20
Winding machine Mathematical Model Firstly Motor Drive Motor Dynamics is separated into 3 Stages: 1. Electrical Dynamics equation. Representing the dynamics of the motor Electrical Circuit 2. Electromechanical Linkage equation. Representing the Electromagnetic Torque Developed from the electric circuit. 3. Mechanical Dynamics equations. Representing the Dynamics of the motor mechanical Drive (Mechanical System coupled to motor ).

Ahmed Yousry Winding Machine Mathematical Model

Embed Size (px)

DESCRIPTION

Mathematical Model for a paper winding machine

Citation preview

Page 1: Ahmed Yousry Winding Machine Mathematical Model

Winding machine Mathematical Model

Firstly Motor Drive

Motor Dynamics is separated into 3 Stages:

1. Electrical Dynamics equation.

Representing the dynamics of the motor Electrical

Circuit

2. Electromechanical Linkage equation.

Representing the Electromagnetic Torque Developed

from the electric circuit.

3. Mechanical Dynamics equations.

Representing the Dynamics of the motor mechanical

Drive (Mechanical System coupled to motor ).

Page 2: Ahmed Yousry Winding Machine Mathematical Model

Bipolar Stepper Motor Mathematical Model

Bipolar Stepper motor Construction:

1. A multi pole permanent magnet Rotor.

2. Multiple Stator Winding creating Stator phases.

Theory of operation:

When energizing a certain stator phase a magnetic field in direction of the stator

phase is induced, this field produces a torque over the rotor causing the rotor to

rotate until is aligns with the field.

So when energizing the stator phases in sequence a rotating magnetic field is

produced and the rotor rotates trying to align with the rotating magnetic field.

Page 3: Ahmed Yousry Winding Machine Mathematical Model

Mathematical Model

Electrical Equations:

Assume a 2 phase (a and b) Stepper motor

Each phase can be represented by this equation

๐‘‰๐‘Ž = ๐‘…๐‘Ž๐‘–๐‘Ž + ๐ฟ๐‘Ž

๐‘‘๐‘–๐‘Ž

๐‘‘๐‘ก+ ๐‘’๐‘Ž

๐‘’๐‘Ž = โˆ’๐พ๐‘š๏ฟฝฬ‡๏ฟฝ sin(๐‘๐‘Ÿ ๐œƒ)

Where

๐‘‰๐‘Ž: Phase a applied Voltage [Volt].

๐‘…๐‘Ž: Phase a winding Resistance [Ohm].

๐‘–๐‘Ž: Phase a Current [ampere].

๐ฟ๐‘Ž: Phase a winding inductance [H].

๐‘’๐‘Ž : Back emf (electromagnetic force) induced in phase a [Volt].

๐พ๐‘š: Electromotive Force Constant, (Motor Torque constant) [๐‘‰๐‘œ๐‘™๐‘ก. ๐‘ ๐‘’๐‘ ๐‘Ÿ๐‘Ž๐‘‘โ„ ]

Same equations represents phase b.

Page 4: Ahmed Yousry Winding Machine Mathematical Model

Electromechanical Torque Equation: In the Stepper Motor case the Torque developed over the rotor is the sum of the torque induced from each phase.

The Torque developed by each stator phase is dependent on the position of the

rotor in reference to that phase (as mentioned before) maximum torque when the phase induced magnetic field is perpendicular on the rotor (rotor field line

which connects the rotor poles) and minimum torque is when the rotor is aligned with the phase magnetic field.

this relation is represented by a sinusoidal wave (sine for first phase and cosine

for next phase as it varies with 90 mechanical degree )

So:

๐‘‡๐‘š = โˆ’๐พ๐‘š (๐‘–๐‘Ž โˆ’๐‘’๐‘Ž

๐‘…๐‘š) sin(๐‘๐‘Ÿ๐œƒ) + ๐พ๐‘š (๐‘–๐‘ โˆ’

๐‘’๐‘

๐‘…๐‘š) cos(๐‘๐‘Ÿ๐œƒ)

Where:

๐œƒ: Rotor Position

๐พ๐‘š: Motor Torque Constant [๐‘. ๐‘š ๐ด๐‘š๐‘]โ„

๐‘–๐‘Ž : phase a current [๐ด๐‘š๐‘ ]

๐‘–๐‘ : phase b current [๐ด๐‘š๐‘ ]

๐‘’๐‘Ž : Back emf (electromagnetic force) induced in phase a [volt]

๐‘’๐‘ : Back emf (electromagnetic force) induced in phase b [volt].

๐‘๐‘Ÿ: Is the number of teeth on each of the two rotor poles. The Full step

size parameter is (ฯ€/2)/Nr.

๐‘…๐‘š: Magnetizing Resistance in case of neglecting iron losses itโ€™s assumed to

be infinite which causes the term ( ๐‘’๐‘Ž

๐‘…๐‘š= 0 ).

As Shown the system equations is nonlinear.

Page 5: Ahmed Yousry Winding Machine Mathematical Model

Dc Motor Model

Dc Motors Control Techniques:

1. Armature Control.

2. Field Control.

Page 6: Ahmed Yousry Winding Machine Mathematical Model

Armature Controlled Dc Motor Mathematical Model:

Fig 1 Armature Controlled Dc Motor Schematic

Electrical Equations:

๐‘‰๐‘Ž = ๐‘…๐‘Ž ๐‘–๐‘Ž + ๐ฟ๐‘Ž

๐‘‘๐‘–๐‘Ž

๐‘‘๐‘ก+ ๐‘‰๐‘๐‘’๐‘š๐‘“

๐‘‰๐‘๐‘’๐‘š๐‘“ = ๐พ๐‘๐‘’๐‘š๐‘“ ๏ฟฝฬ‡๏ฟฝ

Where:

๐‘‰๐‘Ž: Voltage applied over Motor Armature [Volt].

๐‘…๐‘Ž: Armature Resistance [Ohm].

๐‘–๐‘Ž: Armature Current [ampere].

๐ฟ๐‘Ž: Armature Inductance [H].

๐‘‰๐‘๐‘’๐‘š๐‘“ : Back volt induced from rotor into armature [Volt].

๐พ๐‘๐‘’๐‘š๐‘“:Electromotive Force Constant [๐‘‰๐‘œ๐‘™๐‘ก. ๐‘ ๐‘’๐‘ ๐‘Ÿ๐‘Ž๐‘‘โ„ ]

Page 7: Ahmed Yousry Winding Machine Mathematical Model

Taking Laplace Transform

๐‘‰๐‘Ž(๐‘ ) = ๐‘–๐‘Ž(๐‘ )(๐‘…๐‘Ž + ๐‘ ๐ฟ๐‘Ž) + ๐‘ ๐พ๐‘๐‘’๐‘š๐‘“ ๐œƒ

Current volt Transfer Function ๐‘–๐‘Ž(๐‘ )

๐‘‰๐‘Ž(๐‘ )โˆ’๐พ๐‘๐‘’๐‘š๐‘“ ๏ฟฝฬ‡๏ฟฝ(๐‘ )=

1

๐‘…๐‘Ž+๐‘ ๐ฟ๐‘Ž

Electromechanical Torque Equation: In general, the torque generated by a DC motor is proportional to the armature current and the strength of the magnetic field.

๐‘‡๐‘š = ๐พ๐‘–๐‘Ž๐‘–๐‘“

The Strength of the magnetic field is constant as its armature controlled so:

๐‘‡๐‘š = ๐พ๐‘š๐‘–๐‘Ž

Where:

๐พ๐‘š: Motor Torque Constant [๐‘. ๐‘š ๐ด๐‘š๐‘]โ„

๐‘–๐‘Ž : Armature current [๐ด๐‘š๐‘ ]

Current to Torque Transfer function

๐‘‡๐‘š (๐‘ )

๐‘–๐‘Ž (๐‘ )= ๐พ๐‘š

So Volt Torque Transfer Function: ๐‘‡๐‘š(๐‘ )

๐‘‰๐‘Ž(๐‘ )โˆ’๐พ๐‘๐‘’๐‘š๐‘“๏ฟฝฬ‡๏ฟฝ(๐‘ )=

๐‘–๐‘Ž(๐‘ )

๐‘‰๐‘Ž(๐‘ )โˆ’๐พ๐‘๐‘’๐‘š๐‘“๏ฟฝฬ‡๏ฟฝ(๐‘ ) .

๐‘‡๐‘š(๐‘ )

๐‘–๐‘Ž(๐‘ )=

๐พ๐‘š

๐‘…๐‘Ž+๐‘ ๐ฟ๐‘Ž

Page 8: Ahmed Yousry Winding Machine Mathematical Model

Field Controlled Dc Motor Model:

In Field Controlled Dc motor the armature current is kept constant, the torque is

controlled by modulating the magnetic flux.

The magnetic field is controlled by controlling the voltage applied on the field

winding (๐‘‰๐‘“) so in this case the manipulated variable is field winding Voltage

(๐‘‰๐‘“).

Page 9: Ahmed Yousry Winding Machine Mathematical Model

Electrical equation:

๐‘‰๐‘“ = ๐‘…๐‘“ ๐‘–๐‘“ + ๐ฟ๐‘“

๐‘‘๐‘–๐‘“

๐‘‘๐‘ก

๐‘‰๐‘“: Voltage applied over Motor field winding [Volt].

๐‘…๐‘“: Field winding Resistance [Ohm].

๐‘–๐‘“: Field winding Current [ampere].

๐ฟ๐‘“: Field winding Inductance [H].

Taking Laplace Transform

๐‘‰๐‘“ (๐‘ ) = ๐‘…๐‘“ ๐‘–๐‘“(๐‘ ) + ๐‘ ๐ฟ๐‘“ ๐‘–๐‘“(๐‘ )

๐‘–๐‘“(๐‘ )

๐‘‰๐‘“(๐‘ )=

1

๐‘…๐‘“ + ๐‘ ๐ฟ๐‘“

Electromechanical Torque:

As armature current is constant

๐‘‡๐‘š = ๐พ๐‘š๐‘–๐‘“

๐พ๐‘š: Motor Torque Constant [๐‘. ๐‘š ๐ด๐‘š๐‘]โ„

๐‘–๐‘“ : Field winding current [๐ด๐‘š๐‘ ]

Current to Torque Transfer function:

๐‘‡๐‘š (๐‘ )

๐‘–๐‘“(๐‘ )= ๐พ๐‘š

So Volt Torque Transfer Function: ๐‘‡๐‘š(๐‘ )

๐‘‰๐‘“(๐‘ )=

๐‘–๐‘“(๐‘ )

๐‘‰๐‘“(๐‘ ).

๐‘‡๐‘š(๐‘ )

๐‘–๐‘“(๐‘ )=

๐พ๐‘š

๐‘…๐‘“+๐‘ ๐ฟ๐‘“

Page 10: Ahmed Yousry Winding Machine Mathematical Model

๐‘‡๐‘™ = ๐น๐‘ก1๐‘Ÿ๐‘ค๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ

๐‘‡๐‘™ :Load Torque over the winder Driver

๐น๐‘ก1: Web Tension force at Winder Region (Control Variable).

๐น๐‘ก0: Web Tension force at unWinder Region (assumed constant).

๐‘‰๐‘œ : Winder Tangential Velocity.

๐‘‰1 : unwinder Tangential Velocity.

๐‘‘๐‘‘๐‘Ž๐‘›๐‘๐‘’๐‘Ÿ : Displacement of Dancer.

๐‘Ÿ๐‘ค๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ :Raduis of winder cylinder.

๐‘‰๐‘‘ : Dancer Velocity๐‘‰๐‘‘ =๐‘‘๐‘‘๐‘‘๐‘Ž๐‘›๐‘๐‘’๐‘Ÿ

๐‘‘๐‘ก.

๐‘Ÿ๐‘ค๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ

๐‘‘๐‘‘๐‘Ž๐‘›๐‘๐‘’๐‘Ÿ

๐น๐‘ก1

๐น๐‘ก1 ๐น๐‘ก๐‘œ

Page 11: Ahmed Yousry Winding Machine Mathematical Model

Model Assumptions:

1. The paper velocity from the unwinder is constant

2. The cross section area of the web is uniform

3. The definition of strain is normal and only small deformation is

expected.

4. The deformation of the web material is elastic this assumption is used

because plastic deformation is unwanted during the winding process and

quite difficult to model.

5. The density of the web is unchanged

6. The dancer movement is negligible compared to the length of the web between the unwinder and the winder.

7. The speed of the dancer is negligible compared to the speed of the web

๐‘‰๐‘‘<<๐‘‰1

8. The web material is very stiff, hence ๐‘‰๐‘œโ‰ˆ๐‘‰1

If assumption 6 is correct and the material is stiff the unwinder paper

speed and the winder paper speed is approximately the same.

9. The tension in the unwinder section is constant.

10. The change of roll radius does not change the web length between the

winders:

as one radius is increasing the other is decreasing therefore the changing

radius is estimated to only having little influence on the web length and

is therefore neglected.

Page 12: Ahmed Yousry Winding Machine Mathematical Model

Mechanical Equations:

In our case we have two torques opposing the torque from the motor:

1. The tension in the web is acting as the load on the winder motor

๐‘‡๐‘™ = ๐น๐‘ก1๐‘Ÿ๐‘ค๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ

2. Friction Torque Consisting of :

a. Coulomb Friction (Static Friction) throughout the Drive

system (as in bearing , Gears โ€ฆetc.)

๐‘‡๐‘๐‘œ๐‘ข๐‘™

b. Viscous Friction (Dynamic Friction) throughout the Drive

system

๐‘‡๐‘‘๐‘“ = ๐‘๏ฟฝฬ‡๏ฟฝ

So Mechanical Differential Equation:

โˆ‘ ๐‘‡ = ๐ฝ๏ฟฝฬˆ๏ฟฝ

๐‘‡๐‘š โˆ’ ๐‘‡๐‘™ โˆ’ ๐‘‡๐‘๐‘œ๐‘ข โˆ’ ๐‘๏ฟฝฬ‡๏ฟฝ = ๐ฝ๏ฟฝฬˆ๏ฟฝ

Taking Laplace Transform:

๐‘‡๐‘š(๐‘ ) โˆ’ ๐‘‡๐‘™ โˆ’ ๐‘‡๐‘๐‘œ๐‘ข โˆ’ ๐‘๐‘ ๐œƒ(๐‘ ) = ๐ฝ๐‘ 2๐œƒ(๐‘ )

Angular Position Transfer Function:

๐œƒ

๐‘‡๐‘š โˆ’ ๐‘‡๐‘๐‘œ๐‘ข โˆ’ ๐น๐‘ก1๐‘Ÿ๐‘ค๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ

=1

๐ฝ๐‘ 2 + ๐‘๐‘ 

๐ฝ: is variable as winding Cylinder mass increases as winding goes on

its calculations is at the end of paper

Page 13: Ahmed Yousry Winding Machine Mathematical Model

Web Material Model

The purpose in modelling the web material is to find an expression for the tension force

development in the web material located between the winders. This requires a physical

interpretation on how stress arises in the web material and how the stress is related to the

winders tangential velocities ๐‘‰๐‘œ and ๐‘‰1 .

In the following the Voigt model is used to explain arising stress and with the before

mentioned assumptions, control volume analysis and continuum mechanics it is shown how

the stresses are related to ๐‘‰๐‘œ and ๐‘‰1 .

Voigt Model:

The Voigt model consists of a viscous damper and an elastic spring in parallel as shown

With this model the Stress on the material ๐œŽ =๐น๐‘ก

๐ด is expressed as follows

๐œŽ =๐น๐‘ก

๐ด= ๐ธ๐œ€ + ๐ถ๐œ€ฬ‡

Where

๐œŽ:Stress on web material

๐ธ: material youngโ€™s modulus of elasticity

๐ด:Material Cross Section area A=material width *material thickness

๐œ€:Strain Due to Tension force ๐œ€ =โˆ†๐ฟ

๐ฟ (Deformed length over normal length)

๐น๐‘ก:Tension Force over material

Taking Laplace Transform we get ๐œ€ =๐น๐‘ก

๐ด๐ธ+๐ด๐ถ๐‘  (1)

Page 14: Ahmed Yousry Winding Machine Mathematical Model

Mass Continuity Definition:

Mass of material doesnโ€™t change as the material is Stretched

๐œŒ๐ด๐ฟ = ๐œŒ๐ด๐‘ ๐ฟ๐‘ 

Where

A: Normal Area of material

L: Normal length of material

๐ฟ๐‘ :Stretched Length of material

๐ด๐‘ :Stretched Cross sectional area

As Density is assumed constant โˆด ๐ด๐ฟ = ๐ด๐‘ ๐ฟ๐‘  (2)

From Strain Definition ๐œ€ =โˆ†๐ฟ

๐ฟ=

๐ฟ๐‘ โˆ’๐ฟ

๐ฟ=

๐ฟ๐‘ 

๐ฟโˆ’ 1 (3)

From (2) and (1) ๐ด๐‘  =๐ด

(๐œ€+1) (3)

Since ๐œ€ โ‰ช 1 equation (3) can be expressed as

๐ด๐‘  = ๐ด(1 โˆ’ ๐œ€) (4)

Page 15: Ahmed Yousry Winding Machine Mathematical Model

Mass Conservation Law:

The definition of mass conservation states that the change in mass of the control

volume equals the difference between the mass entering and exiting the control

volume.

๐‘‘

๐‘‘๐‘ก๐œŒ๐ด๐ฟ = ๐œŒ๐ด๐‘œ๐‘‰๐‘œ โˆ’ ๐œŒ๐ด1๐‘‰1

In our case and since density constant ๐‘‘

๐‘‘๐‘ก๐ด๐ฟ = ๐ด๐‘ ๐‘œ๐‘‰๐‘œ โˆ’ ๐ด๐‘ 1๐‘‰1

From equation (4) we get

๐‘‘

๐‘‘๐‘ก๐ด(1 โˆ’ ๐œ€1)๐ฟ = ๐ด๐‘œ(1 โˆ’ ๐œ€๐‘œ)๐‘‰๐‘œ โˆ’ ๐ด1(1 โˆ’ ๐œ€1)๐‘‰1

As area is assumed uniform over all machine

โˆด๐‘‘

๐‘‘๐‘ก(1 โˆ’ ๐œ€1)๐ฟ = (1 โˆ’ ๐œ€๐‘œ)๐‘‰๐‘œ โˆ’ (1 โˆ’ ๐œ€1)๐‘‰1 (5)

Page 16: Ahmed Yousry Winding Machine Mathematical Model

Since the Length of web is influenced only by the Dancer

Displacement (assumption 10)

Dancer Displacement affects web length from both sides

โˆด ๐ฟ = ๐ฟ๐‘ โˆ’ 2๐‘‘

Where: ๐ฟ๐‘:Constant Length of web.

๐‘‘ : Dancer Displacement.

Then equation (5)

๐‘‘

๐‘‘๐‘ก(1 โˆ’ ๐œ€1)(๐ฟ๐‘ โˆ’ 2๐‘‘) = (1 โˆ’ ๐œ€๐‘œ)๐‘‰๐‘œ โˆ’ (1 โˆ’ ๐œ€1)๐‘‰1

By differentiating and simplifying we get

(๐ฟ๐‘ โˆ’ 2๐‘‘). ๐œ€1ฬ‡ = ๐‘‰1โˆ’๐‘‰๐‘œ โˆ’ 2๐‘‰๐‘‘ + ๐‘‰๐‘œ๐œ€๐‘œ โˆ’ (๐‘‰1 โˆ’ 2๐‘‰๐‘‘)๐œ€1

By taking Laplace Transform

(๐ฟ๐‘ โˆ’ 2๐‘‘). ๐‘ ๐œ€1 = ๐‘‰1โˆ’๐‘‰๐‘œ โˆ’ 2๐‘‰๐‘‘ + ๐‘‰๐‘œ๐œ€๐‘œ โˆ’ (๐‘‰1 โˆ’ 2๐‘‰๐‘‘)๐œ€1 (6)

From transfer function (1) into (6) we get equation (7)

๐น๐‘ก1 (๐‘  +๐‘‰1 โˆ’ 2๐‘‰๐‘‘

๐ฟ๐‘ + 2๐‘‘) =

๐ด1 ๐ธ + ๐ด1 ๐ถ๐‘ 

๐ฟ๐‘ โˆ’ 2๐‘‘(โˆ’๐‘‰๐‘œ + ๐‘‰1 โˆ’ 2๐‘‰๐‘‘ ) +

๐‘‰1๐น๐‘ก๐‘œ

๐ฟ๐‘ โˆ’ 2๐‘‘.๐ด1

๐ด2

Page 17: Ahmed Yousry Winding Machine Mathematical Model

From assumption 6, 7 and 8

Dancer displacement is negligible to total web length between winder and

unwinder

Dancer speed is negligible relative to winder and unwinder relative velocities

Material is stiff therefore ๐‘‰๐‘œโ‰ˆ๐‘‰1

Therefor ๐ฟ๐‘›โ‰ˆ๐ฟ๐‘ โˆ’ 2๐‘‘ and ๐‘‰๐‘œโ‰ˆ๐‘‰1 โˆ’ 2๐‘‰๐‘‘ (8)

๐ฟ๐‘›: Approximate web length between winder and unwinder

Substituting in equation (7)

๐น๐‘ก1 (๐‘  +๐‘‰๐‘œ

๐ฟ๐‘›

) =๐ด1 ๐ธ + ๐ด1 ๐ถ๐‘ 

๐ฟ๐‘›

(โˆ’๐‘‰๐‘œ + ๐‘‰1 โˆ’ 2๐‘‰๐‘‘ ) +๐‘‰1 ๐น๐‘ก๐‘œ

๐ฟ๐‘›

.๐ด1

๐ด2

The Term ๐‘‰1๐น๐‘ก๐‘œ

๐ฟ๐‘›.

๐ด1

๐ด2 is constant due to assumptions 1, 2 and 9 and it

represents the initial Tension force.

Finally we get the transfer function of tension force from inputs (paper Linear

velocities and dancer velocity)

๐น๐‘ก1

๐‘‰1 โˆ’ ๐‘‰๐‘œ โˆ’ 2๐‘‰๐‘‘=

๐ด๐ฟ๐‘›

(๐ถ๐‘  + ๐ธ)

๐‘  +๐‘‰๐‘œ๐ฟ๐‘›

Page 18: Ahmed Yousry Winding Machine Mathematical Model

Dancer Mathematical Model

From Newtonโ€™s Second law of motion

โˆ‘ ๐น๐‘’๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™ = ๐‘€๐‘Ž

By deriving equation and taking Laplace Transform

๐น๐‘ก๐‘œ + ๐น๐‘ก1 โˆ’ ๐‘€๐‘‘ . ๐‘” = (๐‘€๐‘‘๐‘ 2 + ๐ถ๐‘‘๐‘  + ๐พ๐‘‘)๐‘‘

Where

๐‘€๐‘‘: Dancer mass

๐ถ๐‘‘: Dancer damping coefficient

๐พ๐‘‘:Spring Stiffness

๐‘‘:Dancer Dsiplacment

Dancer position Transfer function ๐‘‘

๐น๐‘ก1+๐น๐‘ก๐‘œโˆ’๐‘€๐‘‘ .๐‘”=

1

๐‘€๐‘‘ ๐‘ 2+๐ถ๐‘‘๐‘ +๐พ๐‘‘

๐น๐‘ก1 ๐น๐‘ก๐‘œ

๐‘€๐‘‘ . ๐‘”

Page 19: Ahmed Yousry Winding Machine Mathematical Model

Complete model Summary:

Stepper Motor:

๐‘‰๐‘Ž = ๐‘…๐‘Ž๐‘–๐‘Ž + ๐ฟ๐‘Ž

๐‘‘๐‘–๐‘Ž

๐‘‘๐‘ก+ ๐‘’๐‘Ž

๐‘’๐‘Ž = โˆ’๐พ๐‘š๏ฟฝฬ‡๏ฟฝ sin(๐‘๐‘Ÿ ๐œƒ)

๐‘‡๐‘š = โˆ’๐พ๐‘š (๐‘–๐‘Ž โˆ’๐‘’๐‘Ž

๐‘…๐‘š) sin(๐‘๐‘Ÿ๐œƒ) + ๐พ๐‘š (๐‘–๐‘ โˆ’

๐‘’๐‘

๐‘…๐‘š) cos(๐‘๐‘Ÿ๐œƒ)

Dc motor armature controlled:

๐‘‡๐‘š(๐‘ )

๐‘‰๐‘Ž(๐‘ ) โˆ’ ๐พ๐‘๐‘’๐‘š๐‘“๏ฟฝฬ‡๏ฟฝ(๐‘ )=

๐พ๐‘š

๐‘…๐‘Ž + ๐‘ ๐ฟ๐‘Ž

Dc motor Field controlled:

๐‘‡๐‘š(๐‘ )

๐‘‰๐‘“ (๐‘ )=

๐พ๐‘š

๐‘…๐‘“ + ๐‘ ๐ฟ๐‘“

Mechanical Transfer Function: ๐œƒ

๐‘‡๐‘šโˆ’๐‘‡๐‘๐‘œ๐‘ขโˆ’๐น๐‘ก1๐‘Ÿ๐‘ค๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ=

1

๐ฝ๐‘ 2+๐‘๐‘ 

Material Transfer Function: ๐น๐‘ก1

๐‘‰1โˆ’๐‘‰๐‘œโˆ’2๐‘‰๐‘‘=

๐ด

๐ฟ๐‘›(๐ถ๐‘ +๐ธ)

๐‘ +๐‘‰๐‘œ๐ฟ๐‘›

Dancer Transfer function:๐‘‘

๐น๐‘ก1+๐น๐‘ก๐‘œโˆ’๐‘€๐‘‘.๐‘”=

1

๐‘€๐‘‘ ๐‘ 2+๐ถ๐‘‘ ๐‘ +๐พ๐‘‘

Page 20: Ahmed Yousry Winding Machine Mathematical Model

Calculation of varying moment of inertia:

Length of winded material:

๐ฟ๐‘ค๐‘–๐‘›๐‘‘๐‘’๐‘‘ = โˆซ ๐‘‰1๐‘‘๐‘ก

Radius of Winder Cylinder:

๐‘Ÿ๐‘ค๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ = โˆš๐ฟ๐‘ค๐‘–๐‘›๐‘‘๐‘’๐‘‘ . ๐‘ก

๐œ‹+ ๐‘Ÿ๐‘๐‘œ๐‘Ÿ๐‘’

2

Material Mass:

๐‘€ = ๐‘€๐‘ฃ. ๐œ‹. ๐‘ค(๐‘Ÿ๐‘ค๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ2 โˆ’ ๐‘Ÿ๐‘๐‘œ๐‘Ÿ๐‘’

2)

๐‘€๐‘ฃ: Material mass per unit volume

๐‘Ÿ๐‘๐‘œ๐‘Ÿ๐‘’: Winder Cylinder Core radius

Variable material Moment of inertia:

๐ฝ๐‘ค =1

2๐‘€(๐‘Ÿ๐‘ค๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ

2 + ๐‘Ÿ๐‘๐‘œ๐‘Ÿ๐‘’2)

Total Drive moment of inertia:

๐ฝ = ๐ฝ๐‘ค + ๐ฝ๐‘

๐ฝ๐‘ : Winder Cylinder Core Moment of inertia