51
6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA Jeffrey A. Jansen The Madison Group 608‐231‐1907 [email protected] 1 Goals Become familiar with how DMA can be used to identify the temperature dependency of polymeric materials. Gain insight into the use of DMA to evaluate and project the effects of time on polymeric materials. Understand how DMA can be used to assess the suitability of a material in the application. Introduction to DMA Jeffrey A. Jansen The Madison Group 608‐231‐1907 [email protected] 2 1 2

An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

1

An Introduction to                   Dynamic Mechanical Analysis

Jeffrey A. Jansen

June 13, 2019

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected] 1

Goals

• Become familiar with how DMA can be used to identify the temperature dependency of polymeric materials.

• Gain insight into the use of DMA to evaluate and project the effects of time on polymeric materials.

• Understand how DMA can be used to assess the suitability of a material in the application.

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

608‐231‐[email protected] 2

1

2

Page 2: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

2

Outline

• Fundamental Principle

• DMA Method

• Temperature‐related Property Evaluation

• Time‐related Property Evaluation

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected] 3

FUNDAMENTALS

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

608‐231‐[email protected] 4

3

4

Page 3: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

3

Viscoelasticity

• Because of the molecular structure of the molecules, thermoplastic materials have different properties compared to other materials, like metals.

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

Jeffrey A. [email protected]

The polymer molecules consist of very long chains – high molecular weight.

The individual polymer chains are entangled in each other.

The polymer chains are mobile and can slide past each other because they do not share chemical bonds with the other chains around them.

5

• Viscoelasticity is the property of materials that exhibit 

both viscous and elastic characteristics when 

undergoing deformation. 

• Viscous materials, like honey, resist shear flow and 

strain linearly with time when a stress is applied. 

• Elastic materials, like a  rubber band  steel rod, strain 

when stressed and quickly return to their original state 

once the stress is removed. 

• Viscoelastic materials have elements of both of these 

properties and, as such, exhibit time‐dependent strain.

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

Viscoelasticity

Jeffrey A. [email protected] 6

5

6

Page 4: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

4

Viscoelasticity

• There are three main factors that will affect the viscoelasticity of a plastic part:

Temperature, Time, and Strain Rate

• As the temperature is increased, the polymer chains are further apart, there is more free volume and kinetic energy, and they can slide past one another and disentangle more easily.

• As the strain rate is increased, the polymer chains do not have enough time to undergo yielding and they will disentangle.

• Over time, there is mobility between the polymer chains.

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

Jeffrey A. [email protected] 7

Viscoelasticity

Elastic Response

• Typical in classical solid materials

• Stress              Proportional deformation / strain

• σ = ε ∙ Ε (stress = strain x modulus)

• Response to applied stress: system stores the energy and can return it completely when the stress is removed

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected] 8

7

8

Page 5: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

5

Viscoelasticity

Elastic Response

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

ε

608‐231‐[email protected] 9

Viscoelasticity

Viscous Response

• Typical in classical fluids

• Stress              strain increases proportionally

• τ = γ ∙ η (stress = strain rate x viscosity)

• Response to applied stress: energy is lost to the system, strain is not recoverable

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

9

10

Page 6: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

6

Viscoelasticity

Viscous Response

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

ε

608‐231‐[email protected]

Viscoelasticity

Viscoelastic Response

• Thermoplastic materials

• Stress              proportional

• Response to applied stress: system stores energy and returns part of it when the stress is removed ‐ remaining energy is lost to the system, and is not recoverable

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

11

12

Page 7: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

7

Viscoelasticity

Viscoelastic Response

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

• Viscoelastic materials have elements of both of these properties and, as such, exhibit time‐dependent behavior

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

Viscoelasticity

Spring and dashpot model

608‐231‐[email protected]

13

14

Page 8: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

8

DMA

DMA

• Technique in which a small deformation is applied to a sample in a cyclic manner. This allows the material’s response to stress, temperature, frequency and other values to be studied. 

• Assesses the proportion of elastic and viscous components in a polymer

• Determines the factors that change this balance 

• How will a material perform in a given application environment

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

DMA

DMA

Applies a sinusoidal deformation to a sample of known 

geometry. The sample can be subjected by a controlled stress or a controlled strain. For a known stress, the sample will then deform a certain amount. How much it deforms is related to its stiffness (modulus). A force motor is used to generate the sinusoidal wave and this is transmitted to the sample via a drive shaft. 

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

15

16

Page 9: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

9

DMA 

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

Elastic System Viscous System

608‐231‐[email protected]

DMA

DMA applies an oscillatory load to a sample to evaluate the strain response to stress. 

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

17

18

Page 10: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

10

DMA

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

Viscoelastic System

608‐231‐[email protected]

DMA

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

For a viscoelastic material, the stress and strain will be out of phase by some quantity known as the phase angle – common referred to as delta (δ).

Small phase angle – highly elasticLarge phase angle – highly viscous

608‐231‐[email protected]

19

20

Page 11: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

11

DMA

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

Complex response of the material is resolved into:

E’           elastic or storage modulus (tensile)The ability of the material to store energy.

E’’          viscous or loss modulus (tensile)

The ability of the material to dissipate energy.  

Tan δ E’’ / E’Measure of material damping

608‐231‐[email protected]

DMA

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

21

22

Page 12: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

12

TEMPERATURE  DEPENDENCY  

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

608‐231‐[email protected]

DMA Methodology

Temperature Sweep

• ASTM D4065– Step Method

– Continuous Heating Method

• Shear– Uncured Crosslinkable Materials

– Adhesives

– Pastes

• Flex / Tensile ‐ Consistency– Solid‐state Performance

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

23

24

Page 13: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

13

DMA Methodology

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

DMA Methodology

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

25

26

Page 14: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

14

Temperature Sweep

Storage Modulus

• Contribution of the elastic component in the polymer – store energy under conditions of stress

• Stiffness of the material – resistance to strain

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

Modulus

• Modulus over a temperature range

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

25.00°C2479MPa

0

500

1000

1500

2000

2500

3000

Sto

rag

e M

od

ulu

s (M

Pa

)

-50 0 50 100 150

Temperature (°C)

Sample: PolycarbonateSize: 35.0000 x 12.9100 x 3.3100 mmMethod: temp ramp -60 to 175 C at 2c/mi

DMARun Date: 06-Feb-2015 11:32Instrument: DMA Q800 V21.1 Build 51

Universal V4.7A TA Instruments

608‐231‐[email protected]

27

28

Page 15: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

15

100.00°C1912MPa

25.00°C2479MPa

0.00°C2574MPa

0

500

1000

1500

2000

2500

3000

Sto

rag

e M

od

ulu

s (M

Pa

)

-50 0 50 100 150

Temperature (°C)

Sample: PolycarbonateSize: 35.0000 x 12.9100 x 3.3100 mmMethod: temp ramp -60 to 175 C at 2c/mi

DMARun Date: 06-Feb-2015 11:32Instrument: DMA Q800 V21.1 Build 51

Universal V4.7A TA Instruments

Modulus

• Modulus over a temperature range

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

100.00°C1912MPa

25.00°C2479MPa

0.00°C2574MPa

0

500

1000

1500

2000

2500

3000

Sto

rag

e M

od

ulu

s (M

Pa

)

-50 0 50 100 150

Temperature (°C)

Sample: PolycarbonateSize: 35.0000 x 12.9100 x 3.3100 mmMethod: temp ramp -60 to 175 C at 2c/mi

DMARun Date: 06-Feb-2015 11:32Instrument: DMA Q800 V21.1 Build 51

Universal V4.7A TA Instruments

Modulus

• Modulus over a temperature range

• Superior to tensile testing

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

29

30

Page 16: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

16

0.00°C9133MPa

25.00°C6611MPa

100.00°C3728MPa

2000

4000

6000

8000

10000

12000

14000

Sto

rag

e M

od

ulu

s (M

Pa

)

-50 0 50 100 150

Temperature (°C)

Sample: Nylon 6 - 30% GFSize: 35.0000 x 12.0600 x 3.0500 mmMethod: temp Ramp -40 to 175 C at 2c/mi

DMARun Date: 31-Dec-2013 10:46Instrument: DMA Q800 V20.9 Build 27

Universal V4.7A TA Instruments

Modulus

• Modulus over a temperature range

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

0.00°C9133MPa

25.00°C6611MPa

100.00°C3728MPa

2000

4000

6000

8000

10000

12000

14000

Sto

rag

e M

od

ulu

s (M

Pa

)

-50 0 50 100 150

Temperature (°C)

Sample: Nylon 6 - 30% GFSize: 35.0000 x 12.0600 x 3.0500 mmMethod: temp Ramp -40 to 175 C at 2c/mi

DMARun Date: 31-Dec-2013 10:46Instrument: DMA Q800 V20.9 Build 27

Universal V4.7A TA Instruments

Modulus

• Modulus over a temperature range

• Superior to tensile testing

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

31

32

Page 17: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

17

Modulus

• Comparison of two materials

• Modulus cross‐over

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

1

10

100

1000

10000

Sto

rag

e M

od

ulu

s (M

Pa

)

-50 0 50 100 150

Temperature (°C)

PC––––––– PC / PBT Blend–––––––

Universal V4.7A TA Instruments

608‐231‐[email protected]

Molecular Structure

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

• Structural information

608‐231‐[email protected]

33

34

Page 18: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

18

Molecular Structure

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

• Structural information

608‐231‐[email protected]

Molecular Structure

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

• Structural information

Amorphous

Semi‐crystalline

Crosslinked

Tg

Tg

608‐231‐[email protected]

35

36

Page 19: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

19

Molecular Structure

0

500

1000

1500

2000

2500

3000

Sto

rage

Mod

ulu

s (M

Pa

)

-50 0 50 100 150

Temperature (°C)

Polycarbonate––––––– Nylon 6–––––––

Universal V4.7A TA Instruments

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

• Amorphous vs. Semi‐crystalline –structural

Amorphous

Semi‐crystalline

TgTg

608‐231‐[email protected]

Viscous Properties

Loss Modulus

• Contribution of the viscous component in the polymer – flow under conditions of stress

• Creep / cold flow or stress relaxation

• Not the derivative of the storage modulus

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

37

38

Page 20: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

20

Viscous Properties

Tan Delta

• Comparison of polymers where storage and loss moduli are subject to change because of alterations on composition, geometry, or processing conditions

• Index of viscoelasticity

• Unitless / dimensionless

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

Glass Transition

0.5

1.0

1.5

2.0

Tan

De

lta

0

100

200

300

400

Loss

Mod

ulu

s (M

Pa)

0

500

1000

1500

2000

2500

3000

Sto

rage

Mod

ulu

s (M

Pa

)

-50 -25 0 25 50 75 100 125

Temperature (°C)

Sample: ABSSize: 35.0000 x 9.9400 x 3.7000 mmMethod: temp Ramp to 120 C at 2c/min

DMARun Date: 06-Sep-2011 13:52Instrument: DMA Q800 V20.9 Build 27

Universal V4.7A TA Instruments

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

39

40

Page 21: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

21

Glass Transition

0.5

1.0

1.5

2.0

Tan

De

lta

0

100

200

300

400

Loss

Mod

ulu

s (M

Pa)

0

500

1000

1500

2000

2500

3000S

tora

ge M

odu

lus

(MP

a)

-50 -25 0 25 50 75 100 125

Temperature (°C)

Sample: ABSSize: 35.0000 x 9.9400 x 3.7000 mmMethod: temp Ramp to 120 C at 2c/min

DMARun Date: 06-Sep-2011 13:52Instrument: DMA Q800 V20.9 Build 27

Universal V4.7A TA Instruments

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

Glass Transition

0.5

1.0

1.5

2.0

Tan

De

lta

0

100

200

300

400

Loss

Mod

ulu

s (M

Pa)

0

500

1000

1500

2000

2500

3000

Sto

rage

Mod

ulu

s (M

Pa

)

-50 -25 0 25 50 75 100 125

Temperature (°C)

Sample: ABSSize: 35.0000 x 9.9400 x 3.7000 mmMethod: temp Ramp to 120 C at 2c/min

DMARun Date: 06-Sep-2011 13:52Instrument: DMA Q800 V20.9 Build 27

Universal V4.7A TA Instruments

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

Rapid rise in E’’ indicates an increase in polymer structural mobility – motion within the molecules ‐ relaxation

608‐231‐[email protected]

41

42

Page 22: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

22

Glass Transition

0.5

1.0

1.5

2.0

Tan

De

lta

0

100

200

300

400

Loss

Mod

ulu

s (M

Pa)

0

500

1000

1500

2000

2500

3000S

tora

ge M

odu

lus

(MP

a)

-50 -25 0 25 50 75 100 125

Temperature (°C)

Sample: ABSSize: 35.0000 x 9.9400 x 3.7000 mmMethod: temp Ramp to 120 C at 2c/min

DMARun Date: 06-Sep-2011 13:52Instrument: DMA Q800 V20.9 Build 27

Universal V4.7A TA Instruments

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

During the glass transition non‐crystalline and non‐crosslinked polymer segments attain high level of freedom – flow or movement under stress

608‐231‐[email protected]

Glass Transition Temperature

• DMA provides best measurement technique – direct assessment of molecular changes within the material

• Onset of sharp reduction in storage modulus –practical effect of temperature on load‐bearing capabilities

• Loss modulus peak temperature – corresponds well with other thermal analysis techniques,    ASTM D 4065

• Tan Delta peak temperature  ‐ material has highest ratio of flow to storage – the point of highest realtiveviscous contribution

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

43

44

Page 23: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

23

Glass Transition Temperature

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

• Polycarbonate

• Determining the glass transition temperature (Tg)

138.86°C

146.62°C152.84°C

0.5

1.0

1.5

2.0

Ta

n D

elta

0

100

200

300

400

500

Lo

ss M

odu

lus

(MP

a)

0

500

1000

1500

2000

2500

3000

Sto

rag

e M

od

ulu

s (M

Pa

)

50 100 150

Temperature (°C)

Sample: PCSize: 35.0000 x 12.9100 x 3.3100 mmMethod: temp ramp -60 to 175 C at 2c/mi

DMARun Date: 06-Feb-2015 11:32Instrument: DMA Q800 V21.1 Build 51

Universal V4.7A TA Instruments

608‐231‐[email protected]

Glass Transition Temperature

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

96.28°C

104.60°C

113.36°C

0.5

1.0

1.5

2.0

Ta

n D

elta

0

100

200

300

400

Lo

ss M

odu

lus

(MP

a)

0

500

1000

1500

2000

2500

3000

Sto

rag

e M

od

ulu

s (M

Pa

)

-50 -25 0 25 50 75 100 125

Temperature (°C)

Sample: ABSSize: 35.0000 x 9.9400 x 3.7000 mmMethod: temp Ramp to 120 C at 2c/min

DMARun Date: 06-Sep-2011 13:52Instrument: DMA Q800 V20.9 Build 27

Universal V4.7A TA Instruments

• ABS

• Determining the glass transition temperature (Tg)

608‐231‐[email protected]

45

46

Page 24: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

24

Alloy or Blend

• PPO / PS Resin Blend

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

22.00°C330.3kPSI

144.20°C

temperature rampheat 2°C/min from 15°C to 150°C40 um at 1 Hzdual cantilever

0.2

0.4

0.6

0.8

1.0

Tan

Del

ta

0

10

20

30

40

50

Loss

Mod

ulus

(kP

SI)

0

100

200

300

400

Sto

rage

Mod

ulus

(kP

SI)

0 20 40 60 80 100 120 140 160

Temperature (°C)

Sample: Noryl 731 tensile barSize: 35.0000 x 12.4700 x 3.0700 mm DMA

File: T:\_DMA\2012\ENB013385P.405Operator: MKKInstrument: DMA Q800 V20.9 Build 27

Universal V4.5A TA Instruments

Tg 215°C

Tg 100°C

Resin Alloy: Single Tg 144 °C

Resin Blend: Two Tg

608‐231‐[email protected]

Impact Resistance

• Secondary transition –short range molecular mobility

• Energy absorption – impact properties

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

-4.26°C

2.39°C

0.01

0.02

0.03

0.04

Tan

Del

ta

0

20

40

60

80

100

Los

s M

odu

lus

(MP

a)

0

500

1000

1500

2000

2500

3000

Sto

rage

Mo

dulu

s (M

Pa)

-50 -25 0 25 50 75 100

Temperature (°C)

Sample: ABSSize: 35.0000 x 9.9400 x 3.7000 mmMethod: temp Ramp to 120 C at 2c/min

DMARun Date: 06-Sep-2011 13:52Instrument: DMA Q800 V20.9 Build 27

Universal V4.7A TA Instruments

608‐231‐[email protected]

47

48

Page 25: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

25

Impact Resistance

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

Impact Modifier Effectiveness

608‐231‐[email protected]

Impact Resistance

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

Los

s M

odu

lus

(MP

a)

-5 0 0 5 0 1 0 0 1 5 0 2 0 0T e m p e ra tu re (° C )

G o o d Im p a c t P ro p e r tie s - 2 0 0 6– – – – – – – P o o r Im p a c t P ro p e rtie s - 2 0 1 5– – – – – – –

U n iv e r s a l V 4 .7 A T A In s t ru m en ts

Use Temperature 55 °C

Aromatic Nylon Resin

608‐231‐[email protected]

49

50

Page 26: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

26

Solvent‐induced Rearrangement

• Figure 4: As‐molded PC – typical results. Rom  Modulus at 25 °C ‐ 340 kpsi.

• Figure 5:  Altered behavior after the PC has been exposed to cyclohexanone – major ingredient in adhesive bonding agent. Modulus at 25 °C reduced to 315 kpsi. More importantly, the presence of a preliminary relaxation that occurs between 40°C and 80°C with a peak near 60°C. The elastic modulus reduction associated with this transition represents a 40% decline and is associated with a greater degree of molecular mobility within the polymer matrix as a result of contact with the cyclohexanone.

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

Plastic TodayThe Materials Analyst, Part 114: The challenge of bonding plastic components in medical devicesBy Michael SepePublished: February 17th, 2010

608‐231‐[email protected]

TIME  DEPENDENCY  

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

608‐231‐[email protected]

51

52

Page 27: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

27

Creep

Creep is…..

the tendency of a solid material to deform permanently under the influence of constant stress (tensile, compressive, shear, or flexural). It occurs as a function of time through extended exposure to levels of stress that are below the yield strength of the material. 

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

608‐231‐[email protected]

Creep

• Low to moderate forces exerted over an extended me → lower duc lity.  Can result in bri le fracture 

in normally ductile plastics

• Inherent viscoelastic nature of polymers leads to time dependency

• Prolonged static stresses lead to a decay in apparent modulus through localized molecular reorganization of polymer chains

• At stresses below the yield point molecular reorganization includes disentanglement as there is no opportunity for yielding 

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

608‐231‐[email protected]

53

54

Page 28: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

28

Creep

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

Time

Stress

1,000 psi

5,000 psi

7,500 psi

2,500 psi

9,000 psi

10,000 psiDuctile Failure

Brittle Failure

Yield Point

Source: “Understanding the Consequence of Ductile-to-Brittle Transitions in a Plastics Materials Failure”, Published and Presented at ANTEC, 2008

608‐231‐[email protected]

Creep

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

Graph from Smithers RAPRAhttp://www.rapra.net

608‐231‐[email protected]

55

56

Page 29: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

29

Creep

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

0 0

Metal Plastic

Initial Placement

Stress Stress

608‐231‐[email protected]

Creep

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

300 45

Metal Plastic

Initial Placement

Initial Deformation

Day 1Stress Stress

608‐231‐[email protected]

57

58

Page 30: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

30

Creep

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

300 45

Metal Plastic

Initial Placement

Initial Deformation

Day 10Stress Stress

608‐231‐[email protected]

Creep

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

300 45

Metal Plastic

Initial Placement

Initial Deformation

Day 100Stress Stress

608‐231‐[email protected]

59

60

Page 31: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

31

Creep

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

Metal Plastic

0 0

Day 100Stress Stress

608‐231‐[email protected]

Creep

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

0 0

Metal Plastic

Initial Placement

Initial Deformation

Stress Stress

608‐231‐[email protected]

61

62

Page 32: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

32

Creep Rupture

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

300 45

Metal Plastic

Initial Placement

Initial Deformation

Day 100Stress Stress

608‐231‐[email protected]

Creep Rupture

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

300 45

Metal Plastic

Initial Placement

Initial Deformation

Day 1000 ??Stress Stress

608‐231‐[email protected]

63

64

Page 33: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

33

Viscoelasticity

• If a polymeric material is under constant stress or strain, a continual change in the apparent modulus is observed.

• The modulus (tangent modulus or Young’s modulus) of a material is expressed as the applied stress divided by the resulting strain.

• The modulus value is the slope of the stress/strain curve in the linear region of the curve.

• Under constant stress this is observed in the form of an increasing level of strain, known as creep.

• Under constant strain this is observed in the form of an decreasing level of apparent stress, known as stress relaxation.

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

608‐231‐[email protected]

Viscoelasticity

• When a material is placed under a constant stress or strain, the response observed initially will be a function of the modulus of the material. 

• If stress is continuously applied, strain will continually increase. Therefore, the calculated modulus at a point later in time will appear to have decreased.  However, the stiffness of the material is not actually decreasing.  

• Apparent modulus is the apparent stiffness of the material and is a mathematical artifact for describing the effect of a constant stress on the manner and the corresponding  increase in strain over time.

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

608‐231‐[email protected]

65

66

Page 34: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

34

Time and Temperature

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

Time and Temperature have the same effect 

on Plastics

608‐231‐[email protected]

0.5

1.0

1.5

2.0

Tan

Del

ta

0

100

200

300

400

Loss

Mod

ulus

(M

Pa)

0

500

1000

1500

2000

2500

Sto

rage

Mo

dulu

s (M

Pa)

-50 0 50 100 150Tem perature (°C ) Universal V4.7A TA Instrum ents

Time and Temperature

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

608‐231‐[email protected]

67

68

Page 35: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

35

0.5

1.0

1.5

2.0

Tan

Del

ta

0

100

200

300

400

Loss

Mod

ulus

(M

Pa)

0

500

1000

1500

2000

2500

Sto

rage

Mo

dulu

s (M

Pa)

-50 0 50 100 150Tem perature (°C ) Universal V4.7A TA Instrum ents

Time and Temperature

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

TIME – Scale Unknown

608‐231‐[email protected]

DMA‐TTS

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

0

500

1000

1500

2000

2500

3000

Fle

xura

l Mo

du

lus

(MP

a)

0 20 40 60 80 100 120 140 160

Temperature (°C)

Sample: PolyacetalSize: 35.0000 x 12.4800 x 3.1200 mmMethod: Creep TTS

DMARun Date: 18-Aug-2015 15:15Instrument: DMA Q800 V21.1 Build 51

Universal V4.7A TA Instruments

Time‐Temperature     Superposition

• Multiple fifteen‐minute determinations for at isothermal conditions 

• From 10 to 145°C increments of 5°C

• Evaluations conducted using a dual cantilever configuration 

• Stress of 1.9 MPa

608‐231‐[email protected]

69

70

Page 36: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

36

DMA‐TTS

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

• Plots of modulus versus decay time for each temperature

• Select temperature of interest

608‐231‐[email protected]

DMA‐TTS

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

• Build master curve by shifting individual plots

• Extends time

608‐231‐[email protected]

71

72

Page 37: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

37

DMA‐TTS

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

• Build master curve by shifting individual plots

• Extends time

608‐231‐[email protected]

DMA‐TTS

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

• Master curve represents apparent modulus over time

608‐231‐[email protected]

73

74

Page 38: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

38

Creep Projection

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

100

1000

10000

0.001 0.01 0.1 1 10 100 1000 10000 100000

Apparent Modulus (M

Pa)

Time (hours)

Apparent Modulus v. TimePolyacetal

Creep at 25 °C

• Master curve represents apparent modulus over time

• Log / log plot

608‐231‐[email protected]

Creep Projection

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

10 0

1 00 0

1 0 00 0

Sto

rag

e M

odul

us (

MP

a)

2 5 5 0 7 5 1 00 12 5 1 5 0Te m pe ra ture (°C )

S a m p le : P o lya c e ta lS ize : 3 5 .0 0 0 0 x 1 2 .4 8 0 0 x 3 .1 2 0 0 m mM e th o d : te m p ra m p -4 0 to 1 6 5 C a t 2 c /m i

D M AR u n D a te : 1 8 -A u g -2 0 1 5 1 0 :1 3In s tru m e n t: D M A Q 8 0 0 V 2 1 .1 B u ild 5 1

U n ivers a l V 4 .7A T A In s tru m en ts

• DMA temperature sweep matches well with master curve

608‐231‐[email protected]

75

76

Page 39: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

39

Creep Projection

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

0

500

1000

1500

2000

2500

0.001 0.01 0.1 1 10 100 1000 10000 100000

Apparen

t Modulus (M

Pa)

Time (hours)

Apparent Modulus v. TimePolyacetal

Creep at 25 °C

• Master curve as semi‐log plot

608‐231‐[email protected]

Creep Projection

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

0

10

20

30

40

50

60

70

80

90

100

0.0 2.0 4.0 6.0 8.0 10.0

Stress (psi)

Stress (MPa)

Strain (%)

PolyacetalTensile Stress ‐ Strain at 25 °C

Stress / Strain

Modulus

Yield

ProportionalLimit

• Tensile properties to establish modeling parameters

608‐231‐[email protected]

77

78

Page 40: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

40

Creep Projection

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

‐0.500

0.500

1.500

2.500

3.500

4.500

5.500

6.500

7.500

8.500

0.001 0.01 0.1 1 10 100 1000 10000 100000

Strain (%)

Time (hours)

Polyacetal‐ Strain v. TimeCreep at 25 °C15 MPa

20 MPa

• Use stress to determine strain over time

• Project time to cracking

Projected time to cracking:15 MPa: >200,000 hours (22.8 years)20 MPa: 45,700 hours (5.2 years)

608‐231‐[email protected]

Creep Projection

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

TimeMax Working 

Stresshours Mpa0.003 500.1 450.2 440.5 431 422 405 3910 3720 3650 34100 32200 31500 291000 272000 265000 2410000 2220000 2150000 19100000 18200000 17

608‐231‐[email protected]

79

80

Page 41: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

41

Creep Projection

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

0

500

1000

1500

2000

2500

0.001 0.01 0.1 1 10 100 1000 10000 100000

Apparen

t Modulus (M

Pa)

Time (hours)

Apparent Modulus v. TimePolyacetal 25

6070

• Able to model and compare multiple temperatures

608‐231‐[email protected]

0

1000

2000

3000

Sto

rag

e M

odu

lus

(MP

a)

25 50 75 100 125 150Tem perature (°C )

S am ple: P o lyace ta lS ize: 35 .0000 x 12.4800 x 3 .1200 m mM ethod: tem p ram p -40 to 165 C a t 2c /m i

D M AR un D ate: 18-A ug-2015 10 :13Ins trum ent: D M A Q 800 V21.1 B u ild 51

U niversal V 4.7A TA Instrum ents

Time and Temperature

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

1000 MPa

100 °C

608‐231‐[email protected]

81

82

Page 42: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

42

0

500

1000

1500

2000

2500

0.001 0.01 0.1 1 10 100 1000 10000 100000

Apparen

t Modulus (M

Pa)

Time (hours)

Apparent Modulus v. TimePolyacetal

Creep at 25 °C

Time and Temperature

Introduction to DMA Jeffrey A. Jansen                                  The Madison Group

1000 MPa

11,000 hours

608‐231‐[email protected]

Failure Example

• Failure of automotive aftermarket component

• Cracking observed in some parts after approx. 2 years, some longer

• Nylon 6/6 – 30% glass fiber reinforced

• Load bearing – predicted at 60 MPa, constant load application

• Not an under‐hood application

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group84

83

84

Page 43: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

43

Failure Example – Part 1

Introduction to DMA

• Partial cracking at design corner – adequate radius

Jeffrey A. Jansen                                  The Madison Group

85

Failure Example – Part 2

Introduction to DMA

• Glass oriented relatively randomly• Glass well bonded to polymer matrix

Jeffrey A. Jansen                                  The Madison Group

86

85

86

Page 44: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

44

Failure Example – Part 3

Introduction to DMA

• Similar fracture features on all parts examined• Fractography indicative of creep rupture failure

Jeffrey A. Jansen                                  The Madison Group

87

Creep Rupture Failure

• Consistent failure mechanism across all parts.• The cracking lacked significant macro and micro ductility. However, 

substantial ductility was present within the laboratory fracture and at isolated locations outside of the crack origins. Indicated that the material was not inherently brittle. Ductile‐to‐brittle transition.

• Multiple individual cracks formed within the component at a design corner – adequate radius. The cracks subsequently coalesced and propagated.

• The fracture characteristics were indicative of stresses that exceeded the long‐term strength of the material through a creep rupture mechanism. 

• Material analysis as expected  ‐ 30% glass fiber reinforced nylon 6/6– No molecular degradation– No contamination– Good crystallinity– Proper glass content

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group88

87

88

Page 45: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

45

DMA‐Creep Experiment

•Tensile strength: 172 MPa

•Predicted stress: 60 MPa

0

20

40

60

80

100

120

140

160

180

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Stress (psi)

Stress (MPa)

Strain (%)

Tensile Stress ‐ Strain at 23 °CNylon 6/6 30% Glass Fiber

Stress /Strain

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group89

0 5000 10000 15000psi

Anticipated Safety Margin

Stress

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group90

89

90

Page 46: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

46

0 5000 10000 15000psi

Actual Safety Margin – Time Zero

Stress

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group91

0 5000 10000 15000psi

Reduction of Apparent Strength over Time

Stress

Time

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group92

91

92

Page 47: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

47

Proposed Material Substitution

• Replacement of 30% glass fiber reinforced     nylon 6/6 with 

30% glass fiber reinforced polyarylamide (PARA)

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group93

DMA‐Nylon 6/6 30% Glass Fiber

• Modulus as expected

• Tg: 67 °C

• Looming loss of modulus

25.00°C8889MPa

66.83°C

0.02

0.04

0.06

0.08

Ta

n D

elta

0

200

400

600

Loss

Mo

dul

us

(MP

a)

2000

4000

6000

8000

10000

Sto

rag

e M

od

ulu

s (M

Pa)

-50 0 50 100 150 200 250Temperature (°C) Universal V4.7A TA Instrum ents

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group94

93

94

Page 48: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

48

DMA‐Polyarylamide 30% Glass Fiber

25.00°C11842M Pa

79.11°C

0.02

0.04

0.06

0.08

0.10

Ta

n D

elta

0

200

400

600

800

1000

1200

Lo

ss M

od

ulu

s (M

Pa

)

2000

4000

6000

8000

10000

12000

14000

Sto

rag

e M

od

ulu

s (M

Pa

)

-50 0 50 100 150 200 250Tem perature (°C ) Universal V4.7A TA Instrum ents

• Modulus as expected

• Tg: 79 °C (higher)

• Looming loss of modulus

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group95

DMA‐Comparison of Temperature Effects

25.00°C8889M Pa

25.00°C11842M Pa

0

2000

4000

6000

8000

10000

12000

14000

Sto

rage

Mod

ulus

(M

Pa

)

-50 0 50 100 150 200 250Tem perature (°C )

N ylon 6 /6 30% G lass F iber––––––– Polyarylam ide 30% G lass F iber–––––––

U niversa l V4.7A TA Instrum ents

• Higher initial modulus ‐structure

• Higher Tg ‐structure

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group96

95

96

Page 49: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

49

DMA‐Creep Experiments

• Master curves of apparent modulus vs. time show differences

• Consistent with relative temperature sweeps

0

2000

4000

6000

8000

10000

12000

0.001 0.01 0.1 1 10 100 1000 10000 100000

Apparen

t Modulus (M

Pa)

Time (hours)

Apparent Modulus v. TimeCreep at 25 °C

Polyarylamide30% Glass Fiber

Nylon 6/6 30% Glass Fiber

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group97

DMA‐Creep Experiments

• Strain vs. time at 60MPa

• Cracking in nylon 6/6 projected for 25,000 hours (2.85 years)

• No cracking projected for polyarylamidein 200,000 hours            (20+ years)

0.000

0.500

1.000

1.500

2.000

2.500

0.001 0.01 0.1 1 10 100 1000 10000 100000

Strain (%)

Time (hours)

Strain v. TimeCreep at 25  °C

Nylon 6/6 30% Glass Fiber

Polyarylamide 30% Glass Fiber

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group98

97

98

Page 50: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

50

Additional Testing

• Additional temperatures ‐ above ambient most critical

• Glass fiber orientation – longitudinal and transverse

• Knit lines

• Moisture content – dry‐as‐molded and conditioned

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group99

Limitations

• Testing performed on “ideal” samples. Factors that decrease material strength will reduce the predicted time or stress to produce failure:– Molecular degradation from service or molding ‐ oxidative or 

ultraviolet (UV) radiation – Environmental stress cracking– Transverse glass orientation– Inadequate molecular fusion from knit lines

• Models time to crack initiation. The actual time to catastrophic failure under the temperature and stress conditions modeled may be somewhat greater than those predicted by the model. for resins that exhibit an ultimate strain limit that is much greater than the yield strain.

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group100

99

100

Page 51: An Introduction to Dynamic Mechanical Analysis · 13-06-2019  · 6/13/2019 1 An Introduction to Dynamic Mechanical Analysis Jeffrey A. Jansen June 13, 2019 Introduction to DMA

6/13/2019

51

Questions?

Introduction to DMAJeffrey A. Jansen                                  

The Madison Group

Jeffrey A. JansenThe Madison Group608‐231‐[email protected]

THANK YOU

101

101