h e f l i g h t

    c o n d i t i o n s a s s e s s e d d u r i n g t h i s p r o g r a m .

    o

    The per formance

    of

    t h e f o u r f l i g h t eng ines d u r i n g f l i g h t and

    t o

    ground

    i mp ac t was s a t i s f a c t o r y f o r t h e

    C I D

    m i s s i o n .

    31

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    36/48

    APPEND I X

    A

    JT3C-7 ENG I NE

    32

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    37/48

    v

    v

    m

    .

    3

    l

    .

    -

    a

    L

    L L

    a

    .

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    38/48

    - a . .

    ORGDNAL PAGE IS

    4 O

    POOR

    QUALITY

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    39/48

    ORlGlN L

    P GE

    IS

    OF

    POOR QU LITY

    tu

    Y

    n

    n

    Q

    aJ

    aJ

    >

    I.

    aJ

    U

    m

    aJ

    L

    r

    LL

    35

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    40/48

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    41/48

    7

    ORlGlM L

    P GE

    IS

    O

    POOR

    QU LITY

    m

    W

    a

    _

    c

    -c

    m

    In

    a

    a

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    42/48

    A P P E N D I X

    B-1

    d r a i n o u t o f t h e t u b e . The t i m e r e q u i r e d for t he men i scus o f t h e f u e l

    t o

    pass

    between the two r e f e re nc e marks on t he t u be was rec o rded . Th i s p roced u re was

    PROCEDURE

    FOR D E T E R M I N I N G

    FILTER

    R A T I O

    38

    I

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    43/48

    a i

    39

    a

    U

    .-

    I

    m

  • 7/17/2019 An timisting Fuel System Kerosene JT3 Engine Integration Study

    44/48

    A P P E N D I X 8-2

    1 .

    2.

    3.

    4.

    5 .

    6.

    7.

    PROCEDURE FOR D E T E R M I N I N G TH E T R A N S I T I O N VELOCITY

    ( A

    Measure

    o f AMK

    D e g r a