73
Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino oscillations 4. neutrino oscillations and CP violation 5. on-going and future neutrino experiments on oscillations 6. on-going and future neutrino-less double-beta experiments 7. Conclusions

Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Alain Blondel University of Geneva

Neutrino Physics

1. What are neutrinos and how do we know ?

2. The neutrino questions

3. Neutrino mass and neutrino oscillations

4. neutrino oscillations and CP violation

5. on-going and future neutrino experiments on oscillations

6. on-going and future neutrino-less double-beta experiments 7. Conclusions

Page 2: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

http://dpnc.unige.ch/users/blondel/conferences/cours-neutrino/

Page 3: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Pauli's letter of the 4th of December 1930

Dear Radioactive Ladies and Gentlemen,

As the bearer of these lines, to whom I graciously ask you to listen, will explain to you in more detail, how because of the "wrong" statistics of the N and Li6 nuclei and the continuous beta spectrum, I have hit upon a desperate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call neutrons, which have spin 1/2 and obey the exclusion principle and which further differ from light quanta in that they do not travel with the velocity of light. The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton masses. The continuous beta spectrum would then become understandable by the assumption that in beta decay a neutron is emitted in addition to the electron such that the sum of the energies of the neutron and the electron is constant...

I agree that my remedy could seem incredible because one should have seen those neutrons very earlier if they really exist. But only the one who dare can win and the difficult situation, due to the continuous structure of the beta spectrum, is lighted by a remark of my honoured predecessor, Mr Debye, who told me recently in Bruxelles: "Oh, It's well better not to think to this at all, like new taxes". From now on, every solution to the issue must be discussed. Thus, dear radioactive people, look and judge.

Unfortunately, I cannot appear in Tubingen personally since I am indispensable here in Zurich because of a ball on the night of 6/7 December. With my best regards to you, and also to Mr Back.

Your humble servant

. W. Pauli

Wolfgang Pauli

Neutrinos: the birth of the idea

1930

dNdE

Efew MeV

e- spectrum in beta decay

e

Page 4: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Neutrinos: direct

detection

1953

The anti-neutrino coming from the nuclear reactor interacts with a proton of the target, giving a positron and a neutron.

4-fold delayed coincidence

nepe

Reines and Cowan

The target is made of about 400 liters of water mixed with cadmium chloride

The positron annihilates with an electron of target and gives two simultaneous

photons (e+ + e- ) . The neutron slows down before being eventually captured by a cadmium nucleus, that gives the emission of 2 photons about 15 microseconds after those of the positron.

All those 4 photons are detected and the 15 microseconds identify the "neutrino" interaction.

Page 5: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

1956 Parity violation in Co beta decay: electron is left-handed (C.S. Wu et al)

1957 Neutrino helicity measurement M. Goldhaber et al Phys.Rev.109(1958)1015

neutrinos have negative helicity (If massless this is the same as left-handed)

Page 6: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

*152152 SmeEu

Page 7: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Step I neutrino emission

Step II photon emission

*152152 SmeEu

SmSm 152*152

Step IV photon filter through magnetic iron

*152152 SmSm

Step III photon absorption/emission

SmSm 152*152

Step V photon detection in NaI cristal

E = 961 keV/c (1 v (Sm*) /c)

E > 961 keV/c

I,II

III

IV

V

Page 8: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Step I -- source

electron spin oriented opposite magnetic field

Jz = +1/2 = +1 -1/2

B

B

Jz = -1/2 = -1 +1/2

neutrino spin is in direction of magnetic field(conservation of angular momentum)

Page 9: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Sm* and neutrino have the same helicityphoton from Sm* carries that spin too.

Page 10: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Energies

eVm

PE

ckeVmEPE

mEmE

E

mEP

SmeEu

Sm

kinSm

Sm

SmSmSm

12.32

/9402

))((

2

*

*

***

2

*

22

*152152

eVm

PE

ckeVmmP

SmSm

Sm

kinSm

SmSm

2.32

/9612

152*152

*

cm

Evelocity

kin611 610510.1/4.6

2

NB:

Page 11: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Goldhaber experiment -- STEP II Photon emission

Sm*

E = 961 keV/c (1 + v (Sm*) /c)

E > 961 keV/c

Sm*

E = 961 keV/c (1 - v (Sm*) /c)

E < 961 keV/c

Page 12: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

STEP III photon absorption and reemission

The photon must have enough energy to raise Sm to excited state. This happens only if the Sm* is emitted in the same direction and thus E > 961 keV/c(a few eV is enough, 6 eV is Doppler shift)

Page 13: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

The dependence of signal in the NaI cristal is recorded as function of magnetic field -- in analyzing magnet and -- in magnetic filter

STEP IV magnetic filter

Page 14: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Step I neutrino emission

Step II photon emission

*152152 SmeEu

SmSm 152*152

Step IV photon filter through magnetic iron

*152152 SmSm

Step III photon absorption/emission

SmSm 152*152

Step V photon detection in NaI cristal

E = 961 keV/c (1 v (Sm*) /c)

E > 961 keV/c

I,II

III

IV

V

Page 15: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Goldhaber experiment -- Summary --

the positive neutrino helicity situation could be detected if it existed but is not. the negative neutrino helicity situation is detected

The neutrino emitted in K capture is left-handed.

Page 16: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

1959 Ray Davis established that (anti) neutrinos from reactors do not interact with chlorine to produce

argon reactor : n p e- eore ? these edon’t do e + 37Cl 37Ar + e-

they are anti-neutrinos!

Page 17: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Lee and Yang

Neutrinos the properties 1960

In 1960, Lee and Yang realized that if a reaction like

- e-

is not observed, this is because two types of neutrinos exist and e

- e- e

otherwise - e- has the same Quantum numbers as - e-

Page 18: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Two Neutrinos

1962

Schwartz Lederman Steinberger

Neutrinos from-decay onlyproduce muons (not electrons)

when they interact in matter

AGS Proton Beam

W-

hadrons

N

Page 19: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Neutrinos the weak neutral current

Gargamelle Bubble ChamberCERN

Discovery of weak neutral current

+ e + e

+ N + X (no muon)

previous searches for neutral currents had been performed in particle decays (e.g. K0->leading to extremely stringent limits10-7 or so)

early neutrino experiments had set their trigger on final state (charged) lepton!

Page 20: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

e-

Z

e-

elastic scattering of neutrino off electron in the liquid

1973 Gargamelle

experimental birth of the Standard model

Page 21: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Gargamelle Charged Current event

Page 22: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Gargamelle neutral current event (all particles are identified as hadrons)

Page 23: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

e

e

d

u

First family

mc2=0.0005 GeV

mc2 ?=? <1 eV

mc2=0.005 GeV

mc2=0.003 GeV

<1 eV

strange

charm

Seconde family

0.106 GeV

0.200 GeV

1.5 GeV

beauty

top

Third family

1,77 GeV

<1 eV

5 GeV

mc2=175 GeV

The Standard Model: 3 families of spin 1/2quark and leptons interacting withspin 1 vector bosons ( W&Z, gluons)

charged leptons

neutralleptons = neutrinos

quarks

Page 24: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Neutrino Interactions

Page 25: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino
Page 26: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino
Page 27: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Tau Neutrino in DONUT experiment (Fermilab) 2000

Page 28: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Observation of tau-neutrino in ALEPH at LEP

e+e- W+ W- (hadrons)+ + -

Page 29: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

quasi-elastic:

Page 30: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Neutrino cross-sectionsat all energies NC reactions (Z exchange) are possible for all neutrinos

e,e,

e-

Z

e-

CC reactions

very low energies(E<~50 MeV): e + AZN --> e- + AZ+1N inverse beta decay of nuclei

medium energy (50<E<700 MeV) quasi elastic reaction on protons or neutrons e + n--> e- + pore +p --> e+ + n

Threshold for muon reaction 110 MeVThreshold for tau reaction 3.5 GeV

above 700 MeV pion production becomes abundant and above a few GeV inelastic (diffusion on quark folloed by fragmentation) dominates

e, e,

e-

W

e

Page 31: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Total neutrino – nucleon CC cross sections

We distinguish:

• quasi-elastic• single pion production („RES region”, e.g. W<=2 GeV)• more inelastic („DIS region”)

Below a few hundred MeV neutrino energies:quasi-elastic region.

Plots from Wrocław MC generator

neutrino anti-neutrino

Page 32: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Quasi-elastic reaction +n->lepton +p

The limiting value depends onthe axial mass

Under assumption of dipole vector form-factors:

(from Naumov)

(A. Ankowski)

Huge experimental uncertainty

Page 33: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

J=0 ==> Cross section is isotropic in c.m. system

μ+e+ e

=GF

2

s m

2 2s

Quasielastic scattering off electrons ( “Leptons and quarks” L.B.Okun)

e

e

J=0

high energy limit(neglect muon mass)

=GF

2

s

Page 34: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Total cross section

μ+νe+ν μe

=2GF

2

s m

2 2(EeE +1/3E 1E2 )

s2

ddcos

=2GF

2

s m

2 2 EeE

s21+

s me2

s+me2cos

1+

s m2

s+m2cos

Quasi-elastic scattering off electrons

Differential cross section in c.m. system

e

e

J=1

Page 35: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

At high energies interactions on quarks dominate: DIS regime: neutrinos on (valence) quarks

u

d

J=0

p

duu

multi-hadron systemwith the right quantum number

x= fraction of longitudinal momentum carried by struck quarky= (1-cos)/2 for J=0 isotropic distributiond(x)= probability density of quark d with mom. fraction x neglect all masses!

s = xS = 2mE x

xSG

dy

xd F

2)(

dxxdxSG

dy

d x

x

F )(1

0

2

Page 36: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

At high energies interactions on quarks dominate: DIS regime: anti-neutrinos on (valence) quarks

u

d

J=1

p

duu

multi-hadron systemwith the right quantum number

x= fraction of longitudinal momentum carried by struck quarky= (1-cos)/2 for J=1 distribution prop. to (1-y)2 (forward favored)u(x)= probability density of quark u with mom. fraction x

s = xS = 2mE x

22

)1()(

yxSG

dy

xd F

dxyxuxSG

dy

d x

x

F 21

0

2

)1)((

Page 37: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

there are also (gluons) and anti-quarks at low x (sea) (anti)neutrinos on sea-(anti)quarks

d

J=0

p

multi-hadron systemwith the right quantum number

for J=0 (neutrino+quarks or antineutrino+antiquarks) isotropicfor J=1 (neutrino+antiquarks or antineutrino+quarks) (1-y)2 qi(x), = probability density of quark u with mom. fraction x

s = xS = 2mE x

)(,,)(,,

))()1)((( 21

0

2

tcuqandbsdq

dxxqyxqxSG

dy

d x

x

F

u

gluon

)(,,)(,,

))()1)((( 21

0

2

bsdqandtcuq

dxxqyxqxSG

dy

d x

x

F

Page 38: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Neutral Currents

electroweak theory

CC: g = e/sinW

NC: g’=e/sinWcosW

NC fermion coupling = g’(I3 - QsinW)

I3= weak isospin = +1/2 for Left handed neutrinos & u-quarks, -1/2 for Left handed electrons muons taus, d-quarks0 for right handed leptons and quarks

Q= electric charge W= weak mixing angle.

Lu

J=0

))1(()( 222

22

yggxSG

dy

xd uR

uL

F

Lu

the parameter can be calculated by remembering that for these cross sections we have the W (resp Z)propagator, and that the CC/NC coupling is in the ratio cosW

thus mW4/ (mZ

4 cosW)=1 at tree level in the SM, but is affected by radiative corrections sensitive to e.g. m top

J=1

RuRu

gLu

= 1/2 - 2/3 sinW

gRu

= - 2/3 sinW (sum over quarks and antiquarks as appropriate)

Page 39: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Le

J=0

Le

J=1

ReRe

)3/1(

))1((

2222

22222

eR

eL

F

eR

eL

F

ggSG

yggSG

dy

d

scattering of on electrons:(invert the role of R and L for antineutrino scattering)

e

W-

e

e W-

e

e-

e-

e-

e-

only electron neutrinos

only electron anti- neutrinos

the scattering of electron neutrinos off electrons is a little more complicated (W exchange diagram)

Page 40: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

e

e

d

u

First family

mc2=0.0005 GeV

mc2 ?=? <1 eV

mc2=0.005 GeV

mc2=0.003 GeV

<1 eV

strange

charm

Seconde family

0.106 GeV

0.200 GeV

1.5 GeV

beauty

top

Third family

1,77 GeV

<1 eV

5 GeV

mc2=175 GeV

The Standard Model: 3 families of spin 1/2quark and leptons interacting withspin 1 vector bosons ( W&Z, gluons)

charged leptons

neutralleptons = neutrinos

quarks

Page 41: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Quark upcharge 2/3

Quark downcharge -1/3

Electroncharge -1

Neutrino charge 0

some remarkable symmetries:

each quark comes in 3 colors

sum of charges is

-1 + 0 + 3 x ( 2/3 - 1/3) = 0

this turns out to be a necessary condition for the stability of higher order radiative corrections

Page 42: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

1989 The Number of Neutrinoscollider experiments: LEP

• N determined from the visible Z cross-section at the peak (most of which are hadrons): the more decays are invisible the fewer are visible: hadron cross section decreases by 13% for one more family of neutrinos

in 2001: N = 2.984 0.008

Page 43: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Neutrino mysteries

1. Neutrinos have mass (we know this from oscillations, see later…)

2. neutrinos are massless or nearly so (while me=5.105eV/c2, mtop=1.7 1011eV/c2) mass limit of 2.2eV/c2 from beta decay mass limit of <~ 1 eV/c2 from large scale structure of the universe

3. neutrinos appear in a single helicity (or chirality?) but of course weak interaction only couples to left-handed particles and neutrinos have no other known interaction… So… even if right handed neutrinos existed, they would neither be produced nor be detected!

4. if they are not massless why are the masses so different from those of other quark and leptons?

5. 3 families are necessary for CP violation, but why only 3 families?

……

Page 44: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino
Page 45: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

KATRIN experiment programmed to begin in 2008. Aim is to be sensitive to m e < 0.2 eV

Page 46: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

New experiment KATRIN at KARLSRUHE aims at mc2 ~ 0.2 eV

Page 47: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino
Page 48: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

The future of neutrino physics

There is a long way to go to match direct measurements of neutrino masses with oscillation resultsand cosmological constraints

What IS the neutrino mass?????

Page 49: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Direct exploration of the Big Bang -- Cosmology

measurements of the large scale structure of the universe using a variety of techniques

-- Cosmic Microwave Background -- observations of red shifts of distant galaxies with a variety of candles.Big news in 2002 : Dark Energy or cosmological constant

large scale structure in space, time and velocity is determined by early universe fluctuations, thus by mechanisms of energy release (neutrinos or other hot dark matter)

the robustness of the neutrino mass limits….

Page 50: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Formation of Structure

SmoothSmooth StructuredStructured

Structure forms byStructure forms by gravitational instabilitygravitational instability of primordialof primordial density fluctuationsdensity fluctuations

A fraction of hot dark matter A fraction of hot dark matter suppresses small-scale structuresuppresses small-scale structure

Page 51: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino
Page 52: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

m eV m eV

m eV m eV

adding hotneutrino

darkmatter erasessmall

structure

Halzen

Page 53: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Recent Cosmological Limits on Neutrino MassesAuthorsAuthors mm/eV/eV

(limit 95%CL)(limit 95%CL)Data / PriorsData / Priors

Spergel et al. (WMAP) 2003Spergel et al. (WMAP) 2003[astro-ph/0302209] [astro-ph/0302209] 0.690.69 WMAP, CMB, 2dF, WMAP, CMB, 2dF, 88, HST, HST

Hannestad 2003Hannestad 2003[astro-ph/0303076][astro-ph/0303076] 1.011.01 WMAP, CMB, 2dF, HSTWMAP, CMB, 2dF, HST

Tegmark et al. 2003Tegmark et al. 2003[astro-ph/0310723][astro-ph/0310723] 1.81.8 WMAP, SDSSWMAP, SDSS

Barger et al. 2003Barger et al. 2003[hep-ph/0312065][hep-ph/0312065] 0.750.75 WMAP, CMB, 2dF, SDSS, HSTWMAP, CMB, 2dF, SDSS, HST

Crotty et al. 2004Crotty et al. 2004[hep-ph/0402049][hep-ph/0402049]

1.01.00.60.6

WMAP, CMB, 2dF, SDSSWMAP, CMB, 2dF, SDSS& HST, SN& HST, SN

Hannestad 2004Hannestad 2004[hep-ph/0409108][hep-ph/0409108] 0.650.65 WMAP, SDSS, SN Ia gold sample,WMAP, SDSS, SN Ia gold sample,

Ly-Ly- data from Keck sample data from Keck sample

Seljak et al. 2004Seljak et al. 2004[[astro-ph/0407372]astro-ph/0407372] 0.420.42 WMAP, SDSS, Bias,WMAP, SDSS, Bias,

Ly-Ly- data from SDSS sample data from SDSS sample

NB Since this is a large mass this implies that the largest neutrino mass is limit/3

Halzen

Page 54: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

http://map.gsfc.nasa.gov/

Page 55: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

see e.g.http://www.nu.to.infn.it/Neutrino_Cosmology/

Page 56: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Neutrinos astrophysical neutrinos

Ray Davis

since ~1968

Solar Neutrino Detection600 tons of chlorine.

• Detected neutrinos E> 1MeV

• fusion process in the sun

Homestake Detector

solar : pp pn e+ e (then D gives He etc…)

these edo e + 37Cl 37Ar + e-

they are neutrinos

• The rate of neutrinos detected is

three times less than predicted!

solar neutrino ‘puzzle’ since 1968-1975!

solution: 1) solar nuclear model is wrong or 2) neutrino oscillate

Page 57: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

e solar neutrinos

Sun = Fusion reactorOnly e produced

Different reactionsSpectrum in energy

Counting experiments vs flux calculated by SSM

BUT ...

Page 58: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

The interactionThe interaction

Signal Composition:(BP04+N14 SSM+ osc) Signal Composition:(BP04+N14 SSM+ osc)

pep+hep 0.15 SNU ( 4.6%)7Be 0.65 SNU (20.0%)8B 2.30 SNU (71.0%)CNO 0.13 SNU ( 4.0%)Tot 3.23 SNU ± 0.68 1

pep+hep 0.15 SNU ( 4.6%)7Be 0.65 SNU (20.0%)8B 2.30 SNU (71.0%)CNO 0.13 SNU ( 4.0%)Tot 3.23 SNU ± 0.68 1

Expected Signal (BP04 + N14)Expected Signal (BP04 + N14)

8.2 SNU +1.8–1.8 1 8.2 SNU +1.8–1.8 1

37Cl(e,e)37Ar (Ethr = 813 keV) Kshell EC = 50.5 d

37Cl + 2.82 keV (Auger e-, X)

37Cl(e,e)37Ar (Ethr = 813 keV) Kshell EC = 50.5 d

37Cl + 2.82 keV (Auger e-, X)

The Pioneer: Chlorine Experiment

Page 59: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Generalities on radiochemical experimentsData

used for R

determination

N runs

Averageefficienc

y

Hot chem

check

Source

calib

Rex

[SNU]

Chlorine(Homestake Mine);South Dakota USA

1970-1993

106 0.958 ±

0.007

36Cl No 2.55 ± 0.17 ± 0.18 6.6% 7%

2.6 ± 0.3

GALLEX/GNOLNGS Italy

1991-2003

124 ?? 37As Yestwice

51Crsource

69.3 ± 4.1 ± 3.6 5.9%

5%

SAGEBaksanKabardino Balkaria

1990-ongoing

104 ?? No Yes51Cr37Ar

70.5 ± 4.8 ± 3.7 6.8% 5.2%

70.5 ± 6.0

expected (no osc)

8.5+-1.8

131+-11

131+-11

Page 60: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Super-K detector

39.3 m

41.3 m

C Scientific American

Water Cerenkovdetector

50000 tons of pure light water

10000 PMTs

Page 61: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino
Page 62: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Missing Solar Neutrinos

Possible explications:

wrong SSMNO. Helio-seismology

wrong experimentsNO. Agreement between

different techniques

ore’s go into something else

Oscillations?

Only fraction of the expected flux is measured !

Page 63: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

neutrino definitions

the electron neutrino is present in association with an electron (e.g. beta decay)

the muon neutrino is present in association with a muon (pion decay)

the tau neutrino is present in association with a tau (Wdecay)

these flavor-neutrinos are not (as we know now) quantum states of well

defined mass (neutrino mixing)

the mass-neutrino with the highest electron neutrino content is called

the mass-neutrino with the next-to-highest electron neutrino content is

the mass-neutrino with the smallest electron neutrino content is called

Page 64: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Lepton Sector Mixing

Pontecorvo 1957

Page 65: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Neutrino Oscillations (Quantum Mechanics lesson 5)

source propagation in vacuum -- or matter detection

weak interaction produces ‘flavour’ neutrinos

e.g. pion decay ¦¦¦¦¦(t)¦exp( i E1 t)

¦exp( i E2 t)

¦exp( i E3 t)

weak interaction: (CC)

oree

or

P ( e) = ¦ < e ¦ (t)¦2

Energy (i.e. mass) eigenstates propagate

L

t = proper time L/E

is noted U1

is noted U2

is noted U3 etc….

Page 66: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

Oscillation Probability

Hamiltonian= E = sqrt( p2 + m2) = p + m2 / 2pfor a given momentum, eigenstate of propagation in free space are the mass eigenstates!

Dm2 en ev2 L en kmE en GeV

Page 67: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

LA MECANIQUE QUANTIQUE DES OSCILLATIONS DE NEUTRINOS

On traitera d’abord un système à deux neutrinos pour simplifier

Propagation dans le vide: on écrit le Hamiltonien pour une particule relativiste(NB il y a là une certaine incohérence car la mécanique quantique relativiste utilise des méthodes différentes. Dans ce cas particulièrement simple les résultats sont les mêmes.)

On se rappellera du 4-vecteur relativiste Energie Impulsion

Dont la norme est par définition la masse (invariant relativiste) et s’écrit

(mc2)2 = E2 - (pc)2

D’ou l’énergie:

On considère pour simplifier encore le cas de neutrinos dont la quantité de mouvement est connue ce qui fait que le Hamiltonien va s’écrire ainsi dans la base des états de masse bien définie:

E /c

px

py

pz

E (pc)2 (mc 2)2 pc (1(mc 2)2

2(pc)2) pc

m2c 4

2pc

H pc

100

010

001

c 4

2pc

m12 0 0

0 m22 0

0 0 m32

Page 68: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

LA MECANIQUE QUANTIQUE DES OSCILLATIONS DE NEUTRINOS

H pc10

01

c 4

2pc

m12 0

0 m22

Pour le cas de deux neutrinos, dans la base des états de masse bien définie:

Cependant les neutrinos de saveur bien définie sont des vecteurs orthogonaux de ce sous espace de Hilbertt à deux dimensions, mais différents des neutrinos de masse bien définie:

e

cos sin sin cos

1

2

L’evolution dans le temps des états propres et s’écrit:

1

2

1(t) 1 e iE1t /

2(t) 2 e iE2t /

1

2

e

e

L’évolution dans le temps s’écrit maintenant

e

cos sin sin cos

1e

iE1t /

2eiE2t /

e iE1t / cos sin

sin cos

1

2ei(E2 E1 )t /

Page 69: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

LA MECANIQUE QUANTIQUE DES OSCILLATIONS DE NEUTRINOS

e (t)

(t)

e iE1t / cos sin

sin cos

1

2ei(E2 E1 )t /

Si nous partons maintenant au niveau de la source (t=0) avc un état et que nous allons détecter des neutrinos à une distance L (soit à un temps L/c plus tard) la probabilité Quand on observe une interaction de neutrino d’observer une interaction produisant un electron ou un muon seront donnés par le calcul de

e

Pe ( e (t) ) e e (t)2

P ( e (t) ) e (t)2

Pe ( e (t) ) e e (t)2 cos e 1 sin e 2 e i(E2 E1 )t / 2

Pe ( e (t) ) (cos2 sin2 e i(E2 E1 )t / )(cos2 sin2 ei(E2 E1 )t / )

Page 70: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

LA MECANIQUE QUANTIQUE DES OSCILLATIONS DE NEUTRINOS

Pe ( e (t) ) e e (t)2 cos e 1 sin e 2 e i(E2 E1 )t / 2

Pe ( e (t) ) (cos2 sin2 e i(E2 E1 )t / )(cos2 sin2 ei(E2 E1 )t / )

Pe ( e (t) ) cos4 sin4 cos2 sin2 (ei(E2 E1 )t / e i(E2 E1 )t / )

Pe ( e (t) ) cos4 sin4 cos2 sin2 (2cos((E2 E1)t /))

Pe ( e (t) ) cos4 sin4 2cos2 sin2 2cos2 sin2 (1 cos(E2 E1)t /)

Pe ( e (t) ) 1 sin2 2 sin2(1/2(E2 E1)t /)

1 cos x 2sin2 x /2,

2sin x cos x sin2x

En utilisant:

P ( e (t) ) sin2 2 sin2(1/2(E2 E1)t /)

Pe ( e (t) ) 1 sin2 2 sin2(1/2(E2 E1)t /)

Page 71: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

LA MECANIQUE QUANTIQUE DES OSCILLATIONS DE NEUTRINOS

P ( e (t) ) sin2 2 sin2(1/2(E2 E1)t /)

Pe ( e (t) ) 1 sin2 2 sin2(1/2(E2 E1)t /)On a donc trouvé:

Le terme d’oscillation peut être reformulé:

mélange oscillation

E pc m2c 4

2pc

E2 E1 (m2

2 m12)c 4

2pcm12

2 c 4

2pc

m2c 4

4 pct

m2c 4

4 pccct

m2c 4

4cL

E

Page 72: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

LA MECANIQUE QUANTIQUE DES OSCILLATIONS DE NEUTRINOS

Les unités pratiques sont Les énergies en GeVLes masses mc2 en eVLes longeurs en km…

On trouve alors en se souvenant que

c 197 MeV . fm

P ( e (t) ) sin2 2 sin2(1.27m122 L /E)

Pe ( e (t) ) 1 sin2 2 sin2(1.27m122 L /E)

Page 73: Alain Blondel University of Geneva Neutrino Physics 1. What are neutrinos and how do we know ? 2. The neutrino questions 3. Neutrino mass and neutrino

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200

Pee

Pemu

km

P

Exemple de probabilité en fonction de la distance à la source pour E= 0.5 GeV, m2

12 = 2.5 10-3 (eV/c2)2