14
©Copyright JASSS François Rebaudo, Verónica Crespo-Pérez, Jean-François Silvain and Olivier Dangles (2011) Agent-Based Modeling of Human-Induced Spread of Invasive Species in Agricultural Landscapes: Insights from the Potato Moth in Ecuador Journal of Artificial Societies and Social Simulation 14 (3) 7 <http://jasss.soc.surrey.ac.uk/14/3/7.html> Received: 27-Oct-2010 Accepted: 07-May-2011 Published: 30-Jun-2011 Abstract Agent-based models (ABM) are ideal tools to deal with the complexity of pest invasion throughout agricultural socio-ecological systems, yet very few studies have applied them in such context. In this work we developed an ABM that simulates interactions between farmers and an invasive insect pest in an agricultural landscape of the tropical Andes. Our specific aims were to use the model 1) to assess the importance of farmers' mobility and pest control knowledge on pest expansion and 2) to use it as an educational tool to train farmer communities facing pest risks. Our model combined an ecological sub-model, simulating pest population dynamics driven by a cellular automaton including environmental factors of the landscape, with a social model in which we incorporated agents (farmers) potentially transporting and spreading the pest through displacements among villages. Results of model simulation revealed that both agents' movements and knowledge had a significant, non-linear, impact on invasion spread, confirming previous works on disease expansion by epidemiologists. However, heterogeneity in knowledge among agents had a low effect on invasion dynamics except at high levels of knowledge. Evaluations of the training sessions using ABM suggest that farmers would be able to better manage their crop after our implementation. Moreover, by providing farmers with evidence that pests propagated through their community not as the result of isolated decisions but rather as the result of repeated interactions between multiple individuals over time, our ABM allowed introducing them with social and psychological issues which are usually neglected in integrated pest management programs. Keywords: Socio-Ecological Systems, Farmers, Invasive Pest, Long Distance Dispersion, Teaching Introduction 1.1 Agricultural systems are composed by two interlinked and interdependent subsystems, the social and the ecological subsystems, which co-evolve and interact at various levels and scales (Liu 2007). As a consequence, these systems are characterized by complex spatio-temporal dynamics and cultural variation (Papajorgji 2009). The management of agricultural invasive pests lies at the heart of such a complexity as pest propagation depends on both environmental features (e.g. climate, landscape structure) and farmers' behaviors (e.g. man-induced pest dispersion) (Epanchin-Niell 2010). The problems with dealing with multiple actors, non linearity, unpredictability, and time lags in invaded agricultural systems suggest that agent-based models (ABM) may have an important role to play in the sustainable development of farmers' practices to face those emergent threats (Berger 2001). Although ABM have increasingly been applied to physical, biological, medical, social, and economic problems (Bagni 2002; Bonabeau 2002; Grimm 2005a) it has been, to our knowledge, disregarded by invasive pest management theory and practice. 1.2 Intrinsic dispersal capacities of agricultural invasive pest (in particular insects) are rarely sufficient to make them major threats at a large spatial scale. In most cases, invasive pest expansion is dependent on long-distance dispersal (LDD) events, a key process by which organisms can be transferred over large distances through passive transportation mechanisms (Liebold 2008). The study of the dynamics of pest dispersion in agricultural landscape is therefore comparable to that of disease contagion: as diseases, pests are transmitted from an infected person (farmer) to another who was previously "healthy", through different biological, social and environmental processes (Teweldemedhin 2004; Dangles 2010). Several studies have shown that the dynamics of infection spread involves positive and negative feedbacks, time delays, nonlinearities, stochastic events, and individual heterogeneity (Eubank 2004; Bauer 2009; Itakura 2010). Two factors have revealed particularly important to predict disease dynamics: (1) the number of encounter events between infected and healthy individuals, which mainly depends on individuals' mobility (Altizer 2006), and (2) the contamination rate between infected and healthy individuals, which depends on heterogeneous susceptibilities of individuals to be infected ( Moreno 2002; Xuan 2009). Similarly, the spread of invasive pests throughout the agricultural landscape would depend on (1) movements of farmers carrying infested plants or seeds into new areas and (2) farmer's knowledge to detect the pest (pest control knowledge), therefore avoiding being infested and impeding the contamination of new areas (Dangles 2010). 1.3 Borrowing from disease contagion literature (e.g.Gong 2007; Yu 2010), we developed, using NetLogo (Wilensky 1999), an ABM to simulate the spread of an invasive potato insect pest in an agricultural landscape of the tropical Andes. Our model combined an ecological sub-model, simulating pest population dynamics driven by a cellular automaton including environmental factors of the landscape, with a social model in which we incorporated agents (farmers) potentially transporting and spreading the pest through displacements among villages. We then used our model for two purposes. First, we ran the ABM under 10 levels of agents' (farmers) movements among villages and 7 levels of heterogeneity in farmer's pest control knowledge. We compared the resulting diffusion dynamics on the speed of pest spread, which represents a relevant metrics for invasive pest management by local stakeholders (e.g. the time available for agriculture officials to respond to the threat). Second, we used our ABM as an education tool to increase farmer awareness on the importance of human-related LDD events of the pests which fostered the invasions of their valley (see Dangles 2010). While we specifically focused on an invasive insect pest in the tropical Andes in this paper, our approach to understand the influence of farmers' movements and pest control knowledge on pest dynamics and to transfer it through educational programs would be applicable to a much wider geographic and species range. Study system 2.1 Our study deals with the potato tuber moth ( Tecia solanivora), an invasive pest that has spread from Guatemala into Central America, northern South America and the Canary Islands during the past 30 years (Puillandre 2008). This pest attacks potato ( Solanum tuberosum) tubers in the field and in storage and has become one of the most damaging crop pests in the North Andean region (Dangles 2008). Commercial exchanges of potato tubers at regional and local scales for both seeding and consumption are the main causes for the rapid expansion of the pest in all parts of the Ecuadorian highlands (2400-3500 m.a.s.l). These landscapes are characterized by highly variable environmental and social conditions due to steep altitudinal gradients and dispersed human settlement, respectively. Model Overall structure of the model 3.1 The socio-agronomical framework of the model consists in three key elements (Figure 1): 1) the agricultural landscape characteristics provided by a GIS environmental data base (Biodiversity Indicators for National Use, Ministerio del Ambiente Ecuador and EcoCiencia 2005), 2) the insect pest population, and 3) the groups of farmers. Pest dynamics in interaction with landscape features (e.g. land use, climate) is simulated through a cellular automaton (see the following sub-section). To transfer the cellular automaton into an agent-based simulation model we included farmers as agents acting individually upon pest dynamics in the agricultural landscape. Pests are therefore represented as a layer in the cellular automaton and farmers as agents in the ABM. http://jasss.soc.surrey.ac.uk/14/3/7.html 1 08/10/2015

Agent-Based Modeling of Human-Induced Spread of Invasive ...jasss.soc.surrey.ac.uk/14/3/7/7.pdfdependent). This model has been validated in a study area of 20 × 20 km within the remote

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • ©CopyrightJASSS

    FrançoisRebaudo,VerónicaCrespo-Pérez,Jean-FrançoisSilvainandOlivierDangles(2011)

    Agent-BasedModelingofHuman-InducedSpreadofInvasiveSpeciesinAgriculturalLandscapes:InsightsfromthePotatoMothinEcuador

    JournalofArtificialSocietiesandSocialSimulation 14(3)7

    Received:27-Oct-2010Accepted:07-May-2011Published:30-Jun-2011

    Abstract

    Agent-basedmodels(ABM)areidealtoolstodealwiththecomplexityofpestinvasionthroughoutagriculturalsocio-ecologicalsystems,yetveryfewstudieshaveappliedtheminsuchcontext.InthisworkwedevelopedanABMthatsimulatesinteractionsbetweenfarmersandaninvasiveinsectpestinanagriculturallandscapeofthetropicalAndes.Ourspecificaimsweretousethemodel1)toassesstheimportanceoffarmers'mobilityandpestcontrolknowledgeonpestexpansionand2)touseitasaneducationaltooltotrainfarmercommunitiesfacingpestrisks.Ourmodelcombinedanecologicalsub-model,simulatingpestpopulationdynamicsdrivenbyacellularautomatonincludingenvironmentalfactorsofthelandscape,withasocialmodelinwhichweincorporatedagents(farmers)potentiallytransportingandspreadingthepestthroughdisplacementsamongvillages.Resultsofmodelsimulationrevealedthatbothagents'movementsandknowledgehadasignificant,non-linear,impactoninvasionspread,confirmingpreviousworksondiseaseexpansionbyepidemiologists.However,heterogeneityinknowledgeamongagentshadaloweffectoninvasiondynamicsexceptathighlevelsofknowledge.EvaluationsofthetrainingsessionsusingABMsuggestthatfarmerswouldbeabletobettermanagetheircropafterourimplementation.Moreover,byprovidingfarmerswithevidencethatpestspropagatedthroughtheircommunitynotastheresultofisolateddecisionsbutratherastheresultofrepeatedinteractionsbetweenmultipleindividualsovertime,ourABMallowedintroducingthemwithsocialandpsychologicalissueswhichareusuallyneglectedinintegratedpestmanagementprograms.

    Keywords:Socio-EcologicalSystems,Farmers,InvasivePest,LongDistanceDispersion,Teaching

    Introduction

    1.1 Agriculturalsystemsarecomposedbytwointerlinkedandinterdependentsubsystems,thesocialandtheecologicalsubsystems,whichco-evolveandinteractatvariouslevelsandscales(Liu2007).Asaconsequence,thesesystemsarecharacterizedbycomplexspatio-temporaldynamicsandculturalvariation(Papajorgji2009).Themanagementofagriculturalinvasivepestsliesattheheartofsuchacomplexityaspestpropagationdependsonbothenvironmentalfeatures(e.g.climate,landscapestructure)andfarmers'behaviors(e.g.man-inducedpestdispersion)(Epanchin-Niell2010).Theproblemswithdealingwithmultipleactors,nonlinearity,unpredictability,andtimelagsininvadedagriculturalsystemssuggestthatagent-basedmodels(ABM)mayhaveanimportantroletoplayinthesustainabledevelopmentoffarmers'practicestofacethoseemergentthreats(Berger2001).AlthoughABMhaveincreasinglybeenappliedtophysical,biological,medical,social,andeconomicproblems(Bagni2002;Bonabeau2002;Grimm2005a)ithasbeen,toourknowledge,disregardedbyinvasivepestmanagementtheoryandpractice.

    1.2 Intrinsicdispersalcapacitiesofagriculturalinvasivepest(inparticularinsects)arerarelysufficienttomakethemmajorthreatsatalargespatialscale.Inmostcases,invasivepestexpansionisdependentonlong-distancedispersal(LDD)events,akeyprocessbywhichorganismscanbetransferredoverlargedistancesthroughpassivetransportationmechanisms(Liebold2008).Thestudyofthedynamicsofpestdispersioninagriculturallandscapeisthereforecomparabletothatofdiseasecontagion:asdiseases,pestsaretransmittedfromaninfectedperson(farmer)toanotherwhowaspreviously"healthy",throughdifferentbiological,socialandenvironmentalprocesses(Teweldemedhin2004;Dangles2010).Severalstudieshaveshownthatthedynamicsofinfectionspreadinvolvespositiveandnegativefeedbacks,timedelays,nonlinearities,stochasticevents,andindividualheterogeneity(Eubank2004;Bauer2009;Itakura2010).Twofactorshaverevealedparticularlyimportanttopredictdiseasedynamics:(1)thenumberofencountereventsbetweeninfectedandhealthyindividuals,whichmainlydependsonindividuals'mobility(Altizer2006),and(2)thecontaminationratebetweeninfectedandhealthyindividuals,whichdependsonheterogeneoussusceptibilitiesofindividualstobeinfected(Moreno2002;Xuan2009).Similarly,thespreadofinvasivepeststhroughouttheagriculturallandscapewoulddependon(1)movementsoffarmerscarryinginfestedplantsorseedsintonewareasand(2)farmer'sknowledgetodetectthepest(pestcontrolknowledge),thereforeavoidingbeinginfestedandimpedingthecontaminationofnewareas(Dangles2010).

    1.3 Borrowingfromdiseasecontagionliterature(e.g.Gong2007;Yu2010),wedeveloped,usingNetLogo(Wilensky1999),anABMtosimulatethespreadofaninvasivepotatoinsectpestinanagriculturallandscapeofthetropicalAndes.Ourmodelcombinedanecologicalsub-model,simulatingpestpopulationdynamicsdrivenbyacellularautomatonincludingenvironmentalfactorsofthelandscape,withasocialmodelinwhichweincorporatedagents(farmers)potentiallytransportingandspreadingthepestthroughdisplacementsamongvillages.Wethenusedourmodelfortwopurposes.First,werantheABMunder10levelsofagents'(farmers)movementsamongvillagesand7levelsofheterogeneityinfarmer'spestcontrolknowledge.Wecomparedtheresultingdiffusiondynamicsonthespeedofpestspread,whichrepresentsarelevantmetricsforinvasivepestmanagementbylocalstakeholders(e.g.thetimeavailableforagricultureofficialstorespondtothethreat).Second,weusedourABMasaneducationtooltoincreasefarmerawarenessontheimportanceofhuman-relatedLDDeventsofthepestswhichfosteredtheinvasionsoftheirvalley(seeDangles2010).WhilewespecificallyfocusedonaninvasiveinsectpestinthetropicalAndesinthispaper,ourapproachtounderstandtheinfluenceoffarmers'movementsandpestcontrolknowledgeonpestdynamicsandtotransferitthrougheducationalprogramswouldbeapplicabletoamuchwidergeographicandspeciesrange.

    Studysystem

    2.1 Ourstudydealswiththepotatotubermoth(Teciasolanivora),aninvasivepestthathasspreadfromGuatemalaintoCentralAmerica,northernSouthAmericaandtheCanaryIslandsduringthepast30years(Puillandre2008).Thispestattackspotato(Solanumtuberosum)tubersinthefieldandinstorageandhasbecomeoneofthemostdamagingcroppestsintheNorthAndeanregion(Dangles2008).CommercialexchangesofpotatotubersatregionalandlocalscalesforbothseedingandconsumptionarethemaincausesfortherapidexpansionofthepestinallpartsoftheEcuadorianhighlands(2400-3500m.a.s.l).Theselandscapesarecharacterizedbyhighlyvariableenvironmentalandsocialconditionsduetosteepaltitudinalgradientsanddispersedhumansettlement,respectively.

    Model

    Overallstructureofthemodel

    3.1 Thesocio-agronomicalframeworkofthemodelconsistsinthreekeyelements(Figure1):1)theagriculturallandscapecharacteristicsprovidedbyaGISenvironmentaldatabase(BiodiversityIndicatorsforNationalUse,MinisteriodelAmbienteEcuadorandEcoCiencia2005),2)theinsectpestpopulation,and3)thegroupsoffarmers.Pestdynamicsininteractionwithlandscapefeatures(e.g.landuse,climate)issimulatedthroughacellularautomaton(seethefollowingsub-section).Totransferthecellularautomatonintoanagent-basedsimulationmodelweincludedfarmersasagentsactingindividuallyuponpestdynamicsintheagriculturallandscape.PestsarethereforerepresentedasalayerinthecellularautomatonandfarmersasagentsintheABM.

    http://jasss.soc.surrey.ac.uk/14/3/7.html 1 08/10/2015

    /admin/copyright.html../../JASSS.htmlhttp://jasss.soc.surrey.ac.uk/14/3/7/rebaudo.html

  • Figure1.Schematicrepresentationofthemodelstructure

    Modelingpestdynamicsthroughcellularautomata

    3.2 Thespatio-temporaldynamicsofpotatotubermothismodeledthroughasimplifiedversionofthecellularautomatondevelopedbyCrespo-Pérez(submitted).ThismodelwasdevelopedwiththeCORMASmodelingplatformandisdetailedinAppendix1.BrieflyitisbasedonbiologicalandecologicalrulesderivedfromfieldandlaboratoryexperimentaldataforT.solanivora'sphysiologicalresponsestoclimate.Mainprocessesincludemothsurvival(climatedependent),dispersalthroughdiffusionprocesses(densitydependent),andreproduction(climatedependent).Thismodelhasbeenvalidatedinastudyareaof20×20kmwithintheremotevalleyofSimiatugintheCentralEcuadorianAndes(seesection5)representedbyagridof1,600

    cellswithacellsizeof0.25km2.

    Modelinghuman-relatedpestdispersionthroughtheagent-basedmodel

    3.3 TheABMaimsatsimulatingtheinfluenceoffarmersonthespatio-temporaldynamicsofthepotatomoth.Inthisparticularmodel,farmersareconsideredaspotentialagentsforpestLDD,forexamplewhentheycarryinfestedpotatosacksfromlocalmarketstotheirhome(otherinteractionswiththepest,suchascontrolbypesticide,arenotincludedinthismodel).TheirefficiencyasLDDagentsdependsontheirpestcontrolknowledge:thehighertheirknowledge,thelowertheprobabilitytheygettheirfieldinfestedafterpotatosackstransport(seebelow).

    Agentprocessoverviewandscheduling

    3.4 Agentprocessoverviewandschedulingarepresentedinfigure2.Agentsmovearoundonagridofcellswhoselevelofpestinfestationismodeledbythecellularautomaton(seeAppendix1).Duringeachmovementwithinasingletimeframeagentsturn"infested"(i.e.theirpotatocropsareinfestedbythemoth)orremain"non-infested"dependingontheirpestcontrolknowledgeandthepestinfestationinagivencell.Eachtimeframeisequaltoonemothgeneration(i.e.about2months)duringwhichagentscanmoveseveraltimesdependingontheirtraveldecisions.Agentswithhigherpestcontrolknowledge(e.g.knowinghowtorecognizemothdamagewhentheybuypotatosacksatthemarket)havealowerprobabilityofbecominginfested.Then,agentsmovefromonevillagetoanothertobuyand/orsellpotatoes.Agents'movementsfollowagravitymodel(Rodrigue2009),wheretheattractivenessofavillageicomparedtoavillagejisafunctionofbothpopulationsizeandcost-distancebetweenthem.Villageinfestationoccurswhenaninfestedagentmovestoanon-infestedvillage(carryinginfestedpotatosackswhichwillbeusedaspotatoseedsandtherebyinfestneighboringfields).Agentinfestationoccurswhenanon-infestedagentmovestoaninfestedvillage(buyinginfestedpotatoseedsacks),dependingonhispestcontrolknowledge(higherpestcontrolknowledgeleadstolowerprobabilityofbuyinginfestedsacks).

    http://jasss.soc.surrey.ac.uk/14/3/7.html 2 08/10/2015

    http://cormas.cirad.fr/en/applica/SimPolilla.htm

  • Figure2.Agents'processesloopshowinghowfarmersinfluencepestinfestationspread.Thisloopisexecutedvarioustimesdependingonfarmers'travelingdecisionsduringeachtimeframe.

    Designconcepts

    3.5 Agentscansensethepestinfestationofthecellsbuttheydonotusethisinformationfortheirtravelingdecision.Instead,agentssensevillagepopulationsizeanddistancebetweenvillagessothattheyareabletoperceivetherelativecost/benefitofgoingtoeachvillagetosell/buytheircrop:(1)itislessexpensivetotraveltocloservillagesand(2)morepopulatedvillagesprovidehighercommercialopportunities.Asaresult,timeneededtoreachacompletepestinfestationintheareaemergesfromacombinationofpurelybiologicalpestdispersion,agents'movementsfromvillagetovillageandagent'spestcontrolknowledge.Amodelexampleisavailableonlineathttp://www.openabm.org.

    Testingtheeffectofagents'movementandpestcontrolknowledgeonpestspreaddynamics

    Effectofagents'movements

    4.1 WeexaminedwithourABMhowthenumberofagents'movementspergenerationwouldimpactpestinvasiondynamics.Aswewereinterestedintheearlyphasesofinvasions,whichrepresentarelevantmetricsforinvasivepestmanagementbylocalstakeholders,weusedthetimeneededtoreach5%ofinfestedcellsasanoutcomevariable.

    4.2 Wefoundthatincreasingfrom1to10thenumberofagents'movementsinthelandscapehadanegativeexponentialeffectonthespreadoftheinvasivepest(Figure3andanimationinAppendix2).Invasionspeedwasparticularlyincreasedupto4movementsandthentendedtostabilize.Asexpected,theeffectofagents'movementoninvasionspeedwasintensifiedbythenumberofagentslocatedonthelandscape,butonceagainthiseffectwasnotlinear:insectpestdynamicswasspeededupwhenaddingupto10agentsbutremainedroughlyunchangedforthe10followingones.Foranintermediatescenario(4movements,10agents),thespeedofinvasionwastwicefasterthatofapurelybiologicalspread(i.e.throughinsect'sdispersioncapabilitiesalone).Weareawarethatthespatialconfigurationofoursociallandscape(seethefrequencyofinfestedfarmermovementsinFigure4)likelyinfluencedourresults.Furtherstudiesincludingrandomlygeneratedsociallandscapescouldhelptoquantifythiseffectonagents'movementsandsubsequentpestinfestationdynamics.

    Figure3.Influenceofagents'movements(perpestgeneration)onpestinfestationdynamicsfordifferentagentdensities(n=2to20).Thedashedlinerepresentstimeneededtoreach5%ofinfestedcellswithoutagents(purely"biological"spread).

    4.3 Ourresultshighlighttheimportanceofinsectpestpassivetransportationbyhumanswhichallowsinvasivepeststomakelong-distancedispersaljumps.Eventhoughseveralauthorshaveacknowledgedthesignificanceofthistypeofdispersalforspeciesspread,(e.g.,Bossenbroek2001;Suarez2001)itsinclusioninmodelsstillposesdifficultiesformodelers(Pitt2009).Mostdispersalmodelsarebasedonempiricallymeasuredratesofpestdispersal,whileinthecaseofLDDeventsitwouldbemoreusefultomodelhumanbehaviorstobetterunderstandpestinvasiondynamics.Inthiscontext,ABMofferaninterestingyetpoorlyusedmethod,tobeappliedtothevastfieldofbiologicalinvasions(seeLuo2010andVinatier2009foroneoftherarestudyonexoticspeciesusingABM,althoughintheircase,agentsaretheinvasivespecies).ResultsofourABMsimulationsfurtherrevealednonlinearprocessesbetweenfarmers'behavior(e.g.movement)anddensitiesandpestspread,asalreadyshownfordiseaseexpansionbyepidemiologicmodels(e.g.Gong2007).Thissuggeststhatagoodunderstandingofsocialnetworkstructureswouldbeakeysteptobetterpredictpestinvasionspeedinhumandominatedlandscapes.Inthiscontext,ecologistswouldgaininfollowingthepathtracedbyepidemiologistswithABMtobetterunderstandthedynamicsofinvasivepests.

    http://jasss.soc.surrey.ac.uk/14/3/7.html 3 08/10/2015

    http://www.openabm.org/model/2278/version/2/view

  • Figure4.FrequencyofvisitsofinfestedagentsforeachvillageandmapoftheSimiatugvalleywithagents'movementsandvillageslocation.

    Effectofagent'sheterogeneityinpestcontrolknowledge

    4.4 WethenexploredwithourABMhowagents'pestcontrolknowledge(rankedfrom0to100)wouldimpactpestpropagationdynamics.Aspestcontrolknowledgewasusuallyvariableamongfarmers(Dangles2010),wewereinterestedinexaminingtheinfluenceofheterogeneouslevelsamongagentsonpestspreaddynamics.Toachievethisgoal,wetested7levelsofheterogeneity(standarddeviation=0,5,10,15,20,25,30)around10meanvaluesofpestcontrolknowledge(mean=0to100).Foreachsimulation,agents'pestcontrolknowledgelevelswererandomlychosenfromaNormaldistribution,N(mean,standarddeviation).

    4.5 Oursimulationsrevealedthatagents'pestcontrolknowledgehadasignificanteffectonpestinvasiondynamics(Figure5andanimationinAppendix2).Inallsimulations,loweragents'pestcontrolknowledgeledtohigherinvasionspeed,almosttwicefasterthanintrinsicpestdispersionspreadforhighestinfectivityvalues.Agents'movementhadaworseningeffect,withfasterinvasionoccurringforhigheragent'smobility.Agents'heterogeneityinpestcontrolknowledgehadaweakeffectonpestdynamics,especiallyforhighagents'mobility(6and4).However,heterogeneityinknowledgedidintroducesomesochasticityininvasiondynamicswhenagentsseldommoved.

    http://jasss.soc.surrey.ac.uk/14/3/7.html 4 08/10/2015

  • Figure5.Influenceofagents'pestcontrolknowledge(means)andheterogeneity(standarddeviation=0to30%)onpestinfestationdynamicsforthreefrequenciesofmovements(2,4,and6).

    http://jasss.soc.surrey.ac.uk/14/3/7.html 5 08/10/2015

  • Thedashedlinerepresentstimeneededtoreach5%ofinfestedcellswithoutagents(purely"biological"spread).

    4.6 Asreportedbyepidemiologistsfordiseasespread(e.g.,Newman2002),ourresultsshowedthatagents'pestcontrolknowledgehadanimportantimpactonthedynamicsofpestinvasionspread.Thissuggeststhatfarmers'pestcontrolknowledgewouldbeakey,yetpoorlystudied,variabletotakeintoaccountformodelingpestinvasionsinagriculturallandscapes.Lessexpectedly,wefoundthatheterogeneityofknowledgeamongagentshadarelativelyweakeffectonpestdynamics,especiallyforhighmobilitylevelsofagents.Thiscontrastwithepidemiologicalmodelswhichhavegenerallyshownthatheterogeneouspopulationsenhancethespreadofinfectionsaswellasmakethemhardertoeradicate(forareviewseeAnderson1992).Onepotentialexplanationisthatthelimitednumberofvillagesusedinourstudyandtheabsenceofspatialclustersfavorinfestationmixtureamongagentsandrapidlysmoothupitsimpactoninvasionspreaddynamics.However,ourresultsshowedthatwhenallagentsare"healthy"(pestcontrolknowledge=100),anyadditionofagentswithlowerlevelsofknowledgewillconsiderablyspeeduppestdynamics(especiallyathighlevelsofmovements),therebyconfirmingpredictionsofdiseasespreadtheory.

    Teachingwiththemodel

    5.1 Inasecondstep,weusedourABMasaneducationaltooltoteachfarmersaboutpotentialinvasionrisksresultingfromindividualbehaviors.TeachingactivitieswererealizedinFebruary2009attheAgricultureandTechnologyCollegeoftheSimiatugvalleyinthecentralEcuadorianAndes.Thisparishiscomprisedofroughly45kichwacommunitieslivingbetween2800mand4250mofaltitude,thatsharesimilarcharacteristicsintermsofsocialorganization,dateofestablishment,andagriculturalpractices.Currently,about25,000people,mainlysubsistenceandmarket-orientedfarmers,liveintheSimiatugparish.Themainagriculturalproductsarepasture,cereals(barley),legumes(favabean)andpotatoesaswellascattleandsheep(seemoredetailsinDangles2010).Althoughtheremotenessofthevalleyprotectsitagainstmothinvasion,increasingcommercialexchangesfromandtoSimiatugarecurrentlyincreasingtheriskofmothintroduction.Localfarmerswerethereforeinterestedinlearningaboutpotentialrisksassociatedwiththepestandhowtocontroltheirspreadinthevalley.

    Modelintroductiontothefarmers

    5.2 Introductionofthemodelsandvariablerepresentationtothefarmershasbeenalongprocessthatbeganwiththeeducationalprogramsetupin2007(Dangles2010,seethetimelineofthegroundworkinFigure6).

    Figure6.Timelineofthegroundworkpriortotheteachingsession

    5.3 Forthisprogram,weheldanegotiationsessiontoinsurethatteachingwasdrivenbyfarmers'interestsfollowedbyatrainingsessiononintegratedpestmanagementandonparticipatorymonitoringofpotatomothinthevalley.Afterthedataanalysissession,farmershadacquiredaratherclearconnectionbetweenpestabundanceandairtemperature,villagesizeandremoteness(seeDangles2010,foradetaileddescriptionofthesessionswithfarmers).Thisinitialprocessallowedustointroduceourmodelinasecondstepandtouseitasateachingtool.Farmerswereyoung(17to25yearsold)andshowedinnateinterestin"playing"withthecomputersandseeingsimulations(anInternetcaféjustopenedinSimiatugtheyearbeforestartingtheABMteachingsession).Themodelwaspresentedasawaytobetterunderstandaresultthatfarmersthemselveshadfound:theimportanceofLDDinmothdispersion(seeDangles2010).

    Modelparameterization

    5.4 Forteachingpurposes,farmerswereseparatedintotwo,"blue"and"red"teams;havingtwoteamsthatcompeteforminimizationofpestpresenceinthevalleystimulatedenthusiasmamongfarmers.Eachmemberoftheteamwasaskedtofillaquestionnaireincluding20items,10onbasicissues(biologyandecologyofthepest)and10onappliedissues(pestmanagement).Afacilitatorhelpedtheplayerstofillinthesequestionnaires.Basedonfilledquestionnaires,webuilta"pestcontrolknowledgeindex"foreachfarmer,whichcorrespondedtothepercentofquestionsansweredcorrectly.Farmerswerealsoaskedtoanswerquestionsabouttheirtravelbehaviorinthevalley(destinationandfrequencies).Villages'locationsandpopulationsizesweredefinedbyfarmersusingmaps(seefigure7).Environmentaldatasuchastemperatureorprecipitationwereupdatedusingrealvaluesintheconsideredarea(DanglesandCarpio,unpublisheddataprovidedwiththemodelintheopenabm.orgwebsite).

    Figure7.Teachingwithanagent-basedmodelinanagriculturalvalleyofEcuador

    Playingandlearningwiththeagent-basedmodel

    5.5 Onceinputdatawerecollectedandsetup(Table1),weranthemodelandregisteredthespreadofthepestthroughoutthevalley.Inallsimulations,agentsarerandomlylocatedatthebeginningoftherun.

    Table1:Parametersandsimulationresultsofthegamingsessionwithfarmers

    Parameters Parametersvaluesusedforthegaming Parametersvaluesattheendofthegaming

    http://jasss.soc.surrey.ac.uk/14/3/7.html 6 08/10/2015

    http://www.openabm.org

  • session sessionParameterizationNumberoffarmers(agents) 10 10Numberofagents'movementspertimeframe(pestgenerations)

    6 3

    Pestcontrolknowledge(followingaNormaldistribution~N(mean,sd))

    <n(0.4;0.1) <n(0.8;0.1)

    ResultsTimeneededforcompleteinfestation(pestgeneration) 39 45

    5.6 Ourmodeloutputcoulddistinguishbetween1)cellsinfestedduetoLDDeventsmadebytheblueteam,2)cellsinfestedbyredteamLDDand3)cellsinfestedbyinsect'sowndispersalcapabilities(seehttp://www.openabm.org;see"pestdispersion"byinnomip).EachteamwasthereforeabletovisualizeitsrelativeimpactonmothdispersionthroughouttheSimiatugvalleythroughthemaincolorofaspatialinterfacerepresentingthelandscape.Theywerefurtherinvitedto"play"withthesimulationinterfacebychangingLDDandthepestcontrolknowledgevaluesandtoseetheconsequencesintermsofmothspreadthroughouttheirvalley.Asynthesisoftheprocessesinvolvedintheteachingsession(includingrequiredtime)isgiveninTable2.

    Table2:Processesandtimerequiredforteachingandlearning

    Gamingsessionprocess Mainactivities TimespentIntroduction Overallpresentationofallactors 1hourComputerpresentation Presentationofcomputersimulationutility 30minutesModeladoption:buildingcommunitymap(villagesandpopulations)

    Presentationofthespatialrepresentationofthemodel 30minutes

    Modelinputvariables(interviews) Modelparameterization 1hourModeloutputvariables Runningthemodelwiththetwoteams,resultpresentationanddiscussion 1hourPlayingsession1:farmermovementsandpestinfestationspread

    Farmerteamsmodifyagents'movementsandvisualizeconsequencesonpestspreading

    30minutes

    Playingsession2:farmerknowledgeandpestinfestationspread

    Farmerteamsmodifyagents'pestcontrolknowledgeandvisualizeconsequencesonpestspreading

    30minutes

    Conclusionandevaluation Generaldiscussionwithfarmersandinterviews 1hour

    Modeladoption

    5.7 Becauseparticipantswereyoungfarmerswehadnoproblemrelatedtopotentialtechnical,cultural,knowledgeorattitudebarriers.Oneofthemaindifficultiesrelatedtomodeladoptionturnedouttobethespatialrepresentationoffarmer'svillages,whichwaspartiallysolvedbybuildingwiththemadigitalmapoftheirvalley.Anotherdifficultywasthatfarmershadahardtimeinassociatinggridcellcolorswiththepresenceofmoths.Unfortunately,wecouldnotfixthisproblemduringtheteachingsessionandthiswasprobablyoneofthemaindrawbacksofourapproach.However,sincethisdate,weimprovedthesimulationtointegratethedrawingofmothsspreadingonthecellularautomatagridinasimplemodelaimedatimprovingitsadoption(seehttp://www.openabm.orgsee"pestdispersionversion1"byinnomip).

    Benefitsofmodel-basedteachingtofarmers

    5.8 Attheendofthesessionwere-evaluatedparticipantpestcontrolknowledgeonbasicandpracticalmothcontrolissueswiththesame20-itemindicatorsquestionnaire(seeabove).Themeanpestcontrolknowledge(percentofquestionsansweredcorrectly)increasedfrom40±10(basic)and40±20(practical)atthebeginningofthesessionto80±10(basic),and80±10(practical)attheendofthesession,suggestingthatfarmerswouldbeabletobettermanagepestrisksaftertheteachingsessions.Asawhole,oureducationalprogram(2007-2009)indeedenhancedlocalawarenessabouttheneedtocontrolthepestsbeforetheybecametoonumerousandcoveredthewholelandscape.ThemainspecificmanagementdecisiontakenbyfarmerswasapromisetosystematicallycheckformothinfestationwhenbuyingpotatotubersintheSimiatugmarketbeforetransportationtotheircommunity(seealsoDangles2010).Althoughfarmersvouchedformodel'sattractivenessandusefulnesstolearnaboutpestproblems,itremainedhardtoquantifyknowledgeenhancementspecificallyduetotheABMasopposedtothatduetotherestoftheeducationalparticipatoryprogram.However,webelievethattheuseofABMandcomputerssignificantlycomplementedoureducationalprogramonpestmanagementinthevalleyasithadaclearconsequenceinenhancingyoungfarmers'interestinagriculturalissues.TheCollegeofSimiatugindeedsufferedfromanincreasinglackofinterestfromstudentsofagriculturedisciplinesinfavoroftechnical/computationalones.OurprogramshowedyoungfarmersthatbothdisciplinescouldbemergedandthattheycouldfindthroughtheInternet(http://www.innomip.ird.fr)computationaltoolstoincreasetheirknowledgeonpestmanagement.OurstudyisapreliminaryapproachintheuseofABMforpestmanagementissues.Furthereffortsshouldbedonetooptimizemodeladoptionprocesssuchastheearlyidentificationofgapsinfarmers'knowledge(Wilson2009),theconsiderationofpeak-laborperiods(White2005)orthesocialnetworkoflearners(Boahene1999).

    5.9 AnotherachievementofABMwasthat,byprovidingfarmerswithevidencethatpestspropagatedthroughtheircommunitynotastheresultofisolateddecisionsbyindividualsbutratherastheresultofrepeatedinteractionsbetweenmultipleindividualsovertime,ourABMpointedatkeypsychologicalandsocialissues,highlyrelevantforefficientmanagementofinvasivepests(Peshin2008).ABMmaythereforebeapowerfultooltoadvancetheapplicationofsocialpsychologytheorybystakeholdersinruralcommunities( Smith2007)andtochangeindividualattitudes(Jacobson2006).Thissuggeststhatnewapproachesinpestmanagementextensionpracticesshouldincludetopicssuchasgroupdecisionmaking,intergrouprelation,commitment,andpersuasionwhichdealdirectlywithhowotherfarmersinfluenceone'sthoughtsandactions(Mason2007;Urbig2008).Byexamininggroup-andpopulation-levelconsequencesoninvasionprocess,agent-basedmodelingmaythereforerevealsasapowerfulpedagogicalapproachtochangebehaviorsacrosslargepopulations,alonglastingissueinpestmanagementoutreachprogramsworldwide(Feder2004).

    Conclusion5.10 Weshowedinthisstudythatagent-basedmodelingmaybeapowerfultooltosimulateinvasivepestspreadinhumandominatedlandscapes.Oursimulationsfurtherrevealedthatboth

    farmers'movementsandpestcontrolknowledgecouldsignificantlyimpactinvasionspeedandshouldbeconsideredaskeyvariablestobetterpredictpestinvasiondynamicsinagriculturallandscapes.RegardingtheuseofABMaseducationaltools,wefoundthatnewtechnologies(computers)increasedtheinterestofyoungfarmersinlearningabouthowtobetterfacepestproblems.AlthoughwewouldneedtodesignproperstudiestobetterunderstandthespecificwaysABMfosterslearningprocesses,theintroductionofABMintolearningenvironmentslocatedinremoteplacesmaypromisetoimproveeducationoffarmers,especiallyyoungones.Forexample,ABMcanbeintegratedintointeractivewebsitesorburnedonaCDandbeavailabletofarmercommunitiesinwhichtechnologyaccessincreasesrapidlythankstogovernmentalinitiatives.Inviewofthegrowingthreatmadebyemergentinsectpestsworldwide,especiallyinremoteandpoorlocalities,furthereffortstoincludecost-efficientABMintointegratedpestmanagementprogramsmayrepresentapromisinglineofresearchandapplications.

    Appendix1:DescriptionofthecellularautomatonusedtosimulatethepestusingtheODDprotocol

    A1.1 ThemodeldescriptionfollowstheODDprotocolfordescribingindividual-andagent-basedmodels(Polhilletal.2008;Grimmetal.2006;Grimm&Railsback2005b)andcellularautomaton(Grimmetal.2006,appendixAp136-147).Notethatinthecaseofcellularautomaton,someofthedesignconceptsoftheODDprotocoldonotapply.ThemodelwasdevelopedusingCORMAS(CIRAD,France,http://cormas.cirad.fr)basedontheVisualWorksprogrammingenvironment(CincomSmalltalk,http://www.cincomsmalltalk.com).

    OVERVIEW

    Purpose

    A2.1 TheSimPolillamodelwasdevelopedtodescribetheinvasionanddiffusionofthepotatotubermoths(PTM)(Teciasolanivora,PhthorimaeaoperculellaandSymmetrischematangolias,Gelechiidae,Lepidoptera),tinymothsthatinvadedtheagriculturallandscapeoftheNorthAndeanregioninthelastdecades.Thelarvaeofthesemothsareseriouspestsofpotatoes,oneofthemainfoodcropsoftheregion.Asecondobjectiveofthemodelwastomakepredictionandgeneratemapsofinvasionriskforlocalfarmercommunities.ThemodelwasdevelopedandvalidatedinapilotregionofcentralEcuadorbutwasbuilttobeapplicabletoamuchwidergeographicrangeinNorthAndes.

    http://jasss.soc.surrey.ac.uk/14/3/7.html 7 08/10/2015

    http://www.openabm.orghttp://www.innomip.ird.frhttp://cormas.cirad.frhttp://www.cincomsmalltalk.com/main/

  • Statevariablesandscales

    A2.2 ThemodelisbasedonbiologicalandecologicalrulesderivedfromfieldandlaboratoryexperimentaldataforthethreePTMspecies(Dangles&Carpio2008;Danglesetal.2008;Roux&Baumgärtner1997).TheSimiatugvalley,usedasapilotregiontobuildthemodel,islocatedintheprovinceofBolívar,inthecentralhighlandsofEcuador.Wefocusedonastudyareaof40×

    40kmrepresentedbyagridof6,400cellswithacellsizeof0.25km2.Eachcelliischaracterizedbyitsqualityofhabitatnii.e.thequantityoffoodresourcesavailableforthemothlarvae.Weconsiderthatniwasfixedto0or1dependingonthelanduse(i.e.cropsorotherusessuchaswoodsorhighlands).Eachcellisalsocharacterizedbyarangeoftemperaturevalues(meanTmoyi,maximumTmaxiandminimumTminiin°C),amonthlyamountofprecipitationPi;j(inmm),andameanelevationαi(m.a.s.l.).

    Table1:FullsetofstatevariablesinSimPolilla

    Nameofvariable Units

    Habitat Qualityofhabitatofcelli ni

    Temperature Averagemeantemperatureover30yearspercelli Tmoyi ºC

    Averageminimumtemperatureover30yearspercelli Tmini ºC

    Averagemaximumtemperatureover30yearspercelli Tmaxi ºC

    Precipitation Averageprecipitationamountover30yearspercelliandpermonthj Pi;j mm

    Elevation Elevationonthestudyzonepercelli αi m

    PTMspecies Levelofinfestationofjuvenilesdensityofspeciekpercelli(k=1,2,3;T.solanivora,P.operculella,S.tangolias,respectively)

    Jk;i Number

    Levelofinfestationofadultsdensityofspeciekpercelli(k=1,2,3;T.solanivora,P.operculella,S.tangolias,respectively)

    Ak;i Number

    Levelofinfestationofgravidfemalesdensityofspeciekpercelli(k=1,2,3;T.solanivora,P.operculella,S.tangolias,respectively)

    Gk;i Number

    Distancecoveredbyamoth Distancecoveredbyamoth d Meters

    A2.3 Thehigher-levelentitiesarebasedonthenumberofgravidfemalesofthethreePTMspecies.EachtimesteprepresentsonePTMgenerationbasedonT.solanivoralifecycleduration(i.e.about3monthsat15°C).AnadjustmentismadeonthetwootherspeciessothateachstepcorrespondstoonePTMgeneration.The500×500mscaleforcellswaschosenforfittingthelevelofprecisionwehaveconcerningPTMdispersion,basedonavailableknowledgeonmothdispersion(Cameronetal.2002b).Temperatures,precipitationsandelevationshavea1per1kmresolution.Insideasquareoffourcells,theseparametershavethesamevalue.

    Processoverviewandscheduling

    A2.4 Inthissection,webrieflydescribetheprocessesandschedulingofourmodel.Detailsaregiveninthesubmodelssection.Eachprocessispresentedaccordingtoitssequenceproceedingandintheorderatwhichstatevariablesareupdated.EachtimestepisoneT.solanivorageneration.

    Table2:ProcessesofSimPolillamodel

    Process SubmodelsStatevariablesupdate StatevariablesupdateStochastictemperature StochastictemperatureStochasticrainfall StochasticrainfallPTMmortality Crudemortality

    TemperaturedependentmortalityPrecipitationdependentmortality

    PTMdispersal NeighbourhooddispersalPTMreproduction Matingrate

    SexratioTemperaturedependentfecundity

    Process:statevariablesupdate

    A2.5 Eachstatevariablecorrespondingtorealdata(AlmanaqueElectrónicodeEcuadorbyAlianzaJatunSacha-CDC,digitisedbyDINAREN,2003;Hijmansetal.2005),isimportedfromindividualfiles(oneperlayer),sothatSimPolillamaybeeasilyadaptedtootherregions.

    Process:stochastictemperature

    A2.6 Meantemperatureistransformedaccordingtoastochasticfactor(Box&Muller1958).

    Process:stochasticrainfall

    A2.7 Twoconsecutivemonthlyprecipitationsarerandomlychosenduringagivenstep.

    Process:PTMmortality

    A2.8 PTMpopulationisupdatedaccordingtocrude,temperatureandprecipitationmortality.

    Process:PTMdispersal

    http://jasss.soc.surrey.ac.uk/14/3/7.html 8 08/10/2015

  • A2.9 PTMdispersethroughtheterritoryfromonecelltoanotherbydiffusion.

    Process:PTMreproduction

    A2.10 PTMpopulationsareupdatedaccordingtobiologicalrules(matingrate,sexratio,fecundity).AcorrectionismadeoverfitnessonthetwootherPTMspeciestoadjusttimestepbasedonT.solanivoralifecycle.

    DESIGNCONCEPTS

    A3.1 InSimpolillamodel,moths'implicitobjectiveistoinfesttheconsideredlandscapebymaximizingdispersalspeed.Emergentkeyresultsarelevelofinfestationineachcellandinfestationspeed.Interspecificinteractionsarenottakenintoaccountinthismodelandastochasticfactorovertemperatureandrainfallsareincludedmimicactualclimaticvariation.

    DETAILS

    Initializationandinput

    A4.1 TheenvironmentisbasedontheSimiatugagriculturalregion(Bolivar,centralpartofEcuadorianAndes),withtemperature,precipitationandelevationfromavailabledatawitha1km2

    resolution(Hijmansetal.2005).QualityofhabitatisbasedonGISinformationaboutlandusewitha0.25km2resolution(AlmanaqueElectrónicodeEcuadorbyAlianzaJatunSacha-CDC,digitisedbyDINAREN,2003).Thecellularautomatonisa4-connexsquareshapedgrid,withclosedboundariesasweareconsideringanexistinggeographicallocation.Atthebeginningofeachsimulation,PTMinoculumsareplacedintheSimiatugvillageandspreadisobservedandrecordedforeachspecies.

    Submodels

    A4.2 Inthissectionwedescribethesubmodelsgivenintable2.

    ClimaticdriverofPTMdynamic

    Temperature

    A4.3 Inordertofeedthemodelwithrealclimatevariables,wechosetointroduceastochasticfactorTstochasticinthemodel(seealsoSikderetal.2006)thatallowedustoobtainbymultiplicationastochastictemperatureincelliTStoi .

    A4.4 WeusethepolarformoftheBox-Mullertransformation(Box&Muller1958),togenerateaGaussianrandomnumber,basedonclimaticdatafromtheregion(seeDanglesetal.2008,appendixA).RandomnumberusedisbasedonrandomprocedureinVisualWoks(VisualWorks®NonCommercial,7.5ofApril16,2007.Copyright©1999-2007CincomSystems,Inc.AllRightsReserved.).

    (1)

    Thestochastictemperaturereplacesaveragetemperatureinallequationsbellow.

    Precipitation

    A4.5 Asfortemperature,wechoosetointroduceastochasticfactortoobtainastochasticprecipitationPStoi.Usingarandomnumberjfrom1to12(VisualWorks®NonCommercial,7.5ofApril16,2007.Copyright©1999-2007CincomSystems,Inc.AllRightsReserved.),wetaketheaverageofthemonthlyamountofprecipitationPi;jcorrespondingtotherandomnumberandthefollowing.

    (2)

    PTMlifedynamics

    A4.6 Dataondevelopmentandsurvivalforimmaturestages(eggs,larva,andpupa)andonfecundityforadultswereacquiredfromtwosources.FirstweusedpublisheddatafromlaboratoryexperimentsperformedintheAndeanregion(Notzetal1995;Danglesetal.2008).Secondweuseddataobtainedwithinthelast8yearsattheEntomologyLaboratoryatthePUCE(Pollet,Barragan&Padilla,unpublisheddata).Forthesetwosources,onlydataacquiredunderconstanttemperatures(±2°C)wereconsidered.Inallstudies,relativehumidityrangedfrom60to90%,valuesaboveanyphysiologicalstress.

    Crudemortality

    A4.7 Overallforceofmortalityamongapopulationisthesumofcrudecause-specificforces.Hereweconsiderinnatemortality(λi),dispersalrelatedmortality(λd)andpredation(λe)(seeRoux1993;Rouxetal.1997)forP.operculella.

    http://jasss.soc.surrey.ac.uk/14/3/7.html 9 08/10/2015

  • (3)

    A4.8 Innatemortalityisnottakenintoaccountusingequation(3),becauseatemperaturedependentparameterfitsbettertorealitythanλi(seebellow).

    A4.9 WearealsoconsideringseparatelysurvivalratewithpredationSPredationbybirds,spiders,antsandotherspredatorsfortheadultstagefollowingequation(4)(Tanhuanpääetal.2003).Levelofpredation_iscalesfrom0to10(ie10thelower,0thehigherlevel),inordertosimulatedifferentscenarios,fromtheorytoreality.

    (4)

    Temperaturedependentmortality

    A4.10 Temperatureisthemostbasiccontrollerinpoikilothermicorganisms(Zaslavskietal.1988).SurvivalrateunderlaboratoriesconditionshasbeenstudiedforthethreePTMspecies,usingatemperaturedependentkineticmodel.

    A4.11 WeusedthefollowingequationtocalculatethesurvivalrateSDforeachstageateachtemperatureforwhichdatawereavailable:

    (5)

    withSTthetotalsurvivalatthegivenstage,expressedasaproportion,andDDthedaystodevelopment.FollowingRoux(1993),weappliedtheSharpeandDeMichelmodel(eq.5)tothesurvival-responsetotemperatureasinequation6:

    (6)

    witha,b,c,d,e,andftheequationparameterstobeestimated.

    Table3:Parametervaluesofthekineticmodel(equation7)describingthestagespecificsurvivalrateSD(T)responseofthethreeinvasivePTMspecies(T.solanivora,P.operculella,andS.tangolias)toconstanttemperatures.NotethattemperatureisgiveninKelvindegrees.

    Species Instar a b c d e fS.tangolias Egg 0,834 10,94 -234000 282,4 616600 304,1

    Larva 0,694 -236,3 -420300 283.1 1551000 305,6Pupa 0,882 39,93 -992700 282,9 1110000 304,7

    P.operculella Egg 0,917 50 -200000 283.3 400000 310.1Larva 0,950 -150 -400000 284.4 900000 310.0Pupa 0,960 50 -800000 283.1 700000 312.2

    T.solanivora Egg 0,822 -758,5 -212100 281,9 405200 303,8Larva 0,758 -180,2 -475700 282,7 1298000 301,5Pupa 0,900 -73,72 -1263000 286,5 1095000 306,3

    A4.12 Fortemperatureshigherthan13°C,P.operculellaimmaturestagesshowedhighersurvivalrates(0.9-1.0)andtolerancetohightemperatures(upto37°C)thanthetwootherspecies.BothT.solanivoraandS.tangoliashadaslightlybettertolerancetolowtemperaturesthanP.operculella.

    Precipitationdependentmortality

    A4.13 Precipitationsplayaminorbutsignificantroleinmothsurvivalrate(Wakisakaetal.1989;Koborietal.2003).BecauseeachinsectstageisconcernedandbecausenostudieshavebeenconducedonPTM,weuseacorrectingfactoronsurvivalrate.ThisrateisdependentontheamountofprecipitationsinmmovertwomonthsrandomlychosenontheGISdatabase(SICAGRO).Thecorrectingfactorisadjustedfromhypotheticalrelationshipbaseduponavailableknowledge.

    Neighborhooddispersal

    A4.14 WeconsiderthatthefractionofPTMleavingacellisdependentonadultpopulationdensityandqualityofhabitatniwithinthecell(seealsoBendoretal.2006;BendorandMetcalf2006b;Eizaguirreetal.2004).PTMdonothaveaperceptionoftheenvironmentsituatedinaneighborhoodcell.AccordingtoBendoretal.,weassumethatemigrationrate(ye),followsans-shapedcurve,whichlevelsoutasitapproachesthemaximumdensity(carryingcapacity).DensityisafractionofK,carryingcapacity(0<density<K).

    (7)

    A4.15 WeassumedthatPTMcantravelupto200mawayfromtheiroriginduringageneration(larvaecanhardlymoveto1mandadults'lifetimeisveryshort).TheprobabilityofaPTMtocoveradefineddistance(yd)isadecreasingfunctionofemigrationrate.ThisfunctionmaycertainlyoverestimatePTMdispersalbutwepreferoverestimationthanbelowestimation(Cameronetal.2002a;2002b).

    (8)

    A4.16 Asourunitcellis0.25km2,eachmigratingPTM,dependingonitspositiononthesquare,andondistancecoveredd,hasaprobability(yeR)ofcrossingthecellboarder.WeassumethatPTMmoveinsidethecelleitherhorizontallyorvertically.ThisassumptionmaycertainlyoverestimatePTMdispersalbutwepreferoverestimationthanbelowestimation(Cameronetal.2002a;2002b).

    http://jasss.soc.surrey.ac.uk/14/3/7.html 10 08/10/2015

  • (9)

    Reproduction

    Matingrate

    A4.17 Matingrateiscorrelatedwithage,sexratioandweighofindividuals,butalsowithdistancefromoneindividualtoanother(Makeeetal.2001;Cameronetal.2004).Nospecificstudieshavebeenmadeonmatingrateundernaturalconditions,andlaboratorymeasurementsmayfrequentlyrepresentanoverestimationofthenaturalsituationbecauselaboratoryfemaleshavelittleopportunitytoavoidmating(Reinhardtetal.2007).However,asourcellsare500mlong,andthankstofieldobservation,weknowthatpheromonesworksatleastona200mradius,andweassumethatwithinacell,matingrateisequaltoonenomatterthedensity.

    Sexratio

    A4.18 AmongPTMpopulation,sexratiohasbeenstudiedandis1:1(Saour1999).Afterdispersal,theremainingadultpopulation,combinedwiththematingrateandthesexratiogivethegravidfemalespopulation.

    PTMfecundity

    A4.19 Althoughenergy-partitioningmodelshavebeendevelopedtoexplaintheshapeofinsectfecundityasafunctionofaging(Kindlmannetal.2001),wearenotawareofanymechanisticmodelsthatdescribesinsectfecundityasafunctionoftemperature.Severalprobabilisticnon-linearmodelstofitinsectfecundityacrosstemperaturehavebeenproposedintheliterature(Roux1993;Lactinetal.1995;KimandLee2003;Bonatoetal.2007),butnoneofthemgaveussignificantresultswithourdata(r<0.35,Fstat<2.01).Wethereforeusedweightedleastsquare(WLS)regressiontofindthebestmodelthatfitsourfecunditydataacrosstemperature.WLSregressionisparticularlyefficienttohandleregressionsituationsinwhichthedatapointsareofvaryingquality,i.e.thestandarddeviationoftherandomerrorsinthedatamaybenotconstantacrossalllevelsoftheexplanatoryvariables,whichcouldbethecase.Forthethreetubermothspecies,thebestfitwasobtainedwiththeWeibulldistributionfunction,whichhaslongbeenrecognizedasusefulfunctiontomodelinsectdevelopment(Wagneretal.1984).

    A4.20 TheeffectoftemperatureuponfecunditywaswelldescribedbytheWeibulldistributionfunctions(r2=0.75,0.83,and0.91forT.solanivora,S.tangoliasandP.operculella,respectively).ResultsshowedmarkeddifferencesamongPTMspecies,bothintermsoftotalnumbersofeggslaidperfemalesandoptimalfecunditytemperature:thehighestfecunditywasfoundinT.solanivora,withabout300eggs/femaleat19°C,followedbyS.tangolias(220eggs/femaleat15°C)andP.operculella(140eggsat23°C).

    Appendix2:Animations

    A5.1 Thefollowinganimationsillustratesimulationsinwhichblueandredfigurinesrepresentsagents,andblueandredlinksagents'movementsfromvillagetovillage.Thenumberinthetoprightcornercorrespondstothenumberoftimeframeandthebackgroundcolortothepestinfestation(black:nopestinfestation;green:pestinfestationduetopurelybiologicaldiffusion;redandblue:pestinfestationduetoaninfestedagentmovement).Attheendofeachanimatedsimulation,theareatotherightremainsuninfected.Thisareacorrespondstohigherelevationswherethepestcannotsurvive.

    FigureA-2.Animatedsimulationsshowingtheeffectofagents'movementsonthepestspreadwith2movementspertimeframeand6movementspertimeframe.Thepestinfestationisquickerwhenagentsmovemore.

    FigureA-3.Simulationsshowingtheeffectofagents'pestcontrolknowledgewithoutheterogeneityonthepestspreadwithameanpestcontrolknowledgeof0and100.Whenthepestcontrolknowledgeishigh,thepestcanonlydispersethroughdiffusion(i.e.veryslowly),comparedtoasimulationwhenpestcontrolknowledgeislow,wheretheagents'behaviorsleadtoafull

    infestationbylongdistancedispersaleventsfromvillagetovillage.

    http://jasss.soc.surrey.ac.uk/14/3/7.html 11 08/10/2015

  • FigureA-4.Animatedsimulationofthegamesession.ParametersarepresentedinTable1.Thesimulationrantoreachfullinfestationofthelandscapesuitableforthepest.Integratingrealdistributionofpestcontrolknowledge(Normaldistribution),weobservedthatalmostallthelandscapeisinfestedduetolongdistancedispersalevents.Itrevealedtheimportancetofocuson

    pestcontrolknowledgereinforcementtoreducetheincidenceofthepestatthelandscapelevel.

    Acknowledgements

    Wethanktwoanonymousreviewersfortheirhelpfulcommentsonapreviousversionofthiswork.WearegratefultoClaireNicklin,fromtheMcKnightFoundation,forthelinguisticrevisionofthemanuscript.WealsothankCarlosCarpioandMarioHererrafortheirtechnicalsupportandallfarmersinvolvedinthisprocess.ThisstudywaspartoftheresearchconductedwithintheprojectInnovativeApproachesforintegratedPestManagementinchangingAndes(C09-031)fundedbytheMcKnightFoundation.VCPreceivedthefinancialsupportoftheDirectionSoutienetFormationoftheIRDthroughaPh.D.grant(2009-2011).

    References

    ALTIZER,S,Dobson,A,Hosseini,Petal(2006).Seasonalityandthedynamicsofinfectiousdiseases.EcologyLetters:9:467-84.[doi:10.1111/j.1461-0248.2005.00879.x]

    ANDERSON,RMandMay,RM(1992).InfectiousdiseasesinhumansOxfordUniversityPress,Oxford.

    BAGNI,R,Berchi,RandCariello,P(2002).Acomparisonofsimulationmodelsappliedtoepidemics.JournalofArtificialSocietiesandSocialSimulation5(3)5http://jasss.soc.surrey.ac.uk/5/3/5.html.

    BAUER,AL,Beauchemin,CAAandPerelson,AS(2009).Agent-basedmodelingofhost-pathogensystems:Thesuccessesandchallenges.InformationSciences179:1379-1389.[doi:10.1016/j.ins.2008.11.012]

    BENDORT.K,MetcalfS.S.,FontenotL.E.,SangunettB.andHannonB.(2006)ModelingthespreadoftheEmeraldAshBorer.Ecologicalmodelling4328.[doi:10.1016/j.ecolmodel.2006.03.003]

    BENDORT.K.,MetcalfS.S.(2006)Thespatialdynamicsofinvasivespeciesspread.SystemDynamicsReview22(1)27-50.[doi:10.1002/sdr.328]

    BERGER,T.(2001).Agent-basedspatialmodelsappliedtoagriculture:asimulationtoolfortechnologydiffusion,resourceusechangesandpolicyanalysis.AgriculturalEconomics25245-260.[doi:10.1111/j.1574-0862.2001.tb00205.x]

    BOAHENE,K.andSnijders,T.A.B.(1999).AnIntegratedSocioeconomicAnalysisofInnovationAdoption:TheCaseofHybridCocoainGhana.JournalofPolicyModeling21,167-184.[doi:10.1016/S0161-8938(97)00070-7]

    BONABEAU,E,(2002).Agent-basedmodeling:methodsandtechniquesforsimulatinghumansystems,ProcNatlAcadSci99:7280-7.[doi:10.1073/pnas.082080899]

    BONATOO,LuretteA,VidalC,FarguesJ(2007)Modellingtemperature-dependantbionomicsofBemisiatabaci(Q-biotype).PhysiolEntomol32:50-55[doi:10.1111/j.1365-3032.2006.00540.x]

    BOSSENBROEK,JM,Kraft,CEandNekola,JC(2001).Predictionoflong-distancedispersalusinggravitymodels:Zebramusselinvasionofinlandlakes.EcologicalApplications11:1778-88.[doi:10.1890/1051-0761(2001)011[1778:POLDDU]2.0.CO;2]

    BOX,G.E.P,M.E.Muller(1958).Anoteonthegenerationofrandomnormaldeviates,AnnalsMath.Stat,V.29:610-1.[doi:10.1214/aoms/1177706645]

    CAMERONP.J.,Walker,G.P.;Penny,G.M.;Wigley,P.J(2002a).MovementofPotatoTuberworm(Lepidoptera:Gelechiidae)withinandBetweenCrops,andSomeComparisonswithDiamondbackMoth(Lepidoptera:Plutellidae).Environ.Entomol.31(1):65-75.[doi:10.1603/0046-225X-31.1.65]

    CAMERONP.J.,Walker,G.P.;Penny,G.M.;Wigley,P.J(2002b).Movementofpotatomothestimatedbymarkrecaptureexperiments.55thConferenceProceedingsofTheNewZealandPlantProtectionSocietyIncorporated.

    CAMERONP.J.,A.R.Wallace,V.V.Madhusudhan,P.J.Wigley,M.S.Qureshi&G.P.Walker,(2004).Matingfrequencyindispersingpotatotubermoth,Phthorimaeaoperculella,anditsinfluenceonthedesignofrefugiatomanageresistanceinBttransgeniccrops.EntomologiaExperimentalisetApplicata,115(2)323-32.[doi:10.1111/j.1570-7458.2005.00256.x]

    CRESPO-PEREZ,V.,Rebaudo,F.,Silvain,J.F.,andDangles,O.(submitted).Modelinginvasivespeciesspreadincomplexlandscapes:thecaseofpotatomothinEcuador.SubmittedtoLandscapeEcology.[doi:10.1007/s10980-011-9649-4]

    DANGLES,O.&Carpio,F.C.,(2008).Cuandoloscientíficosylascomunidadesandinasunensusesfuerzosparalucharencontradeunaplagainvasora.NuestraCiencia10:23-25

    DANGLES,O.,Carpio,C.,Barragan,A.R.,Zeddam,J.L.andSilvain,J.F.(2008).TemperatureasakeydriverofecologicalsortingamonginvasivepestspeciesinthetropicalAndes.EcologicalApplications18:1795-1809.[doi:10.1890/07-1638.1]

    DANGLES,O.,Carpio,F.C.,Villares,M.,Yumisaca,F.,Liger,B.,Rebaudo,F.andSilvain,J.F.(2010).Community-basedparticipatoryresearchhelpsfarmersandscientiststomanageinvasivepestsintheEcuadorianAndes.Ambio:AJournaloftheHumanEnvironment,39:325-335.

    EIZAGUIRREM,LópezC.andAlbajesR.(2004).DispersalcapacityintheMediterraneancornborer,Sesamianonagrioides.EntomologiaExperimentalisetApplicata113:25-34.[doi:10.1111/j.0013-8703.2004.00201.x]

    EPANCHIN-NIELL,R.S.,Hufford,M.B.,Aslan,C.E.,Sexton,J.P.,Port,J.D.andWaring,T.M.(2010).Controllinginvasivespeciesincomplexsociallandscapes.FrontEcolEnviron8:210-216.[doi:10.1890/090029]

    EUBANK,S.,Guclu,H.,Kumar,V.S.A.,Marathe,M.V.,Srinivasan,A.,Toroczkai,Z.andWang,N.(2004).Modellingdiseaseoutbreaksinrealisticurbansocialnetworks.Nature429:180-184.[doi:10.1038/nature02541]

    FEDER,G.,Murgai,R.,andQuizon,J.(2004).Theacquisitionanddiffusionofknowledge:Thecaseofpestmanagementtraininginfarmerfieldschools,Indonesia.JournalofAgriculturalEconomics55:217-239.

    GONG,X.andRenbin,X.(2007).ResearchonMulti-AgentSimulationofEpidemicNewsSpreadCharacteristics.JournalofArtificialSocietiesandSocialSimulation10(3)1

    http://jasss.soc.surrey.ac.uk/14/3/7.html 12 08/10/2015

    http://dx.doi.org/10.1111/j.1461-0248.2005.00879.xhttp://jasss.soc.surrey.ac.uk/5/3/5.htmlhttp://dx.doi.org/10.1016/j.ins.2008.11.012http://dx.doi.org/10.1016/j.ecolmodel.2006.03.003http://dx.doi.org/10.1002/sdr.328http://dx.doi.org/10.1111/j.1574-0862.2001.tb00205.xhttp://dx.doi.org/10.1016/S0161-8938(97)00070-7http://dx.doi.org/10.1073/pnas.082080899http://dx.doi.org/10.1111/j.1365-3032.2006.00540.xhttp://dx.doi.org/10.1890/1051-0761(2001)011[1778:POLDDU]2.0.CO;2http://dx.doi.org/10.1214/aoms/1177706645http://dx.doi.org/10.1603/0046-225X-31.1.65http://dx.doi.org/10.1111/j.1570-7458.2005.00256.xhttp://dx.doi.org/10.1007/s10980-011-9649-4http://dx.doi.org/10.1890/07-1638.1http://dx.doi.org/10.1111/j.0013-8703.2004.00201.xhttp://dx.doi.org/10.1890/090029http://dx.doi.org/10.1038/nature02541

  • http://jasss.soc.surrey.ac.uk/10/3/1.html.

    GRIMM,V.etal.(2005a).Pattern-orientedmodelingofagent-basedcomplexsystems:lessonsfromecology.Science310:987-991.[doi:10.1126/science.1116681]

    GRIMMV.andRailsbackS.F.(2005b).Individual-basedModelingandEcology.PrincetonUniversityPress,Princeton,NJ.[doi:10.1515/9781400850624]

    GRIMMV.,BergerU.,BastiansenF.,EliassenS.,GinotV.,GiskeJ.,Goss-CustardJ.,GrandT.,HeinzS.K.,HuseG.,HuthA.,JepsenJ.U.,JørgensenC.,MooijW.M.,MüllerB.,Pe'erG.,PiouC.,RailsbackS.F.,RobbinsA.M.,RobbinsM.M.,RossmanithE.,RügerN.,StrandE.,SouissiS.,StillmanR.A.,VabøR.,VisserU.andDeAngelisD.L.(2006).Astandardprotocolfordescribingindividual-basedandagent-basedmodels.EcologicalModelling198(1-2),115-126.[doi:10.1016/j.ecolmodel.2006.04.023]

    HIJMANSR.J.,CameronS.E.,ParraJ.L.,JonesP.G.andJarvisA.(2005).VeryHighResolutionInterpolatedClimateSurfacesForGlobalLandAreas,Int.J.Climatol.25:1965-78[doi:10.1002/joc.1276]

    ITAKURA,J,Kurosaki,M,Itakuraa,Y,Maekawab,S,Asahinaa,Y,Izumi,NandEnomotoN(2010).Reproducibilityandusabilityofchronicvirusinfectionmodelusingagent-basedsimulation;comparingwithamathematicalmodel.Biosystems99:70-78.[doi:10.1016/j.biosystems.2009.09.001]

    JACOBSON,SK,McDuff,MDDandMonroe,MC(2006).Conservationeducationandoutreachtechniques.NewYork:OxfordUniversityPress.[doi:10.1093/acprof:oso/9780198567714.001.0001]

    KIM,D-S.andJ-H.Lee.(2003).OvipositionmodelofoverwinteredadultTetranychusurticae(Acarina:Tetranychidae)andmitephenologyonthegroundcoverinappleorchards.Exp.Appl.Acarol.31:191-208.[doi:10.1023/B:APPA.0000010385.00864.28]

    KINDLMANN,P.,A.F.G.Dixon,andI.Dostálková.(2001).Roleofageing1091andtemperatureinshapingreactionnormsandfecundityfunctionsininsects.JournalofEvolutionaryBiology14:835-840.[doi:10.1046/j.1420-9101.2001.00323.x]

    KOBORIY,AmanoH,(2003).Effectofrainfallonapopulationofthediamondbackmoth,Plutellaxylostella(Lepidoptera:Plutellidae).Appl.Entomol.Zool.38(2):249-253.[doi:10.1303/aez.2003.249]

    LACTIN,D.J.,N.J.Holliday,D.L.Johnson,andR.Craigen.(1995).Improvedratemodeloftemperature-dependentdevelopmentbyarthropods. Environ.Entomol13:868-72.[doi:10.1093/ee/24.1.68]

    LIEBHOLD,AMandTobin,PC(2008).Populationecologyofinsectinvasionsandtheirmanagement.AnnualReviewofEntomology,53:387-408.[doi:10.1146/annurev.ento.52.110405.091401]

    LIU,Jetal.(2007).ComplexityofCoupledHumanandNaturalSystems.Science317:1513-1516.[doi:10.1126/science.1144004]

    LUO,M,OpaluchJ.J.(2010).Analyzetherisksofbiologicalinvasion:Anagentbasedsimulationmodelforintroducingnon-nativeoystersinChesapeakeBay,USA.StochEnvironResRiskAssess,25(3)377-388.[doi:10.1007/s00477-010-0375-2]

    MAKEEH.,etSaourG.(2001).FactorsInfluencingMatingSuccess,MatingFrequency,andFecundityinPhthorimaeaoperculella(Lepidoptera:Gelechiidae).Environ.Entomol.30(1):31-36.[doi:10.1603/0046-225X-30.1.31]

    MASON,WA,Conrey,FR,andSmith,ER(2007).Situatingsocialinfluenceprocesses:Dynamic,multidirectionalflowsofinfluencewithinsocialnetworks.PersonalityandSocialPsychologyReview,11(3),279-300.[doi:10.1177/1088868307301032]

    MORENO,Y,Pastor-Satorras,RandVespignaniA(2002).Epidemicoutbreaksincomplexheterogeneousnetworks,Eur.Phys.J.B26:521-529.[doi:10.1140/epjb/e20020122]

    NEWMAN,M.E.J.(2002).Spreadofepidemicdiseaseonnetworks,Phys.Rev.E66(1)016128-1:11.

    NOTZ,A.(1995)Influenciadelatemperaturasobrela1138biologíadeTeciasolanivora(Povolny)criadasentubérculosdepapaSolanumtuberosumL.BoletínEntomológicoVenezolano11:49-54.

    PAPAJORGJI,PJandPardalosPM(2009).AdvancesinModelingAgriculturalSystems,SpringerPublishingCompany,NY.

    PESHIN,RandDhawan,AK(2008).Integratedpestmanagement:disseminationandimpact,Springer

    PITT,JPW,Worner,SPandSuarez,AV(2009).PredictingArgentineantspreadovertheheterogeneouslandscapeusingaspatiallyexplicitstochasticmodel.EcologicalApplications19:1176-1186.[doi:10.1890/08-1777.1]

    POLHILLJ.G,ParkerD,BrownDandGrimmV(2008).UsingtheODDProtocolforDescribingThreeAgent-BasedSocialSimulationModelsofLand-UseChange.JournalofArtificialSocietiesandSocialSimulation11(2)3http://jasss.soc.surrey.ac.uk/11/2/3.html

    PUILLANDRE,N,Dupas,S,Dangles,O,Zeddam,JL,Capdevielle-Dulac,C,Barbin,K,Torres-Leguizamon,MandSilvain,JF(2008).Geneticbottleneckininvasivespecies:thepotatotubermothaddstothelist.BiologicalInvasions10:319-333.[doi:10.1007/s10530-007-9132-y]

    REINHARDTK.,KöhlerG.,WebbS.,andChildD.(2007).Fieldmatingrateoffemalemeadowgrasshoppers,Chorthippusparallelus,estimatedfromspermcounts.EcologicalEntomology,32(6)637-642.[doi:10.1111/j.1365-2311.2007.00923.x]

    RODRIGUE,JP,Comtois,CandSlack,B(2009).TheGeographyofTransportSystems.Routledge

    ROUXO.(1993).PopulationecologyofpotatoestubermothPhthorimaeaoperculella(Zeller)(Lepidoptera:Gelechiidae)anddesignofanintegratedpestmanagementprograminTunisia.ThesisETHNo10120,Zurich.

    ROUXO,BaumgärtnerJ,(1997).Evaluationofmortalityfactorsandriskanalysisforthedesignofanintegratedpestmanagementsystem.Ecologicalmodeling109:61-75.

    SAOURG.(1999).Susceptibilityofpotatoplantsgrownfromtubersirradiatedwithstimulationdosesofgammairradiationtopotatotubermoth,PhthorimaeaoperculellaZeller(Lep.,Gelechiidae).JournalofAppliedEntomology,23(3)159-164.[doi:10.1046/j.1439-0418.1999.00335.x]

    SIKDERI.U.Sikder,Mal-SarkarS,MalT.K.(2006).Knowledge-BasedRiskAssessmentUnderUncertaintyforSpeciesInvasion.RiskAnalysis26(1)239-252.[doi:10.1111/j.1539-6924.2006.00714.x]

    TANHUANPÄÄM,Ruohomaki,K.,Kaitaniemi,P.(2003)InfluenceofadultandeggpredationonthereproductivesuccessofEpirritaautumnata(Lepidoptera:Geometridae).Oikos102:263-272.[doi:10.1034/j.1600-0706.2003.12546.x]

    SMITH,ERandConrey,FR(2007).Agent-basedmodeling:Anewapproachfortheory-buildinginsocialpsychology.PersonalityandSocialPsychologyReview,11:87-104.[doi:10.1177/1088868306294789]

    SUAREZ,AV,Holway,DAandCase,TJ(2001).Patternsofspreadinbiologicalinvasionsdominatedbylong-distancejumpdispersal:InsightsfromArgentineants.ProcNatlAcadSci,98:1095-1100.[doi:10.1073/pnas.98.3.1095]

    TEWELDEMEDHIN,E,Marwala,TandMueller,C(2004).Agent-basedmodelling:acasestudyinHIVepidemic.Proceedingsofthe4thInternationalConferenceonHybridIntelligentSystems(HIS'04);Washington,DC,USA.IEEEComputerSociety.pp.154-159.[doi:10.1109/ICHIS.2004.16]

    URBIG,D,Lorenz,JandHerzberg,H(2008).OpinionDynamics:theEffectoftheNumberofPeersMetatOnce.JournalofArtificialSocietiesandSocialSimulation11(2)4http://jasss.soc.surrey.ac.uk/11/2/4.html.

    VINATIER,F,Tixier,P,LePage,C,Duyck,PFandLescourret,F(2009).COSMOS,aspatiallyexplicitmodeltosimulatetheepidemiologyofCosmopolitessordidusinbananafields.EcologicalModelling220:2244-2254.[doi:10.1016/j.ecolmodel.2009.06.023]

    WAGNERT.L.,WuH.,SharpeP.J.H.,SchoolfieldR.M.,CoulsonR.N.(1984).ModelingInsectDevelopmentRates:aLiteratureReviewandApplicationofaBiophysicalModel.Ann.Entomol.Soc.Amer.77:208-225.[doi:10.1093/aesa/77.2.208]

    WAKISAKAS.,TsukudaRandNakasujiF(1989).EffectsofNaturalEnemies,Rainfall,Temperature,HostPlantsonSurvivalandReproductionofDiamondbackMoth.OtsukaChemicalCo.,Ltd.,NarutoResearchCenter,NarutoTokushima772,JapanandLaboratoryofAppliedEntomology,FacultyofAgriculture,OkayamaUniversity,Tsushimanaka,Okayama700,Japan.

    http://jasss.soc.surrey.ac.uk/14/3/7.html 13 08/10/2015

    http://jasss.soc.surrey.ac.uk/10/3/1.htmlhttp://dx.doi.org/10.1126/science.1116681http://dx.doi.org/10.1515/9781400850624http://dx.doi.org/10.1016/j.ecolmodel.2006.04.023http://dx.doi.org/10.1002/joc.1276http://dx.doi.org/10.1016/j.biosystems.2009.09.001http://dx.doi.org/10.1093/acprof:oso/9780198567714.001.0001http://dx.doi.org/10.1023/B:APPA.0000010385.00864.28http://dx.doi.org/10.1046/j.1420-9101.2001.00323.xhttp://dx.doi.org/10.1303/aez.2003.249http://dx.doi.org/10.1093/ee/24.1.68http://dx.doi.org/10.1146/annurev.ento.52.110405.091401http://dx.doi.org/10.1126/science.1144004http://dx.doi.org/10.1007/s00477-010-0375-2http://dx.doi.org/10.1603/0046-225X-30.1.31http://dx.doi.org/10.1177/1088868307301032http://dx.doi.org/10.1140/epjb/e20020122http://dx.doi.org/10.1890/08-1777.1http://jasss.soc.surrey.ac.uk/11/2/3.htmlhttp://dx.doi.org/10.1007/s10530-007-9132-yhttp://dx.doi.org/10.1111/j.1365-2311.2007.00923.xhttp://dx.doi.org/10.1046/j.1439-0418.1999.00335.xhttp://dx.doi.org/10.1111/j.1539-6924.2006.00714.xhttp://dx.doi.org/10.1034/j.1600-0706.2003.12546.xhttp://dx.doi.org/10.1177/1088868306294789http://dx.doi.org/10.1073/pnas.98.3.1095http://dx.doi.org/10.1109/ICHIS.2004.16http://jasss.soc.surrey.ac.uk/11/2/4.htmlhttp://dx.doi.org/10.1016/j.ecolmodel.2009.06.023http://dx.doi.org/10.1093/aesa/77.2.208

  • WHITE,DS,Labarta,RAandLeguia,EJ(2005).Technologyadoptionbyresource-poorfarmers:consideringtheimplicationsofpeak-seasonlabourcosts.AgriculturalSystems85:183-201.[doi:10.1016/j.agsy.2004.07.018]

    WILENSKY,U(1999).NetLogo.http://ccl.northwestern.edu/netlogo.CenterforConnectedLearningandComputer-BasedModeling.NorthwesternUniversity,Evanston,IL.

    WILSON,RSandHooker,N(2009).Targetingthefarmerdecisionmakingprocess:Apathwaytoincreasedadoptionofintegratedweedmanagement.CropProtection28:756-764.[doi:10.1016/j.cropro.2009.05.013]

    XUAN,H,Xu,LandLi,L(2009).ACA-basedepidemicmodelforHIV/AIDStransmissionwithheterogeneity.AnnalsofOperationResearch168:81-99.[doi:10.1007/s10479-008-0369-3]

    YU,B,Wang,J,McGowan,M,Vaidyanathan,GandYounger,K(2010).Gryphon:AHybridAgent-BasedModelingandSimulationPlatformforInfectiousDiseases.AdvancesinSocialComputing6007/2010:199-207.

    ZASLAVSKIV.A.(1988)Insectdevelopment:photoperiodicandtemperaturecontrol.Springer,Berlin.

    http://jasss.soc.surrey.ac.uk/14/3/7.html 14 08/10/2015

    http://dx.doi.org/10.1016/j.agsy.2004.07.018http://ccl.northwestern.edu/netlogohttp://dx.doi.org/10.1016/j.cropro.2009.05.013http://dx.doi.org/10.1007/s10479-008-0369-3

    AbstractIntroductionStudy systemModelOverall structure of the modelModeling pest dynamics through cellular automataModeling human-related pest dispersion through the agent-based modelAgent process overview and schedulingDesign concepts

    Testing the effect of agents' movement and pest control knowledge on pest spread dynamicsEffect of agents' movementsEffect of agent's heterogeneity in pest control knowledge

    Teaching with the modelModel introduction to the farmersModel parameterizationPlaying and learning with the agent-based modelModel adoptionBenefits of model-based teaching to farmers

    ConclusionAppendix 1: Description of the cellular automaton used to simulate the pest using the ODD protocolOVERVIEWPurposeState variables and scalesProcess overview and schedulingProcess: state variables updateProcess: stochastic temperatureProcess: stochastic rainfallProcess: PTM mortalityProcess: PTM dispersalProcess: PTM reproduction

    DESIGN CONCEPTSDETAILSInitialization and inputSubmodelsClimatic driver of PTM dynamicTemperaturePrecipitation

    PTM life dynamicsCrude mortalityTemperature dependent mortalityPrecipitation dependent mortalityNeighborhood dispersalReproductionMating rateSex ratioPTM fecundity

    Appendix 2: AnimationsAcknowledgementsReferences