An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

Embed Size (px)

Citation preview

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    1/56

    QPCR Applications using StratageneQPCR Applications using Stratageness

    Mx RealMx Real--Time PCR PlatformTime PCR Platform

    Dan Schoeffner, Ph.DField Applications Scientist

    [email protected]

    Tech. Services 800-894-1304

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    2/56

    PolymerasePolymerase

    ChainChainReactionReaction

    Melt

    Anneal primers

    Melt

    Anneal

    +

    Extension/Measure

    Gene of

    interest

    (Amplicon)

    DNADNA

    Forward and

    Reverse Primers

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    3/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    4/56

    Influence of Reaction EfficiencyInfluence of Reaction Efficiency

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    5/56

    Cycle #

    Fluoresce

    nce(R)

    BaselineRaw Signal (R)

    CCtt = Fractional PCR cycle number at which the fluorescenceintensity crosses the established threshold line.

    A 1CCtt difference between samples represents 2x2x more transcript

    Ct

    Threshold

    Typical PCR Amplification PlotTypical PCR Amplification Plot

    Amplifica

    tion

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    6/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    7/56

    GelGel--based quantificationbased quantification

    1

    2

    21

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    8/56

    RealReal--time quantificationtime quantification

    1

    2

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    9/56

    UnpredicableUnpredicableAmplification Plots withAmplification Plots with

    Endpoint AnalysisEndpoint Analysis

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    10/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    11/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    12/56

    Quantitative PCR ChemistriesQuantitative PCR Chemistries

    SYBR Green

    TaqManMolecular Beacons

    Lux primersHybridization probes

    ScorpionsTM

    Amplifluor probes

    FRET

    dsDNA Binding

    Probe Based

    Detection

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    13/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    14/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    15/56

    SYBR greenSYBR green

    SYBR Green ISYBR Green I Thermal ProfileThermal Profile

    Activation Amplification Dissociation

    Raw Fluorescence [R]

    Negative First Derivative [-R(T)]

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    16/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    17/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    18/56

    LinearLinearTaqmanTaqman Probe ModificationsProbe Modifications

    Increase thermal duplex stability

    Improve specificity

    Raise Tm by up to 8C per LNA

    Allow shorter probe design (~13bp)

    (www.proligo.com)

    2'-O, 4'-C methylene bridge locksconformation

    O

    BaseO

    O

    PO O-

    O

    BaseO

    O O

    PO O-

    DNA LNA

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    19/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    20/56

    Analysis term settingsAnalysis term settings

    AlgorithmsAlgorithms

    Developed using real Q-PCR training data, establish

    settings and ranges Performs optimally for the majority of the

    fluorescence signal analyzed

    Allows a user to analyze the raw data using the samemethod over time, identify trends

    Easier to justify settings for validation, QA/QC

    purposes

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    21/56

    Threshold ValueThreshold Value

    Separates the data from the noise.Separates the data from the noise.Valid for Ct calculations if placedValid for Ct calculations if placed

    during exponential amplification.during exponential amplification.

    3 Options:3 Options: Amplification basedAmplification based

    threshold (Minimizesthreshold (Minimizesvariability betweenvariability betweenreplicates)replicates)

    10 times the noise during10 times the noise duringearly cycles.early cycles.

    Manual (click and drag)Manual (click and drag)

    On exponential phase.On exponential phase.

    Lines are parallel.Lines are parallel. Minimize variabilityMinimize variability

    ThresholdThreshold Amplification BasedAmplification Based

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    22/56

    ThresholdThreshold-- Amplification BasedAmplification Based

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    23/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    24/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    25/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    26/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    27/56

    G l St t f N QPCRGeneral Strategy for New QPCR

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    28/56

    General Strategy for New QPCRGeneral Strategy for New QPCR

    Assay DevelopmentAssay Development Plan to optimize assay using SYBR Green

    chemistry SYBR melt curve will yield PCR specificity infothat probe based detection will not

    Attempt to constrain assays to a commonthermal profile for convenience

    Design amplicons compatible with probe

    chemistry for possible future use in amultiplex QPCR format

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    29/56

    Fi t A T ti Oli

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    30/56

    First AssayFirst Assay -- TestingTesting OligosOligos

    First assay should be a standard curve run to test primers

    and overall assay performance

    Dilution series, (1:5) X 6 points in triplicate, negativecontrols

    150 to 300nM primers, ~100 ngs of template

    (25nM to 1000nM) (25ngs to 250ngs)

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    31/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    32/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    33/56

    P i S l tiP i S l ti

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    34/56

    Primer SelectionPrimer Selection

    Try to achieve similar Tm for all primers: Ideal ~60C.(Future multiplexing or use of Taqman assays in mind)

    Forward and reverse primer should have Tm -4kcal/mol to avoid stable primer dimers

    Design via software (Always use the same one):

    Always perform a BLAST search with your amplicon andprimers( Specificity of the PCR)

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    35/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    36/56

    QPCR Assay ControlsQPCR Assay Controls

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    37/56

    QPCR Assay ControlsQPCR Assay Controls

    Initial efforts should identify good controlmaterials to run during assay setup and

    validation Establish a range of acceptable QPCR

    performance data

    Controls will dictate what data is good orbad and what should be included in down-stream analysis.

    Justification for omitting data or re-assay

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    38/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    39/56

    QPCR Assay ControlsQPCR Assay Controls

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    40/56

    yPassive Reference FluorPassive Reference Fluor-- ExampleExample

    Signal uniformity across 96 replicate wells

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    41/56

    QPCR Assay ControlsQPCR Assay Controls

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    42/56

    Passive Reference FluorPassive Reference Fluor-- ExampleExample

    ~8% CV of Raw (R)

    Fam Signal across 96 wells

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    43/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    44/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    45/56

    QPCR Assay ControlsQPCR Assay ControlsN ti QPCR C t lN ti QPCR C t l

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    46/56

    No Template controls (NTC) No cDNA added to QPCR reaction

    Detects primer dimer, contaminating template,or probe degradation across cycles

    No Reverse Transcription Control (NoRT)

    RNA sample undergoing reaction w/o RT Detects contaminating gDNA in RNA

    No Amplification Control (NAC)

    No Taq DNA polymerase added to QPCRreaction

    May indicate high background

    Negative QPCR ControlsNegative QPCR Controls

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    47/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    48/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    49/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    50/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    51/56

    QPCR Assay Control SpecificityQPCR Assay Control SpecificityN ti QPCR C t lN ti QPCR C t l

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    52/56

    Negative QPCR ControlNegative QPCR Control

    NTC

    NoRT

    BAD !

    gDNAPrimer

    dimers

    QPCR Assay ControlQPCR Assay Control

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    53/56

    Assay controls are the main determinant of

    data quality

    Provide leverage for troubleshooting,

    allows you to regain assay performancequickly

    Easy to prepare, requires up-front effort,

    worth the work in the long term

    QPCR Assay ControlQ y

    SummarySummary

    QPCR Listserver

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    54/56

    QPCR Listserver

    [email protected]

    Contact Stratagene Technical Services

    (800) 894-1304, Pacific Standard Time

    [email protected]

    Webinars and Introduction to QPCR Guide:

    www.stratagene.com/fasttrack

    An Introduction to Stratagene's Mx QPCR Software

    Principle of Quantification by Real-Time PCR

    Assay Validation and Optimization

    Basic Assay Troubleshooting

    QPCR Assay Controls

    Critical Components of Assay Design

    Enhancements offered in Stratagenes MxPro QPCR Software

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    55/56

  • 7/27/2019 An Introduction to Real Time Pcr Qpcr Assay Design and Optimization

    56/56