34
May 17, 2007 Algorithmic/ Algorithmic/ Exascale Exascale Simulation Simulation Opportunities in Modeling of Nuclear Opportunities in Modeling of Nuclear Fuel Rods Fuel Rods Phani Kumar V.V. Phani Kumar V.V. Nukala Nukala , , Srdjan Srdjan Simunovic Simunovic Computer Science and Mathematics Division Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge National Laboratory Steve Steve Zinkle Zinkle Materials Science and Technology Division Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge National Laboratory Larry Larry Ott Ott Nuclear Science and Technology Division Nuclear Science and Technology Division Oak Ridge National Laboratory Oak Ridge National Laboratory

Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

  • Upload
    vonhu

  • View
    218

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

May 17, 2007

Algorithmic/Algorithmic/ExascaleExascale Simulation Simulation Opportunities in Modeling of Nuclear Opportunities in Modeling of Nuclear Fuel RodsFuel Rods

Phani Kumar V.V. Phani Kumar V.V. NukalaNukala, , SrdjanSrdjan SimunovicSimunovicComputer Science and Mathematics DivisionComputer Science and Mathematics DivisionOak Ridge National LaboratoryOak Ridge National Laboratory

Steve Steve ZinkleZinkleMaterials Science and Technology DivisionMaterials Science and Technology DivisionOak Ridge National LaboratoryOak Ridge National Laboratory

Larry Larry OttOttNuclear Science and Technology DivisionNuclear Science and Technology DivisionOak Ridge National LaboratoryOak Ridge National Laboratory

Page 2: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Nuclear Fuel CycleNuclear Fuel Cycle

Uranium OreUranium OreUranium Oxides (UUranium Oxides (U3OO88))U235 (0.7%), U238U235 (0.7%), U238

Uranium Uranium hexaflouridehexaflouride (UF(UF66))

Uranium Uranium hexaflouridehexaflouride (UF(UF66))U235 (>3.5%), U238U235 (>3.5%), U238

Uranium dioxide (UOUranium dioxide (UO22))

HH22SOSO44

ConversionConversion

EnrichmentEnrichmentHigh Temp. High Temp. sintering furnacesintering furnace

Brittle ceramic Brittle ceramic pelletspellets

Page 3: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Nuclear Fuel AssemblyNuclear Fuel Assembly

Reactor vessel and internals

Fuel assembly

Fuel Rod

Pellet

Page 4: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Nuclear Fuel RodNuclear Fuel Rod

3.6

to 3

.8m

The fuel pellet undergoes significant physical changes during burn upModeling of pellet deformation requires

Fine resolution, and 3D discretizationCoupling multi-physics models at multiple scales

Page 5: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Complex MOX Fuel Pellet Behavior Seen in Complex MOX Fuel Pellet Behavior Seen in Historical LMFBR StudiesHistorical LMFBR Studies

Cross-section of LMFBR fuel and description of evolution

FuelSwelling due to fission products, irradiation damagephase changes, microstructure evolution Thermal expansion, conductivity, heat generationCracks and changes in mechanical properties

Page 6: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Multiple PhenomenaMultiple Phenomena

Thermal conductivityFission gas formation, behavior and releaseMaterials dimensional stability– Restructuring, densification,

growth, creep and swellingDefect formation & migrationsDiffusion of species

Pu and Am redistributionMechanical propertiesThermal expansionSpecific heatPhase diagramsFuel-clad gap conductanceRadial power distributionFuel-clad chemical interactions

Dynamic properties:Changes with radiation effects,temperature, and time

Page 7: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Fuel Modeling is inherently MultiFuel Modeling is inherently Multi--scalescale

nm-μmLength scale

Tim

e sc

ale

ps-n

sns

-μs

μs-s

s-ye

arde

cade

s

Å-nm μm-mm mm-m

Point defect properties Ef, Em,…(Ab initio,

Quantum chemical)

Defect & fission product production(Molecular dynamics,

Fission track thermal spike)

Defect & fission product migration, bubble nucleation(Kinetic Monte Carlo)

Irradiated fuel chemistry & phase stability

(thermodynamic & chemical rate theory codes)

Fuel performance(thermal conductivity,

fission product accumulation, fuel swelling codes)

Fuel-claddinginteractions(fuel swelling,

fuel-clad chemistrycodes)

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

FUN

CTI

ON

MU

O2

500 1000 1500 2000 2500 3000T

UO2+x

50 GWd/MT MOX

g.b.g.b.

0

20

40

60

80

100

120

0.0001 0.001 0.01 0.1

60°C Irradiation

300°C Irradiation

The

rmal

Con

duct

ivity

(W/m

-K)

Damage Level (dpa)0

Aluminum Nitride

Silicon NitrideMD simulation of He mobility in UO2 gb

Columnar grains Equiaxed grains

Temperature

Page 8: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Current StateCurrent State--ofof--thethe--Art (NRC Codes)Art (NRC Codes)

Axi-symmetric models (2D)

Coarse discretization

Heuristic multi-physics models

Fundamental nuclear physics occurs at the grain size level (10-20 μm) in the fuel pellet

Page 9: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Simulation & Modeling MotivationSimulation & Modeling Motivation

Predictive capabilityReduce fuel development and qualification time by a factor of 3Deliver increasingly accurate simulation capabilities for fuel life cycle performance assessmentAddress safety concerns during steady state and transients

centerline fuel melting and wastage of cladding Address fuel rod behavior in Design Basis Accident scenarios such as loss-of-coolant, reactivity insertion, etc

TRU fuelsExtreme temperatures, irradiation rates, damageNew chemistry, physics, material issues that are not considered previously

Page 10: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Motivation for High Performance ComputingMotivation for High Performance Computing

Multi-physics couplingNeutronics, chemistry, fission products transport, heat transfer, thermo-mechanics, thermal-hydraulics etc.

Modeling of multiple scales in space and timeFrom irradiation point defects, chemistry, microstructure evolution to transport, conductivity and constitutive properties at macro-scaleDevelop physics-based macroscopic models

Computational efficiencyProvide comparable turn-around time with new codesDesign optimization and sensitivitiesVarious loading/boundary conditions scenarios

Page 11: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

High-fidelity, physics-based simulation of nuclear fuel performance requires models with increased spatial and temporal resolution

Computational tools for simulation of macroscopic fuel rod models (engineering and design)

Computational tools for developing physics-based models (first-principles, molecular dynamics, dislocation dynamics, kinetic Monte Carlo, discrete lattice models)

Algorithms for coupling multi-physics based models across length and time scales

OutlineOutline

Page 12: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Relevant Computational SimulationsRelevant Computational Simulations

Fuel rod / fuel bundle simulationsEngineering and design Continuum mechanics based finite element simulations

Fuel pellet simulationsMacroscopic: Finite elements

Micro/Mesoscopic: Phase-field, Kinetic Monte Carlo, Discrete dislocation simulations, Discrete lattice models, Molecular dynamics

First-principles based simulations: Density functional theory and others

3.6

to 3

.8m

Page 13: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

May 17, 2007

Modeling of Fuel RodModeling of Fuel Rod

Page 14: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Driver

Heat generation and transfer

Neutronics

Thermo-mechanics/hydraulics

Radiation damage

Chemistry

Fission products

Code Integration Code Integration -- MultiMulti--physics Modelphysics Model

Base capabilityDepending on the level of coupling one of the modules can become Driver, e.g. FEM Thermo-mechanics module can host chemistry data

Page 15: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

ThermoThermo--Mechanical CodesMechanical Codes

General-purpose system for large-scale analysisThermal, and mechanics

Employs a hierarchical domain decomposition method (HDDM) to efficiently utilize massively parallel computer resources

Partition into non-overlapping sub-domainsAnalyze sub-domains (fine problem)Enforce compatibility between sub-domains

(coarse problem)

Page 16: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Domain Decomposition

Ω1 Ω2 Ω3 Ω4 DomainProcessing

Local ProblemΩ1 Ω2 Ω3 Ω4

Coarse ProblemΩ1 Ω2 Ω3 Ω4

Interface ProblemΩ1 Ω2 Ω3 Ω4

FETI-DP

Global Problem

Global Problem

Local Problem

FETIFETI--DP/HDDMDP/HDDM

Page 17: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Scaling on CrayScaling on Cray--XT4XT4

Scaling up to 6000 cores

20% peak efficiency

Solved up to 300M problem

Number of coresNumber of cores10001000 60006000

Page 18: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

May 17, 2007

Modeling of Fuel PelletsModeling of Fuel Pellets

Page 19: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Modeling Brittle Fracture of Fuel PelletsModeling Brittle Fracture of Fuel Pellets

Fracture due to thermal mismatch and high thermal gradients

Chemistry/Transport/Diffusion of fission products

Misorientation dependent low angle grain boundary fracture strength

Time dependent evolution of grain structures and recrystallization

Page 20: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

HighHigh--performance computingperformance computing

High-performance computing Processing time

L = 64 on 128 3 hours

L = 100 on 1024 12 hours

L = 128 on 1024 3 daysL = 200 on 2048 20 days (est.)

16,384

8,192

4,096

2,048

1,024

512

256

128

64 8 16 32 64 128 256 512 1,024Number of processors

Wall

-clo

ck ti

me (

seco

nds)

per 1

,000 b

onds

bro

ken

100^3benchmark

IBM BG/L

Cray XT3

Page 21: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Simulation of Nuclear Fuel RestructuringSimulation of Nuclear Fuel Restructuring

Simulation of fuel swelling due to fission products accumulation in fuel matrix

Courtesy T.J. Courtesy T.J. BartelBartel, SNL, SNL

Page 22: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

May 17, 2007

ExascaleExascale RequirementsRequirements

Page 23: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Fuel Rod/Bundle SimulationFuel Rod/Bundle Simulation

Solving a 300M problem took 300 seconds on 6000 cores

Simulation involves 50 steps with 10 iterations per step

Total time ~ 500 x 300 = 150,000 sec ~ 42 hours

Assuming a constant efficiency of 20%, a 100,000 core simulation requires approximately

(6000/100000) x (42 / 0.2) ~ 12 hours on 500 TF machine

A bundle of 40 rods requires 12 hours on 20 PF machine

All this only with thermo-mechanics and no coupling with other multi-physics models

Page 24: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Fuel Pellet SimulationFuel Pellet Simulation

Solving a 1B problem took 1000 seconds on 8000 cores

Simulation involves 50 steps with 10 iterations per step

Total time ~ 500 x 1000 = 500,000 sec ~ 6 days

Assuming a constant efficiency of 20%, a 200,000 core simulation requires approximately

(8000/200000) x (6 / 0.2) ~ 1.2 days on 1 PF machine

All this only with thermo-mechanics and no coupling with other multi-physics models; No coupling of multiple scales

Page 25: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Additional Details Additional Details

Assumed perfect scaling with 20% efficiency!

Addition of multi-physics models: chemistry, fission products transport, and neutronics will deteriorate the efficiency

Necessity to run various loading/boundary conditions, and sensitivity studies will require capacity computing with each simulation running at 1 PF.

Page 26: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Final Thoughts Final Thoughts ……

Fuel and cladding behavior is governed by Coupled multi-physics phenomenaFeedback from multiple scales

High-fidelity simulations aiming to resolve these multiple scales and couple multi-physics models demand capability computing

Development of physics-based models requires higher resolution and larger system sizes

Coupling of time scales in these multi-physics models requires algorithmic advances

Faster turn around times, multiple loading/boundary conditions scenarios, and sensitivity studies require capacity computing with each simulation running at a PF.

Page 27: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

May 17, 2007

Algorithmic Challenges: Coupling Algorithmic Challenges: Coupling Multiple Time Scales in MD SimulationsMultiple Time Scales in MD Simulations

Page 28: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

MTS Propagator

( ) Slowh/2

NFasth/N

Slowh/2

MTSh ΦΦΦ=Φ ∗

ReversibleAt least, second-order accurate

Step 1: ½ kick

Step 2: vibration N steps

Step 3: ½ kick

( ) ( )nSlow1 yy Φ=

( )(1)Fast

(2) yy Φ=

( )(2)Slow1n yy ∗+ Φ=

MTS MethodMTS Method

Page 29: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Stabilized MTS Method AnalysisStabilized MTS Method Analysis

( ) 22

21

22

21 ωωpqqωωq >>=+−=

MTS exhibits parametric resonance, whereas SMTS is stable for any time step

0 1 2 3 4 5 60.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k δt/Tfast

Eig

enva

lue

mag

nitu

des

λ1

λ2 MTSMTS

0 1 2 3 4 5 60.9999

1

1.0001

k δt/Tfast

Eig

enva

lue

mag

nitu

des

λ1

λ2

SMTSSMTS

Page 30: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Stabilized MTS Method AnalysisStabilized MTS Method Analysis

( ) 22

21

22

21 ωωpqqωωq >>=+−=

Collision of eigenvalues leading to instability of MTS is clearly visible

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real

Imag

λ1

λ2

−1.5 −1 −0.5 0 0.5 1 1.5 2−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real

Imag

λ1

λ2

SMTSSMTSMTSMTS

Page 31: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

FermiFermi--PastaPasta--UlamUlam (FPU) Problem(FPU) Problem

Different behavior over different time scalesTime scale ω-1: almost-harmonic motion of stiff springsTime scale ω0: motion of soft nonlinear springsTime scale ω: energy exchange among the stiff springsTime scale ωN, N>1: O(ω-1) deviations in oscillatory energy

( ) ( ) ( ) ( )∑∑∑=

+=

−=

− −+−++=n

0i

42i12i

n

1i

212i2i

2n

1i

22i

212i qqqq

4ωpp

21qp,H

Page 32: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

FermiFermi--PastaPasta--UlamUlam (FPU) Problem(FPU) Problem

( )2jn

22jnj xωy

21I ++ +=

Oscillatory energyOscillatory energy( )

( )2qqx

2ppy

12i2ijn

12i2ijn

−+

−+

−=

−=

68 69 70 71 72 73 740.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Time

I1

I2

I3

0 50 100 150 200 2500

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

I1

I2

I3

I

I1

I2

I3

h = 0.00025h = 0.00025 ωω = 50= 50

Page 33: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

FPU ProblemFPU Problem

h = 0.03h = 0.03

0 1 2 3 4 5 60

0.05

0.1

0.15

0.2

0.25

h ω/π

(Δ H

) max

SMTSSMTS

0 1 2 3 4 5 6 70

0.05

0.1

0.15

0.2

0.25

h ω/π

(Δ I)

max

Parametric resonance?No parametric resonance effects in the HamiltonianResonance in the oscillatory energy

Max error in the Max error in the HamiltonianHamiltonian

Max error in the Max error in the oscillatory energyoscillatory energy

Page 34: Algorithmic/Exascale Simulation Opportunities in …computing.ornl.gov/workshops/town_hall/presentations/B2...May 17, 2007 Algorithmic/Exascale Simulation Opportunities in Modeling

[email protected]

Phani K. Nukala Oak Ridge National Laboratory

Final Thoughts Final Thoughts ……

Fuel and cladding behavior is governed by Coupled multi-physics phenomenaFeedback from multiple scales

High-fidelity simulations aiming to resolve these multiple scales and couple multi-physics models demand capability computing

Development of physics-based models requires higher resolution and larger system sizes

Coupling of time scales in these multi-physics models requires algorithmic advances

Faster turn around times, multiple loading/boundary conditions scenarios, and sensitivity studies require capacity computing with each simulation running at a PF.