76
An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17, 2015 Bruno Salvy @ AriC

An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

  • Upload
    others

  • View
    18

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

An Introduction to Analytic Combinatorics

Meeting on Discrete StructuresDec. 17, 2015

Bruno Salvy @ AriC

Page 2: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

An Introduction to Analytic Combinatorics

Meeting on Discrete StructuresDec. 17, 2015

Bruno Salvy @ AriC

Page 3: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Combinatorics, Randomness and Analysis

From simple local rules, a global structure arises.

A quest for universality in random discrete structures:➡ probabilistic complexity of structures and algorithms.

Quantitative results using complex analysis.

2

Page 4: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Overview (1/2)

3

Page 5: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Overview (1/2)

3

Ex.: binary trees

Page 6: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Overview (1/2)

•Equations over combinatorial structures

3

Ex.: binary trees

B = Z [ B ⇥ B

Page 7: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Overview (1/2)

•Equations over combinatorial structures

•Generating functions

3

Ex.: binary trees

B = Z [ B ⇥ BF (z) =

1X

n=0

fnzn

B(z) = z +B(z)2

Page 8: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Overview (1/2)

•Equations over combinatorial structures

•Generating functions

•Complex analysis

3

Ex.: binary trees

B = Z [ B ⇥ BF (z) =

1X

n=0

fnzn

fn ⇠ · · · , n ! 1 B(z) = z +B(z)2

Bn ⇠ 4n�1n�3/2

p⇡

Page 9: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

Overview (2/2)

Page 10: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

Overview (2/2)Ex.: path length in

binary trees

Page 11: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

Overview (2/2)

• Equations over combinatorial structures + parameters

Ex.: path length in binary trees

Page 12: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

Overview (2/2)

• Equations over combinatorial structures + parameters

• Multivariate generating series

Ex.: path length in binary trees

F (z, u) =X

n,k

fn,kukzn

B(z, u) =X

t2T

upl(t)z|t|

= z +B2(zu, u)

P (z) :=@

@uB(z, u)

����u=1

Page 13: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

Overview (2/2)

• Equations over combinatorial structures + parameters

• Multivariate generating series

• Complex analysis

Ex.: path length in binary trees

F (z, u) =X

n,k

fn,kukzn

fn,k ⇠ · · · , n ! 1

B(z, u) =X

t2T

upl(t)z|t|

= z +B2(zu, u)

P (z) :=@

@uB(z, u)

����u=1

Bn ⇠ 4n�1n�3/2

p⇡

Pn ⇠ 4n�1

Pn

nBn⇠

p⇡n

Page 14: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

Overview (2/2)

• Equations over combinatorial structures + parameters

• Multivariate generating series

• Complex analysis

• Limiting distribution

Ex.: path length in binary trees

F (z, u) =X

n,k

fn,kukzn

fn,k ⇠ · · · , n ! 1Bn ⇠ 4n�1n�3/2

p⇡

Pn ⇠ 4n�1

Pn

nBn⇠

p⇡n

Page 15: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

I. From Combinatorics to Generating

Functions

5

Page 16: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Combinatorial specifications

6

Language: 1,𝒵, +, ⨉, SEQ, SET, CYC and recursion.

Page 17: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Combinatorial specifications

Binary trees: 𝓑=𝒵+𝒵⨉𝓑⨉𝓑

6

Language: 1,𝒵, +, ⨉, SEQ, SET, CYC and recursion.

Page 18: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Combinatorial specifications

Binary trees: 𝓑=𝒵+𝒵⨉𝓑⨉𝓑

Permutations: Perm=SET(CYC(𝒵));

6

Language: 1,𝒵, +, ⨉, SEQ, SET, CYC and recursion.

Page 19: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Combinatorial specifications

Binary trees: 𝓑=𝒵+𝒵⨉𝓑⨉𝓑

Permutations: Perm=SET(CYC(𝒵));

Trees: 𝓣=𝒵⨉SET(𝓣(𝒵));

6

Language: 1,𝒵, +, ⨉, SEQ, SET, CYC and recursion.

Page 20: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Combinatorial specifications

Binary trees: 𝓑=𝒵+𝒵⨉𝓑⨉𝓑

Permutations: Perm=SET(CYC(𝒵));

Trees: 𝓣=𝒵⨉SET(𝓣(𝒵));

Functional graphs: 𝓕=SET(CYC(𝓣(𝒵)));

6

Language: 1,𝒵, +, ⨉, SEQ, SET, CYC and recursion.

Page 21: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Combinatorial specifications

Binary trees: 𝓑=𝒵+𝒵⨉𝓑⨉𝓑

Permutations: Perm=SET(CYC(𝒵));

Trees: 𝓣=𝒵⨉SET(𝓣(𝒵));

Functional graphs: 𝓕=SET(CYC(𝓣(𝒵)));

Series-parallel graphs: 𝒢=𝒵+𝒮+𝒫, 𝒮=SEQ>0(𝒵+𝒫),𝒫=SET>0(𝒵+𝒮);

6

Language: 1,𝒵, +, ⨉, SEQ, SET, CYC and recursion.

Page 22: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Combinatorial specifications

Binary trees: 𝓑=𝒵+𝒵⨉𝓑⨉𝓑

Permutations: Perm=SET(CYC(𝒵));

Trees: 𝓣=𝒵⨉SET(𝓣(𝒵));

Functional graphs: 𝓕=SET(CYC(𝓣(𝒵)));

Series-parallel graphs: 𝒢=𝒵+𝒮+𝒫, 𝒮=SEQ>0(𝒵+𝒫),𝒫=SET>0(𝒵+𝒮);

...hundreds of examples in “the purple book”. 6

Language: 1,𝒵, +, ⨉, SEQ, SET, CYC and recursion.

Page 23: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Two kinds of Generating Functions

7

Inv[{1, 2, 3}] = 1 2

3

1 2

3

1 2

3

1 2

3

, , ,{ }4 involutions;

3 of them permuted by 𝔖3→ 2 unlabelled structures.

Exponential generating function:

Inv3(z) =2

3z3

Ordinary generating function:

˜

F(z) =1X

n=0

˜

fnzn, ˜

fn = nb. unlabelled of size n. fInv3(z) = 2z3

F(z) =1X

n=0

fnz

n

n!, fn = nb. labelled structs of size n.

Page 24: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

A Dictionary for Generating Functions

8

A(z) + B(z) A(z) + B(z)

A(z)⇥ B(z) A(z)⇥ B(z)1

1� A(z)

1

1� A(z)

exp(A(z)) exp(

XA(zi)/i)

log

1

1� A(z)

X �(i)

ilog

1

1� A(zi)

Structure EGF OGF

𝓐+𝓑

𝓐x𝓑

Seq(𝓐)

Set(𝓐)

Cyc(𝓐)

Language: 1,𝒵, +, ⨉, SEQ, SET, CYC and recursion.

Page 25: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

A Dictionary for Generating Functions

8

A(z) + B(z) A(z) + B(z)

A(z)⇥ B(z) A(z)⇥ B(z)1

1� A(z)

1

1� A(z)

exp(A(z)) exp(

XA(zi)/i)

log

1

1� A(z)

X �(i)

ilog

1

1� A(zi)

Structure EGF OGF

𝓐+𝓑

𝓐x𝓑

Seq(𝓐)

Set(𝓐)

Cyc(𝓐)

Language: 1,𝒵, +, ⨉, SEQ, SET, CYC and recursion.

Regular and context-free languages.

Page 26: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Examples

9

Binary trees:

Cayley trees:

Series-parallel graphs:

B = Z + Z ⇥ B ⇥ B

�! T (z) = z exp(T (z));

�! ˜T (z) = z exp

✓˜T (z) +

1

2

˜T (z2) +1

3

˜T (z3) + · · ·◆

G = Z + S + P,S = Seq>0(Z + P),P = Set>0(Z + S)

�!⇢G(z) = z + S(z) + P (z), S(z) =

1

1� z � P (z)� 1, P (z) = ez+S(z) � 1

�! B(z) = z + zB(z)2 = B(z)

T = Z ⇥ Set(T )

Page 27: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Examples

9

Binary trees:

Cayley trees:

Series-parallel graphs:

B = Z + Z ⇥ B ⇥ B

�! T (z) = z exp(T (z));

�! ˜T (z) = z exp

✓˜T (z) +

1

2

˜T (z2) +1

3

˜T (z3) + · · ·◆

G = Z + S + P,S = Seq>0(Z + P),P = Set>0(Z + S)

�!⇢G(z) = z + S(z) + P (z), S(z) =

1

1� z � P (z)� 1, P (z) = ez+S(z) � 1

�! B(z) = z + zB(z)2 = B(z)

T = Z ⇥ Set(T )

Page 28: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

II. Mini-introduction to complex analysis

10

Page 29: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Basic Definitions and Properties

• Def. f: D⊂ℂ→ℂ is analytic at a if it is the sum of a power series in a disk around a.

• Prop. f,g analytic at a, then so are f+g, fxg, f’.

• g analytic at a, f analytic at g(a), then f○g analytic at a.

• Same def and prop in several variables.

11

Page 30: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Examples

12

f analytic at 0? why

polynomial Yes

exp(x) Yes 1 + x+ x

2/2! + · · ·

11�x

Yes 1 + x+ x

2+ · · · (|x| < 1)

log

11�x

Yes x+ x

2/2 + x

3/3 · · · (|x| < 1)

1�p1�4x2x Yes 1 + · · ·+ 1

k+1

�2kk

�x

k

+ · · · (|x| < 1/4);

1x

No infinite at 0

log x No derivative not analytic at 0px No derivative infinite at 0

Page 31: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Analytic Continuation and Singularities

• Def. Analytic in a region (= connected, open, ≠ø): at each point.

• Prop. f analytic in R⊂S. There is at most one analytic function in S equal to f on R (the analytic continuation of f to S.)

13

Page 32: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Analytic Continuation and Singularities

• Def. Analytic in a region (= connected, open, ≠ø): at each point.

• Prop. f analytic in R⊂S. There is at most one analytic function in S equal to f on R (the analytic continuation of f to S.)

13

More Defs.

Page 33: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Analytic Continuation and Singularities

• Def. Analytic in a region (= connected, open, ≠ø): at each point.

• Prop. f analytic in R⊂S. There is at most one analytic function in S equal to f on R (the analytic continuation of f to S.)

13

More Defs.Singularity: a point that cannot be reached by analytic continuation;

Page 34: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Analytic Continuation and Singularities

• Def. Analytic in a region (= connected, open, ≠ø): at each point.

• Prop. f analytic in R⊂S. There is at most one analytic function in S equal to f on R (the analytic continuation of f to S.)

13

More Defs.Singularity: a point that cannot be reached by analytic continuation;Pole: isolated singularity a and (z-a)mf analytic for some m∈ℕ;

Page 35: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Analytic Continuation and Singularities

• Def. Analytic in a region (= connected, open, ≠ø): at each point.

• Prop. f analytic in R⊂S. There is at most one analytic function in S equal to f on R (the analytic continuation of f to S.)

13

More Defs.Singularity: a point that cannot be reached by analytic continuation;Pole: isolated singularity a and (z-a)mf analytic for some m∈ℕ;Residue at a pole a: coeff of (z-a)-1;

Page 36: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Analytic Continuation and Singularities

• Def. Analytic in a region (= connected, open, ≠ø): at each point.

• Prop. f analytic in R⊂S. There is at most one analytic function in S equal to f on R (the analytic continuation of f to S.)

13

More Defs.Singularity: a point that cannot be reached by analytic continuation;Pole: isolated singularity a and (z-a)mf analytic for some m∈ℕ;Residue at a pole a: coeff of (z-a)-1;f meromorphic in R: only polar singularities.

Page 37: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

ExampleFibonacci numbers:

14

1

1� z � z2= 1 + z + 2z2 + 3z3 + 5z4 + · · ·

Page 38: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Examples

Binary trees:

15

1�p1� 4z

2= 1 + z + 2z2 + 3z3 + 5z4 + · · ·Binary trees:

Page 39: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Examples

Binary trees:

15

1�p1� 4z

2= 1 + z + 2z2 + 3z3 + 5z4 + · · ·

Bn ⇠ 4n�1n�3/2

p⇡

Binary trees:

Page 40: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Examples

Cayley trees:

16

T (z) = z exp(T (z)) = z + 2

z2

2!

+ 9

z3

3!

+ 64

z4

4!

+ · · ·Cayley trees:

Page 41: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Examples

Cayley trees:

16

T (z) = z exp(T (z)) = z + 2

z2

2!

+ 9

z3

3!

+ 64

z4

4!

+ · · ·Cayley trees:

Page 42: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Integration

17

=Z

�f(z) dz = 2⇡i

X

j

Res(f; aj).

Prop. f meromorphic in a region R, 𝛾 a closed path in ℂ encircling the poles a1,…,am of f once in the positive sense. Then

Page 43: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Integration

17

=Z

�f(z) dz = 2⇡i

X

j

Res(f; aj).

Prop. f meromorphic in a region R, 𝛾 a closed path in ℂ encircling the poles a1,…,am of f once in the positive sense. Then

Cor. If is analytic in R∋0, then

for any closed 𝛾 encircling 0 once in the positive sense.

f = a0 + a1z+ · · ·

an =1

2⇡i

Z

f(z)

zn+1dz

Page 44: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

III. From Generating Functions to

Asymptotic Behaviour

18

Philosophy:

Smallest singularity ⟷ exponential behaviour local behaviour ⟷ subexponential terms

3 families cover most applications

Page 45: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Coefficients of Rational Functions

19

an =1

2⇡i

Z

f(z)

zn+1dz

F1 = 1 =1

2⇡i

I1

1� z� z2dz

z2

Page 46: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Coefficients of Rational Functions

19

an =1

2⇡i

Z

f(z)

zn+1dz

F1 = 1 =1

2⇡i

I1

1� z� z2dz

z2

As n increases, the smallest singularities dominate.

Page 47: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Coefficients of Rational Functions

19

an =1

2⇡i

Z

f(z)

zn+1dz

F1 = 1 =1

2⇡i

I1

1� z� z2dz

z2

= =

As n increases, the smallest singularities dominate.

Page 48: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Coefficients of Rational Functions

19

an =1

2⇡i

Z

f(z)

zn+1dz

F1 = 1 =1

2⇡i

I1

1� z� z2dz

z2

= =

Fn =��n�1

1+ 2�+

��n�1

1+ 2�As n increases, the smallest singularities dominate.

Page 49: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Conway’s sequence

20

Page 50: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Conway’s sequence

20

1,11,21,1211,111221,…

Page 51: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Conway’s sequence

20

Generating function for lengths:f(z)=P(z)/Q(z)

1,11,21,1211,111221,…

Page 52: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Conway’s sequence

20

Generating function for lengths:f(z)=P(z)/Q(z)with deg Q=72.

1,11,21,1211,111221,…

Page 53: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Conway’s sequence

20

Generating function for lengths:f(z)=P(z)/Q(z)with deg Q=72.

1,11,21,1211,111221,…

Page 54: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Conway’s sequence

20

Generating function for lengths:f(z)=P(z)/Q(z)with deg Q=72.

Smallest singularity: δ(f)≃0.7671198507

ρ=1/δ(f)≃1.30357727

ℓn≃2.04216 ρn

ρ Res(f,δ(f)) remainder exponentially small

1,11,21,1211,111221,…

Page 55: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Algebraic Singularities

21

an =1

2⇡i

Z

f(z)

zn+1dz

C1 = 1 =1

2⇡i

I1�

p1� 4z

2

dz

z2

Page 56: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Algebraic Singularities

21

an =1

2⇡i

Z

f(z)

zn+1dz

C1 = 1 =1

2⇡i

I1�

p1� 4z

2

dz

z2

Hankel:1

�(a)=

1

2⇡i

Z +1

(0)(�t)�ae�t dt

Page 57: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Algebraic Singularities

21

an =1

2⇡i

Z

f(z)

zn+1dz

C1 = 1 =1

2⇡i

I1�

p1� 4z

2

dz

z2

O

R

1

Thm. [Flajolet-Odlyzko] If f is analytic in ∆(φ,R) and f=O((1-z)a) when z→1, then [zn]f=O(n-a-1) when n→∞.

∆(φ,R)

Method: expand, translate termwise, truncate.

Hankel:1

�(a)=

1

2⇡i

Z +1

(0)(�t)�ae�t dt

Page 58: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Example

22

Cayley trees y � z exp(y) = 0

Page 59: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Example

22

Cayley trees y � z exp(y) = 0

Page 60: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Example

22

Cayley trees y � z exp(y) = 0

Obstruction to Implicit Function Theorem: 1� z exp(y) = 0

Page 61: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Example

22

Cayley trees y � z exp(y) = 0

Obstruction to Implicit Function Theorem: 1� z exp(y) = 0

Consequences:

Singularity at y=1, z=exp(-1);

Page 62: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Example

22

Cayley trees y � z exp(y) = 0

Obstruction to Implicit Function Theorem: 1� z exp(y) = 0

Consequences:

Local behaviour by inverting

z = y exp(�y) = e�1

✓1� 1

2(y � 1)2 + O((y � 1)3)

) y = 1�p2p1� ez+

2

3(1� ez) + O((1� ez)3/2)

Singularity at y=1, z=exp(-1);

Page 63: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Example

22

Cayley trees y � z exp(y) = 0

Obstruction to Implicit Function Theorem: 1� z exp(y) = 0

Consequences:

Local behaviour by inverting

z = y exp(�y) = e�1

✓1� 1

2(y � 1)2 + O((y � 1)3)

) y = 1�p2p1� ez+

2

3(1� ez) + O((1� ez)3/2)

Coefficients:Tn

n!=

enp2⇡n�3/2

(1+ O(1/n)).

Singularity at y=1, z=exp(-1);

Page 64: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Functions with fast singular growth

23

an =1

2⇡i

Z

f(z)

zn+1dz

Page 65: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Functions with fast singular growth

23

an =1

2⇡i

Z

f(z)

zn+1dz

Saddle-point equation: Rnf 0

f(Rn) = n+ 1

Page 66: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Functions with fast singular growth

23

an =1

2⇡i

Z

f(z)

zn+1dz

Saddle-point equation: Rnf 0

f(Rn) = n+ 1

Local behaviour: ⇡ f(Rn)

Rn+1n

exp(cn(z� Rn)

2

2)

Page 67: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Functions with fast singular growth

23

an =1

2⇡i

Z

f(z)

zn+1dz

Saddle-point equation: Rnf 0

f(Rn) = n+ 1

Local behaviour: ⇡ f(Rn)

Rn+1n

exp(cn(z� Rn)

2

2)

Approximate by a Gaussian integral:

an ⇠1

2

f(Rn)

Rn+1n

p2⇡cn

Page 68: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Functions with fast singular growth

23

an =1

2⇡i

Z

f(z)

zn+1dz

Saddle-point equation: Rnf 0

f(Rn) = n+ 1

Local behaviour: ⇡ f(Rn)

Rn+1n

exp(cn(z� Rn)

2

2)

Approximate by a Gaussian integral:

an ⇠1

2

f(Rn)

Rn+1n

p2⇡cn Exercise: Stirling’s

formula (f=exp).

Page 69: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Other Example

24

exp(ez � 1) = 1 + 1

z

1!

+ 2

z2

2!

+ 5

z3

3!

+ 15

z4

4!

+ · · ·Set partitions:

Page 70: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

These 3 cases cover most applications

25

Demo?

Page 71: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Concluding Remarks

26

More is possible:

Full asymptotic expansions; Limiting distributions; Fast enumeration; Random generation.

Page 72: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Concluding Remarks

26

More is possible:

Full asymptotic expansions; Limiting distributions; Fast enumeration; Random generation.

Page 73: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Concluding Remarks

26

More is possible:

Full asymptotic expansions; Limiting distributions; Fast enumeration; Random generation.

Page 74: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Concluding Remarks

26

More is possible:

Full asymptotic expansions; Limiting distributions; Fast enumeration; Random generation.

Next step: automate the multivariate case

Page 75: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Concluding Remarks

26

More is possible:

Full asymptotic expansions; Limiting distributions; Fast enumeration; Random generation.

Next step: automate the multivariate case

Page 76: An Introduction to Analytic Combinatoricsperso.ens-lyon.fr/bruno.salvy/talks/Discrete2015.pdf · An Introduction to Analytic Combinatorics Meeting on Discrete Structures Dec. 17,

/ 26

Concluding Remarks

26

More is possible:

Full asymptotic expansions; Limiting distributions; Fast enumeration; Random generation.

Next step: automate the multivariate case

Questions?Office #317