15
Dr. Liu, Chong 03/19/2018 Liu, Chong Institute for Fluid Power Drives and Systems An energy efficiency evaluation method based on least squares combination weight in refrigeration system 1 Reference: https://de.fotolia.com/id/84080677

An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

Liu, Chong

Institute for Fluid Power

Drives and Systems

An energy efficiency evaluation method based on

least squares combination weight in refrigeration

system

1

Reference: https://de.fotolia.com/id/84080677

Page 2: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

1

2

3

4

Background & Motivation

Modelling & Simulation

Summary & Outlook

Energy efficiency evaluation method of LSCW

2

Page 3: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

Background & Motivation

Background

• Energy consumption control

• Information management

3

• Lack of energy efficiency evaluation

of the working-state

Problem

• Disequilibrium between supply and

demand

Problem

• Out-dated management system

(Manual meter reading)

Problem

Reference: http://www.zdnet.com/article/google-facebook/

Page 4: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

1

2

Background & Motivation

Modelling & Simulation

4

Page 5: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

Modelling & Simulation

Modelling of ARS by AMESim

5

Component Parameter Working

range Component Parameter

Working

range

Compressor

𝑝𝑠𝑢𝑐(𝑀𝑃𝑎) 0,10~0,30

Throttle

/Expansion

Valve

𝑇𝑡𝑎,𝑖𝑛(℃) 20~35

𝑝𝑑𝑖𝑠(𝑀𝑃𝑎) 1,10~1,50 𝑇𝑡𝑎,𝑜𝑢𝑡(℃) -10~-5

𝑇𝑠𝑢𝑐(℃) 3,0~6,0 𝑝𝑡,𝑖𝑛(𝑀𝑃𝑎) 0,8~1,4

𝑇𝑑𝑖𝑠(℃) 60~90 𝑝𝑡,𝑜𝑢𝑡(𝑀𝑃𝑎) 0,17~0,35

𝐾𝑐(%) 10~100 𝐾𝑡(%) 10~100

𝑇𝑜𝑖𝑙 (℃) 25~65

Evaporator

𝑇𝑒𝑎,𝑖𝑛(℃) 0~3

𝑝𝑜𝑖𝑙(𝑀𝑃𝑎) 0,15~0,30 𝑇𝑒𝑎,𝑜𝑢𝑡(℃) 4~7

Condenser

𝑇𝑐𝑎,𝑖𝑛(℃) 55~85 𝑇𝑒𝑤,𝑖𝑛(℃) 7~10

𝑇𝑐𝑎,𝑜𝑢𝑡(℃) 20~38 𝑇𝑒𝑤,𝑜𝑢𝑡(℃) 2~5

𝑇𝑎𝑡𝑚(℃) -5~38 𝑇𝑒𝑣𝑎(℃) -15~5

𝑇𝑐𝑤,𝑖𝑛(℃) 5~22 𝜃𝑠ℎ(℃) 2~15

𝑇𝑐𝑤,𝑜𝑢𝑡(℃) 9~26 𝑚𝑤(𝑚3/𝑚𝑖𝑛) 3,39~4,71

𝑇𝑐𝑜𝑛(℃) 20~40 𝑚𝑎(𝑚3/𝑚𝑖𝑛) 5,30~7,66

Simulating based on the basic working range

• 𝐶𝑂𝑃 =𝑄𝑒𝑣𝑎,𝑤

𝑊𝑐𝑜𝑚+𝑊𝑜𝑡ℎ𝑒𝑟𝑠=

𝐶𝑒𝑣𝑎,𝑤𝑚∆𝑡

𝑊𝑐𝑜𝑚+𝑊𝑜𝑡ℎ𝑒𝑟𝑠

Reference: https://blog.angel.co/12-startups-to-join-founded-by-ex-google-engineers

Page 6: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

Modelling & Simulation

Selection of Critical Parameters

6

Psuc Pdis Tsuc Tdis Teva sh Tcon Tew,out Tew,in Tcw,in Tcw,out Kc Kt Pt,out Pt,in0

10

20

30

40

50

60

70

80

90

100

Influ

nce

De

gre

e

93.5 92.7

78.2

69.367.5

64.562.0

57.655.2 53.4 52.7

47.0

38.5

33.0 31.8

Two-dimension matrix

• 𝑈 = 𝑢𝑖𝑗 𝑚𝑛=

𝑢11 𝑢12𝑢21 𝑢22

⋯ 𝑢1𝑛⋯ 𝑢2𝑛

⋮ ⋮𝑢𝑚1 𝑢𝑚2

⋱ ⋮⋯ 𝑢𝑚𝑛 𝑚𝑛

• Standardized matrix: 𝑅 = 𝑟𝑖𝑗 𝑚𝑛

• Evaluation weight: 𝑤 = 𝑤1, 𝑤2, ⋯ , 𝑤𝑚

• Energy efficiency evaluation value:

• 𝑊 = 𝑊𝑠1,𝑊𝑠2, ⋯ ,𝑊𝑠𝑚 = 𝑅 ∙ 𝑤𝑇

where 𝑊𝑠𝑚 is the evaluation of working status mth .

Compressor Condenser Throttle Evaporator0

10

20

30

40

50

60

70

80

90

100

Infl

uen

ce D

egre

e (%

)

97%

57%

24%

62%

Compressor Condenser Throttle Evaporator

97

57

24

62

Infl

uen

ce D

egre

e (%

)

Page 7: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

1

2

3

Background & Motivation

Modelling & Simulation

Energy efficiency evaluation method of L SCW

7

Page 8: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

Energy efficiency evaluation method of LSCW

Fuzzy analytic hierarchy process (FAHP)

8

Thomas L. Saaty

(1971)

Information Entropy (IE)

Claude E. Shannon

(1948)

Higher precision

Smaller redundancy

Better hierarchy

Subjective

influence

Poor

adaptability

Page 9: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

Least Squares Combination Weight (LSCW)

9

Weight by FAHP (subjective weight):

𝑤𝐹𝐴𝐻𝑃 = 𝑤𝐹1, 𝑤𝐹2, ⋯ , 𝑤𝐹𝑚𝑇

Weight by IE (objective weight):

𝑤𝐼𝐸 = 𝑤𝐼1, 𝑤𝐼2, ⋯ , 𝑤𝐼𝑚𝑇

Combination evaluation model 𝐷 𝑤 :

𝑚𝑖𝑛𝐷 𝑤 = 𝑟𝑖𝑗 𝑥𝑤𝐹𝑗 − 𝑤𝑗2+ 𝑟𝑖𝑗 𝑦𝑤𝐼𝑗 − 𝑤𝑗

2𝑚𝑗=1

𝑛𝑖=1

𝒙, 𝒚 are set to be the coefficient of 𝒘𝑭𝑨𝑯𝑷 and 𝒘𝑰𝑬.

Lagrange Function:

𝐹 = 𝑟𝑖𝑗 𝑥𝑤𝐹𝑗 − 𝑤𝑗2+ 𝑟𝑖𝑗 𝑦𝑤𝐼𝑗 − 𝑤𝑗

2𝑚𝑗=1

𝑛𝑖=1 + 4𝜆 𝑤𝑗

𝑚𝑗=1 − 1

The application matrix is defined as: 𝐴 𝑒𝑒𝑇 0

𝑤𝜆

=𝐵1

𝐴 = 𝑑𝑖𝑎𝑔 𝑟𝑖12𝑛

𝑖=1 , 𝑟𝑖22𝑛

𝑖=1 , ⋯ , 𝑟𝑖𝑚2𝑛

𝑖=1

𝐵 = 1

2𝑛𝑖=1 𝑥𝑤𝐹1 + 𝑦𝑤𝐼1 × 𝑟𝑖1

2 , 1

2𝑛𝑖=1 𝑥𝑤𝐹2 + 𝑦𝑤𝐼2 × 𝑟𝑖2

2 , ⋯ , 1

2𝑛𝑖=1 𝑥𝑤𝐹𝑚 + 𝑦𝑤𝐼𝑚 × 𝑟𝑖𝑚

2 𝑇

Solving the equation, the combination weight can be obtained.

𝑤 = 𝐴−1 ∙ 𝐵 +1−𝑒𝑇𝐴−1𝐵

𝑒𝑇𝐴−1𝑒∙ 𝑒

Page 10: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

Calculation of Energy efficiency evaluation value

Evaluation values in different reliabilities between FAHP and IE

10

1 2 3 4 5 6 7 80.7

0.75

0.8

0.85

0.9

0.95

1

States

Eva

lua

tio

n V

alu

e

Reliability1

Reliability2

Reliability3

Reliability4

Reliability5

Fitting

Reliability6

Reliability7

Reliability8

Reliability9

Reliability Comprehensive evaluation value 𝑊𝐿𝑆𝐶𝑊

𝑥𝑦 = 1/9 0.819, 0.887, 0.716, 0.747, 0.815, 0.725, 0.840, 0.892

𝑥𝑦 = 2/8 0.834, 0.895, 0.717, 0.752, 0.813, 0.733, 0.857, 0.897

𝑥𝑦 = 3/7 0.854, 0.916, 0.725, 0.763, 0.813, 0.744, 0.866, 0.920

𝑥𝑦 = 4/6 0.855, 0.925, 0.727, 0.761, 0.814, 0.746, 0.875, 0.929

𝑥𝑦 = 1 0.857, 0.924, 0.732, 0.774, 0.818, 0.745, 0.878, 0.930

𝑥𝑦 = 6/4 0.857, 0.926, 0.730, 0.775, 0.820, 0.743, 0.875, 0.932

𝑥𝑦 = 7/3 0.859, 0.926, 0.731, 0.777, 0.816, 0.744, 0.882, 0.932

𝑥𝑦 = 8/2 0.870, 0.932, 0.740, 0.782, 0.822, 0.750, 0.893, 0.940

𝑥𝑦 = 9/1 0.876, 0.935, 0.741, 0.785, 0.819, 0.752, 0.892, 0.942

Through fitting the values, the reliability 𝑥 𝑦 = 1 is selected.

Comprehensive weight: 𝑤𝐿𝑆𝐶𝑊 = 0.092, 0.103, 0.120, 0.075, 0.031, 0.071, 0.135, 0.316, 0.057

Comprehensive evaluation value:

𝑊𝐿𝑆𝐶𝑊 = 𝑅 ∙ 𝑤𝑇 = 0.857, 0.927, 0.732, 0.776, 0.820, 0.746, 0.880, 0.933

Parameters Evaluated working states

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8

𝑝𝑠𝑢𝑐(𝑀𝑃𝑎) 0.24 0.28 0.20 0.20 0.22 0.20 0.26 0.28

𝑝𝑑𝑖𝑠(𝑀𝑃𝑎) 1.25 1.20 1.28 1.27 1.26 1.26 1.22 1.20

𝑇𝑠𝑢𝑐(℃) 4.7 4.4 6.0 5.8 5.5 6.0 5.0 4.0

𝑇𝑑𝑖𝑠(℃) 70.2 66.2 85.6 80.0 78.5 82.6 70.0 65.0

𝐾𝑐(%) 50 47 67 70 60 65 60 60

𝑇𝑐𝑎,𝑖𝑛(℃) 24 24 24 24 23 23 23 22

𝑇𝑐𝑎,𝑜𝑢𝑡(℃) 33 32 36 37 35 36 33 30

𝑇𝑐𝑜𝑛(℃) 34 33 40 38 36 38 34 32

𝑇𝑒𝑤,𝑖𝑛(℃) 32 32 32 33 33 33 32 32

𝑇𝑒𝑤,𝑜𝑢𝑡(℃) 4.2 3.6 4.8 4.8 5.0 5.0 4.0 3.2

𝑇𝑒𝑣𝑎(℃) -6.0 -4.0 -7.0 -6.5 -6.0 -6.6 -5.0 -4.0

𝜃𝑠ℎ(℃) 10 8 13 12 11 13 10 8

𝑝𝑡,𝑖𝑛(𝑀𝑃𝑎) 1.24 1.19 1.27 1.26 1.25 1.25 1.20 1.18

𝑝𝑡,𝑜𝑢𝑡(𝑀𝑃𝑎) 0.26 0.30 0.21 0.22 0.24 0.23 0.27 0.30

𝐾𝑡(%) 70 70 82 85 80 85 75 75

Page 11: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

Comparison

Comparison of different evaluation methods

11

1 2 3 4 5 6 7 8

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

States

Eva

lua

tio

n V

alu

e

FAHP

IE

LSCW

COP

Results of normalization

FAHP [0.8859, 0.9577, 0.8841, 0.8717, 0.8960, 0.8770, 0.9383, 1.000]

IE [0.8507, 1.000, 0.6157, 0.7037, 0.7813, 0.6447, 0.8831, 1.000]

LSCW [0.9185, 0.9936, 0.7846, 0.8317, 0.8789, 0.7996, 0.9432, 1.000]

𝑆𝐶𝑂𝑃 [0.8780, 0.9756, 0.7805, 0.8049, 0.8293, 0.8049, 0.9268, 1.000]

Methods Total

points

Deviation

points

Relative error

(%)

FAHP

1440

217 15.07

IE 193 13.40

LSCW 49 3.34

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 2 4 6 8 10 12 14 16 18 20 22 24

Evalu

ati

on

Valu

e

Time (h)

FAHP

IE

LSCW

COP

Page 12: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

1

2

3

4

Background & Motivation

Modelling & Simulation

Summary & Outlook

Energy efficiency evaluation method of LSCW

12

Page 13: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

Summary

13

Analyze of the problems

100% 30%

Modelling and simulation

Selection of the critical

parameters

Psuc Pdis Tsuc Tdis Teva sh Tcon Tew,out Tew,in Tcw,in Tcw,out Kc Kt Pt,out Pt,in0

10

20

30

40

50

60

70

80

90

100

Influ

nce

De

gre

e

93.5 92.7

78.2

69.367.5

64.562.0

57.655.2 53.4 52.7

47.0

38.5

33.0 31.8

Proposal of the new evaluation

method (LSCW)

𝑤 = 𝐴−1 ∙ 𝐵 +1−𝑒𝑇𝐴−1𝐵

𝑒𝑇𝐴−1𝑒∙ 𝑒

Optimized combination evaluation model:

𝑚𝑖𝑛𝐷 𝑤 =

𝑟𝑖𝑗 𝑥𝑤𝐹𝑗 −𝑤𝑗2+ 𝑟𝑖𝑗 𝑦𝑤𝐼𝑗 −𝑤𝑗

2𝑚𝑗=1

𝑛𝑖=1

Combination weight:

Comparison

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 2 4 6 8 10 12 14 16 18 20 22 24E

valu

ati

on

Valu

e

Time (h)

FAHP

IE

LSCW

COP

• Higher precision

• Smaller relative error

(3,34%)

• Better consistence

Page 14: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

Outlook

Intelligent efficient management system

14

Data Acquisition

and Processing

Energy Efficiency

Evaluation

Intelligent Control

Algorithm

Information

Management

Page 15: An energy efficiency evaluation method based on least squares …ifk2018.com/frontend/converia/media/FPCA18/Presentations/... · 2018. 7. 20. · ⋯ 𝑢1 ⋯ 𝑢2 ⋮ ⋮ 𝑢

Dr. Liu, Chong 03/19/2018

Thank you for your attention!

Contact:

15

• Dr. Chong Liu

• E-mail: [email protected]

• Tel: +49 0157 7218 7682

Reference: https://www.foodengineeringmag.com