37
Alterna(ng Currents and Components

Alternating Currents and Components

Embed Size (px)

DESCRIPTION

AC components

Citation preview

Page 1: Alternating Currents and Components

Alterna(ng  Currents  and  Components  

Page 2: Alternating Currents and Components

Alterna(ng  Currents  

•  Alterna(ng  currents  flow  back  and  forth.  •  They  are  preferred  over  direct  currents  due  to  their  ease  of  genera(on  and  distribu(on.  

Page 3: Alternating Currents and Components

Alterna(ng  Currents  

•  DC  

•  AC  

•  Watch  h@p://www.youtube.com/watch?v=JZjMuIHoBeg  

Page 4: Alternating Currents and Components

AC  Voltages  

•  If  we  pass  an  alterna(ng  current  through  a  resistor,  we  can  observe  across  the  resistor  an  AC  voltage  whose  instantaneous  value  obeys  Ohm’s  law.  

•  This  voltage  can  be  wri@en  as  

•  Vp  is  the  peak  value,  ω  is  the  angular  frequency  (rad/s),  and  t  is  (me.  €

v t( ) =Vp sinωt

Page 5: Alternating Currents and Components

AC  Voltages  

•  Note  that  •  f  is  the  frequency  in  Hz.  •  What  about  the  power?  

ω = 2πf

Page 6: Alternating Currents and Components

AC  Voltages  

-­‐2.5  

-­‐2  

-­‐1.5  

-­‐1  

-­‐0.5  

0  

0.5  

1  

1.5  

2  

2.5  

0   0.5   1   1.5   2   2.5  

I  

V  

P  

Page 7: Alternating Currents and Components

AC  Voltages  

•  Let  us  solve  for  the  power  

V =Vp sinωt

I =Vp

Rsinωt

P =VI =Vp2

Rsin2ωt =

Vp2

2R1− cos 2ωt( )[ ]

Pave =Vp2

2R≡Vrms2

R

Vrms ≡Vp

2

Page 8: Alternating Currents and Components

Capacitance  

•  If  we  align  two  conduc(ve  plates  parallel  to  each  other,  separate  them  with  an  insulator,  we  have  formed  a  capacitor.  

•  Capacitors  stored  balanced  charge.  •  The  variable  C  is  used  to  denote  capacitance  and  the  unit  is  Farads.  

Q = CV

Page 9: Alternating Currents and Components

Capacitance  

Page 10: Alternating Currents and Components

Capacitance  

Page 11: Alternating Currents and Components

Capacitance  

•  Using  the  defini(on  of  current  

•  For  a  parallel  plate  capacitor,  

•  ε0  is  the  dielectric  constant  of  the  material  and  is  8.85  X  10-­‐12  F/m.  

I =dQdt

= C dVdt

C =εrε0Ad

Page 12: Alternating Currents and Components

Capacitance  

•  εr  is  the  rela(ve  dielectric  constant  

Material   Rela*ve  Dielectric  Constant  

Dielectric  Strength  (kV/cm)  

Vacuum   1.00000   ∞  

Air   1.00054   8  

Paper   3.5   140  

Polystyrene   2.6   250  

Teflon   2.1   600  

Titanium  Dioxide   100   60  

Page 13: Alternating Currents and Components

Capacitance  

•  For  a  nice  anima(on  of  ac  circuits  with  resistors  or  capacitors,  please  see  h@p://www.magnet.fsu.edu/educa(on/tutorials/java/ac/  

Page 14: Alternating Currents and Components

Capacitance  

•  The  water  model  for  a  capacitor  is  a  water  filled  cylinder  with  a  movable  piston  or  a  tank  divided  by  a  rubber  diaphragm.  

Page 15: Alternating Currents and Components

Capacitance  

•  For  the  water  tank  analogy,  please  see  the  anima(on:  h@p://www.wisc-­‐online.com/objects/ViewObject.aspx?ID=ACE4803  

Page 16: Alternating Currents and Components

Capacitance  

-­‐6  

-­‐4  

-­‐2  

0  

2  

4  

6  

0   0.5   1   1.5   2   2.5  

I  

V  

P  

Page 17: Alternating Currents and Components

Capacitance  

•  The  overall  power  dissipa(on  over  (me  is  zero.  

•  Capacitors  do  not  dissipate  power,  they  store  energy  when  charging  and  return  it  to  the  circuit  when  discharging.  

•  The  energy  stored  in  a  capacitor  is  given  by  

U =12CV 2

Page 18: Alternating Currents and Components

RC  Circuits  

•  Imagine  the  circuit  below  with  the  capacitor  charged  to  V0.  

C R

Page 19: Alternating Currents and Components

RC  Circuits  

•  How  will  the  voltage  across  the  capacitor  look  like?  

•  It  will  start  from  V0.  

•  It  will  decrease  un(l  all  the  charge  is  dissipated  and  will  drop  to  0V.  

•  As  current  is  flowing,  an  opposite  voltage  will  appear  across  the  resistor,  slowing  down  the  discharge.  

Page 20: Alternating Currents and Components

RC  Circuits  

•  We  can  write  the  following  equa(ons:  

•  The  voltage  is  a  func(on  whose  deriva(ve  is  similar  to  itself.  

•  What  can  this  func(on  be?  •  An  exponen(al!!!  

C dVdt

= I = −VR

dVdt

= −1RC

V ≡ −1τV

Page 21: Alternating Currents and Components

RC  Circuits  

•  Thus,  V(t)  turns  out  to  be  

•  V0  is  the  ini(al  voltage,  whereas  τ  is  called  the  (me  constant  and  is  given  by  τ=RC.  

•  C  determines  how  much  charge  is  stored,  R  determines  how  fast  it  is  dissipated.  

•  Their  product  determines  the  rate  of  decay.  

V (t) =V0e− tτ

Page 22: Alternating Currents and Components

RC  Circuits  

time

volt

age

XXX

0.0 2.0 4.0 6.0 8.0 10.0ms

0

2

4

6

8

10

V v(2)

Page 23: Alternating Currents and Components

RC  Circuits  

•  This  func(on  is  called  the  exponen(al  decay.  •  It  is  very  common  in  many  natural  processes:  – Radioac(ve  decay  – Newton’s  law  of  cooling  – Chemical  reac(on  rates  depending  on  concentra(on  of  reactant.  

– …  

Page 24: Alternating Currents and Components

RC  Circuits  

•  Now,  let  us  take  the  following  circuit  

+-

VDC:5V

R

C

Page 25: Alternating Currents and Components

RC  Circuits  

•  What  does  the  voltage  across  the  capacitor  look  like?  

•  We  expect  the  capacitor  to  charge  to  the  value  of  the  voltage  source.  

•  We  expect  that  it  charges  fast  in  the  beginning,  slowing  down  as  the  capacitor  voltage  increases.  

Page 26: Alternating Currents and Components

RC  Circuits  

•  We  can  write  the  following  equa(ons:  

−VS +VR +VC = 0−VS + IR +VC = 0

I = C dVCdt

VC t( ) =VS 1− e− tτ( )

Page 27: Alternating Currents and Components

RC  Circuits  

time

volt

age

XXX

0.0 2.0 4.0 6.0 8.0 10.0ms

0

2

4

6

8

10

V v(2)

Page 28: Alternating Currents and Components

RC  Circuits  

•  What  if  the  input  were  a  pulse?  •  The  capacitor  would  repeatedly  charge  and  discharge.  

Page 29: Alternating Currents and Components

RC  Circuits  

time

volt

age

XXX

0.0 2.0 4.0 6.0 8.0 10.0ms

0.0

2.0

4.0

6.0

8.0

10.0

V v(1) v(2)

Page 30: Alternating Currents and Components

Inductance  

•  When  an  electric  current  passes  through  an  inductor,  it  creates  a  magne(c  field.    

•  Energy  is  stored  in  space  around  the  inductor  as  magne(c  field  builds  up.    

•  This  opposes  any  change  in  current.  •  It  is  like  momentum  or  iner(a.  

•  In  our  water  model,  it  is  like  a  heavy  paddle  wheel  placed  in  the  current.  

Page 31: Alternating Currents and Components

Inductance  

•  We  can  write  the  following  equa(on  for  inductance:  

V = L didt

Page 32: Alternating Currents and Components

Inductance  

Page 33: Alternating Currents and Components

Transformers  

•  When  two  or  more  inductors  share  a  common  magne(c  core,  the  resul(ng  device  is  a  transformer.  

•  When  an  AC  voltage  is  applied  to  one  of  the  windings  of  the  transformer,  it  will  create  a  magne(c  field  propor(onal  to  the  number  of  turns.  

•  This  magne(c  field  will  be  coupled  to  the  next  winding,  crea(ng  an  AC  voltage  depending  on  its  number  of  turns.  

Page 34: Alternating Currents and Components

Transformers  

•  Therefore,  

V1V2

=N1N2

Page 35: Alternating Currents and Components

Transformers  

•  Since  an  ideal  transformer  cannot  create  or  dissipate  power,  

P =V1I1 =V2I2

Page 36: Alternating Currents and Components

Transformers  

Page 37: Alternating Currents and Components

Electrical  Quan((es  

Quan*ty   Variable   Unit   Unit  Symbol  

Typical  Values  

Defining  Rela*ons  

Important  Equa*ons  

Charge   Q   Coulomb   C   10-­‐18  –  1   Mag  of  6.24X10-­‐18  charges  

I  =  dq/dt  

Current   I   Ampere   A   10-­‐6  –  103   1A  =  1C/s   KCL  

Voltage   V   Volt   V   10-­‐6  –  106   1V=1N-­‐m/C   KVL  

Power   P   Wa@   W   10-­‐6  –  106   1W  =  1J/s   P  =  IV  

Energy   U   Joule   J   10-­‐15  –  1012   1J  =  1N-­‐m   U  =  QV  

Force   F   Newton   N   1N=1kg-­‐m/s2  

Time   t   Second   s  

Resistance   R   Ohm   Ω 1  –  107   V  =  IR  

Capacitance   C   Farad   F   10-­‐15  –  10   Q  =  CV  

Inductance   L   Henry   H   10-­‐6  –  1   V  =  L  di/dt