46
Melt processing and Mechanical Properties of Polyolefin Block Copolymers Alhad Phatak Adviser: Frank Bates

Alhad Phatak

  • Upload
    buithuy

  • View
    227

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Alhad Phatak

Melt processing and Mechanical Properties of Polyolefin Block Copolymers

Alhad PhatakAdviser: Frank Bates

Page 2: Alhad Phatak

Poly(styrene)-Poly(isoprene) BCP

Polymer-polymer blend Block copolymer

(Khandpur et al. Macromolecules 1995)Poly(lactic acid)-Poly(ethylene) blend

(Wang et al. J. Polym. Sci. 2001)

Combine properties of different polymers

Page 3: Alhad Phatak

Block Copolymer Morphologies

χN ~ 1/Tχ = Flory-Huggins interaction parameterN = Overall degree of polymerization

Khandpur et al. Macromolecules 1995, 28, 8796.

PS-PI diblock copolymer

TODT

Page 4: Alhad Phatak

Commercial ApplicationsPolystyrene based BCPs:• Thermoplastic Elastomers (Kraton); PS-PI-PS, PS-PB-PS• High impact thermoplastics (K-resins, Chevron Philips); (PS-PB)n

www.kraton.com

Adhesives

Asphalt additives

Footwear

Packaging

Page 5: Alhad Phatak

Poly(cyclohexylethylene) - PCHE

( )n

• Higher Tg (147 ºC vs. 105 ºC)• Better thermal, oxidative, and UV stability

High entanglement molecular weight (~ 40 kg/mol) BRITTLE

( )n

+ H2, Pt/Re/SiO2

170 ºC, 500 psi

Hucul and Hahn, Adv. Mater., 2000; Bates, Fredrickson, Hucul, and Hahn, AIChE Journal, 2001

Solution: Make block copolymer with polyethylene

PS PCHE

Page 6: Alhad Phatak

Glassy Semicrystalline Block Copolymers

( )n

Poly(cyclohexylethylene)H2-ed PS

Tg ≈ 145 ºC

Me ≈ 40 kg/mol

C

( )0.92m

( )0.08m

[ ]ran

E

PolyethyleneH2-ed 1,4-PB

Tm ≈ 100 ºC

“Hard” block “Soft” block

Tg ≈ -100 ºC

Me ≈ 1 kg/mol

Page 7: Alhad Phatak

Polymer Nanofibers by Melt Blowing

Melt Processing

Lamellae-formingC/E Block Copolymers

Mechanical Properties

Outline

Page 8: Alhad Phatak

Outline

Polymer Nanofibers by Melt Blowing

Melt Processing

Lamellae-formingC/E Block Copolymers

Mechanical Properties

Page 9: Alhad Phatak

CEC - Ductile (Failure strain ≈ 300%)

CE diblock copolymer - Brittle (Failure strain ≈ 1%)Loose chain ends – Chain pullout

Lim et al, Macromolecules 2004

ECE – Brittle (Failure strain ≈ 1%)

“Soft” block must be anchored at lamellar interfaces

0% PE chains anchored at C/E interfaces 100% PE chains anchored at C/E interfaces

Page 10: Alhad Phatak

202530.4834ECEC

182050.6548ECECE

262

TODT, ºC(Rheology)

18

d*, nm(SAXS)

0.5634CEC*

wCMolecular weight, kg/mol

Polymer

* Made by Dow Chemical Company

PCHE

PE

Control degree of anchoring of PE block

Page 11: Alhad Phatak

Measurement of Tensile Properties

Stress (σ) versus strain (ε) measurement

Failure strain (εf) – Measure of “toughness”

Sample: 10mm x 5mm x 1mmExtension rate = 10mm/min

Room temperature

anneal above TODT

Page 12: Alhad Phatak

Common Parameter - ψE

CEC E,CEC ECEC E,ECECE

CEC E,CEC ECEC E,ECEC

n M n Mn M 2n M

+ψ =

+

CEC E,CEC ECECE E,ECECEE

CEC E,CEC ECECE E,ECECE

n M n Mn M 3n M

+ψ =

+ ECECE/CEC blends

ECEC/CEC blends

ψE = Weight fraction of PE anchored at C/E interfaces

ψE =

0, CE and ECE

0.33, ECECE

0.5, ECEC

1, CEC and CECEC

Page 13: Alhad Phatak

Common Parameter - ψE

Limited by PCHE

Weak PE

Toughening of PE

A. Phatak, L. S. Lim, C. K. Reaves, F. S. Bates Macromolecules (2006)

Pure ECECE

Pure ECEC

Page 14: Alhad Phatak

Summary

• Sensitivity of mechanical properties to molecular design• Tying down soft block is critical

ψE - Design parameter for making tough BCPs

Control mechanical toughness

Manipulate molecular architecture

Page 15: Alhad Phatak

Outline

Polymer Nanofibers by Melt Blowing

Melt Processing

Lamellae-formingC/E Block Copolymers

Mechanical Properties

Page 16: Alhad Phatak

0.56

0.56

wC

23152CECEC*

26234CEC*

TODT, °CMw, kg/molPolymer

CEC

CECEC

* Made by Dow Chemical Company

Page 17: Alhad Phatak

Extrusion• Capillary rheometer (Goettfert Rheo-Tester 1500) – Constant velocity mode

Extrusion flow curve - vs.

⎟⎠⎞

⎜⎝⎛ +

∆=

WH12L

PHσaw

2ap WH6Qγ =

apγ awσ

Page 18: Alhad Phatak

v

v×∇

Scale bar = 50 µm

Flow Curves - CEC

T < TODT

σ < σsh

σ > σsh

Page 19: Alhad Phatak

Scale bar = 50 µm

v

v×∇

Flow Curves - CECEC

T < TODT

σ < σsh

σ > σsh

Page 20: Alhad Phatak

Scale bar = 50 µm

CEC CECEC

σ < σsh σ < σsh

σ > σshσ > σsh

Surface Profiles – CEC and CECEC

Page 21: Alhad Phatak

Average surface roughness – CEC and CECEC

A. Phatak, C. W. Macosko, F. S. Bates, S. F. Hahn; J. Rheol. (2005)

Page 22: Alhad Phatak

CEC/CECEC blends

σaw > σshT = 200 ºC

Page 23: Alhad Phatak

Summary

• CECEC – Sharkskin-like surface fracture at high extrusion rates• CEC – Relatively smooth extrudates, even at high extrusion rates• 20 % CEC – Dramatically reduces surface roughness

Manipulate molecular architecture

Control melt processing behavior

Page 24: Alhad Phatak

Common theme

ECECE

CEC CECEC

ECEC

DESIGN BLOCK COPOLYMER MOLECULES

MELTPROCESSIBILITY

MECHANICALTOUGHNESS

Page 25: Alhad Phatak

Outline

Polymer Nanofibers by Melt Blowing

Melt Processing

Lamellae-formingC/E Block Copolymers

Mechanical Properties

Page 26: Alhad Phatak

Nonwoven products from polymer fibers ($16.4 billion industry*)

* Nonwovens Industry Magazine (2004), http://www.inda.org/category/nwn_index.html

Properties• High specific surface area (~ 1/d)• Chemical resistance

Motivation

Grafe et al. International Nonwovens Journal (2003)

Page 27: Alhad Phatak

Motivation

Nanofiber applications (few hundred nm)

From Huang et al., Compos. Sci. Tech. (2003)

U.S. patents on nanofibers

Page 28: Alhad Phatak

Motivation

• Slow process• Solvent handling

Electrospinning – Only continuous process to obtain nanofibers

• 10 nm to 1 µm fibers

Page 29: Alhad Phatak

Melt Blowing

• Faster• No solvent

Fiber formation (draw down) by air

Tg or Tc

Processing variables• Polymer and air temperatures (Tp, Ta)• Polymer and air flow rates

• Limited to “microfibers”

Action

Page 30: Alhad Phatak

Melt BlowingCurrent understanding• Models predict fiber diameters up to ~1-2 µm• Correlations between processing conditions and fiber diameter• Supposedly limited to “microfibers”

What is lacking?• What limits fiber attenuation below 1 µm?• Characterization of fiber diameter distributions

* V. A. Wente, Ind. Eng. Chem. 1956

*

Page 31: Alhad Phatak

Melt Blowing Die

Page 32: Alhad Phatak

Melt Blowing Die

Die orifice: d0 = 0.2 and 0.4 mm

Air Air

Page 33: Alhad Phatak

Materials

MFR = 350

15.0

2.1

Mn (kg/mol)

35190PBT

-2118PP

61-PS*

Tg (ºC)Tc (ºC)Polymer

* PS experiments performed by Chris Ellison

( )n

( )n

OO( )n

O O

Page 34: Alhad Phatak

0.4417100.035265PBT-5

1.220.44.50.35265PBT-4

0.3013.680.035220PP-5

0.4513.680.035180PP-4

1.230.560.35180PP-3

0.386.880.07280PS-3

1.61980.053180PS-1

dav, µmΓAir volumetric flow rate (SCFM)

Polymer mass flow rate (g/min)

Tp, Ta(ºC)

Run I.D.

Air mass fluxPolymer mass flux

Γ =

Higher Γ → Greater drag force on fibers → Finer fibers

Page 35: Alhad Phatak

0.4417100.035265PBT-5

1.220.44.50.35265PBT-4

0.3013.680.035220PP-5

0.4513.680.035180PP-4

1.230.560.35180PP-3

0.386.880.07280PS-3

1.61980.053180PS-1

dav, µmΓAir volumetric flow rate (SCFM)

Polymer mass flow rate (g/min)

Tp, Ta(ºC)

Run I.D.

Higher Tp

Lower melt viscosity

Higher ‘draw down temperature window’ [Tp < T < Tg (or Tc)]

Page 36: Alhad Phatak

0.4417100.035265PBT-5

1.220.44.50.35265PBT-4

0.3013.680.035220PP-5

0.4513.680.035180PP-4

1.230.560.35180PP-3

0.386.880.07280PS-3

1.61980.053180PS-1

dav, µmΓAir volumetric flow rate (SCFM)

Polymer mass flow rate (g/min)

Tp, Ta(ºC)

Run I.D.

Sub-micron fibers from all polymers

Page 37: Alhad Phatak

PBT

Page 38: Alhad Phatak

PBT

PP

Page 39: Alhad Phatak

PBT

PP

PS

Page 40: Alhad Phatak

Fiber Diameter Distribution

Asymmetric → Not normal distribution

> 200 fibers in every case

Page 41: Alhad Phatak

Log-normal Distribution

⎡ ⎤⎢ ⎥⎣ ⎦

2c2

1 (x - x )p(x) = exp - 2δδ 2π

xc: meanδ: standard deviationGaussian Fit:

Data• Mean [log(d)] = -0.42• Median [log(d)] = -0.41• St. dev [log(d)] = 0.25

Gaussian Fit• Mean, xc = -0.41• St. dev, δ = 0.25

Page 42: Alhad Phatak

- 0.45

- 0.30

- 0.04

0.07

0.22

0.30

0.52

0.79

- 0.58

- 0.41

- 0.03

0.26

0.29

- 0.46

0.00

0.22

0.23

- 0.47

- 0.24

0.20

Med[log(d)]

0.28

0.21

0.28

0.28

0.28

0.28

0.38

0.36

0.20

0.25

0.33

0.18

0.21

0.21

0.26

0.25

0.22

0.24

0.28

0.07

Std. dev [log(d)]

0.25- 0.44- 0.440.44MH_PBT- 2

0.19- 0.31- 0.280.60MH_PBT- 1

0.240.000.0041.31CEC- 6

0.240.070.011.69CEC- 5

0.270.210.232.10CEC- 4

0.280.290.322.61CEC- 3

0.410.530.535.05CEC- 2

0.310.790.839.82CEC- 1

0.20- 0.59- 0.570.30PP- 5

0.25- 0.41- 0.420.45PP- 4

0.37- 0.07- 0.041.23PP- 3

0.170.260.272.04PP- 2

0.210.280.302.23PP- 1

0.17- 0.48- 0.430.44PBT- 5

0.210.010.001.22PBT- 4

0.240.210.232.01PBT- 2

0.200.230.262.07PBT- 1

0.28- 0.47- 0.480.38PS- 3

0.29- 0.23- 0.290.62PS- 2

0.070.200.201.61PS- 1

δxc

Gaussian fit to log(d)Mean [log(d)]dav, µmRun I.D.

Page 43: Alhad Phatak

Why distribution of fiber sizes?

1

2

Distribution of drag forces

Fiber diameter distribution ↔ Fiber formation mechanism

AIR AIR

Page 44: Alhad Phatak

Fiber break up

PP PS

• High processing temperature and air flow rates → Smaller fibers• Surface tension driven• Average sphere diameter ≈ 1 µm; seen in fibers with dav < 0.6 µm• Dependent on fiber motion

Does this represent an onset of a fundamental limit of melt blowing?

Page 45: Alhad Phatak

Fundamental aspects• Verified existing correlations between fiber diameter and processing conditions• Melt blowing not limited to 1 µm

• produced few hundred nm fibers with variety of polymers (also with BCP)• Fiber diameter – Log-normal distribution

• characteristic of process (must be related to fiber formation mechanism)• Surface tension driven fiber break up (first time in melt blowing)

Technological aspects• Demonstrated lab scale melt blowing device (single and multi orifice)

small amounts (few grams) of material requiredshort run time (few hours)

• Narrow gap between melt blowing and electrospinning

• Biocompatible polymers• Nanoporous fibers (etch out one component from BCP fibers)••

Summary

Page 46: Alhad Phatak

Acknowledgements

Frank Bates

Chris Macosko

Lisa Lim, Cletis Reaves – C/E mechanical propertiesVince Holmberg – CEC/CECEC extrusion

Chris Ellison, David Giles Jim Stuart, Peter Herman (Cummins Filtration)

Polymer group

Cummins Filtration, U of M MRSEC – Financial support

Melt blowing