20
346 IRE TRANSACTIONS ON ELECTRONIC COMPUTERS September An Algorithm for Path Connections and Its Applications* C. Y. LEEt, MEMBER, IRE Summary-The algorithm described in this paper is the outcome Based on this model, we will consider a class of well- of an endeavor to answer the following question: Is it possible to find defined optimal path problems. A general procedure for procedures which would enable a computer to solve efficiently path- s t c o p . .. ~solving this class of problems will then be given in Sec- connection problems inherent in logical drawing, wiring diagram- t ming, and optimal route finding? The results are highly encouraging. tion III Within our framework, we are able to solve the following types of Within this class of problems is the shortest-route prob- problems: lem on which there has been earlier definitive work. 1) To find a path between two points so that it crosses the least Algorithms for finding shortest paths have been given number of existing paths. by Dantzig,l Ford and Fulkerson,2 Moore3 and Prim.4 2) To find a path between two points so that it avoids as much as The minimal-distance illustrationis (Section V) make possible preset obstacles such as edges. 3) To find a path between two points so that the path is optimal use of one of Moore's algorithms, which is a specializa with respect to several properties; for example, a path which is tioIn of algorithm A given in Section III. These experi- not only one of those which cross the fewest number of exist- iments were tried out before the abstract model was ing paths, but, among these, is also one of the shortest. completed. Once we have at our disposal the abstract The minimal-distance solution has been programmed on an IBM model, it came as a pleasant surprise that problems 704 computer, and a number of illustrations are presented. The class such as the minimal-crossing and minimal edge-effect of problems solvable by our algorithm is given in a theorem in Section problems, which had appeared difficult to us previously, III. A byproduct of this algorithm is a somewhat remote, but unex- all yielded immediately to algorithm A. The possibility pected, relation to physical optics. This is discussed in Section VI. I Of J'oint mlinimization is also a direct consequence of 1. INTRODUCTION algorithmn A. A further outcome was the "diffraction" N processing information conisisting of patterns, patterns. These experiments would not have been at- rather than numbers or symbols, on a digital com- tempted if we had not noticed the patterns obtained in puter, we may wish to know how a computer, with- the minimal-distance experiments. out sight and hearing, can be made to deal compete ntly II. AN ABSTRACT MODEL AND THE PATH with situations which appear to require coordination, PROBLEM insight, and perhaps intuition. It is not our intention to consider the general problem of pattern detection and A. e-Space, an Abstract Model recognition by machines. We will consider rather the Let C be a set of elements called cells: C = {cl, C2, following simpler, and therefore perhaps more basic, For each cell ci in C, there is defined a subset of C called problem in pattern processing by machines. a 1-neighborhood N(ci) of ci: N(ci) = I cli, C2, * * * X C, - Let a pattern of some sort be presented to a machine. The following rules hold for 1 neighborhoods: We then want the machine to construct some optimal N1) Every 1-neighborhood has in it exactly n cells, path subject to various constraints imposed by the pat- where n, n > 1, is some predetermined number depend- tern. The problem is to find efficient procedures, which, ing on the specific model involved. if followed by the machine, would lead to an optimal N2) If c'CN(ci), then ciCN(cj). We will call the solution. function N with domain C and range subsets of C the Ideally, many situations would fall within this de- 1-neighborhood function. scription. We might present to the machine a map of Together with the 1-neighborhood functions, there Manhattan and ask it to find the shortest-time route are n functions di, d2, - , d", on C to C defined as fol- between, say, the United Nations and Yankee Stadium, lows: If ci is any cell in C and N(ct) = { cli, c2i, *, c,i, using only public transportation. With sufficient care, then it is possible to make a problem such as this unambigu- ous. In most cases, however, it wvould be too great a dk(ei) =CkiJ k = 1, 2, , n. struggle just to present the problem in a way that is completely and consistently stated. For this reason, we l'G. B. Dantzig, "Maximization of a Linear Function of Variables have decided to present an abstract model in Section I I. Subjelct to Flinear Inequalities, " Cowles Commission; 1951. work," Can. J. Malth., vol. 8, pp. 399-404; 1956. F. F. VMoore, "vShortest path through a maze," in "Annals of the * Received by the PGEC, December 2, 1960. This material was Computation Laboratory of Harvard University," Harvard Univer- presented as part of the University of Michigan Engineering Summer sity Press, Cambridge, Mass., vol. 30, pp. 285-292; 1959. Session, Ann Arbor, June 19-30, 1961. 4R. C. Prim, "Shortest connection networks and some general- t Bell Telephone Labs., Inc., Whippany, N. J1. jzations," Belt Sys. Tech. J., vol. 36, pp. 1389-1401; November, 1957.

An Algorithm for Path Connections and Its Applications*

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An Algorithm for Path Connections and Its Applications*

346 IRE TRANSACTIONS ON ELECTRONIC COMPUTERS September

An Algorithm for Path Connectionsand Its Applications*

C. Y. LEEt, MEMBER, IRE

Summary-The algorithm described in this paper is the outcome Based on this model, we will consider a class of well-of an endeavor to answer the following question: Is it possible to find defined optimal path problems. A general procedure forprocedures which would enable a computer to solve efficiently path- s t c o p... ~solving this class of problems will then be given in Sec-connection problems inherent in logical drawing, wiring diagram-

t

ming, and optimal route finding? The results are highly encouraging. tion IIIWithin our framework, we are able to solve the following types of Within this class of problems is the shortest-route prob-problems: lem on which there has been earlier definitive work.

1) To find a path between two points so that it crosses the least Algorithms for finding shortest paths have been givennumber of existing paths. by Dantzig,l Ford and Fulkerson,2 Moore3 and Prim.4

2) To find a path between two points so that it avoids as much as The minimal-distance illustrationis (Section V) makepossible preset obstacles such as edges.

3) To find a path between two points so that the path is optimal use of one of Moore's algorithms, which is a specializawith respect to several properties; for example, a path which is tioIn of algorithm A given in Section III. These experi-not only one of those which cross the fewest number of exist- iments were tried out before the abstract model wasing paths, but, among these, is also one of the shortest. completed. Once we have at our disposal the abstract

The minimal-distance solution has been programmed on an IBM model, it came as a pleasant surprise that problems704 computer, and a number of illustrations are presented. The class such as the minimal-crossing and minimal edge-effectof problems solvable by our algorithm is given in a theorem in Section problems, which had appeared difficult to us previously,III. A byproduct of this algorithm is a somewhat remote, but unex- all yielded immediately to algorithm A. The possibilitypected, relation to physical optics. This is discussed in Section VI. I

Of J'oint mlinimization is also a direct consequence of1. INTRODUCTION algorithmn A. A further outcome was the "diffraction"

N processing information conisisting of patterns, patterns. These experiments would not have been at-rather than numbers or symbols, on a digital com- tempted if we had not noticed the patterns obtained inputer, we may wish to know how a computer, with- the minimal-distance experiments.

out sight and hearing, can be made to deal compete ntly II. AN ABSTRACT MODEL AND THE PATHwith situations which appear to require coordination, PROBLEMinsight, and perhaps intuition. It is not our intention toconsider the general problem of pattern detection and A. e-Space, an Abstract Modelrecognition by machines. We will consider rather the Let Cbe a set of elements called cells: C= {cl, C2,following simpler, and therefore perhaps more basic, For each cell ci in C, there is defined a subset of C calledproblem in pattern processing by machines. a 1-neighborhood N(ci) of ci: N(ci) = I cli, C2, * * * X C, -

Let a pattern of some sort be presented to a machine. The following rules hold for 1 neighborhoods:We then want the machine to construct some optimal N1) Every 1-neighborhood has in it exactly n cells,path subject to various constraints imposed by the pat- where n, n > 1, is some predetermined number depend-tern. The problem is to find efficient procedures, which, ing on the specific model involved.if followed by the machine, would lead to an optimal N2) If c'CN(ci), then ciCN(cj). We will call thesolution. function N with domain C and range subsets of C the

Ideally, many situations would fall within this de- 1-neighborhood function.scription. We might present to the machine a map of Together with the 1-neighborhood functions, thereManhattan and ask it to find the shortest-time route are n functions di, d2, - , d", on C to C defined as fol-between, say, the United Nations and Yankee Stadium, lows: If ci is any cell in C and N(ct) = { cli, c2i, *, c,i,using only public transportation. With sufficient care, thenit is possible to make a problem such as this unambigu-ous. In most cases, however, it wvould be too great a dk(ei) =CkiJ k = 1, 2, , n.struggle just to present the problem in a way that iscompletely and consistently stated. For this reason, we l'G. B. Dantzig, "Maximization of a Linear Function of Variableshave decided to present an abstract model in Section II. Subjelct to Flinear Inequalities, " Cowles Commission; 1951.

work," Can. J. Malth., vol. 8, pp. 399-404; 1956.F. F. VMoore, "vShortest path through a maze," in "Annals of the

* Received by the PGEC, December 2, 1960. This material was Computation Laboratory of Harvard University," Harvard Univer-presented as part of the University of Michigan Engineering Summer sity Press, Cambridge, Mass., vol. 30, pp. 285-292; 1959.Session, Ann Arbor, June 19-30, 1961. 4R. C. Prim, "Shortest connection networks and some general-

t Bell Telephone Labs., Inc., Whippany, N. J1. jzations," Belt Sys. Tech. J., vol. 36, pp. 1389-1401; November, 1957.

Page 2: An Algorithm for Path Connections and Its Applications*

1961 Lee: An Algorithm for Path Connections and Its Applications 347

That is, dk(ci) is the kth coordinate cell in the 1-neigh- cell c**, find an admissible path pl2 ..r(C*, c**) which isborhood of ci. minimal with respect to (fl, f2, * fr).

Let S be a finite set of symbols: S= s1I s52 * stm}. In the following section we will show an algorithmS is called the alphabet of space e. which solves the path problem P for a certain set of

Let F be a map on C to CXS. That is, for every vectors F.cicC, P(ci) =(c, s), siCS. In general we will writeF(ci) = (ci, s(ci)). Therefore, to every cell ciCC is asso- III. A SEARCH AND TRACE PROCEDUREciated some symbol s(ci) CS. The map F gives then the A. MIIontone Functions and M11onotone Vectorscell-symbol configuration for a particular path problem. Let a C-space (C, S, N, F, M) be given. A function fGenerally speaking, we may keep in mind the analogy on r*(ci, ci) to the set of non-negative integers I is saidthat each function F corresponds to some sort of a street to be monotone if for every path p(ci, ci), we have themap for a particular city or town, and that the path inequalitvproblem is to finid an optimal path fromn one point toanother in that city or town. f(p(ci, ck)) < f(p(c ci)),

Let ci, ci be two distinct cells in C. By a path p(ci, c') where p(ci, Ck) is any subpath of p(ci, ci). A vector F ofis meant a set of cells called a chain: p(ci, ci) monotone functions (fi, f2, f,f is said to be a

0=icc cl, c2, . , =cj asuch that ci+'lCN(ci) for onotone vector.s=0, 1, nm-i. By ir(ci, ci) is meant the set of allpaths p(ci, ci) between cell ci and cell ci. B. An Algorithm

Let 211 be a map called an admission map with domainir(ci, ci) and range the two-element set 0O, 11. Anly path Let c* and c** be the initial and final cells in a C-p(ci, ci) such that M(p(ci, ci)) = 1 is said to be an ad- space (C, S, N, F, M). The main procedure will be given

mIssible path. Otherwise, p(ci, ci) is said to be inadmis- in terms of a number of subprocedures.sible. The set of all admissible paths will be denoted by D) Cell list: A cell list L IS an ordered list containings*(ci, ci) names of cells.The quintuple (C, S, N, F, A) is called a C-space. D2) Cell mass: With each cell in list L will be associ-

ated an r-tuple called a cell mass (mi1, Mi2, - * , mi). Thecell masses are ordered lexicographically. Thus, ifB. The Path Problemm = (mi1, Mi2, , mr), and m' = (M1', m2', me') are

Let F be a vector of r functions (fi, f2, ' fr) where two cell masses, (M1, M2, , mr) < (mi',IM21, mr/)each function ft, Ti= 1, 2, r, is on 7r*(ci, ci), the set if mi = mi', i =0, 1, k, but mk+l <m+l; O < k <r.of admissible paths, to I, the set of noni-negative inte- D3) Chain coordinate: Associated with each cell ingers. A path p'(ci, ci) of wr*(c, ci) is said to be minimal the list L is also a chain coordinate which is one of thewith respect to fi if 1-nieighborhood coordinate functions dk.

f1(p'(c6, Ci)) < f1(p(ci, C)) D4) Auxiliary list Li: An auxiliary cell list L1 is pro-vided for momentary storage of names of cells.

for all p(ci, ci) Cr*(ci, ci). A path pl2(ci, ci) is said to be RI) Procedurefor constructing auxiliary list L1: Let cminimal with respect to (fi, f2) if be a cell in list L. By a path p(c*, ci, c**) we mean a path

(i) pl2(Ci7 Cj) E_ pI(Ci7fC) p(c*, c**) of which p(c*, ci) is a subpath. A cell ci is said(i)p12(c , ci) CP'(c~, Ci) to be admissible if p(c*, ci, c**) is an admissible path

where P1(ci, ci) is the set of all paths in r*(ci, ci), which and if the cell mass for c' has not yet been determined.are minimal with respect tofi; that is, Let {ci} CN(c) be the set of all admissible cells in N(c).

Append to list L1 the set ci1. L1 is constructed by re-P(ci=,ci) PI ci) Mf(p1(ci, ci)) < fi(p(ci, ci)) peating this process for every entry c in L, under the

for all p(ci, ci) C w*(ci, ci) }; condition that a cell should not be listed more than once.L1 is therefore the set of all distinct cells ci such that ci

and is an admissible cell in N(c) for some cell c in the list L.

(ii) f2(p'2(Ci, Ci)) < f2(p(Ci, Ci)) R2) Procedure for assigning cell masses and chain co-ordinates:L,et ac cell in L1. A possible cell mass for c

for all p(c v ci) C P'(c , ci). is determined as follows: For each ciCNV(ci) whose cell

Therefore, p12(ct, ci) iS minimal with respect to (f', f2) mashsbeXeemnd osrc nrtpeif among all paths minimal with respect tofi, p12(c1, cl) (fi(p(c*, ci, ci)), fr(p(c*, ci, c1))).is also minimal with respect to f2. In a similar way, wemay define a path p12 .r(ci ci) which is minimal with Now apply rule R3 below to find a cioCN(ci), for whichrespect to (f1, f2, * ,fr). this r-tuple is a minimum. A possible cell mass for ci isThe path problem we are considering is the following: then the r-tuple (fi(p(c*, cia, Ci)), * * * , fr(P(6*, cia, c1))),P) Path problem: Given a C-space (C, S, N, F, M), and a possible chain coordinate for c1 is dkc where dk;(c1)

a vector F= fi, f2, * * * ,f4,} an initial cell c* and a final = cio.

Page 3: An Algorithm for Path Connections and Its Applications*

348 IRE TRANSACTIONS ON ELECTRONIC COMPUTERS September

Next, find possible cell mnasses for all ciGL1. Amnonig cluding the initial cell, be called the path length of thatthe cells in L1, let {c' } be the set of cells whose possible path. For the path p(c*, c**), therefore, the path lengthcell masses are a miniiiinmumi. We then assign to each is q+1.CIE c } the samiie cell imiass aind the samiie chaini co- For admissible paths of lenigth 1,' it follows fromii ruleordinate as its possible cell milass aid its possible chaini R2 that m(c**) < F(c*, c**). Let us nlow assume valid thecoordinate. iniduction hypothesis that m(c**) < F(c*, c**) for allThe cells whose possible cell imiasses are niot miinimial adinissible paths of path length n-ot greater than q.

are no longer conisidered, and the list L1 is cleared. Consider the subpath p(c*, cq) of p(c*, c**). By theR3) Selection rule: In R2, a cell ci and a selected sub- induction hypothesis,

set I ci } of N(ci) were given. The rule which was invoked m(c) _ F(c*, c2).to select one cio from the set {ci} is called a selection (). F(c*, ca).rule. Let us now suppose m(c**) > F(c*, c**). Since F is mono-

R4) Procedure for updating list L: Let {c} be the set tone, we then have the inequalitiesof cells whose cell nmasses had been determined by R2. m_(o)_ F(c*, Cq) < F(C*, C**) < m(c**)Append first to list L the set Ic'} . Next examine each M(Cq). M(C*, iF c**) < m(c**)

a

cell c in L to see if the cell mnasses of all its admissible Since now m(c) <m(c**), it follows from Lemma 1 that1 neighbors had been determnined. If so, erase c from f(c*, Cq) < (C*, c**). Therefore the cell mass m(cq) isthe list L. determined before the cell mass m(c**) is determined.

R5) Initialization: Cell c* is given the cell mass From rule R2 it follows that as soon as m(cq) is de-(0, O, , 0). The list L containis initially the single termined, the cell Cq becomes a member of cell list L.entry c*. The list L, is initially cleared. Since by rule R2,With the aid of rules R1-R5, we may now state the fmin {F(p(c*, ci, c**)) ci C N(c**)}

main procedure. Mc* =main procedure. m(c**) = l~~~~~~~~over all c2 for which m(ct) iS defined,

A: The Search and Trace Algorithms:Al: Search algorithm: Apply rule R5 for iniitializa- and since Cq is one of such cells ci, it follows that this

tion. Apply rules Rt, R2, R4 to entries of L until either minimum cannot be greater than F(p(c*, c**)). Thisc** appears in L or the list L has been exhausted. In contradicts our earlier supposition, and the lemma fol-the former case, we will proceed to the trace algorithm lows.A2. In the latter case, there is no admissible path The basic result is embodied in the following:p(c*, c**) in the e, space. Theorem: Let a C-space (C, S, N, r, AM) be given.A2: Trace algorithm: Begin at c**, follow the chain Let P be a path problem with respect to a vector F.

coordinates until c* is reached. This determines a unique If F is monotone, then algorithm A yields a pathpath p(c*, c**). p(c*, c**) satisfying P.

Proof: Let p(c*, c**) be any admissible path fromC. The Procedulre Applied to the Path Problem c* to c**. Since F is monotone, we may apply Lemma 2LetaeCspace(C,S,N, IF,M), avectorF =(fif2, ,f,) to get m(c**). F(p(c*, c**)). It follows from rule R2

and an initial cell c* be given. A cell ci which is reached thatfrom c* after exactly t application of rules Rt to R4 is m(C**) = (fi(p(c*, C**)), * * ,fr(P(c* C**))).said to have a chain index I (c*, ci) of t from c*. We will . .begin with two lemmas.Lemma 1: Let F be a monotone vector. Let ci and ci F(p(c*, c**)) = (fl(p(c*, c**)), f* *,fr(p(c*, c**))).

be two cells with cell masses m(ci) and m(ci) and chair The theorem therefore follows by the lexicographicindexes (c*, ci) and f(c*, ci), respectively. If m(ci) <m(c'), ordering of these r-tuplesthen f(c*, ci) <((c*, ci).

Proof: Assume 1(c*, ci) >f(c*, ci). This means that IV. APPLICATIONSafter f(c*, ci) applications of rules RI to R4, the cellmass m(ci) has been determined, but the cell mass Id the setiC to bea t squares her planewithm(ci) has not. By the nature of rule R2, the cell masses the sual 1niboroos as shown in Fig 1.aWe willare obtained by evaluating the vector F for the paths in the alpb setgSoconsis of th Fig:let, thflphabe set S'~ [onr1Qt of the4c fnlo1"lT;g:CYquestion. Since F is monotone by hypothesis, m(ct) 1 iisfo o9>m(ci) and the lemma follows.Lemma 2: Let F be a monotonle vector. Let p(c*, 2) All letters of the English alphabet.

c**) be any admissible path from c* to c**. TIhen m(c**) 3) The symbols: +, -, ., J, /, ~,-, K, 7, 1, r

Proof: Let p(c*, c**) consist of the chainl of cells The i-neighborhood function N and the coordinate* ** _ {*_ o1 2 q ** _ +1} functions d1, d,, d8, and d4 are defined as follows: Given

p(c*, c**) = c* -c, c1, c2, * , c**c -c . a cell ci, d1(ci) is the cell to the right of ci, d2(ci) is the

W;e will let the number of cells contained in a path, ex- cell above ci, d3(ci) is the cell to the left of ci and d4(ct)

Page 4: An Algorithm for Path Connections and Its Applications*

1961 Lee: An Algorithm for Path Connections and Its Applications 349

16 15 14 13

5 4 3 12

6 2

7 8 9 10

Fig. 1-The set C of squares in the plane.

is the cell below ci. N(ci) is theni the set 'di(ci), d2(ci), We assert first that f is moniotone. This is so by thed3(ci), d4(ci) } iterative nature of the definition of f; the value of f

Let a funiction r7 be given, so that to each cell ciE C is never decreases as a path increases in length. Hence, weassociated a symbol s(ci) CS. The function 111 is given may apply the basic theorem to get:as follows: Corollary 1: Algorithm A solves the minimnal-crossinig

Let p(c*, c**) = {c° = c*, cl, , c-1, Cn = c**} be a problem.path fromn c* to c**. p(c*, c**) is admissible, i.e., Example 1: Consider the cell configuration given inMAlr(p(c*, c**)) = 1, if

Fig. 2. The path AA consisting of the chain of cells1) s(ci)= blank,-, or for i1, 2, n-1. {6, 5, 16, 15, 14, 3, 2, 11, 28} is already present. We2) s(ci+l) £- whenever ci+A=d1(ci) or ci+1 =d3(ci), wish to find a minimal-crossing path from c* (cell 18),

i=O, 1, * n-i. to c** (cell 13).3) s(ci+1)5# whenever ci+1=d2(ct) or c(+ =d4(cC), Applying algorithm A, we find that list L consists of

i=O , n, n-i. the single entry { 181 to begin with. List L1 therefore

Thus, except for the function F which depends on the has in it entries {5, 17, 19}. Note that cell 39 is not an

applicationi in question, the specialization of the e admissible 1-nieighbor of cO. The possible cell massesspace to our applications has been fully described. for cells {5, 17, 19} are 1, 0 and 0, respectively. Hence,

by rule R2, cells 17 and 19 are assigned cell mass 0 and

A. A Minimal-Grossing Problem are appended to the list L. Moreover, the chain co-

ordinates of cells 17 and 19 are respectively d4 and d2.Given a set of squares in the plane, the problem Of The cell masses and chain coordinates for these cells are

fin-ding a path p(c*, c**) from c* to c** such that properly denoted in Fig. 2. Thus, in cell 17, we have thep(c*, c**) crosses over the fewest number of existing pair (t 0) meaning that the chain coordinate is d4paths is called the miniimal-crossing problem. We will (i.e., downward) and the cell mass is 0.formulate the minimi-al-crossing problemi as a path prob- Applying rules Rl to R4 again, we find that list L,lem in som-le appropriate C space and then solve it with has in it now the entries {5, 201. This is so since cellsthe aid of algorithm A. 16, 36, 38, 39, 6 and 40 are all not admissible. The pos-

For this problem the vector F would consist of a sible cell masses for cells 5 and 20 are respectively 1single function f given as follows: and 0. Thus, the cell mass for cell 20 is 0, the chain co-

F1) f(p(c*, c*))=0. ordinate for cell 20 is d2, and cell 20 is appenided to

F2) If s(ci) =blank, then list L. Moreover, cells 17 and 19 are erased from list L.Fig. 3 shows the cell mass and chain coordinates for

(min {f(p(c*, ci)) ci AT(ci) } over all ci all the cells reached by the application of Algorithm A.

f(p(c*,ci))=6 for whichf(p(c*, c')) has been defined; The trace algorithm then traces out a solution pathundefIned otherwise. p(c*, c**) as shown. The boundary cells have been(undefined otherwise. oitdi i.3

F3)Ifs(c =-, he E<xample 2: Consider again the cell configuration in((min{f(p(c*, d2(ci))),f(p(c*, d4(cD))) })+1 Fig. 2. In this case, however, we stipulate that it costs

f(p(c*, ci)) = if either one of the values off is defined; 3 units to cross a -, but 1 unlit to cross a |. That is,I ~~~~~~~~~~thedefinition F3 iS changed to read:

oundefined otherwise.

F4) If s(c) = , then F3'. If s(c'-)=- then1

f(p(c*, c2)) = |if either one of the values of f is defined; f(p(c*, c&)) = j if either one of the values off is defined;

lundefined otherwise. tundefined otherwise.

Page 5: An Algorithm for Path Connections and Its Applications*

350 IRE TRANSACTIONS ON ELECTRONIC COMPUTERS September

371 36 35 34 33 32 31

x X X X X X X 17 16 IS 14 13 30

38 17 16 15 14

13 30 Blx -B K 4 ____ _ _ _IX39IBIS I 4 I Zl 29l 1 I181 5 4 3 12 29

IS ~ ~ ~ 15 4 3 1229BIJ

(0) ___I_

(0) (* 1) (,1) (0,) (-,I) (-) ___ (,) __

x A x L A x j AL 2A2

41 20 7 a 9 10 27,0) __ _ _ _ _ _ _ _ __ _ __ ( , ) _ _ _ _

42 __2 7 8 10 274221 22 23 24 25 26

Fig. 3-Cell configuration after algorithm A has beenFig. 2-A minimal-crossing example. applied to Example 1.

17 16 15 14 13 30

Sn - g(4,0) __________ (4,2)

18 5 4 3 12 29

(0) (*- I I) (*- ,I) (-2) (42) _19 6 I2 II 28

A x L - A

20 7 8 9 10 27

(4,0) I(*--0 (4 04,0) (4- 0) (, 0)

Fig. 4-Cell configuration after algorithm A has beenapplied to Example 2.

Since F is still monotone, algorithmn A miay be ap- g(p(c*, c))plied to solve this modified path problem.

In this case, after applying algorithm A, we have the '(min { g(p(c*, ci)) |C C N(c')}) + R(ci)cell configuration and the solution path shown in Fig. 4. = over all Ci for which g(p(c*, ci)) has been defined;

In Example 1, the function f is not only monotone,but grows a single unit at a timne. For such functions andfor vectors made up of such functions, it is possible tosimplify algorithm A to solve the path problem. In where R(ci) =the number of cells ci in N(ci) in each ofExample 2 the functioni f nio longer grows one unit at a which the symbol is neither blank, nor -, nortime. The machinery of C5-space is needed to cope withthis more general class of monotone functions. G3) If s(ci)= , then

B. A AMinimal-Edge-Effect Problem g(p(c*, ci))

Let us begin with the C,-space consisting of squares {(min{g(p(c*, di())), g(p(c*, d4)Ci)))*)+ R(ci)in the plane described earlier. Let an initial cell c* anda final cell c** be given. We wish now to consider the = if either value of g is defined;problem of finding a path from c'* to c* * which avoids, undfedotherwise:as much as possible, any symbol other than -, |andthe blank symbol. In other words, we want a path G4) If s(ct) = thenwhich does not tend to "cling to edges."'

For this application, the vector F would again con-*sist of a single function g given as follows: f(min {g(p(c, d1(ct))), g(p(c*, d3(ci)))})

Gi) g(p(c*, c*)) =0. g(p(c*, ci)) = + R(ci) if either value of g is defined;G2) If s(c9 =blank, then ~undefined otherwise.

Page 6: An Algorithm for Path Connections and Its Applications*

1961 Lee: An Algorithm for Path Connections and Its Applications 351

64 63 62 61 60 59 58 57

X X A

37 36 35 34 33 32 31 56

xI( I,0) 0) (01

38 17 16 15 14 13 30 55

x x

1-0 (, ) -( ,o) (-, ) ('-.0139 148 5 4 3 12 29 54

x(I ,0) 1 (0) ('-. 0) ) 9,01

40 89 6 2 II 28 53x x

(9,0)f 1,0) ___

41 20 7 8 9 10 27 52A X(0) (4,0) 10) 01,0)

42 21 22 23 24 25 26 51

(4,0) ('-0) (9,10) (---0) ('-0) (-0) (-0O)I" 44 45 4~f6 47 48 49 50

(9,'0) ('-0) (-0O) ('-0) )-0) (- 01 (--0) (0Fig. 5-A miinimal edge-effect example.

From this it follows that F is again mnonotone. erty was the niumber of crossings, anid in the second, theTherefore, we have: property was edge effect.

Corollary 2: Algorithmii A solves the minimal edge- On the other hand, the C-space mnodel was intendedeffect problemn. to solve joint miiimizationi problems; i.e., the vector FExample 3: Consider the cell configuratioin giveli ini may have several compoinent funictions. In order to

Fig. 5. We wish to construct a path AA from cell 41 to illustrate the possibility of joint miinimization, let uscell 58 satisfying the path problem with respect to the consider a minimal distance then edge-effect problem.vector F given by Gt to G4. What we wish to find here is a path which is, first of all,To begin with, the list L has in it the single enitry one of the shortest, and secondly, among all shortest41 1. The list L1, therefore, has in it enitries t 20, 40, 42 }. paths, this path is also mninimal with respect to edge

The possible cell masses for these cells are, respectively, effect. The vector F for this problem has, therefore, two1, 0, 0. Therefore, by rule R2, m(40) =m(42) ==0. The component functions F= (h, g), where h is the distancechaiin coordinates for cells 40 and 42 are also determinied function and g is the edge-effect function.and are respectively I and T . The edge-effect funictioni g will be taken to be exactly

List L is now updated to contain cells 41, 40, 421. the same as that defined previously in Gt to G4. TheFrom this, we get for list L1 the cells 120, 19, 39, 21, 43 }. distance function h is given as follows:Following rule R2, we get therefore m(39) =m(43) HI) The function h satisfies Fl, F3, F4.=m(21) =0, and also their chain coordinates. By rule H2) If s(ci) =blank, thenR4, cell 42 is erased from list L.The new list L IIow has in it cells 141, 40, 39, 43, 211. ((min{ h(p(c*, c)) c1 ( N(c1) }) ± lover all

Therefore, cells 120, 19, 18, 38, 22, 44} all belong to list h(p(c*, ci)) = ci for which h(p(c*, c) has been defined;L1. Consider now cell 44. It is clear that m(44) =0. We undefined otherwise.must, however, invoke the selection rule R3 to get itschain coordinate. We may assume, in this case, that From these definitions it again follows that both h andthe left neighbor is always preferred over the other 1- g are monotone functions. F= (h, g) is therefore a mono-nieighbors. The chain coordinate for cell 44 then be- tone vector. Therefore, we have:comes <-. Corollary 3: Algorithm A solves the joint minimiza-

Continuing in this way, we arrive at the path shown tion problem with respect to first distance then edgein Fig. 5. We see that the path so constructed avoided effect.all the X 's which may be considered as edges. Example 4: Let us consider again the original con-

joint **~~~~~~~~* ~figuration shown in Fig. 5. We wish to find a path AAC. MitMnimization which solves the path problem with respect to the vec-

In the last two applications, the vector F in each tor F= (h, g) for this configuration.case consisted of a single function. This was So because Following rule R5, we begin with cell 41 in list L.we were looking for paths which were minimal with By rule R1, cells 20, 40 and 42 therefore belong to listrespect to a single property. In the first case, the prop- L1. The possible cell masses for cells 20, 40 and 42 are

Page 7: An Algorithm for Path Connections and Its Applications*

352 IRE TRANSACTIONS ON ELECTRONIC COMPUTERS September

64 63 62 61 60 59 58 57

K X A(4, 5,2) -,6,3) (4-7,4) ((12,2) (4,13,1)

37 36 35 34 33 32 31 56

K(4,4,21 (4,8,51 (,9,7) (4,10,3) ( I,I1,11 (4-,12,1)

38 17 16 15 14 13 30 55

K IC

14,3,1) 98_(,98) (4,9,2) (4,10,) (-, 11,1) -,12,1)39 18 2 4 3 12 29 54

(4,2,0) (4,3,2) (4,7,5) +8,1) (4-9,1) (4,10,2) (4-11,2)40 19 6 2 II 28 53

4+,1,0) (4,2,11 (4,6,3) (4,7,1) ( 8,2) (4,10,2)

41 20 7 8 9 10 27 52

A IC

(0) (*-, 1,1) (4,5,2) (,6,11 (4-7,1) (4-,8,21 (4,9,))21 22 23 24 25 26 51

(4,1,0) (*,2,0) (+-,3,1) (,41) (-,5,1) (,6,1) (4-,7, 1) (4-,8,)43 44 45 46 47 48 49 50

(f,2,0) (,3,0 ) (4-,4,0 ) (4-,5,0) (-,6,0) ( * ,7,0) (4,8,0) (*-,9,0)

Fig. 6-A joint minimization example.

respectively (1, 1), (1, 0) and (1, 0). Therefore, m(40) 1-neighborhood funciton N* satisfies the finiteness con-= (1, 0) and m(42) = (1, 0). The chain coordinates for dition NO rather than conditions Ni and N2 of Sectioncells 40 and 42 are respectively I and 1. II. Accordingly, we must also make minlor changes toFrom rule R4, the list L now contains cells 41, 40 and algorithm 4. For instance, we must redefine the coor-

42. Therefore, by Ri, list L1 has now in it cells { 20, 19, dinate functions di, and modify our process of assigniing39, 43, 21} with possible cell masses respectively: chain coordinates. Let us agree to call the modified al-(1, 1), (2, 1), (2, 0), (2, 0), (2, 0). Thus m(20) = (1, 1) gorithm A*. Then our basic theorem would read:and cell 20 has chain coordinate <-. Let a e*-space (C, S, N*, F, Al) be given. Let P be a

Continuing in this mannier, and using again the selec- path problem with respect to a vector F. If F is mono-tion rule R3 that the left direction is to be preferred tone, then algorithm A4* yields a path p(c*, c**) satisfy-over all other directions, we arrive at the path shown in ing P.Fig. 6. We see that in this case, since we are interested In regardi to the second question, our knowledge isin the shortest path, the path AA makes contact once very meager. It is quite possible that an essentiallywith an edge. We had seen before that there are paths different algorithm is needed to deal with non-monotonewhich make no contact with any edge. vectors.

Coming back to our basic theorem, we ought to makeD. Generalizations it clear that even when a vector F is nmonotone, it may

\Ve should, perhaps, take a moment at this time to be so pathological that the process of applying algo-reflect on the following two questions. In Section II, we rithm A could become extremely tedious. To be specific,have set up an abstract model, our C5-space, in such a let p(cl, cn) be an admissible path consisting of the chainway that algorithm A can be used to solve path prob- of cells:lems formiulated withini this model. The first questionwe will ask is whether algorithm A4 can be applied to p(c', cn) = Ic1, c2, , c}.still more general situations that is, whether our ab-stract model of C-space may be further generalized. In A monotone function f is said to be 1-hereditary ifa similar way, we may wish to relax the monotone con- f(p(c1, ca)) depends only on f(p(cl, cn-l)) and on cellsdition on vectors F. The second question is, therefore, Cn-' and cr1. A monotone function f is said to be 2-whether our basic theorem may be generalized to in- hereditary if f(p(cl, Cn)) depends only on f(p(cl, Cn-2))dlude also perhaps a subclass of non-monlotone vec- and f(p(c', c4-')) and cells c-2, cn- and c8 In a similartors. manner, we may define p-hereditary functions for p_.1.The answer to the first question can be given in the All of the exarmples of monotone vectors given in this

affirmlative, and may appear a bit surprising. Specifi- section happen to be 1-hereditary. In such cases thecally, we may redefine the 1-neighborhood funlction N process of applying algorithmn A is much simplified.such that N needs to satisfy (neither rule Ni nor rule N2 \V\e may also apply algorithml A to solve the minimalof Section II. The only condition that N mnust satisfyr is corner problem; that is, to find a path with the leasta finiteness condition: number of corners. This problem presents an interestingNO. Every i-neighborhood is finite. twist, since the corner function is monotone but 2-Let us call a space (C, S, N*, F, Al) a C5-*space if the hereditary. In the same way, one may construct p-

Page 8: An Algorithm for Path Connections and Its Applications*

1961 Lee: An Algorithm for Path Connections and Its Applications 353

hereditary functionis for arbitrary p. Indeed, one may minimal-distance problem, it occurred to us that theconstruct m-ionoton-e functions which are not finitely search algorithmn is, in a remote sense, a computernodelhereditary. of waves expanding from a source unlder a form of

straight-line geometry. Those cells havinig the same cellV. MINIMAL-DISTANCE SOLUTIONS-A MA/AZE AND miiass mllay be thought of as the locations of the wave-

OTHER ILLUSTRATIONS fronit at the mth unit of timie. Fig. 8, for example, may

As the reader can see, the statement of algorithm A be taken to represenit the wavefront originating from

lends itself quite directly to computer programming. source A as it expanded.Such a step for the minimal distance problem has been Following this line of thought, we proceeded to run

carrieout. A natural cell configuration Is dtr Ined a few simple experimenits suggested by optics. In Fig.byrthedprinter ntassociated compiurater. Tetpriner 15, the obstacle consisted of a vertical barrier with a slitcantheprinte120 characters winhoe line,tand usu printsr in the middle. The source is at the left-hanid end of the60 lines toa pa cell configuran is thereforena diagram. The blank spaces may serve as an indication60retag a arra o12 cell byg60 cs thesets o of the propagation of the wavefraont. The reader may see

symbols are, in this case, the set of characters onthe that the wave pattern to the right of the obstacle is theprinter, same as that which would have been produced by a

In Fig. 7 is shown an input into the computer. The source located at the slit.In~~~~~~Fig71is shw aniptit h optr hIn the same way, Fig. 16 shows the effect of havingbounidary cells and the obstacle cells are all marked X. I the staeway Figs.16shw th efe oaving

In this illustration, we wish to find a miniimal-distance a 2-slit obstacle and Figs. 17 and 18 are patternspath~~~~~~betee celAadelB created by having a number of multiple-slit obstacles.pathbetween cell A and cell B.

There are several differences between the modelFig. 8 shows the result of applying algorithm Al (thesearch algorithm) to the cell configuratioin given in Fig.7. Since it is not possible to print mnore thani one char- The geometry assumed in this model is, in the first place,acter in each cell, we have chosen to print out the least not Euclidean. Since distances in this geometry are

significant octal digit of the cell masses. The reader can measured roughly as distances are understood by taxi

see that the immediate neighbors of cell A has cell .ass drivers on the island of Manhattan, this geometry is

1. The neighbors of these have cell mass 2, etc. This sometimes called Manhattan geometry.search-expansion process continues until cell B is In addition to the difference in geometry, and the fact

reached. that we are dealing with a discrete space, we have also

Fig. 9 shows the result of applyXig algorithm A2 (the not taken into account the phenomenon of interference.trace algorithm) to the cell configuration. The selection The comiputer instead has a built-in first-come-first-rule used here is to order the admissible neighbors ac- served rule. That is, where there are several sources pres-

cording to the following list of preference: right, up, ent, the amplitude of the wave at any point is deter-

left, down. The path shown is the machinie's solution to mined b the source closest to it.the original path problem. Although there is only a remote resemblanice between

Fig. 10 depicts a three-stage adder circuit; each box this model and optics, these experiments seem to sug-

designates one of the circuit stages. We wish to apply gest the possibility of microsimulation of physicalalgorithm A to establish all appropriate coinections. phenomena on a computer and the possibility of look-

Fig. 11 shows the result of applying algorithm A. One ing for effects in this way if the laws of nature were

miay note that in these paths, there are many more nodified. In our case, it would be possible to inicludecorners than necessa'ry. The appearance of these extra also interference. The model would then be a reasoni-* ... 1 ~~~~~~~ablv faithful representation of elenienltary wave phe-coriners is due to our simple selection rule. To a large I

extent, the appearance of paths can be conitrolled by nomena under discrete M\anhattai geometry.incorporatinig appropriate selection rules inito algo-rithm-i A. VI I. AcKNOWLEDGMENT

Shortly after the program was written, we realized In the course of this work, the writer has had thethat this program, without change, can be used to also benefit of stimulating conversation-s with a number ofsolve maze problemls. In this sense then, and with people. Among these are E. F. Moore, T. H. Crowley,proper modifications, the program may serve in particu- D. H. Evans, S. H. Washburn, R. W. Hamming andlar as a 704 version of Shannon's mnaze-solving ma- C. A. Lovell. The "diffraction" experimlents were anchine.5 An illustration is the Hampton court maze outgrowth of a conversation with D. H. Evans. Theshown in Filg. 12. Filg. 13 shows the result of applying wrriter also wishes to acknowledge the unltirinlg assist-the search algorithmn to the mtaze conlfiguration. The ance for Sections V and VI from 5. 0. Four of IBM4.machine's solution is given by Fig. 14.

5C. E. Shannon, "vPresentation of the maze-solving machine,"Trans of the 8th Gybernetics Conf., Josiah MVacy Jr. Foundationl, New

VI. THE SEARCH ALGORITHM AND HUYGENS York, N. Y., pp. 173-180; 1952.PRINCIPLE

In the course of programming algorithm A for the (See Figs. 7-18, on follZowing pp. 354-365.)

Page 9: An Algorithm for Path Connections and Its Applications*

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxx

xx

xx

xx

xx

xx

xx

xx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

x

xA

xx

xx

x

xx

x

xx

xx

xx

xx

xx

xx

xx

xx

xxxx

xxxx

xxxx

xxx

xXX

XX)

xx

xx

xx

xx

xB

x

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

x

x)tex,

'Xkxxxxxxxxxxxx

xx

xx

x

xx

x

xx

x

xx

x

xx

x

xx

x

xx

xx

xx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxXXXXXXXXXXX)

Fig.

7-Input

into

comp

uter

forminimal-distance

solutions.

Page 10: An Algorithm for Path Connections and Its Applications*

xxxx

xxxx

xxxxxxxxxxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxxxxxxxxxxxXXXXXXXXX)xxxx

xx

xx

xx

xx

xx

xx

xx

xx

xX

X1

XXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX

17

XX

XXl

767

XX

XX

76567

XX

X1X7654567

1X

XX

1X65434567

1XX

X17X

5432

3456

71

XX

X1

76X4321234567

1X

XX

1765X321

1234567

1X

Xx

X1

7654X21

71234

567

1X

XX

X1

76543X1

767

1234567

1X

XX

X1

765432X

76567

1234567

1X

XX

X176

5432

1X76

5456

71234567

1X

XN

X17654321

X65434567

12X67

1X

XX

17654321

7X543234567

1X7

1X

XX

17654321

7654321234567

X1

xX

X1

7654

321

7654

321A

1234

567X

1X

XX

17654321

7654321234567

XX

XO

X1

7654321

76543234567

1XX

XN

X1

7654

321

765434567

12X

XX

X1

7654

321

7654567

123X

XX

X1

7654321

7656

71234X

XX

X1

7654321

767

12345X

XX

X17654321

7123456X

XX

X1

7654

321

123456XXXXXXXXXXXXXXX

XXX

XXXX

XX

17654321234567

1X

XX

176543234567

1X

XX

1765434567

1X

XX

17654567

1X

X1

76567

Bx

XX

1767

XX

X1

7X

Xx

1x

Xx

xx

XX

XX

Xx

xx

Xx

xx

Xx

xx

Xx

xx

Xx

xx

Xx

xx

Xxx

xxxx

xxxx

xxxx

xxx

xx

Xx

xx

xx

xX

xx

xX

xx

xX

xx

xX

xx

xX

xx

Xx

xX

xx

Xx

xxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXx

Fig.

8-Result

ofapplyinigse

arch

algo

rith

mto

Fig.

7.

Page 11: An Algorithm for Path Connections and Its Applications*

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

>x

xx

xx

xx

xx

xx

xN

Nx

xx

xN

xx

xxx

xxNx

xxxx

XNNN

xxxx

XNNX

xXNX

XNNNNN

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xtx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xxi

xx

x

XX

XXX

XXX

XX

XXX

XXX

XX

XX°

XX

XXX

XXX

XXXXXXXXXXXXXXXX

XXXXXXX

XXX

XN

XX

XX

XX

NX

NX

BX

XX

XXN

XX

NN

XX

NN

XX

XX

XN

NN

XX

NN

NX

XN

XNX

XX

XNX

XX

NX

XX

XX

XX

NXXXXXXXXXXXXXXXXX

NXX

XX

NX

XX

NX

XX

NX

XX

NX

XX

XX

XX

N

Fig.

9One

solu

ltio

iito

thle

i-il

llii

al-d

lisl

[tan

epr

oble

rnl.

Page 12: An Algorithm for Path Connections and Its Applications*

xx

xx

xx

xx

xxxx

xx

xxO

xx

xAl

xA2

xxx

xxxx

xxxx

xxxxxxxxxxxx

xxxx

xxxx

xxxx

XA3

XX

XX

xx

x

Xx

xx

xx

xxX

MsX

XX

XX

xA*x

xx

xx

xx~x

xx

xx

xxx

XA.X

XX

XX

X.5

X:x

A5x

xx

xx

xx_X

X1

XX

2X

X3

XX-x

x1

xx

2x

xxx

xx

xx

xx

xxx

~~~~~~~~~~~XXX

XA

X.5

XX

080X

XX

XX

xx

XX

XXXX

xx

0X

xx

xx

xX

31.

xx

xx

xxx

.xx

xx

xx

x,X

XXX

xx

xx

X82

.sX

XX

XX

xX

xxxxxxxxxxx

xxxx

xxxx

xxx

xxxx

xxxx

xxxx

,xx

.X83

.5

xAxA

XB4.

xxA

AQ

A85

.AX~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A A AX

XA A A AX

A

Fig.

10-A

circuitbl

ockdi

agra

mas

inpu

tin

toco

mput

er.

C

Page 13: An Algorithm for Path Connections and Its Applications*

xX

x xxxxxxxx

xx

XA0.---

---

---

--

xx

x--

--

--

--

--

--

--

--

--

--

--

--

--

---

-

x--

--

--

--

--

--

---

--

--

---

--++

-----

---

---

XA2

+-

--

--

--

--

--

-----

----

---

----

X

x++

----

----

----

-------.----

+----x

XA3.ii

I~~~~~~~~~~~~~

~lXXH

HXvv

lXlvv/"

v,II

VxX

viiX,

XA3*III

IxXi\

IIx

IIxIe

..x

I0Ilix

III

Ix lIXx

s

XA4*1

lox

Xii

lox

xilo

xX

X*a

seX

X.i

ae4X

X's

aOX

X------

.1X

IXXe

.iIX

XIXXHA

XA5

OXxi

oxx

oxX.2

X

XX

X*X

X.-----

--OX

XIX

xX

1x

X2

xIX

Sx

~~

~~~~xXs

--

--

--

-XXs

e.--

--

--

-XX.---

---S

xx

xiX

xiIx

xIIX

x~

~~~

~~~~~X

xixi

IX

Xs----------S

xo..

xxi

..

xxi

..

I-xxiit

x

XX

Xl--

--

---

-O

XiIX--

---

-oxe

xx

x+

---x-----------.

.11\x

XBi.-

..~~~~~~~~~~~~~~--x

xli.xII

lax

xiIl

xx

xii

xxi

IaeSxi

11.5

xx

xii

xxii

ixxi

Is.

XB2

e.---

--

.ox

XII

xiI

ixxi

sol

xix

xxxx

xxxx

xxi

xxxxxxxxxxxl

Ixxx

xxxx

xxxi

XIi

XB3

o.....---

--

---

---

---

1...--

---

---

--

--

X.

....----

---

--

--

---

-a.

xIs.

---

---

--

--

---

---

--

&

x~~~~B4&II

xx

a.s

xIC

xX

xx

x xXxx

xx

xxxxxx

x~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~xC

xX

Fig.

1 1-Resuilt

ofap

plyi

ngalg

orithm

-iA

toFi

g.10.

Page 14: An Algorithm for Path Connections and Its Applications*

xxxx

xxxx

xxxxxxxx

xxxxxxxxxxxxxxx

xxxxxx

xxx

xxxxxxxxxxxxxxxxxxxxxxxxxXXXXXxx

xxxxx

xxxxxxxxxxxxxxxxxXxxxxxxxxxxxxxxxxxxx

xx

xx

x x.

xxxxxxxxxxxxxxxxxxxxxxxxxxx

XXXX

X/VX

XXXX

xxxx

xxxx

xxxx

xxxx

xxxxxxXXXXXXXX/I.xx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxx

xx

xx

xx

xx

xx

xx

xx

xx

xx

x.

xx

xx

xx

xx

xxxx

xxxx

xxxx

xxxx

xxx.

4xxxxXx

xxxxxxxxxx

xxxxxx

xxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xx.

xx

xx

xx

xx

x,

xx

XXXX

xx

Xx

nex

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xx

XXXXXXXXXX

xxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxxxxx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xxf

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xxxxxxx

xx

xxxxxxxxxxxxxxxxxxxxxxxx

xx

xx

xxxxxxx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

*xx

xx

xx

xx

xxxxxxxxx

xx

xx

xx

xx

xx

xxxxxxxxx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

^x

xxxxxxxx

xx

xxxxxxxxxxxxx

xxxxxxx

xx

xx

xx

xxt

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

sxc

xx

xx

xx

xx

xx

xx

xx

x5

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xxxxxxxxxxxx

xx

xxxxxyxx

xxxxxxxxxxxxxx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

x,

xx

xx

xx

xx

xx

xx

xx

xxxx

xxxx

xxxx

xxxx

xxxx

x,\X

XXXX

XXXx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xXXX

XXXX

XXXV

XXXX

XXXX

Xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxf

xx

xx

xx

xx

xx

xx

xXX

XXXX

XXXX

XXAX

XXXX

XXxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

x*

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x x x xxxxxxxxxxxxxxxxxXxxxxxxxxxxxxxxyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxxxxxxP

Fig.

12A

maze

iilpLi

tin

toth

ecomputer.

Page 15: An Algorithm for Path Connections and Its Applications*

Xl765432'3453-17

1234567

1234~567

1234567

1234

"656

71234567

1234321

7654321

7654321

7654

3--2

176

543~

21765432176543212357X

X765432123456

1356

712

345,

571'234i567

1.34367

1234567

12321

7654

321l

7634321

76543-21

7654321

7654321

76543211246X

X7654321

123A

4567

1.34567

1234567

1234561

12~34567

1234567

121

7654

321.

7654321

7654321

7654321

7654321

7654321

71357

X654321

712134567

1234

561t

1234567

1234557

1.34567

1234567

17654321

7654321

7654321

7654321

7654321

76543217671246

X5432176X1XXXX/\XX2X3X/4X5XXXXI"XIXXX/\XX\IXXXXXXXXXXXXXXXXXXXXXXXXXXXX5

X4321

765X1

76567

1.34567

1234567

1234557

123X7

1234567

123-

IX12

3456

71234X654567

1234567

12)3

4567

11234567

1234X457124

X321

7654X

7654567

12-34561

1234567

1234567

12X6'7

1234567

12X

123-4567

123X543-45167

125-4567

1234567

1234567123X346713

X21

76543X765434567

1234567

1234567

1.23

45-6

71X567

1234-5671

1X7

1234567

12X43.345~67

.35671.'34567

1.34567

12234567

12X3

Xl765432X6543234567

1234567

1234

.567

1234

5167

X4567

1234567

XE?

1234567

1X321234567

1234567

1234567

12345671X12357X

X7654321X5432IXXXXXXXXXXXXXXX

XXXX

XX,X

XXXX

671X

3456

7XXX

XX/v

XXXX

S167

XXXX

XX12

X21

XXXX

\XXX

XXXX

f"XX

XXXX

XXXX

XXXX

X67'

12X1246X

X7654321

X4321

X7654321

7654321

765-

-432

17

12X23456X

767

1234567

12'3X123X1

7654

3.1l

7654321

76543212345X7

123X71357

X654321

7X321

7X1

7654321

7654321

765-4321

1.3XI12345X76567

1234567

1.lX2"34X

7654

321:

"7554321

7654321

1234X1234X67125X

X54321

76X21

76X21

76543D2.

16754321

7o5l)43:'21'23-4X

1234X654567

12L34567

1X34

5X76

543.

1i76::;43'21

7654.321

7123X12345X567135

X4321

765X1

765~-X'221

7653

4321

7654321

765432345X7

123X5434567

1234567

X456

X63:

4321

.76543.1

76543.21

767

12X2_3456X456124

X321

7654X

7654X43.1

XXXXXXXXXXXXXXXXXXXXXAXXXX67

12X432XXXXXXXXXX7

1X567X"r

XXXXXXAPXXXXXXXXXXXXXX,"%X567

1X34567X345713

X21

7654

3X76

543X

543'

A21X

-671.46

1357

1234567

1X321

123X54321

12X67

1234567

1254567

1.13

4567

X4567

X4567X234612

Xl765432X65432X6543.X4567

1.2-34567

12:3456'7

12-34567

X21

712X654+32123X7

1234567

1234567

1234567

1X34567X5671X12357i

X76

5432

1X54

321X

7654

3X5-

l456

71234567

1234567

1234567X1

767

1X7i

6543

23-4

X1234567

1234

567

1234567

12X23456X67

12X123571

X7654321

X4321

X76

54X2

34'5

67123~'4561

1234567

123456X

76567

X-7

6543

45X1

.:34

567

1.314561

1.-3

4:67

123X

1.~3

45X7

123X

713:7

X654321

7X321

7.1

765X

1234

5XXX

XXXX

XX\.

'XXX

XX\\

\'"X

XvXX

XXXX

XXX,

v456

7X1

76XXXXXXXXX\/67

12XXXXXXXXXXXXX

1234

X1234X

1234

X671246

X54321

76X21

76X21

7671

12'34X4567

1234

56X4

321

1.234567

1234

56X2

17

123'

4567

X712

'3X.

4567

X.32

17X

1234

567

123X12345X567135

X4321

765X1

765X321

712345X34567

12345.321

7'1234567

1234

5X.3

~21

1234567

X12

34X2

`365

6X21

76X234567

1234.X23456X456124

X321

7654

X76

'54X

4321

123456X234567

1.34.21

767

1234567

1234

X432

1.34

51-6

71X1::L45X12345X1

765X

3456

712345X34567.X345713

X21

76543X76543X5D43~21234567X12

3456

0712

3X1

7656

-71234567

123.')54323-l4567

12X2

3456

X1/

-34X

'765

4X4~

567

1234

56X4

567X234612

Xl765432X65432XXXXXXX4567

X1234X

1231

4X7654XXX.XX..XXXXXXXXXXX.XXXX

123X34567X7

12'3.76545.-l567

1X.XXX.X5671.123571

X7654321X54321

76567X567

1.7

123X12345X765E43X

656

.123

4X41

567

X67

1c.654~32.67

1..4

321

767

12X12

46I

X7654321

X4321

765456X67

12X67

12X23456X65432X

65456

X234

5X56

71X5:

71X54:c2,~X7134.17

12:3.7

157

X654321

7X321

7654345X7

123X

567

1.34

567X

5432

1X6543456

X3456X67

12.X

4367

X43.1

X12

"34X

6543

2112"34X6712460

X54321

76X21

76543234.

1234X4567

X4567

X432

1.X

*654323456

.4567.7

123.

3456

7.32

17X12345X76542212345X567135

X4321

765X

XXXX

X..X

123X

1234

5X.3

4567

X567

1.3.1,

7X765432123456

.567

X1.

3l4X

c345

6X21

76.2345-6.

765XXXXXXXX4567124

.321

7654.

7654567

12.X23456X23455'X67

1-2.21

76.

7654321

123456.67

1.12

345.

1.l3

4-5.

176

5.34

56-7

.176712345.345713

X21

76543.765434567

1.34

567X

1234

5X7

123X1

765X

7654321

712

3-45

X712

X234

-56X

1234

..L

7654X4567

X21

7123456.2346

12

Xl765432.-'6543234567

.4567

X12

34X

1234.

7654.

7654321

767

1234.

123X34567X7

123X76543X567

1.3.

112345-67.123571

.7654321.54321XXXXXXX567

1.7

123X

1234

5X76

'543

XXXX

XX.X

XX.X

765X

....

..12

34.4

567

X6?

12X6

5432

X67

12X43212.57X

2456

7XI

X7654321

.4321

X4321

767

12X.

6712X23456X654:321

765434567X7654.

7654

32'3

45X5

671X

567

1.54321L

7123.X54323.567

1.71357

X654321

7.321

7X54321

71i

23.5

671X

.343

67X5

4321

-765

-432

3456

.654

3.1,

X765--43456.67

12X4567

.654

3,21

1234.65434.67

12.6

7246

X54321

76X21

76.654321

1234

.4~5

67.4567

.4321

76543212345.-5432.21

7654567.7

123X

3456

7X76

5432

1234

5X76

545X

7123.567145

X4321

765X1

765X76543212345X34567X567

1X32

17654321

1234X4321.321

76567

X1234X23456X

7654323456X

7656.

1234.4567124

.321

7654

X7654X

7654.23456.23456.67

12XXXXXXXXXX.X.7

123.321

X4321XX.XXXX12345X1.345XXX.XXXXX..XXX1

767.12345.345713

X21

76543X76543X1

765X34567

12345.7

1234567

123456X67

12.21

7.543234567

1.234567

123,

4.65

4321

l76543.1

7.23456.234612

Xl765432.65432.21

76.4

1567

123456.

1234567

1234567X567

1.1

76.65434567

1234567

1.345.X7654321

76543.11.34567.12357X

X7654321X54321X321

7.567

1234567.1234567

1234567

X4567

X765.7654567

1.34

567

123455X

7654321

7654'3.12.46X

2456

7XI

.7654321

.432

1.4321

X67

1234567

.234567

1234567

1.34567.7654.

76567

1234567

123A

4567

.17654321

7654323.567

1.71357

.654321

7.321

7X54321X.XXXXXXXXXXXXXXXXXXXXXXXXXXXX23456X6543XXXXXXXXXXXX...XXXXXXXXXXXXXX.......

.XXX

XX67

12.6

7246

.543

2176.21

76.6543234567

1234567

1234567

1234567

12345.54321

7654321

1654321

7654321

7654321

7654321

7123.567135

X4321

765.1

765.765434567

1234567

1234567

1234567

123456.654321

7654321-

7654321

7654321

76543.21

7654321

1234.456

124

.321

7654

.7654.

7654567

1234567

1234567

1234567

1234567.7654321

7654321

7654

321l

7654321

7654321

76543212345.345713

.21

76543.76543.1

7656

71234567

1234567

1234567

1234567

X76543.1

7654321

7654

3.1

7654321

7654321

7654323456.2346

12Xl7642642XXXXXXXXXXXXX1.XXXXXXXXxxxxxxxxxxxxxxxxxxxxxxxxi

.76

5432

1.54

321

7654321

7654321

7654321

7654321

7654321

7654567

1234567

1234567

1234567

1.34567

1234567

1234.

1246I

.7654321

.432

17654321

7654321

7654321

7654321

7654321

765434567

1234567

1234567

1234567

1234567

1234567

123.71357

.654

321

7.321

7654321

7654321

7654321

7654

321

7654321

76543234567

1234567

1234567

1234567

1234567

123456712.671246

.54321

76.21

7654321

7654321

7654321

7654

2321

7654321

7654

'-32

1.34

567

1.34567t

1234567

12~3

4567

1234567

1.3~4567

1.567135

.43211.34.XXXXXXXXXXXXXXXXXXXXX42*2XXXXXXXXXXXXXXXXXXXXXXXX4

.321

7654321

7654321

7654321

7654321

7654321

7654321

7654321234567

1234567

1234567

1234567

1234

567

1234

567,

123457

23.4

321

7654321

7654321

7654321

76543.1

7654321

7654321

76543234567

1234567

1234567

1234567

1234567

1234567

123456

124

.54321

7654321

7654321

7654321

7654321

7654321

7654321

765434567

1234567

1234567

1234

567

1234567

12345671234567135

.654321

7654321

7654321

7654321

7654321

7654321

7654321

7654567

1234567

1234567

12~3

4567

1234567

123456712345671246

Fig.

13-Result

ofap

plyi

n-gse

arch

algori

thmi

toFi

g.12.

Page 16: An Algorithm for Path Connections and Its Applications*

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

sx

xx x

Xx

Xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxXysXXIXXXXXXXXXXXXXXX

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

x------------------

4x

x*----------*x

---------------------------

0x

XX

IXXXXXXXXXXXXXXXXXXXX\XXXXXXI

XXXXXXX

IXIX

X\<X

XXXX

XXXX

XXXX

XXXX

XXXX

XXXI

XX

X*----x

XIX

---------------------

XX

XX

IXX

XX

IxIX

Xx

XX

IXX

XX

XX

Xx

XX

*--------------------a

XX

XXI

xX

XX

IXX

XXXX

XXXx

XXXX

XXXX

XX\X

XXXX

XIxX

XxxxxXXIXXXXX

XIXXXXXXXXXXXXXXXXXXXxxXXXXX

XX

XX

IX

IX

X*.

cx

---------------------.XI

xIx

XX

XIX

iXX

XXX

IXXl

XX

XX

IXIX

XXI

IXl

X

XX

IXcI

XX

IX

XIIX

XI

X;X

XX

IXIXXXXXXXXXXXXXXXXXXXXXXXXXXX

XIXXIXXXXXXXXX

IXXX

XXXXXXXXXXXXXXXIXI

XIX

XX

XIX

IX.

Xc

------.,

XXX...

-XX

IX

X-

XX

IXIX

XX

Xlx

iXi

XX

XX

IXIX

XX

XX

lxi

xiX

A

XX

IXIX

XX

XX

XX

XlX

XX

IXX

IXXI

XXXXXXX

XXXXXXXXXXXXXXXXIXXXXXXXXXXXXXX

XXXXXXXX

XXXXXXlX

XX

XX

IX--

X-l

XX

XcI

XX

XX

XX

a-Xl

XX

XX

IXX

XI

XX

XX

Xxl

xX

XIX

XX

XX

XX

XX

IX

X

XX

XX

XIX

XX

XX

XX

XX

XX

iiXXXXXX

XX

XIXXXX

XX

XX

XXXXXXI

xx

XX

a---

.XI

XX

XIX

XX

XX

XX

XX

XX

lxi

XX

XIX

XX

XX

XX

XX

tX

x#

4'

Xx

XIX

XX

XX

XX

xx

0x

XI

XX

XI

IX

XX

XX

XX

X

XX

Xx

XX

----

--X

*XX

XX

XX

Xx-

XX

XX

ixxxX

XX

XX

XX

XX

xX

XX

XX

-XX

XX

IXX

XX

Xx

.x-

xX

XX

IXX-

XX

XIX

lX

XX

XX

XX

XX

XI

XX

XXX

XXXX

XXXX

XXiX

XXXXXXX

XXXXXXXXXVXXXXX

XX

XI,

XX

IXXXi

XX

XI

xX

XX

XII

XXXX

XXX-

----

--

--- X--

--X---X----X----X----XI--

XAX

XIX

IX

XX

aX

IXXXX

XX

XX

IXX

XX

XIX

XX

XXXx

XX

XX

IXX

XX

XIX

XX

XXI

XX

c

xx

IXI

XX

Xl

XIX

XX

XlX

X

XX

IXlXXxxxxxxsXXXXXXXXxXXXX

XlX

XxxxXXXXxxX

xXXXXXXXXXXX

'xxxxxXIl

XX

xX

IXlX

X,X

XIX

X----

----

-___

____

____XI

XX

XIXIXXI

XIX

XlX

XX

XIXIXXl

XIXXI

Xxs

XX

IXIXXI

XIXXXI

XXO

XX

IXIXXXXXXXXXXXX\XXXXXXXAXXXXXXXXXXXXXXXXXXXXXXXXIXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXIXXXXXX

XX

XX---

----

----

----

a--

__

__

__

__

__

_,

.X

XX

XI

XX

XX

IX

XV

XX

iX

XX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXX

aaX

XX

XXX

XX

XX

XXXXXXXXXXXXXXXXXXXXXXXXXXY/XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXX

XXX

FIG.

14-Machine's

solu

tion

tothema

zepr

oble

m.:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

x_

Page 17: An Algorithm for Path Connections and Its Applications*

xxxxxxxxxxX43175317531757X

1234567

1234567

1234567

1234567

1234567

1234567

123

XX4321

7654

321

7654

321

7655

67X71234567

1234

567

1234567

1234567

1234

567

1234567

123X

X321

7654

321

7654

321

76534567X671234567

1234

567

1234

567

1234

567

1234567

1234

567

123X

X2176

5432

176

5432

1765

433456

X567

1234

567

1234

567

1234567

1234

567

1234567

1.234567

123X

Xl7654321

7654321

765432

2345X4

5671234567

1234567

1234

567

1234

567

1234

567

1234567

123X

X7654321

7654

321

765432

11234X

34567

1234

567

1234

567

1234567

1234

567

1234

567

1234

567

123X

X765

4321

7654

321

7654

3217

123X23

4567

1234

567

1234567

1234

567

1234567

1234567

1234567

123X

X654

321

7654

321

7654

32177

12X234567

1234

567

1234567

1234567

1234567

1234

567

1234567

123X

X54321

7654321

7654321

7667

1X1234567

1234567

1234567

1234567

1234567

1234567

1234

567

123X

X4321

7654

321

7654321

765567X7

1234

567

1234

567

1234567

1234

567

1234

567

1234

567

1234567

123X

X321

7654

321

7654

321

765445

67X67

1234567

1234567

1234567

1234

567

1234

567

1234

567

1234567

123X

X2176

5432

17654321

7654

3345

6X67

1234567

1234567

1234

567

1234567

1234567

1234567

1234

567

123X

XI76

5432

176

5432

1765

432234

5X4567

1234567

1234567

1234567

1234567

1234567

1234567

1234567

123

X76

5432

176

5432

1765

432212

34X345

671234567

1234567

1234

567

1234567

1234567

1234567

1234567

123X

X7654321

7654321

765432

12134X

234567

1234567

1234567

1234567

1234567

1234567

1234567

1234

567

123X

Xl76

5432

17654321

7654321345X234567

1234567

1234567

1234567

1234

567

1234567

1234

567

1234567

123X

X2l76

5432

17654321

765432

456X12

3456'7

1234567

1234

567'

1234567

1234

567

1234567

1234567

1234567

123X

X321

7654

321

7654321

765435

67X7

1234567

1234567

1234

567'

1234

567

1234567

1234

567

12-3

4567

1234567

123X

X4321

7654

321

7654321

7654

67X6

71234567

12~345

671234567

1234567

1234

567

1234

567

1234

567

1234567

123X

X543

217654321

7654321

7657

X567

1234

567

1234567

1234567

1234567

1234567

1234567

1234567

1234

567

123X

X654321

7654

321

7654321

7612X4567

1234

567

1234567

1234567

1234567

1234

567

1234567

1234

567

1234

567

123X

X7654321

7654

321

7654321712X34567

1234567

1234567

1234

567

1234567

1234

567

1234567

1234

567

1234

567

123X

X76

5432

.17654321

765432

11234X

234567

1234567

1234

567

1234567

1234

567

1234

567

123456

71234567

1234

567

123X

Xl76

5432

17654321

7654

3213

45X2

3456

712

3456

712

3456

71234567

1234567

1234567

1234567

1234

567

1234

567

123X

X2l76

5432

17654321

765433456X1234567

1234567

1234567

1234

567

1234

567

1234567

1234567

1234567

1234

567

123X

X321

7654

321

7654

321

765435

67X7

1234

567

1234567

1234567

1234567

1234567

1234

567

1234

567

1234567

1234

567

123X

X432

176

5432

176

5432

1765467X67

1234567

1234

567

1234567

1234567

1234

567

1234567

1234567

1234

567

1234567

123X

X54321

7654321

7654

321

7657

X567

1234567

1234567

1234567

1234

567

1234567

1234567

1234

567

1234567

1234567

123X

X654321

7654

321

7654321

76123567

1234

567

1234

567

1234

567

1234567

1234567

1234

567

1234567

1234

567

1234

567

1234

X7654321

7654321

7654

3217

1234567

1234567

1234

567

1234

567

1234

567

1234567

1234567

1234567

1234567

1234

5671234X

X7654321

7654321

765432

11234X

5671234567

1234567

1234567

1234

567

1234

567

1234567

1234

567

1234567

1234

567

123X

Xl7654321

7654321

765432

2345X6

71234567

1234567

1234567

1234567

1234567

1234567

1234567

1234567

1234567

123X

X217654321

7654

321

765423

456X7

1234567

1234567

1234567

1234567

1234567

1234

567

1234

567

1234567

1234567

123X

X321

7654

321

7654321

76544567X1234567

1234567

1234567

1234

567

1234567

1234567

123456

712

3456

712

3456

712

3XX4

321

7654

321

7654321

7655

67X1

2345

671234567

1234567

1234567

1234

567

1234567

1234

567

1234567

1234567

123X

X543

2176

5432

17654321

7667

X2314567

1234567

1234567

1234567

1234

567

1234

567

1234567

1234

567

1234

567

123X

X654321

7654321

765432177

12X345

6712

3456

71234567

1234567

1234567

1234

567

1234

567

1234567

1234567

123X

X765

4321

7654321

76543217

123X45

6712

3456

71234567

1234567

1234567

1234567

1234,567

1234

567

1234567

123X

X76

5432

176

5432

1765

432112

34X567

1234567

1234

567

1234567

1234

567

1234567

1234567

1234

567

1234

567

123X

Xl76

5432

176

5432

176

5432

234X

671234567

1234

567

1234567

1234567

1234

567

1234

567

1234

567

1234567

123X

Xl17654321

7654321

765433

456X7

1234567

1234567

1234567

1234

567

1234567

1234

567

1234567

1234

567

123

X321

7654

321

7654321

76544567X1234567

1234567

1234567

1234

567

1234

567

1234

567

1234567

1234567

123X

X432

17654321

7654321

765567X1234567

1234

567

1234

567

1234

567

1234

567

1234567

1234567

1234

567

123X

X543

2176

5432

17654321

7667

X234

567

1234

567

1234

567

1234567

1234567

1234

567

1234

567

1234

567

123X

X654321

7654321

7654321

76712X

34567

1234567

1234567

1234567

1234

567

1234

567

1234

567

1234

567

123

X765

4321

7654321

76543217

123X45

671234567

1234567

1234567

1234567

1234567

1234567

1234

567

123X

X7654321

7654

321

765432

11234X

5671234567

1234567

1234

567

1234

567

1234567

1234567

1234

567

123X

Xl7654321

7654

321

765432

2345X6

712

3456

71234567

1234567

1234567

1234567

1234567

1234567

123X

XI176

5432

176

5432

1765

433456

X71234567

1234567

1234567

1234567

123456-7

1234

567

1234567

123X

X321

7654321

7654321

765445

67X123

14567

1234567

1234

567

1234567

1234567

1234

567

1234567

123X

X432

17654321

7654321

7655

67X234567

1234

567

1234

567

1234567

1234

567

1234

567

1234567

123X

X54321

7654

321

7654321

7667

1X23

4567

1234

567

1234

567

1234567

1234567

1234567

1234

567

123X

X654

321

7654321

765432177

12X345

671234567

1234567

1234567

1234567

1234

567

1234

567

123X

X765

4321

7654321

7654

3217

12X4

567

1234

567

1234

567

1234567

1234567

1234567

1234567

123X

X7654321

7654

321

7654

3211

234X

6712

3456

71234567

1234567

1234567

1234

567

1234

567

123X

Xl7654321

7654321

765432

2345X6

712

3456

71-234567

1234

567

1234567

1234567

1234

567

123X

X2176

5432

176

5432

1765

433456

X71234567

1234567

1234567

1234

567

1234567

1234

567

123X

X321

7654

321

7654

321

76544567X1234567

1234567'1234567

1234567

1234567

1234567

123X

Fig.

15-A

single-slit

experlimien-t.

Page 18: An Algorithm for Path Connections and Its Applications*

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxX'x

NX

7654321

7654321

7654567

1234567

1234X67

1234567

1234567

1234567

123

XX7

6543

217654321

765434567

1234567

123X567

1234567

1234567

1234567

123

XX6

5432

17654321

76543234567

1234567

12X4567

1234567

1234567

1234567

123

XX54321

7654321

7654321234567

1234567

1X34567

1234567

1234567

1234567

123

XX4

321

7654321

7654321

1234567

1234567

X234567

1234567

1234567

1234567

123

XX3

2176

5432

17654321

71234567

1234567X1234567

1234567

1234567

1234

567

123

XX21

7654

321

7654321

767

1234567

123456X

1234567

1234567

1234567

1234567

123

XXl

7654

321

7654321

76567

1234567

12345X7

1234567

1234567

1234567

1234567

123

XX

7654321

7654321

7654567

1234567

1234X67

1234567

1234567

1234567

1234567

123

XX7654321

7654321

765434567

1234567

123X567

1234567

1234567

1234567

1234567

123

XX654321

7654321

76543234567

1234

567

12X4567

1234567

1234567

1234567

1234567

123

XX54321

7654321

7654321234567

1234567

1X34567

1234567

1234567

1234567

1234567

1234

XX4321

7654

321

7654321

1234

567

1234567

X234567

1234567

1234567

1234567

1234567

1234

XX3

217654321

7654321

71234567

1234567X1234567

1234567

1234567

1234567

1234567

1234

XX21

7654

321

7654321

767

1234567

123456X

1234567

1234567

1234567

1234567

1234567

1234

XXl

7654

321

7654321

76567

1234567

12345X7

1234567

1234

567

1234567

1234567

1234567

1234

XX

7654321

7654321

7654567

1234567

1234X67

1234567

1234

567

1234567

1234567

1234567

1234

XX7

6543

2176

5432

1765434567

1234567

123X567

1234567

1234567

1234567

1234567

1234567

1234

XX6

5432

17654321

76543234567

1234567

12X4567

1234567

1234567

1234567

1234

567

1234

567

1234

X(

X543

2176

5432

17654321234567

1234567

1234567

1234567

1234567

1234567

1234567

123456

71234

XX4

321

7654321

7654321

1234567

1234567

X4567

1234567

1234

567

1234567

1234567

1234567

1234

XX321

7654321

7654

321

712

3456

71234567X567

1234567

1234567

1234567

1234567

1234567

1234

XX21

7654321

7654321

767

1234567

123456X67

1234567

1234567

1234567

1234567

1234567

1234

XXl

7654

321

7654

321

7656

71234567

12345X7

1234567

1234567

1234567

1234567

1234567

1234

XX

7654321

7654321

7654567

1234567

1234X

1234567

1234

567

1234567

1234

567

1234567

1234

XX7

6543

217654321

765434567

1234567

123X1234567

1234567

1234567

1234567

1234567

1234

XX654321

7654321

76543234567

1234567

12X234567

1234567

1234567

1234567

1234567

1234

XX5

4321

7654321

7654321234567

1234567

1X34567

1234567

1234567

1234567

1234567

1234

XX4

321

7654321

765432121234567

1234567

X4567

1234567

1234567

1234567

1234

567

1234

XX54321

7654321

7654321234567

1234567

1X567

1234567

1234567

1234567

1234

567

123

XX6

5432

17654321

76543234567

1234567

12X67

1234567

1234567

1234567

1234567

1234

XX7654321

7654

321

765434567

1234567

123X567

1234567

1234567

1234567

1234567

1234

XX

7654

321

7654321

7654567

1234567

1234X4567

1234567

1234567

1234567

1234

567

1234

XXl

7654321

7654

321

7656

71234567

12345X34567

1234567

1234567

1234567

1234567

1234

X21

7654321

7654321

767

1234567

123456X234567

1234567

1234567

1234567

1234

567

1234

XX3

2176

5432

17654321

71234567

1234

567X

1234

567

1234567

1234567

1234567

1234567

1234

XX4

321

7654321

7654

321

1234567

1234567

X1234567

1234567

1234567

1234567

1234

567

1234

XX54321

7654321

7654321234567

1234

567

1X7

1234567

1234567

1234567

1234567

1234567

1234

XX6

5432

17654321

7654

3234

567

1234567

12X67

1234567

1234

567

1234567

1234567

1234567

1234

XX7654321

7654321

765434567

1234567

1234567

1234567

1234567

1234567

1234567

1234567

1234

XX

7654321

7654321

7654

567

1234567

1234

X67

1234567

1234567

1234567

1234567

1234567

1234

XXl

7654321

7654321

76567

1234567

12345X7

1234567

1234567

1234567

1234567

1234567

1234

XX21

7654321

7654321

767

1234567

123456X

1234

567

1234567

1234

567

1234

567

1234567

1234

XX3

2176

5432

17654321

712

3456

71234567X1234567

1234

567

1234567

1234567

1234

567

1234

XX4

321

7654321

7654321

1234567

1234567

X234567

1234567

1234567

1234567

1234

567

1234

XX5

4321

7654321

7654321234567

1234

567

1X34567

1234567

1234567

1234567

1234

567

1234

XX6

5432

17654321

76543234567

1234567

12X4567

1234

567

1234

567

1234

567

1234567

1234

XX7654321

7654321

765434567

1234567

123X567

1234567

1234567

1234567

1234567

1234

XX

7654

321

7654321

7654567

1234

567

1234X67

1234567

1234

567

1234567

1234567

1234

XXl

7654

321

7654

321

7656

71234567

1234

5X7

1234

567

1234567

1234567

1234567

1234

XX2

17654321

7654

321

767

1234567

123456X

1234

567

1234

567

1234

567

1234567

1234

XX321

7654321

7654321

71234567

1234567X1234567

1234567

1234567

1234567

1234

XX4321

7654

321

7654321

1234567

1234567

X234567

1234567

1234567

1234567

1234

XX54321

7654321

7654321234567

1234

567

1X34567

1234567

1234

567

1234567

1234

XX6

5432

176

5432

176543234567

1234567

12X4567

1234567

1234

567

1234567

1234

XX7

6543

217654321

765434567

1234567

123X

567

1234

567

1234567

1234567

1234

XX

7654

321

7654321

7654567

1234567

1234X67

1234

567

1234567

1234567

1234

XXl

7654

321

7654321

76567

1234567

12345X7

1234567

1234

567

1234567

1234

X

Fig.

16-A

double-slit

experi

m--eni

t.

Page 19: An Algorithm for Path Connections and Its Applications*

X567

1234567

1234

XX

xx

xX4567

1234567

1234X

XX

XX

X34567

1234567

123X

XX

XX

XX234567

1234567

12X4

XX

XX

XX1234567

1234567

1X34

XX

XX

X12

3456

71234567

X234

XX

XX

XX7

1234567

1234567X1234

XX

XX

XX67

1234567

1234

56X

1234

XX

XX

XX5

671234567

12345X7

1234

XX

XX

X456

712

3456

712

34X6

71234

XX

XX

X345

671234567

123X567

1234

XX

XX

XX2

3456

71234567

12X4567

1234

XX

XX

X123

4567

1234567

lX34

567

1234

XX

XX

X12

3456

712

3456

7X2

3456

71234

XX

XX

XX7

1234567

1234567X1234567

1234

XX

XX6

71234567

123456X

1234567

1234

XX

XX

XX567

1234567

1234

5X7

1234567

1234

XX

XX

XX4567

1234

567

1234X67

1234

567

1234

XX

XX

XX34567

1234567

123X567

1234567

1234

XX

XX

XX2

3456

71234567

12X4567

1234567

1234

XX

XX1

2345

671234567

1X34567

1234

567

1234

XX

Xx

XX

1234567

1234567

X234567

1234567

1234X

XX

xX

X71234567

1234567X1234567

1234567

123X

xX

XX

X67

1234567

123456X

1234567

1234

567

12X

XX

XX

X567

1234567

1234567

1234

567

1234567

1XX

XX4567

1234

567

1234X

1234567

1234567

12X

XX

XX

X34567

1234567

123X1234567

1234567

123X

XX

XX

X234567

1234567

12X234567

1234567

1234X

XX

XX

X123

4567

1234567

1X34

567

1234567

1234

XX

XX

XX2

1234

567

1234567

X4567

1234

567

1234

5X

XX

X1234567

1234567

1X34567

1234567

12345X

XX

XX

X234567

1234

567

12X234567

1234567

1234X

XX

XX

X34567

1234567

123X1234567

1234567

123X

XX

XX

X456

712

3456

71234X

1234

567

1234

567

12X

XX

xX

X567

1234

567

1234567

1234

567

1234

567

1XX

XX67

1234567

1234

56X

1234567

1234567

12X

XX

XX

X71234567

1234567X1234567

1234567

123X

Xx

xX

X1234567

1234567

X234567

1234567

1234X

Xx

xX

X123

4567

1234567

1X34567

1234567

12345X

XX

XX

X234567

1234567

12X4567

1234567

12345

XX

XX3

4567

1234567

123X567

1234567

1234

XX

Xx

XX4

567

1234

567

1234X67

1234567

1234

XX

Xx

XX567

1234567

12345X7

1234567

1234

XX

Xx

XX67

1234567

123456X

1234567

1234

XX

xx

XX7

1234567

1234567X1234567

1234

Xx

XX

1234567

1234567

X234

567

1234

XX

Xx

XX1234567

1234567

1X34567

1234

XX

xx

XX2

3456

71234567

12X4567

1234

XX

xx

XX34567

1234567

123X567

1234

XX

Xx

XX4567

1234567

1234X67

1234

XX

xX

X567

1234567

12345X7

1234

XX

xx

XX6

712

3456

7123456X

1234

XX

Xx

XX7

1234567

1234567X1234

XX

xx

XX

1234567

1234567

X234

xx

xx

X1234567

1234567

1X34

Xx

xX

X234567

1234567

12X4

XX

xx

XX34567

1234567

123X

Xx

xx

XX4

567

1234567

1234X

XX

XX

X?(

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XX)

Fig.

17-Begirininig

ofa

multip

le-sli

texp

erimie

nit.

Page 20: An Algorithm for Path Connections and Its Applications*

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

X567

1234567

12345X7

1234567

1234567

1X34

-567

1234567

12345X7

1234567

1234567

IX34567

12XX

X456

71234567

1234X67

1234567

1234567

X234567

1234567

1234X67

1234567

1234567

X234567

12X

XX34567

1234567

123X567

1234567

1234567X1234567

1234567

123X567

1234567

1234567X1234567

12XX

X234567

1234567

12X4567

1234567

123456X

1234567

1234567

12X4567

1234567

123456X

1234567

12XX

X1234567

1234567

1X34567

1234567

12345X7

1234567

1234567

1X34567

1234567

12345X7

1234567

12X

X1234567

1234567

X234

56-1

1234557

1234X67

1234567

1234567

X234567

1234567

1234X67

1234567

12XX

X71234567

1234567X1234567

1234567

123X567,1234567

1234567XI234567

1234567

123X567

1234567

12X

YX6

712

3456

7123456X

1234567

1234567

12X4567

1234567

123456X

1234567

1234567

1ZX4567

1234567

12XX

X567

1234567

12345X7

1234567

1234567

1X34567

1234567

12345X7

1234567

1234567

1X34567

1234

5~67

12XX

X456

71234567

1234X67

1234567

1234567

X234567

1234567

1234X67

1234567

1234567

1234567

1234567

12Xa

X34567

1234567

123X567

1234567

1234567X1234567

1234567

123X567

1234567

1234567X34567

1234567

12XX

X234567

1234567

12X4567

1234567

123456X

1234567

1234567

12X4567

1234567

123455X4567

1Z34

567

12XX

X1234567

1234567

1X34567

1234567

12345X7

1234567

1234567

1X34567

1234567

12345X567

1234567

12x

X1234567

1234567

X234567

1234567

1234X67

1234

5-67

1234567

X234567

1231

4567

1234X67

1234567

12XX

X71234567

1234567X1234567

1234567

123X567

1234567

1234567

1234567

1234567

123X7

1234567

12X

X67

1234567

123456X

1234

567

1234567

12X46

123567

12345X235671356

1234X6

13471X

XX5

671234567

12345X7

1234567

1234567

1X34567

1234567

12345X34567

1234567

12345X567

i234567

12XX

X4567

1234567

1234X67

1234567

1234567

X234567

1234567

1Z34X4567

1234567

123456X4567

1234567

12XX

X34567

1234567

123X567

1234567

1234567X1234567

1234567

123X567

1234567

1234567X34567

1234567

12XX

X234567

1234567

12X4567

1234567

1234567

1234567

1234567

12X67

1234567

1234567

1234567

1234567

12XX

X123

4567

1234567

1X34567

1234567

12345X1234567

1234567

123X567

1234567

1234567X34567

123,4567

1ZXX

X1234567

1234567

X234567

1234567

1234X234567

1234567

1234X4567

1234567

123456X4567

1234

567

12XX

X7

1234567

1234567X1234567

12z34567

123X34567

12345s>67

1234

5vX3s567

12Z3

4567

12<3

45X567

12Z3

4ts5

6712

XXX6

71234567

123456X

1234567

1234567

12X4567

1234567

123456X234567

1234567

1234X67

123,

4567

12XX

X567

1234567

1234567

1234567

1234567

1X567

1234567

1234567

1234567

1234567

123X7

1234567

12XO

X456

71234567

1234X

1234567

1234567

12X4567

1234567

123456X234567

1234567

1234X67

1234567

12XX

X345

671234567

123X1234567

1234567

123X34567

1234567

12345X34567

1234567

12345X567

1Z34567

12XX

X234567

1234567

12X234567

1234567

1234X234567

1234567

1234X4567

1234567

1;Z3

456X

4567

1234567

12XX

>X1234567

1234567

1X34567

1234567

12345X1234567

1234567

123X567

1234567

1234567X34567

1234567

12XX

X21234567

1234567

X4567

1234567

1234567

1234567

1234567

12X67

1234567

1Z34567

1234567

1234567

123

XXX1

2345

671234567

1X34567

1234567

12345X1234567

1234567

123X567

1234567

1234567X34567

1234567

12XX

X234567

1234567

12X234567

1234567

1234X234567

1234567

1234X4567

1234567

123456X4567

1234567

12XX

X34567

1234567

123X1234567

1234567

123X34567

1234567

12345X34567

1234567

12345X567

1234567

12XX

X4567

1234

567

1234X

1234567

1234567

12X4567

1234567

123456X234567

1234567

1234X67

1234567

12XX

X567

1234567

1234567

1234567

1234567

1X56

71234567

123-4567

1234567

1234567

123X7

1234567

123X

°X67

1234567

123456X

1234567

1234567

12X4567

1234567

123456X234-567

1234567

1234X67

1234567

123

XXX7

1234567

1234567X1234567

123456-7

123X34567

1234567

12345X34567

12345167

12345X567

1234567

123

XXX

1234

567

1234567

X234567

1234567

1234X234567

1234567

1234X4567

1234567

123456X4567

1234567

123

XX

.X1234567

1234567

1X34567

1234567

12345X1234567

1234567

123X567

1234567

1234567X34567

1234567

123

XXt

X234

567

1234567

12X4567

1234567

1234567

1234567

1234567

12X6

71234567

1234567

1234567

1234567

123

XXX34567

1234567

123X567

1234567

1234567X1234567

1234567

123X567

1234567

1234567X34567

1234567

123

XX-

X4567

1234

567

1234X67

1234567

1234567

X234567

1234567

1234X4567

1234567

123456X4567

1234567

123

XX

X567

1234567

12345X7

1234567

1234567

1X34567

1234567

12345X34567

1234567

12345X567

lZZ3

4567

123

X-X

X67

1234

567

123456X

1234z567

1234567

12X4561

1234567

123456X234567

1234567

1234X67

1234567

123

XXX7

1234

567

1234567X1234567

1234567

123X567

1234567

1234567

1234567

1234567

1Z3X7

1234567

123X-

X12

3456

71234567

X234567

1234567

1234X67

1234567

1234567

X234567

1234567

1234X67

1Z34

567

1lZ3

XXX1234567

1234567

1X34567

1234567

12345X7

1234567

1234567

1X34567

1234567

12345X567

1234

,567

123

XXX234567

1234567

12X4567

1234567

123456X

1234567

1234567

12X4567

1234567

123456X4567

1234567

123

XXX34567

1234567

123X567

1234567

1234567X1234567

1234567

123X567

1234567

1234567X34567

1234567

123

XX

X4567

1234

567

1234X67

1234567

1234567

X234567

1234567

1234X67

1234567

1234567

1234567

1234567

123

X,X567

1234567

12345X7

1234567

1234567

1X34567

1234567

12345X7.1234567

1234567

1X34S67

1234567

123

XX.X67

1234567

123456X

1234567

1234567

12X4567

1234567

123456X

1234567

1234567

12X4567

1234567

123

XXX7

1234567

1234567X1234567

1234567

123X567

1234567

1234

567X

1234

567

1234567

123X567

1234567

123

XX

X1234561

1234567

XZ34567

1234567

1234X67

1234567

1234567

X234567

1234567

lZ34X67

1234567

123

XX

X1234567

1234567

1X34567

1234567

12345X7

1234567

1234567

lX34567

1234567

12345X7

1234567

123X

,X23

4567

1234567

12X4567

1234567

123456X

1234567

1234567

12X4567

1Z34567

123456X

12,34567

123

XXX3

4567

1234567

123X567

1234567

1234567X1234567

1234567

123X567

1234567

1234567X1234567

123

XX

X456

712

3456

71234X67

1234567

1234567

X234567

1234567

1234X67

1234567

1234567

X234567

123

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Fig.

18Ne

arthe

el-d

ofa

niul

tipl

e-sl

itexperinment.

t