Ag3 Rtm Chap 4

Embed Size (px)

Citation preview

  • 8/14/2019 Ag3 Rtm Chap 4

    1/119

    CHAPTERFOUR

    INTRODUCTIONTOENVIRONMENTALSATELLITES

    4.1 INTRODUCTION

    Satelliteimages,orpictorialrepresentationsofsatellitesensedinformation,aresomeofthemost

    frequentlyusedtoolsinthefieldsofmeteorologyandoceanography. SincethelaunchofTIROS1on

    April1,

    1960,

    numerous

    satellites

    with

    ever

    increasing

    capabilities

    and

    sophistication

    have

    been

    deployedintospace,revolutionizingtheunderstandingandaccuracyofmeteorologicaland

    oceanographicprocessesandpredictionswiththeadventofeachnewsatellite.AsaNavyorMarine

    Corpsforecaster,orassistantforecaster,itisimportantforyoutoknowhowobtainrequiredsatellite

    imagery,andbeabletointerpretitinordertoidentifyspecificdetailsimportanttothesuccessand

    safetyof

    Naval

    operations.

    The

    use

    of

    satellite

    imagery

    is

    one

    of

    the

    most

    important

    sources

    of

    informationwhenpreparingmeteorologicalandoceanographicforecasts.

    Webeginwithanexplanationofremotesensingandhowelectromagneticradiationisusedtodevelopa

    satelliteimage. Next,weintroducethevarioustypesofsatelliteimageryanddescribethevarious

    considerationsto takeintoaccountwhenviewingit. Wethendiscussthedifferenttypesofsatellite

    vehiclesused

    in

    obtaining

    imagery

    and

    complete

    the

    chapter

    by

    discussing

    analysis

    techniques

    used

    in

    identifyingcloudformations,noncloudfeatures,andcertainmeteorologicalfeatures.

    4.2 WEATHERSATELLITEPRINCIPLES

    LearningObjective

    Identifythe

    advantages

    and

    disadvantages

    of

    satellite

    imagery

    4.2.1 AdvantagesandDisadvantagesofSatelliteImagery

    Theuseofsatelliteimageryhassomedistinctadvantagesanddisadvantages. Twomajoradvantagesare

  • 8/14/2019 Ag3 Rtm Chap 4

    2/119

    providestheforecasterwiththeabilitytotrackdevelopingmesoscalefeaturesthatwouldotherwisebe

    missedinthelargesynopticanalysis.

    Thebiggestobstacletotheuseofsatelliteimageryisinterpretation. Drawingconclusionsaboutthe

    meteorologicalprocessesatworkonsatelliteimageryismuchmoredifficultthanreachingthesame

    conclusionsfromconventionalconstantpressurecharts. Ittakestraining,timeandpracticeto

    effectivelyutilizeasatelliteimage. Additionally,satelliteimageryonlygivesinformationfromthetop

    down. Itisnormallyimpossibletogarnerdetailedinformationaboutsurfaceweatherconditionsata

    specificpoint

    with

    just

    asatellite

    image.

    Surface

    conditions

    can

    be

    deduced

    through

    training,

    but

    the

    sameinformationcanbegainedwithclaritythroughtheobservationnetwork,whereestablished,which

    providesinformationfromthebottomup. Hence,whenforecastingorbriefing,itisimportanttoutilize

    bothsatelliteimageryandsurfaceweatherobservationstogethertoaccuratelyportraythestateofthe

    atmosphere.

    4.2.2 RemoteSensingofElectromagneticRadiation

    LearningObjective

    Describethesatellitesensorimagingprocess.Remotesensingisatermusedtodescribethestudyofsomethingwithoutmakingactualcontactwithit.

    Satellitetechnologyisanexampleofremotesensing,sincesatellitesensorsaredesignedtostudy

    energyreflected,andemittedfromtheEarth. Weathersatellitesensorsworkbygathering

    electromagneticradiationfromtheEarthandatmosphere. Youneedabasicknowledgeofradiation

    theorytounderstandhowthesensorswork.

    Electromagneticradiationismadeupofwaves,soitrequiresanunderstandingofwavemotionbasics.

    Holduptheendofalongpieceofropeandquicklymoveyourhandupanddowntoproduceawave

    thattravelsdownthelengthoftherope. Ifyoudothisrepeatedlyandregularly,aregularseriesof

    waveswilloccur. Howoftenitrepeatsisthefrequencyofthemotion(i.e.,howfrequentlythemotion

    repeats). Frequencyisthenumberofwavespassingagivenpointperunitoftime,expressedincycles

  • 8/14/2019 Ag3 Rtm Chap 4

    3/119

    Wedescribetheintensityofawavebymeasuringthewavesheight,oramplitude. Radiationdiffersin

    thisrespect. Abeamofelectromagneticradiationresemblesastreamofparticlescalledphotons. Each

    photonhasitsownspecificwavelength. The

    totallevelofenergyinabeamofradiation(the

    beamsradianceorintensity)isjusttheenergy

    ofeachphoton,timesthenumberofphotons

    inthatbeam. Insatellitemeteorology,the

    preferredterm

    for

    energy

    output

    is

    brightness

    temperature,usuallyexpressedindegrees

    Kelvin(K). Brightnesstemperatureisaphoton

    count.

    Electromagneticradiationhasspecific

    wavelengthsand

    frequencies,

    and

    resembles

    more

    common

    waves

    such

    as

    water

    and

    sound

    waves.

    Whiletherearemanytypesofelectromagneticradiation,theonlyrealdifferencebetweenthemistheir

    wavelengthorfrequency. Webringupwavelengthandfrequencybecausebothareusedinsatellite

    applications. Mostusersofvisualandinfraredsatelliteimageryprefertoclassifyradiationby

    wavelength,usuallymeasuredinmicrons(m),ormillionthsofameter. Usersofmicrowaveimagery

    liketo

    use

    frequency.

    Most

    microwave

    radiation

    has

    frequencies

    measured

    in

    the

    Gigahertz

    range

    (1

    GHzisabillioncycles/second).

    Ingeneral,shortwavelengthsandhighfrequenciesarecharacteristicsofhighenergyradiation,usually

    comingfromtheSun,andlongwavelengthsandlowfrequenciesarecharacteristicsoflowenergy

    radiation,usuallycomingfromtheEarth. Weseparateradiationintoseparatebands,basedonitsuse,

    oron

    how

    familiar

    objects

    react

    to

    it.

    This

    is

    known

    as

    the

    electromagnetic

    spectrum.

    The

    electromagneticspectrumisacontinuumofallthetypesofelectromagneticradiation. Figure41

    showstherangeoftheelectromagneticspectrum,withitsrespectivedivisions. Thehumaneyedetects

    onlyasmallportionoftheelectromagneticspectrum,calledvisiblelight.

    Figure41. ElectromagneticSpectrum

    (Source:PDC)

  • 8/14/2019 Ag3 Rtm Chap 4

    4/119

    Therearealsoareaswithinthe

    electromagneticspectrumwherethe

    atmosphereistransparenttospecific

    wavelengths. Thesewavelengthbandsare

    knownasatmosphericwindows,sincethey

    allowtheradiationtoeasilypassthroughthe

    atmosphere. Therearespecificatmospheric

    windowscorresponding

    to

    specific

    wavelengthsalongtheelectromagnetic

    spectrum.Thesensorsonmeteorologicaland

    oceanographicsatellitesaredesignedtotake

    advantageoftheseatmosphericwindows.

    Theseinstruments

    measure

    received

    radiation

    inspecific,narrowwavelengthbandsknownas

    channels. Bytakingadvantageofatmospheric

    windows,thesatellitecansensetheamount

    ofelectromagneticradiationreceivedfrom

    specificregionsoftheEarth. Thesensorthen

    convertstheamountofsensed

    electromagneticradiationtoagrayshade,

    whichisassignedtoacorrespondingsquare

    ontheimagecalledapixel. Allelectronic

    images,suchassatelliteimages,consistof

    pixels,which

    directly

    relate

    to

    the

    resolution

    of

    the

    image.

    A

    computer

    assigns

    one

    of

    256

    shades

    of

    gray(rangingfromblacktowhite)toeachpixelontheimagery. Thecontrastsingrayshadeshelpus

    interpretcloudandnoncloudphenomenaonthesatelliteimagery. Humaneyescandistinguishonly

    about1520grayshades. Becauseofthis,imageryiseithergrayshadeorcolorenhancedtomake

    Figure42. GrayscaleEnhancement. (Source:

    UniversityofWisconsin)

    Figure43. ColorizedEnhancement. (Source:

    UniversityofWisconsin)

  • 8/14/2019 Ag3 Rtm Chap 4

    5/119

    4.3 TYPESOFSATELLITEIMAGERY

    LearningObjective

    Identifyanddescribethedifferenttypesofsatelliteimageryavailableforuse.WeathersatelliteshaveinstrumentscapableofdetectingradiationfromcloudsaswellastheEarths

    surface. Theseinstrumentshavesensorsthatdetectboththevisible(VIS)rangeoftheelectromagnetic

    spectrumandtheinfrared(IR)range. Thisallowsforbothdaytimeandnighttimeimageryandprovides

    theabilitytocomparetheinfraredandvisualimagesoverthesameregion.

    Environmentalsatellitesprovidedatathroughseveraldifferentchannels. Eachchannelsensesradiation

    ataspecificwavelengthorarangeofwavelengths. Themostcommonlyusedchannelsonweather

    satellitesarevisible,infrared,andwatervapor. Speciallydesignedsensorswithspecificchannelsare

    usedtopickupmicrowaveradiation. Eachofthesechannelsaresensitivetoenergyinitsparticular

    rangeof

    frequencies;

    therefore,

    each

    type

    provides

    adifferent

    view

    of

    the

    Earth

    and

    its

    atmosphere.

    Meteorologistsrelyonallfourtypesofdataforunderstandingtheinteractionsbetweenthe

    atmosphereandtheEarth'ssurface.

    4.3.1 VISUALIMAGERY(VIS)(0.40.74M)

    Theelectromagneticenergythatyoureyescanseerangesfromawavelengthof0.7mforredlight,

    throughthevisiblespectrum(red,orange,yellow,green,blue,indigoandviolet)to0.4mforviolet

    light. About44percentofthesun'senergyfallsontheearthintheformoflight. Althoughsomelightis

    absorbed,muchofthelightincidentontheearth'satmosphereandsurfaceisreflectedbackintospace.

    ThereflectedlightfromtheEarthismeasuredbyachannelinthesensoraboardthesatellitethatis

    sensitiveonlytoelectromagneticenergyinthevisualwavelengths.Thesensormeasurestheenergy

    receivedineachpixelandassignsitareadingfrom0,fornoenergysensed,to256,forveryhighenergy

    sensed. MeasurementsaretransmittedtoEarth,andtheconsecutivepixelsandscanlinesare

    processedtocomposeanimage.

  • 8/14/2019 Ag3 Rtm Chap 4

    6/119

    bulb(youareincreasingthe

    angleofthelighthittingthe

    paperssurface),thedarkerthe

    paperisgoingtoappear. The

    sunsangleisafunctionofthe

    timeofday,theseason,andthe

    latitudeofyourlocation. Albedoisdependentontheobject'ssurfacetextureandcolor. Table41

    providessome

    common

    albedos

    of

    various

    surfaces

    on

    the

    Earth.

    Invisualimages,areasoflowreflectedlight(lowalbedo),suchaswaterandforestregions,appearblack.

    Areasofhighreflectedlight(highalbedo),suchassnow,appearwhite.Whenlookingatcloudsonvisual

    imagery,theopticaldepthisahighlyimportantaspecttoconsider. Opticaldepthandreflectivityare

    directlyproportional,inotherwords,acloudwithahighopticaldepthishighlyreflective. Theoptical

    depthof

    an

    object

    depends

    on

    four

    factors:

    thickness,

    cloud

    density,

    cloud

    composition,

    and

    particle

    size.

    Visibleimageryisveryusefulinbothatmosphericandoceanographicanalysisbecausereflectivityvaries

    considerablyamongatmospheric,land,andoceanicfeatures.Duetothereflectivepropertiesofclouds

    composedofwaterdroplets,avisualimageisalsoexcellentforidentifyinglowcloudswhencompared

    toan

    infrared

    image.

    An

    obvious

    disadvantage

    of

    visible

    imagery

    is

    that

    it

    is

    only

    available

    during

    daylighthours. Anotherdisadvantageisthatlow,mid,andhighclouds,whenplacedovereachother,

    canbedifficulttoidentifywithouttheuseofaninfraredimage.

    4.3.2 INFRAREDIMAGERY(IR)(0.7412M)

    Theinfraredsensorsmeasuretheamountofenergyemittedbytheearthandtheatmosphere. Because

    thefrequencyofenergyemittedfromtheearthssurfaceandmeteorologicalelementsdependsonthe

    temperatureofthesurface,IRimageryisessentiallyapictureofthesurfaceandcloudtoptemperatures

    portrayedinblack,white,orgrayshades. Thisinformationcanbeusedtoobservethermalpropertiesof

    the Earth and the atmosphere

    Table41. CommonEarthAlbedos.

    LargeThunderstorm 92% ThinStratus 42%

    FreshNew

    Snow

    88%

    Thin

    Cirrostratus

    32%

    ThickCirrostratus 74% Sand,NoFoliage 27%

    ThickStratocumulus 68% SandandBrushwood 17%

    WhiteSands,NM 60% Coniferous 12%

    Snow,37DaysOld 59% WaterSurfaces 9%

  • 8/14/2019 Ag3 Rtm Chap 4

    7/119

    availableforuse24hoursaday. AmajordisadvantageofIRimageryisthedifficultyindisplayinglow

    cloudswhentheearthssurfaceandcloudtoptemperaturesarerelativelythesame.

    Onmostdisplaysystems,thegrayscaleofanIRimageiscomposedof256grayshadesrangingfrom

    white(coldesttemperatures)toblack(warmesttemperatures)andcorrelatessensedtemperaturewith

    grayshadesinasimplelinearrelationship. Inaninfraredimage,thehighest(andthereforecoldest)

    cloudtopsappearwhite. Lower,warmercloudsappearaslightershadesofgray,andwarmerlandand

    watersurfacesappearasdarkershadesofgray. TheIRbandisseparatedintothreechannelsonmost

    satellites,theNearIR,FarIR,andFarFarIR.

    4.3.2.1 NearInfraredImagery(NIR)(0.741m)

    Thiswavelengthisalsoreferredtoasnearvisualbecausewearestilldealingwithreflectedlight. The

    wavelengthusedhereisjustoutoftherangeofwhatoureyescansee. Somefeatureshavehigher

    reflectivityin

    this

    wavelength

    than

    they

    do

    in

    the

    visual.

    These

    include

    aerosols

    and

    land,

    especially

    withvegetation.

    SomefeaturesemitenoughradiationintheNIRwavelengthtobeseen. Citylightsandfiresemitmore

    radiationinthisbandthaninvisiblewavelengthsbecausetheiremissionpeakisclosertotheNIR

    wavelengthsthanvisualwavelengths. Forthisreason,thistypeofimageryisusedinthedetectionof

    andtracking

    forest

    fires

    and

    monitoring

    of

    urban

    heat

    islands.

    4.3.2.2 FarInfraredImagery(FIR)(10.211.2m)

    Thisisthegardenvarietyinfraredimagemostweatherforecastersareusedtoviewing. Most

    satellitescombinetheFIRandFFIRchannelsintoonebroadbandIRchannel.Thesamefactorsthat

    affectopticaldepthinthevisualbandsaffecttheIRwavelengths,butfordifferentreasons. Remember

    thatinthevisualbands,cloudswithahighopticaldeptharegoodatreflectingradiation. IntheIRbands,

    cloudswithahighopticaldeptharegoodatabsorbingradiation. Byabsorbingradiation,wemeanthat

    thecloudisblockingradiationfrombelowandreemittingradiationatitsownphysicaltemperature.

    Thin cirrus clouds that are almost invisible in the visual wavelengths can absorb and block some FIR

  • 8/14/2019 Ag3 Rtm Chap 4

    8/119

    4.3.2.3 FarFarInfraredImagery(FFIR)(11.312.5m)

    When

    comparing

    FIR

    and

    FFIR

    imagery,

    little

    difference

    would

    be

    noticed.

    The

    only

    noticeable

    differencewouldbefoundinareascontainingmoistair. Theatmospherehashigherabsorptivity(lower

    transmissivity)asenergyapproachestheFFIRwavelengths,mostlyduetoabsorptionbywatervapor. In

    moistatmospheres,thesatellitesenseslessFFIRradiationthanFIR. Therefore,moistairappearscooler

    andmurkyonanFFIRimage.Dryairwouldlookthesameinbothchannels.

    4.3.3

    WATERVAPOR

    IMAGERY

    (WV)

    (6.5

    TO

    7.0

    M)

    Thistypeofimageryiscreatedbyfocusingthesatellitesensoronaverynarrowbandofwavelengths

    wheretheabsorptionofemittedradiationbywatervaporisveryhigh. Theearthabsorbsincoming

    solarradiation(shortwaveradiation)andreradiatesthatenergyaslongwaveradiation. Theunique

    abilityofwatervaportoabsorbthewavelengthsconcentratedat6.7mprovidesanextremelyuseful

    toolwe

    use

    to

    identify

    mid

    and

    upper

    level

    features

    that

    may

    be

    cloudless

    and

    not

    evident

    on

    visible

    or

    broadspectrumIRimagery. Wherethesatellitesensesabundantenergyat6.7m,thereisalackof

    moistureatthemiddleandupperlevelsoftheatmosphere. Inthiscase,thesatelliteassignsadarker

    grayshadetothatpixel. Wherethesatellitesensesminimalenergyat6.7m,thereisabundant

    moistureatthemiddleandupperlevelsandthesatelliteassignsalighterorwhitergrayshadetothat

    pixel.

    Itisimportanttonotehere,thatwatervaporimagerydoesnotindicatemoistureinthelowerlevelsof

    theatmosphere,onlythemiddleandupperlevels. Ifmoistureispresentinthemiddleandupperlevels,

    energyat6.7misabsorbedandanymoisturepresentinthelowerlevelscannotbedetected. The

    satellitewillreceiveminimalamountsofenergyinthismoistureregionandinterpretthelackofenergy

    receivedascoldertemperaturesandhighermoisturecontent. Ifmoistureisminimalinthemiddleand

    upperlevelsoftheatmosphere,energyemittedfromtheatmosphereslowerlevelsisnotabsorbedby

    themiddleandupperlevels. Thesatellitewillreceiveabundantamountsofenergyinthismoisturefree

    regionandinterprettheabundanceofenergyreceivedaswarmerandlowermoisturecontentand

    assign a dark gray shade

  • 8/14/2019 Ag3 Rtm Chap 4

    9/119

    4.3.4 MICROWAVEIMAGERY

    The

    Earth

    constantly

    emits

    microwave

    radiation.

    The

    Sun

    also

    emits

    microwave

    radiation,

    but

    at

    amountssmallcomparedtothevisualoutput. SolarmicrowavesarenotnormallyreflectedbytheEarth,

    butareinsteadabsorbed. Therefore,wecanassumeallradiationbeingreceivedbythesatellitesensor

    inthisfrequencyrangeisemittedbyEarth. Theadvantageofmicrowaveimageryisthatdiurnal

    changesinradianceoreffectsofsunangleduetotherisingandsettingoftheSundonotimpede

    accurateinterpretation.

    Microwaveshavelongerwavelengthsandlowerfrequencieswhichareusuallymeasuredinmmorcm.

    TheirfrequencyisintheGHz(billioncycles/sec)range. Microwavebandsareusuallycategorizedby

    frequency. Mostotherelectromagneticspectrumbandsmeteorologistsusearecategorizedby

    wavelength. Becauseofthelongerwavelength,themicrowaveimageryresolutionislowerthanvisual

    andinfraredimagery. Typically,resolutionisbetween20and50kmformostproducts. Ontheplusside,

    thereisusuallylessattenuationinmostmicrowavechannelsthaninotherbands. Microwaves

    penetratecloudsandvegetation,makingthemidealforsurfacemonitoring.

    Radianceisusedtodescribemicrowaveradiation. Earthsmicrowaveemissionsshowtremendous

    varianceinradiance,moresothantheconventionalbandsusedbysatellitesensors. Therefore,

    brightnesstemperaturesareusedtomeasuremicrowaveradiationandtodifferentiatebetween

    features. Manysurfaceandatmosphericfeaturescanbeidentifiedbyauniquemicrowaveradiance

    signature. Radiancevariablesusedinproductionofmicrowaveimageryincludefrequency,polarization,

    emissivity,transmissivity,andspatialuniformity.

    4.3.4.1 Activevs.PassiveMicrowaveSensing

    Thereare

    two

    kinds

    of

    microwave

    instruments

    in

    space:

    passive

    and

    active.

    Active

    refers

    to

    asensing

    strategyinwhichthesatellitecontinuallysendsmicrowavepulsesofenergytowardthesurfaceofthe

    earth. ThemostcommonactiveapplicationforMETOCisscatterometry,whichprovidesoceanwind

    speedanddirectiondata(avectorquantity)asseeninFigure45. Inthisregard,activemicrowave

  • 8/14/2019 Ag3 Rtm Chap 4

    10/119

    Passivereferstoasensingstrategyinwhichthesatellitereceivesmicrowaveenergynaturallyemitted

    orscatteredfromtheatmosphereandsurface. Theseinstrumentshavenopowersource. As

    instruments,

    they

    are

    not

    as

    capable

    as

    active

    instruments.

    For

    example,

    most

    passive

    microwave

    sensorscanonlyproduceoceanicwindspeed,notdirection,asdisplayedinFigure46. NoticeinFigure

    45thesatellitederivedproductindicateswinddirectionandspeed,acapabilityofanactivesensor,

    whileinFigure46onlyspeeddataisavailablefromthepassivemicrowavesensor. Anadvantageof

    passiveinstrumentsisthattheydonotrequireanonboardpowersupply.

    4.4SATELLITE

    IMAGERY

    VIEWING

    CONSIDERATIONS

    LearningObjective

    Identifyspecificviewingconsiderationsthatmustbeconsideredwheninterpretingsatelliteimagery.

    4.4.1 RESOLUTION

    Theword

    resolution

    is

    often

    used

    with

    respect

    to

    satellite

    image

    data.

    Usually,

    it

    refers

    to

    spatial

    resolution,thesizeofthefootprints,orpixels,thatformanimage. However,therearethreeother

    kindsofresolutiontoconsideraswell.

    4 4 1 1 S i l R l i

    Figure45. ActiveQuikScat. Figure46. PassiveTRMM.

    (Source: UniversityofWisconsin)

  • 8/14/2019 Ag3 Rtm Chap 4

    11/119

    Earthssurfacedirectlyunderthesatellitesensor. Thispointiswhereresolutionishighestonasatellite

    image. Radiatingoutwardfromthispoint,theresolutiongraduallydecreases(theFOVgradually

    increases)duetothecurvatureoftheEarthandthedecreasingangleofincidencefromthesensorto

    theearth.

    SatellitesensorsdesignedtoproduceimagesofEarth,itsoceans,anditsatmosphereareverydifferent

    fromthecamerasusedtotakeaphotograph.Theyaremorelikeavideocamera,onlymuchmore

    specialized.Thesescanningsensorsarecalledradiometers,andinsteadoffilm,anelectroniccircuit

    sensitiveonlytoasmallrangeofelectromagneticwavelengthsmeasurestheamountofenergythatis

    received.Satellitescarryseveraldifferentimagesensors,eachofwhichissensitivetoonlyasmallband

    ofenergyataspecificwavelength.

    RadiometersscanacrossthesurfaceoftheEarthinconsecutivescanlinesalongapathnormaltothe

    directionoftravelofthesatellite.Astheradiometermovesthroughascanline,itveryrapidlymeasures

    energylevelsforonlyaverysmallportionoftheEarthatatime. Eachindividualenergymeasurement

    willcomposeapixeloftheoverallsatelliteimage. Thesizeofthearea(FOV)scannedbythesensor

    determinesthespatialresolutionoftheoverallimage. Thus,thesmallertheareascannedforeachpixel,

    thehigherthespatialresolution. Someradiometersmayscananareaassmallas0.5kmacross(high

    resolution),whileothersscanareasaslargeas16km(lowresolution). Whencomposedintoanimage,

    smallerpixels

    allow

    the

    image

    to

    be

    much

    clearer

    and

    show

    greater

    detail.

    Clouds

    and

    land

    boundaries

    appearbetterdefined.Ifobjectsaresmallerthanthesensorresolution,thesensoraveragesthe

    brightnessortemperatureoftheobjectwiththebackground. Normally,thesensorsaboardsatellites

    areabletoprovidebetterresolutionforvisualimagerythanforinfraredimagery. Also,lowearth

    orbitingsatellitesusuallyprovidehigherresolutioncapabilitiesthangeostationarysatellitesduetotheir

    closeproximitytotheEarth.

    4.4.1.2 SpectralResolution

    Spectralresolutionreferstothenumberofbandsintheelectromagneticspectruminwhichthe

    instrument can take measurements A greater amount of channels means one can observe an increased

  • 8/14/2019 Ag3 Rtm Chap 4

    12/119

    datasetwithahighernumberofbands. Thedifferentchannelscanbecombinedintoalgorithms,

    whicharelikerecipesforderivingtheinformationsought.

    4.4.1.3 RadiometricResolution

    Radiometricresolutionreferstothesensitivityoftheradiometertosmalldifferencesintheradiation

    emittedfromanobservedobject. Thegreatersensitivityaninstrumenthas,themoredetailedthe

    imageitcanproduceforusers.

    4.4.1.4 TemporalResolution

    Temporalresolutionisthefrequencywithwhichasatellitecanrevisitanareaofinterestandacquirea

    newimage. Geostationarysatellites,seeingthesameareaasoftenasevery15min,havehigher

    temporalresolutionthanlowearthorbiting

    satellites,whichviewtheearthperhapstwiceaday.

    Thisiswhygeostationarysatelliteimagescanbe

    animatedandlowearthorbitingsatelliteimages

    cannot.

    4.4.2 ATTENUATION

    Attenuationisdefinedasthelossofenergydueto

    absorptionandscatteringofterrestrialradiationby

    atmosphericelements. Longwaveterrestrial

    radiationreleasedintotheatmosphereisabsorbed

    byboththecloudsandatmosphereitself. Absorptionofterrestrialradiationiscriticaltowarmingour

    atmosphereand

    sustaining

    life

    on

    Earth.

    Clouds

    and

    suspended

    particles

    in

    the

    atmosphere

    also

    scatter

    thisradiation. Thisprocessreducestheamountofenergyreachingthesatellitesensorsocloudtops

    appearcolder,andhencehigher,thantheyactuallyare. ThisaffectsIRandWVimageryonlyandisthe

    principlebehindwatervaporimagery.

    Figure47. Aspectsofattenuation.

    (Source:PDC)

  • 8/14/2019 Ag3 Rtm Chap 4

    13/119

    sincetheoblique(shallow)viewingangleincreasestheamountofatmospherethroughwhichthe

    energymusttravel.

    4.4.3 CONTAMINATION

    Contaminationoccurswhenenergyreachesthe

    satellitesensorfromtwoormoresources. Thiscan

    occurwithvisualorinfraredimagery. Theamountof

    contaminationdepends

    on

    two

    things:

    the

    spacing

    of

    thecloudelementsandthethicknessofthecloud

    layerorlayers,asseeninFigure48. Oneexample

    wouldbeinastratocumulusfield,whenthelandor

    oceansurfaceisevidentbetweencloudelements.

    AnotherwouldbewhentheenergyfromthewarmEarthoralowclouddeckbleedsthroughathin,

    upperlevelclouddeckcausingthethinupperlevelcloudlayertoappearwarmerandlower. Likewise,

    onavisualimage,whenhighercloudsarethinenough,theEarth'ssurfaceorlowercloudscanbeseen

    throughtheclouds. Inallthreeexamples,thesensoraveragesthetemperature/brightnessofthetwo

    objects. Thisrendersinaccuratetemperature/brightnessvaluesofbothobjectsandcanmakeclouds

    appearlowerthantheyactuallyare.

    4.4.4 FORESHORTENING

    Foreshorteningisdefinedasalossofresolutioncausedbyanobliqueviewingangle. Thisresultsin

    distortionoftheimagepredominatelyneartheedgeoftheEarth'ssurface,butcanoccuronanytypeof

    satelliteimagery. Whenthesensorlooksatthe

    Earthat

    sub

    point,

    it

    is

    looking

    directly

    down

    at

    thetopofthecloud. However,remember,as

    discussedearlier,thatasweexpandoutwardfrom

    subpoint,theresolutiongraduallydecreases.

    Figure48. Contamination.(Source:PDC)

  • 8/14/2019 Ag3 Rtm Chap 4

    14/119

    Scatteredtobrokenclouddecksappeartobeovercastneartheedgesoftheglobe. Thecloudswillalso

    appearfartherawayontheglobalgridthantheyactuallyare. Whennotdirectlylookingdownatthe

    topofanobject,thereadingorpositionoftheobjectwillbeofffromitsactualreadingorpositionwhich

    iscalledtheerrorofparallaxandisthecauseofforeshorteninginsatelliteimagery,asshowninFigure

    49.

    4.4.5 SUNANGLE

    Often,visual

    images

    taken

    early

    or

    late

    in

    the

    day

    will

    include

    the

    sunrise

    sunset

    line

    known

    as

    the

    terminator. ThisistheactualdividinglinebetweendayandnightontheEarth. Inaddition,thelowsun

    anglecanenhancecloudtoptextureduetoshadows. Thiscanbemisleadingininterpretingthe

    developmentofconvectiveactivity.

    4.4.6 LATITUDE

    Typicallyinthetroposphere,iftwofeaturesareatthesamealtitude,butdifferentlatitudes,the

    northernfeaturewillappearcolderduetocloserproximitytothepole. Thiscancausedifficultyingray

    shadeinterpretationandcorrectidentificationofcloudtypes. Forexample,fogoverMaineusually

    appearscolder,hencehigherintheatmosphere,thanfogoverFlorida.

    4.4.7

    SUN

    GLINT

    Sunglintoccursinvisualimageryandiscausedbythereflectionofthesun'sraysdirectlyoffawater

    surfaceintothesatellitesensor. Sunglintpatternsarecircularinshapeongeostationarysatellite

    imageryandlinearinshapeonlowearthorbitingimagery. Strongsunglinttypicallyoccurswhenthe

    watersurfaceisrelativelycalmandthewindsarelight. Diffusesunglintpatternscanalsooccur,

    indicating

    higher

    wind

    speeds

    and

    higher

    sea

    states.

    The

    larger

    and

    more

    diffuse

    the

    pattern,

    the

    higher

    thewindspeedandhence,thesea/swellwaves. Sunglintcanalsobeseenoverlandmassesinthe

    tropicsassunlightreflectsofftherelativelycalmwatersurfacesofrivers,bays,andarchipelagicwaters.

    4.5TYPESOFENVIRONMENTALSATELLITES

  • 8/14/2019 Ag3 Rtm Chap 4

    15/119

    4.5.1 GEOSTATIONARYSATELLITES

    GeostationarysatellitesorbittheEarthatanaltitudeofapproximately22,300miles(35,800km)above

    theEquatorandtravelatthesameangularvelocityastheEarth. Inordertostayoverthesame

    geographicallocation,thesatelliteaxisofrotationneedstobeparalleltotheEarthsaxis. Theonlyway

    thesatellitecandothisistoorbitdirectlyovertheequator. Thistypeoforbit,knownasa

    geosynchronousorbit,allowsfrequentmonitoringofthesameportionoftheEarth. Asuccessionof

    photographsfromthesesatellitescanbeanimatedinsequencetoproduceatimelapsemotionloop

    showingcloudmovement. Thisallowsforecasterstomonitortheprogressoflargeweathersystems

    suchasfronts,stormcomplexes,andhurricanes. Winddirectionandspeedcanalsobedeterminedby

    monitoringcloudmovement.

    Someoftheadvantagesofgeostationarysatellitesarespatialandtemporalresolution. Spatial

    resolutionmeansthatawideareaoftheearthisbeingviewed. Withtheexceptionofthepoles,

    geostationarysatelliteshaveanunmatchedviewoftheEarth. Theimageryfromthesesatellitescovers

    140oflongitudeandlatitude,resultinginapproximately120longitudeandlatitudeofusefuldata.

    Theother20isconsideredmostlyuselessduetoforeshortening. Thislimitstheareaofeffective

    coveragetoaroundonequarteroftheearthssurfacefromnear60Nto60S,and60eastandwestof

    subpoint. PolarRegionsarenotcoveredandresolutiondecreasesasyoumoveoutfromsubpoint.

    Temporalresolution

    refers

    to

    the

    fact

    that

    these

    satellites

    view

    their

    portion

    of

    the

    Earth

    continuously.

    Mostgeostationarysatellitesproduceanimageeveryhalfhourataminimum. Currently,therearefive

    differentgeostationarysatellitemissions(U.S.,Europe,India,Japan,andChina)inspaceprovidingglobal

    atmosphericcoverageforspecifiedregionsoftheEarth. Imageryfromeachofthesatellitescovering

    thedifferentregionsoftheglobecanbeobtainedontheInternetathttp://www.nesdis.noaa.gov/sat

    products.html.

    4.5.1.1 GeostationaryOperationalEnvironmentalSatellite(GOES)

    GOESsatellitesareamainstayofweatherforecastingintheUnitedStatesandarethebackboneof

    short term forecasting The real time weather data gathered by GOES satellites combined with data

  • 8/14/2019 Ag3 Rtm Chap 4

    16/119

    TherearefourGOEScurrentlyinorbit. GOES10,stationedover60west,provides24hourcoverageof

    SouthAmerica. GOES11isstationedover135westandistheprimarywesternU.S.satellite. Coverage

    fromGOES11extendsfrommiddleAmericawestwardtonearthedatelineinthePacificocean,and

    northandsouthtoaround60latitude. GOES12isstationedover75westandprovides24hour

    coveragefortheeasternportionoftheU.S.tonearlythewestcoastofAfricaandnorthandsouthto

    around60latitude. GOES13isfirstofthenewgenerationofGOESandisstationedover105west.

    GOES13currentlyservesasabackuptoGOES11and12.

    ImprovementsintechnologyhaveallowedustotakeatmosphericsoundingswiththeGOES11and12

    andthecurrentGOESsatelliteshaveaseparateimagerandsounderthatallowthemtocontinuously

    scanandsampletheatmospherewithoutoneinterferingwiththeother.Otherimprovementsinclude

    threeaxisstabilizationandenhancedsignaltonoisecapability. Threeaxisstabilizationisasignificant

    improvementoverthespinscansensors. Threeaxisstabilizationallowsthesatellitetokeepsensors

    continuouslyaimed

    at

    the

    earth

    instead

    of

    wasting

    time

    looking

    out

    into

    space.

    The

    improved

    signal

    to

    noisefunctionallowsformoreaccuratesensingandimprovedimaging.

    4.5.2 LOWEARTHORBITING(LEO)SATELLITES

    WhenasatellitecirclesclosetoEarth,wesayitisinLowEarthOrbit(LEO). Unlikegeostationary

    satellites,whichstayatoneplacewithrespecttotheEarth,lowearthorbitingsatellitesareplacedin

    sunsynchronousorbit,imagingastheygo. LEOsatellitescarrymicrowaveinstrumentsinadditionto

    visibleandinfraredimagers. GeostationarysatellitesaretoofarawayfromtheEarthtocarry

    microwaveinstrumentsusingtodaystechnology. However,sincelowearthorbitersflyatalowaltitude,

    theirspatialresolutionsaregenerallysuperiortogeostationarysatellites. Thus,theyproducedetailed

    imagesinamuchnarrowerswath.

    Satellitesinlowearthorbitarejust200 500miles(320 800kilometers)high.Becausetheyorbitso

    closetoEarth,theytravelveryfastsogravitydoesnotpullthemintotheatmosphere.Theycancircle

    theEarthinabouttwohour, allowingthemtoprovideglobalcoverageevery12hours. Thepathwidth

    varies with latitude and is about 27 at the equator All of these factors are dependent upon the height

  • 8/14/2019 Ag3 Rtm Chap 4

    17/119

    Sometimesthesesatellitesarecalledpolarorbitingsatellites,butthisissomewhatofamisnomer.

    PolarorbitingsatellitescloselyparalleltheEarth'smeridianlines,andpassesoverthenorthandsouth

    poleswitheachrevolution. Astheearthrotatestotheeastbeneaththesatellite,eachsatellitepass

    monitorsanareatothewestofthepreviouspass. Earthrotatesabout25.4totheeastinthetimeit

    takesthesatellitetomakeanorbit. Becauseofthis,eachpasswillbe25.4westofthepreviouspass,

    asshowninFigure410. Thesepassescanbepiecedtogethertoproduceapictureofalargerarea.

    ManyLEOs

    cross

    near

    the

    poles

    but

    do

    not

    cross

    directly

    over

    the

    poles.

    Some

    LEOs,

    like

    TRMM,

    cover

    onlytropicalareasandnevercomenearthepoles. Whileweusethetermpolarorbiterstoreferto

    satellitesorbitingnearthepoles,lowearthorbiting(LEO)isamoregeneraltermthatappliestoalltypes

    oflowearthorbitingsatellites.

    LEOsatellitesareplacedinorbitswhoseinclinationanglesarenearlyperpendiculartotheearth's

    equatorialplane.

    Polar

    Operational

    Environmental

    Satellites

    (POES)

    are

    aspecial

    case

    of

    low

    earth

    orbitingsatellitesastheyorbittheEarthatanaltitudeofabout450nm. Thesesatellitesrotatearound

    theEarthinanalmostnorthsouthtrackandcomewithinafewdegreesofthepolesineveryorbit. This

    ishowpolarorbitersgottheirname. Theypassoveranyparticularspotontheearth'ssurfaceeither

    Figure410. CoverageshiftduetoEarthsrotation.(Source:COMET)

  • 8/14/2019 Ag3 Rtm Chap 4

    18/119

    thesatellitewillpassoverthesamespotonearthaboutthesametimeeveryday. Thisisreferredtoas

    asunsynchronousorbit,asshowninFigure411.

    Figure411. Sunsynchronousorbit.(Source:NASA)

    4.5.2.1 PolarOperationalEnvironmentalSatellite(POES)

    NOAATIROSNNationalOceanicandAtmosphericAdministration(NOAA)satellitesaremanagedbythe

    NationalEnvironmentalSatellite,DataandInformationService(NESDIS),andformthePolarOperational

    EnvironmentalSatellite(POES)system.

    BecauseofthepolarorbitingnatureoftheNOAATIROSNsatellites,thesesatellitesareabletocollect

    globaldataonadailybasisforavarietyofland,ocean,andatmosphericapplicationsviatheAVHRR,

    AdvancedVeryHighResolutionRadiometerimager. TheAVHRRischaracterizedbyaverywidefieldof

    observation,nearly2700kmandhasaspatialresolutionof1.1km,andutilizesfivechannelsinthe

    visible,nearinfrared,midinfraredandthermalinfraredspectralbands. NOAAsatellitesalsocarrythe

    TIROS Operational Vertical Sounder (TOVS) that is designed to study the vertical temperature and

  • 8/14/2019 Ag3 Rtm Chap 4

    19/119

    climateresearchandprediction,globalseasurfacetemperaturemeasurements,atmosphericsoundings

    oftemperatureandhumidity,oceandynamicsresearch,volcaniceruptionmonitoring,forestfire

    detection,globalvegetationanalysis,searchandrescue,andmanyotherapplications. Thecurrent

    setup,amorningandafternoonsatellite,providesglobalcoverageovereachregionoftheearthfour

    timesdaily. Polarorbitingsatellitesaredefinedbytheascending(northtosouth)nodetime,whichis

    thelocaltimewhenthesatellitecrossestheequator. Therearecurrently6satellitesinorbit: NOAA15

    and16serveastheAMandPMsecondarysatellitesrespectively;NOAA17servesastheAMbackup,

    NOAA18

    serves

    as

    the

    PM

    primary,

    and

    NOAA

    19

    is

    currently

    undergoing

    operational

    verification.

    NOAAsatellitesThesixthsatelliteiscalledMETOPA,wasdevelopedbyaconsortiumofEuropean

    companies,andispartofanewEuropeanundertakingtoprovideweatherdataservicesusedtomonitor

    climateandimproveweatherforecasts. METOPAservesastheAMprimarysatellite.

    4.5.2.2 DefenseMeteorologicalSatelliteProgram(DMSP)

    Sincethemid1960's,whentheDepartmentofDefense(DoD)initiatedtheDefenseMeteorological

    SatelliteProgram(DMSP),lowearthorbitingsatellitesprovidedthemilitarywithimportant

    environmentalinformation. TheDMSPsatellites"see"suchenvironmentalfeaturesasclouds,bodiesof

    water,snow,fire,andpollutioninthevisualandinfraredspectra. Scanningradiometersrecord

    informationwhichcanhelpdeterminecloudtypeandheight,landandsurfacewatertemperatures,

    watercurrents,

    ocean

    surface

    features,

    ice,

    and

    snow.

    Communicated

    to

    ground

    based

    terminals,

    the

    dataisprocessed,interpretedbymeteorologists,andultimatelyusedinplanningandconductingU.S.

    militaryoperationsworldwide.

    Therearecurrently6DMSPsatellitesinorbit. F12isusedtoprovidetacticaldata,F13,14,and15are

    secondarysatellites,whileF16and17serveasprimarysatellites. EachDMSPsatellitehasa101minute,

    sunsynchronous,

    near

    polar

    orbit

    at

    an

    altitude

    of

    830

    km

    above

    the

    surface

    of

    the

    earth.

    The

    visible

    andinfraredsensorscollectimagesacrossa3000kmswath,providingglobalcoveragetwiceperday.

    Thecombinationofday/nightanddawn/dusksatellitesallowsmonitoringofglobalinformationevery6

    hours.Themicrowaveimager(MI)andsounders(T1,T2)coveronehalfthewidthofthevisibleand

  • 8/14/2019 Ag3 Rtm Chap 4

    20/119

    4.5.2.3 TheNationalPolarorbitingOperationalEnvironmentalSatelliteSystem(NPOESS)

    NPOESSisthenextgenerationoflowearthorbitingenvironmentalsatellites. TheNPOESSwillcirclethe

    Earthapproximatelyonceevery100minutes. Duringtheserotations,theNPOESSwillprovideglobal

    coverage,monitorenvironmentalconditions,andcollect,disseminateandprocessdataaboutthe

    Earthsweather,atmosphere,oceans,land,andnearspaceenvironment.

    NPOESSwillhave5majorsensorsonboard. TheMIS(MicrowaveImager/Sounder,willperformkey

    measurementsfortheNPOESSsystemtoincludesoilmoistureandseasurfacewindsbycollectingglobal

    microwaveradiometryandsoundingdata. ATMS,AdvancedTechnologyMicrowaveSounder,will

    operateinconjunctionwiththeCrosstrackInfraredSounder(CrIS)toprofileatmospherictemperature

    andmoisture. CrIS,inconjunctionwiththeATMS,willcollectatmosphericdatatopermitthe

    calculationoftemperatureandmoistureprofilesathightemporalresolution. OMPS,OzoneMapping

    andProfilerSuite,willmonitorozonefromspace. Andfinally,VIIRS,theVisible/Infrared

    Imager/RadiometerSuite

    will

    collect

    visible

    and

    infrared

    imagery

    and

    radiometric

    data.

    NPOESSisbeingdevelopedunderanhistoricagreementamongcivil,scientificandmilitarycommunities

    andwilleventuallyreplacebothPOESandDMSP.

    4.5.2.4 TropicalRainfallMeasuringMission(TRMM)

    TheTropical

    Rainfall

    Measuring

    Mission

    (TRMM)

    is

    ajoint

    mission

    between

    NASA

    and

    the

    National

    SpaceDevelopmentAgency(NASDA)ofJapan. TRMMisaresearchsatellitedesignedtohelpour

    understandingofthewatercycleintheatmosphere. Bycoveringthetropicalandsemitropicalregions

    oftheEarth,TRMMprovidesmuchneededdataonrainfallandtheheatreleaseassociatedwithrainfall.

    Thishelpsunderstandtheinteractionsbetweenwatervapor,cloudsandprecipitation,whicharecentral

    to

    regulating

    the

    earths

    climate.

    The

    TRMM

    satellite

    carries

    five

    instruments;

    the

    first

    space

    borne

    PrecipitationRadar(PR),aVisibleandInfraredScanner(VIRS),aLightningImagingSensor(LIS),aCloud

    andEarthRadiantEnergySystem(CERES),andtheTRMMMicrowaveImager(TMI). Thesensorsallow

    ustomeasurethesurfacerainrate,atmosphericliquidwater,aswellasdissecttropicalcyclonesat

  • 8/14/2019 Ag3 Rtm Chap 4

    21/119

    4.6 CLOUDANDNONCLOUDFEATUREIDENTIFICATION

    4.6.1 SatelliteImageryInterpretation

    Wheninterpretingsatelliteimagery,itisimportanttoensureyoulookatthewholeimagetodetermine

    whatthefeatureisandhowitfitsintothesynopticsituation. Donotgettunnelvisionandjustlookat

    onefeature. Ensuredifferenttypesofimagery(VIS,IR,WV,and/ormicrowave)areusedtogetherto

    takeadvantageofeachoftheiruniqueproperties. Usingthedifferenttypesofimagerytogetherwill

    usuallyeliminateseveralobstaclestoaccurateinterpretationandhelpnarrowidentificationdownto

    onespecificfeature. Visualimagerywilldefinesmallscalefeaturessuchasterrain,cloudshadows,

    texture,andsmalllowclouds. Infraredimagerymakesrelativecloudheightanalysispossible,andthus,

    specificcloudtypes. Toassistwithsatelliteinterpretationatnightwhennovisualimageryisavailable,

    comparethelastvisibleandinfraredimagesoftheday. Identifyeachfeatureevidentonvisibleimagery

    anddeterminehowthosefeaturesarerepresentedininfraredimagery. Onceyouhaveidentifiedeach

    featurein

    infrared

    imagery,

    using

    the

    visible

    imagery

    as

    atool,

    follow

    those

    features

    using

    infrared

    imagerythroughoutthenight,keepinginmindhowtheyappearedonthelastvisibleimageoftheday.

    Alwaysuseanatlasorlocalterrainmapwheninterpretingtheimagery. Thisensuresthatyoudonot

    mistaketerrainfeatures,suchassnowonmountaintops,forclouds.

    4.6.1.1 CloudType

    Thethreedesignatedcloudtypesarecumuliform,stratiform,andcirriform. Understandinghoweachof

    theseappearinimagerycanhelppredictthetypeofprecipitation,ifany,aparticularregionmaybeor

    willbereceiving. Cumuliformcloudsproduceshoweryprecipitation,whilestratiformcloudsproduce

    intermittenttocontinuousprecipitation. Cirriformcloudsformintheupperlevelsoftheatmosphere

    andarecomposedmostlyoficecrystals. Anyprecipitationfallingfromthemtypicallyevaporatesbefore

    hittingthesurfaceoftheEarth.

  • 8/14/2019 Ag3 Rtm Chap 4

    22/119

    4.6.1.2 CloudElement

    Acloudelementisthesmallestdistinguishable

    unitinacloudmassthatcanbedisplayedina

    satelliteimageandisdeterminedbythespatial

    resolutionofthesensor). SeeFigure412.

    4.6.1.3 CloudFingers

    Thesearenarrowcloudbands,lessthanonedegree

    latitudeinwidth,whichdevelopasaresultoflowlevel

    convergence. Thesearefoundinthewarmsector

    aheadofacoldfront. SeeFigure413.

    4.6.1.4 CloudStreets

    Cloudstreetsarecomposedofaseriesofaligned

    individualcloudelementsthatarenot

    interconnected. Cumuliformcloudswillorganizeintolines

    paralleltothelowlevelwinddirectionasseeninFigure4

    14,

    may

    be

    curved

    or

    form

    in

    straight

    lines,

    and

    are

    usually

    evenlyspaced. Cloudstreetsusuallyformwhenthelow

    levelsoftheatmosphereareunstable,butdescendingair

    (subsidence)formsacapandlimitsverticalextentofcloud

    development.

    4.6.1.5

    CloudLines

    Acloudlineismuchlikecloudstreetsexcepttheelementsareconnectedandhaveageneralwidthof

    lessthan1degreelatitude. Cloudlinesaremostpredominantovertropicaloceansbutareobservedat

    all latitudes This cloud formation primarily develops off the east coasts of continents where a

    Individual cloud elements

    Figure412. Cloudelements.(Source:NOAA)

    Arrows representstreamlinesindicating winddirection.

    Figure413. Cloudfingers.

    (Source:NOAA)

    Arrow indicateswind direction.Figure414. Cloudstreets.

    (Source:NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    23/119

    4.6.1.6 CloudShield

    Thesearelargeextensive,commashapedcloudareasmostcommonlyassociatedwithlargescale

    synopticsystems. Cloudshieldscanexistseparatelyfromlargescalesystems,butshouldbewatched

    fordevelopment.

    4.6.2 CloudIdentification

    ThelowcloudetageextendsfromtheEarthssurfaceupto6,500feet. Cloudsthatdevelopwithinthis

    rangecan

    have

    asignificant

    impact

    on

    flying

    operations.

    The

    middle

    cloud

    etage

    extends

    from

    6,500

    feettoanywherebetween18,000feetand22,000feet,dependingonlatitude. Thesecloudsare

    sometimesindicatorsofstormsystemsmovingintothearea. Thehighcloudetageextendsanywhere

    from18,000feetto22,000feetandabove,dependingonlatitude. Becausetheairattheseelevationsis

    quitecoldand"dry,"highcloudsarecomposedalmostexclusivelyoficecrystalsandareusuallyrather

    thin.

    4.6.2.1 FogandStratus(ST)

    Fogandstratuslayersappearsmooth,fairlyuniforminareaandslightlygrayormilkyinimagery. In

    visibleimagery. OnVISimagery,fog/stratusappearswhitetolightgrayinauniformsheetwithlittle

    textureasseeninFigure415overeasternKentucky,WestVirginia,andwesternNewYork. Alsoin

    Figure415,noticeoninfraredimagery,fogisdifficult,ifnotimpossibletointerpretduetothelow

    contrastintemperaturebetweentheearthssurfaceandthewarmtemperaturesofthefog. Continuing

    inFigure415,watervaporimageryisapoortooltouseforfogandstratussincethistypeofimagery

    detectsmoistureonlyinthemidandupperlevelsoftheatmosphere. Watervaporimagerydisplaysa

    darkregionthroughtheareaofstationsreportingfog. Ifterrainfeaturespenetratethecloudtop,fog

    andstratus

    will

    have

    sharp

    boundaries

    at

    these

    points.

    In

    mountainous

    or

    hilly

    terrain,

    fog

    and

    stratus

    insmallvalleysoftenhaveabranchingorveinlikeappearancecalledadendriticpatternasseenin

    Figure416

  • 8/14/2019 Ag3 Rtm Chap 4

    24/119

    4.6.2.2 Stratocumulus(SC)

    Stratocumulusformsduetoashallowlayerofinstabilityinthelowlevelswithastableatmospherealoft,

    asshowninFigure417. Onvisibleimagery,stratocumulusappearsascontinuouscloudsheets

    composedofparallelrollsorcellularelements. Itwillappearlightgraytowhitewithatexturedlook,as

    seeninFigure418overnorthernKansas,Nebraska,andIowa. Oninfraredimagery,itappearsdarkgray,

    indicatingwarmtemperatures,asseeninFigure419. Thecellularortexturedappearanceevidentin

    visibleimageryisnotobservedoninfraredimageryduetothelowerresolutionoftheIRsensorand

    contamination.

    WV SFC

    IR VIS

    WV SFC

    IR VIS

    Figure415. VISimageoffog/stratus

    (Source:NOAA)

    Figure416. DendriticPattern

    (Source:NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    25/119

  • 8/14/2019 Ag3 Rtm Chap 4

    26/119

    concentratedareasofcumulusareusuallydiscernibleandtheywillappearasdarkgraysincethecloud

    temperatureisaveragedwiththewarmertemperatureoftheunderlyingsurfacearoundtheclouds.

    Morevertically

    developed

    cumulus

    clouds

    within

    the

    field

    will

    assist

    greatly

    in

    identification

    on

    infrared.

    4.6.2.4 Cumulonimbus(CB)

    Cumulonimbusappearbrightwhiteonvisibleimagery,duetotheirhighalbedo,witharoundor

    elongatedanvilplumeasseeninFigure422overeastcentralAfrica. Theyhaveasharpupstreamcloud

    edge

    and

    a

    thin,

    diffuse

    anvil,

    which

    spreads

    out

    downstream.

    Oninfraredimagerycumulonimbusappearbrightwhiteeveninunenhancedimagery,asseeninFigure

    423.

    With

    enhancement,

    step

    contouring

    will

    help

    identify

    cells.

    A

    tight

    gray

    shade

    or

    color

    enhanced

    gradientisoftenpresentontheupstreamedgeoftheanvilcirrusandwillloosenrapidlydownstream.

    Thistightgradientindicatesstrongupdraftsresistingthe

    upperlevelflow. Individualupdraftcellsknownas

    overshootingtopsareoftenvisibleasabulgeabovethe

    otherwisesmooth

    anvil

    top.

    Overshooting

    tops

    normallyindicatesevereweatherbelowthe

    cumulonimbus. Theymayalsocastshadowsonlower

    clouddecksifthesunangleislowasseeninFigure424

    Figure422. VISimageofCB. Figure423. IRimageofCB.

    (Source: NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    27/119

    4.6.2.5 StratocumulusLines

    Stratocumuluselementsforminareasoflowlevel

    instability,whichiscausedbyairseatemperature

    differences. Thelinesarecreatedbythestrongvertical

    windshearandaninversion,whichcapsthevertical

    developmentofthecloud. Stratocumulusappearon

    visibleimageryaslightgraytowhitedependingonthe

    amountof

    contamination.

    The

    smallest

    cells

    are

    normallyontheupstreamsideoftheline.Theupstream

    edgeofthecloudsmayconformtothecoastlineifthe

    airisdestabilizingbecauseitismovingoutover

    warmerwater. Acloudfreeareausuallyexists

    betweenthe

    coast

    and

    where

    the

    first

    elements

    form.

    Thedistancebetweenthecoastandthefirstelement

    isafunctionofhowmuchmoistureexistsintheair

    massbeforeitmovesoutoverthewaterandwind

    speed,asseeninFigure426. Oninfraredimagery,

    theyappearmediumtodarkgrayandtheindividual

    linesmayormaynotbeidentifiabledependingonthe

    sensorresolution.

    4.6.2.6 ClosedcellStratocumulus

    Closedcellstratocumulusaretypically

    foundin

    large

    sheets

    associated

    with

    anticyclonicflowinthestableareaofthe

    subtropicalhighoveroceanicregions.

    Cloudelementsaretypicallyanywhere

    Figure426.

    Stratocumulus

    lines

    off

    EastCoastofU.S.(Source:NOAA)

    Figure425.

    WV

    image

    of

    CB.

    (Source:NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    28/119

    identifyit.Thecloudsareoftenfoundinthesoutheast,southern,andsouthwesternperipheriesof

    surfacehighpressurecenters.

    Theyappearonvisibleimagery,asseeninFigure428overthePacificOceanoffthecoastofCalifornia,

    aswhiteinthecenterandmediumgraytowhiteontheedges. Duetosensorresolution,closedcell

    stratocumuluswillusuallyappearsimilartostratuswithaveryuniform,mediumtodarkgrayshadeon

    infraredimagery,asseeninFigure429. NoticethecloudformalongtheCaliforniacoastline,thisisnot

    stratocumulus,butfog/stratusbutoninfraredimagery,thedifferenceisdifficulttodiscern. The

    stratocumulusformsfurtheroutovertheocean,awayfromthecoldCaliforniaCurrent,overareas

    wherethewaterismuchwarmerandconducivetothedevelopmentofstratocumulus.

    4.6.2.7 OpencellCumulus

    Opencellcumuluscloudswhich

    formoverwaterbehindmid

    latitudecyclonesandarecausedby

    theresultinginstabilityofcoldair

    advectionoverwarmerwater.

    Thereistypicallyanywherefroma

    20kmto100kmgapbetween

    cloudelements,asseeninFigure4

    Figure428. VISimageofclosedcellSC. Figure429. IRimageofclosedcellSC.

    (Imagerysource: NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    29/119

    Onvisibleimagery,opencellcumulusappearasopenandcircularringletsofcumuluswithclearcenters,

    asviewedinFigure431overtheNorthPacificOcean. Instronglowlevelwinds,theseringletswill

    becomedistorted

    into

    lines

    and

    individual

    elements

    may

    become

    difficult

    to

    detect

    due

    to

    sensor

    resolution. Oninfraredimagery,theyappearmediumtodarkgrayduetosensorresolutionand

    contaminationasviewedinFigure432. Eventhoughopencellcumulusarenotcappedandgrowto

    greaterverticalextentthanclosedcellstratocumulus,opencellcumulusmayappearwarmerdueto

    contamination.

    Figure431. VISimageofopencellcumulus. Figure432. IRimageofopencellcumulus.

    (VisualandInfraredImagerySource: NOAA)

    4.6.2.8 EnhancedCumulus

    Thesetell

    tale

    clouds

    are

    found

    in

    an

    area

    of

    open

    cell

    cumulusandwillappearmoreverticallydeveloped

    thantheremainderoftheopencellcumulusfield,as

    depictedinFigure433. Invisibleimagery,theyappear

    similartotoweringcumulusorsmallcumulonimbus

    cloudswhile

    the

    elements

    comprising

    the

    feature

    will

    formintoacomashapeindicatingavorticitymaximum

    inthemidlevelsoftheatmosphere. Oninfrared

    imagery,enhancedcumulusappearssimilartotoweringFigure433. Enhancedcumulus.(Source:PDC)

  • 8/14/2019 Ag3 Rtm Chap 4

    30/119

    stratocumulusfieldorsometimesdevelopinginthemiddleofthestratocumulusfieldonthesouthern

    sideofthehigh,locatedwellwithinthewarmairmass. Onvisibleimagery,theyappearlightgraydue

    tocontamination,

    often

    with

    afish

    bone

    or

    chicken

    wire

    appearance.

    Actiniform

    are

    slightly

    warmer

    on

    infraredimagerysowillappearmediumtodarkgray;slightlygrayerthanopencellcumulus,and

    individualelementsarenotidentifiable. Iftoomuchcontaminationoccurs,theareawillappearasa

    darkspotorholeinthestratocumulusfield.

    Figure434. Closeupofactiniformclouds Figure435. ActiniformcloudswestofSCfield.

    (ImagerySource: NOAA)

    4.6.2.10 RopeClouds

    Aropecloudiscomposedofcumulusor

    toweringcumuluscloudswhichareorganized

    intoalineatthetrailingedgeofanoceaniccold

    front,anddepictstheexactlocationofthat

    surfacecoldfront.Onvisibleimagery,itappears

    asaverynarrowlineofcumuliformcloudsandis

    bestidentified

    by

    observing

    the

    rope

    like

    configuration,asseeninFigure436justoffthe

    westcoastofAfrica. Oninfraredimagery,the

    rope cloud formation is somewhat difficult to

  • 8/14/2019 Ag3 Rtm Chap 4

    31/119

    4.6.2.11 ArcClouds

    Acurvedlineofcumuluscloudsformedduetoa

    thunderstormdowndraftofcoldair,asdepictedin

    Figures37and38. Asthecoldairdowndraftofa

    cumulonimbusspreads

    out

    in

    all

    directions,

    it

    acts

    asapseudocoldfrontanddisplacestherelatively

    warmerairatthesurfaceformingcloudsatthe

    liftingcondensationlevel(LCL). Onvisibleimagery

    anarccloudsappearssimilartoaropecloud

    exceptthat

    the

    parent

    thunderstorm

    is

    normally

    still

    in

    the

    vicinity

    on

    the

    concave

    side

    of

    the

    arc

    cloud.

    Oninfraredimagerytheymaybeundetectabledependingontheirverticalextentandsensorresolution.

    4.6.2.12 AltostratusandNimbostratus(AS/NS)

    Altostratusandnimbostratusareextensivesheetsof

    stratiformcloudinessfoundinthemidlayers. These

    cloudsarefoundintheeasternportionofsurfacecyclones,

    aheadofwarmfronts,andontheleadingedgeoffrontal

    systems. Thesecloudsareoftenmaskedbycirrostratus

    shieldsinactiveregionsofcommacloudsystems,as

    depictedbytheredarrowsinFigure439. Onvisible

    imagery,they

    will

    appear

    as

    bright

    white

    and

    uniform,

    normallycoveringextensiveareas. Shadowscastonorby

    theAS/NSfromhighcloudswillhelpdistinguishthemfrom

    CSorST. Oninfraredimagery,theyappearinuniformgrayFigure439. AS/NScoveredbycloudshield.

    Figure438. Sideviewofarccloud.

    Figure437. Topdownviewofarccloud.

  • 8/14/2019 Ag3 Rtm Chap 4

    32/119

    4.6.2.13 Altocumulus(AC)

    Oftenappearonvisibleimageryasabrightwhitecloudsheetwithatexturedappearance. Oninfrared

    imagery,altocumulusmayappearsimilartoaltostratusornimbostratusduetosensorresolution.

    4.6.2.14 AltocumulusStandingLenticular(ACSL)

    Alsoknownasmountainwaveclouds,theyformwhenstrong

    midlevelwindsflownearlyperpendiculartoamountain

    rangeinastableatmosphere,asdepictedinFigure440.

    Thesecloudsareanindicatorofmoderatetoextreme

    turbulence,dependingontheirproximitytothemountain

    range. Onvisibleimagery,theyarelightgraytowhitewitha

    washboard(banded)

    appearance,asviewedinFigure441. Oninfraredimagery,

    theyrange

    from

    medium

    gray

    to

    white.

    Individual

    elements

    areoftentoosmalltobedetectedbytheinfraredsensor.

    4.6.2.15Cirrus(CI)

    Thincirrusisverydifficulttodetectonvisibleimagerydueto

    contaminationfrombelow,asdepictedinFigure442bythe

    redarrow. Densecirruslookslikepatches,streaks,orbands,

    andhasamilkyappearance. Oninfraredimagery,thincirrusisnormallycontaminated,butiscold

    enoughtobediscernibleoverthewarmbackground,asseeninthesameareaonFigure443overthe

    AtlanticOcean. Densecirrusappearscold. Onwatervaporimagery,itrangesfromlightgraytobright

    white,asviewedinFigure444overthesamearea,dependingoncloudthickness.

    4.6.2.16 Cirrostratus(CS)

    Cirrostratusisashieldofcontinuous,variablydensecloudscoveringanextensivearea. Onvisible

    imagery,itwillappearbrightwhite,asseeninFigure445associatedwiththelowpressurecenterover

    Figure440. FormationofACSL.

    (Source:UniversityofWisconsin)

    Figure441.

    Altocumulus

    standing

    lenticular.(Source:NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    33/119

    Figure441. VISimageofcirrus Figure442. IRimageofcirrus.

    Figure443. WVimageofcirrus. Figure444. VISimageofCS.

  • 8/14/2019 Ag3 Rtm Chap 4

    34/119

    Inenhancedinfraredimagery,withaspecificallydesignedtemperaturecorrelatedgrayscale,the

    assistantforecasterandforecastercandeterminecloudheightsbycomparinggrayscaleshadesto

    upperlevelcharts. Inwatervaporimagery,itwillshowupasbrightwhite,asviewedinFigure447.

    OutsideofCBs,cirrostratusarenormallythecoldestcloudtops.

    4.6.2.17 Cirrocumulus(CC)

    Duetospacingandsizeofcirrocumulus,thiscloudtypemaynotreadilyshowuponvisibleimagerydue

    toextensive

    contamination.

    Infrared

    imagery

    may

    serve

    as

    the

    better

    tool

    to

    identify

    cirrocumulus

    due

    totheirverycoldtemperatures.

    4.6.2.18 CirrusStreaks

    Cirrusstreaksaresmallisolatedpatchesofcirrusgenerallyoccurringawayfromotherclouds. Theyare

    elongatedbytheupperwindflow,developwherethereisinsufficientmoistureforanentirecirrus

    shieldtoform,andareassociatedwithjetstreammaximums. Onvisibleimagery,asshowninFigure4

    48overSouthDakota,theyareverydifficulttodiscernbecausetheyarehighlycontaminatedfrom

    below. Oninfraredimageryacirrusstreakwillappearmediumgraytowhitebutmaystillsuffera

    degreeofcontaminationasevidencedinFigure449. Inwatervaporimagery,cirrusstreakswillappear

    lightgraytowhiteandyoumaybeabletodeterminecurvatureassociatedwiththecirrusstreak

    associatewithavorticitymaximum. CirrusstreaksinawatervaporimagecanbeinterpretedinFigure

    450.

    Figure449CirrusStreak

    IR

    7 JUL 09 1945Z

    Figure450CirrusStreak

    WV

    7 JUL 09 1945Z

    Figure448CirrusStreak

    VIS

    7 JUL 09 1945Z

  • 8/14/2019 Ag3 Rtm Chap 4

    35/119

    4.6.2.19 TransverseBands

    Thiscloudformationconsistsofirregularlyspaced,

    parallelbandsofthincirrusfilamentsandstrands

    orientedperpendiculartothewindflow,asshownin

    Figure451overNorthernMexico. Windspeedsin

    transversebandsareusuallygreaterthan80knots.

    Transversebandsaremostoftenassociatedwiththe

    subtropicaljet.

    4.6.2.20 LeeoftheMountainCirrus

    Thiscloudformationisamultilayeredcirruscloud

    shieldthatoccursontheleesideofamountainrange. Asharp,stationary,upstreamcloudedgealong

    theridgelineindicatesthepresenceofstandingmountainwaveclouds. Ittendstoformlateatnight

    whenanocturnalinversiondevelopsoverthe

    mountainsanddissipatesduringtheafternoonwhen

    theinversionisbrokenbydaytimeheating. The

    occurrenceofleeofthemountaincirrusseems

    highlydependentuponthepresenceofahighlevel

    moisturesourceinastrongwindzone. Onvisible

    imagery,itappearsasbrightwhiteandasthickas

    cirrostratus,withasharpedgealongthemountain

    ridgeline,upwind,becomingmorediffusedownwind

    wherecontaminationcanbecomesignificant. On

    infraredimagery,

    it

    appears

    bright

    white,

    as

    shown

    inFigure452,eastoftheRockyMountainsinColorado. Onwatervaporimagery,theyappearbright

    whiteextendingdownstreamfromthemountains. Adarkband,whichextendsupstreamand

    downstreamfromthemountainsonthenorthernedgeofthiscloudformation,indicatesthepositionof

    Figure51. TransverseBandingOverMexico.

    (Source:NOAA)

    Figure452. LeeofthemountainCI.

    (Source:NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    36/119

    4.6.2.21

    BillowClouds

    Thesecloudsareregularlyspacedcloudsthatadvectwiththewindandusuallyonlylastforafew

    minutesatatime. Theyarecausedbyverticalwindshearduetostrongerwindsaloftandcanoccurin

    themidtoupperlevelsoftheatmosphere,asdepictedinFigure453. Generally,billowcloudslookvery

    similartoACSLclouds,althoughspacingtendstobelessbetweenthebillowcloudsthanwiththeACSL

    clouds.

    Onvisible

    imagery,

    they

    appear

    as

    light

    gray

    to

    white

    with

    awashboard

    appearance

    and

    will

    showslightmovement. Contaminationisoftenaproblemduetothesmallspacingbetweenthe

    elements. Oninfraredimagery,theirappearancerangesfrommediumgraytowhite. Individual

    elementsareoftentoosmalltobedetectedbytheinfraredsensor.

    4.6.2.22 AnvilCirrus

    Thiscloudformationisexhaustfromthe

    topofathunderstormthatformsasharp

    upwindedgewithafuzzy,diffuse

    downstreamedge. Blowofffrom

    numerouscellsmayformanextensive

    cirrostratuscanopy.

    On

    visible

    imagery,

    theanvilwillappearasbrightwhiteonthe

    upstreamedgeandgraduallydarken

    downstream as it thins, as seen on Figure

    Figure453. Formationofbillowclouds.(Source:UniversityofWisconsin)

  • 8/14/2019 Ag3 Rtm Chap 4

    37/119

    indeterminingcloudheightbyagaincomparinggrayshadestotheimagetemperaturescale,then

    determiningatwhatleveloftheatmospherethattemperatureexists.

    4.6.3 NONCLOUDFEATURES

    Inadditiontotheseveraldifferentcloudfeatures,noncloudfeaturesarealsopredominantand

    importanttoaforecaster. Insomeways,noncloudfeaturescanbeconfusedwithcloudfeatures,soit

    isimportanttounderstandwhatthetelltalesignsareseparatingthetwo.

    4.6.3.1

    Snow

    Snowcoveredgroundappearsonvisibleimagerybetterthan

    infraredimagerybecauseofthebrightnesscontrastbetween

    thereflectivesnowfieldandthesurroundingbareground.

    Snowhasadendritic(veinlike)patterninmountainareas,as

    viewedin

    Figure

    455

    over

    the

    Sierra

    Nevada

    Mountains.

    Snowfieldsoverflat

    regionscanbe

    identifiedbythe

    snowfreeriversand

    lakesand

    also

    tend

    to

    be

    long,

    narrow,

    and

    smooth

    with

    sharp

    edges,asseeninFigure456overIllinois. Snowwillalso

    exhibitamottled(blotchy)appearanceinforestedareas,as

    seeninFigure457overcentralMississippi. Itwillbebright

    whiteinthe

    plainsanddecreasebrightnesswithincreasingvegetation

    densityandheight. Oninfraredimagery,freshsnowwill

    oftenappearcolderthansurroundingsnowfreeareas,

    especiallyaroundsunrise,butotherwiseblendsinwith

    Figure456. SnowfieldsoverIllinois.

    Source: NOAA

    Figure455. Dendriticsnowpattern.

    (Source: NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    38/119

    4.6.3.2 Ice

    Iceisusuallyonlydiscernibleonsatelliteimageryin

    largelakes,bays,andseas. Offshorewindswillmove

    andbreakupiceadjacenttotheshore. Waterand

    new,thintransparenticewillappearasdarkbands

    alongtheshore. Onvisibleandinfraredimagery,ice

    willhavethesamegrayshadeassnowandisdifficult

    todistinguish

    from

    snow

    cover.

    There

    may

    be

    dark

    fracturesorcracksintheicetohelpidentifyit,as

    seeninFigure458overLakeErie. Knowledgeofthe

    locationofbodiesofwatercomparedtolandisvery

    importantwhenidentifyingice.

    4.6.3.3 Sand/Dust

    Sandanddust,alsoreferredtoaslithometeors,are

    suspendedsurfaceparticlescarriedaloftbystrong

    synopticscalesurfacewinds,oftenforlongdistances,with

    themostcommonoccurrencesindesertregions. The

    upstreamedgeisusuallynotwelldefinedandmaybe

    difficulttodistinguishonvisibleimagery,appearingasa

    diffuseareaofamediumtolightgray,asseeninFigure4

    59overIraq. Itisverydifficulttodetectoninfrared

    imagerysince

    the

    sand

    or

    dust

    are

    usually

    near

    the

    sametemperatureastheland,butifcanbeseen,it

    willbeadarktomediumgrayshade.

    Figure458. IceoverLakeErie.

    (Source: NOAA)

    Figure459. Blowingdust

    overtheTexasPanhandle.(Source: NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    39/119

    4.6.3.4 Haze

    Hazeisverydifficulttodetect,especiallyoninfraredimagery. Visibleimagerywilldepictamilky

    appearance,similartothincirrus,butitistypicallymorewidespread,asshowninFigure460overthe

    UnitedStateseasternseaboard. Infraredimagerywillfavortheunderlyingsurfacetemperatures. Haze

    willbeevidentandpersistunderstagnantconditions(subsidencefromahigh). Sunangleisalsoakey

    factorininterpretinghaze. Hazeismuchmoreidentifiablewithalowsunangle,comparedtoatime

    duringahighsunangle.

    4.6.3.5 Smoke/Ash

    Smokefromfiresandindustryusuallyhasasharp

    boundaryatthesourceoftheplume,asseeninFigure

    461overMexico. Smokeandashfromvolcanoesmay

    bediscernibledependingonthelevelofvolcanic

    activity,buttheashreachesambientairtemperature

    veryrapidlysomaybecomelessidentifiableovertime.

    Ifavolcanicplumereacheshighaltitudes,theashcloud

    willappearcoldoninfraredimagery. Ashcloudsthat

    reachtheupperlevelscanbeadvectedlongdistances

    downstreamby

    upper

    level

    wind

    flow.

    The

    upstream

    edgeisnormallythick,whiledownstream,the

    ashcloudismorediffuseandthin. Ifthick,it

    willlookthesameasthickcirrusonvisibleand

    infraredimagery,asseeninFigure462over

    NewZealand.

    Figure461. Smokeplumes.

    (Source: NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    40/119

    4.6.3.6 WaterTemperature

    Differencesinwatertemperaturearereadily

    recognizedingoodinfraredimagery,aslongas

    thereisnosignificantlowlevelcloudcoverage,as

    seeninFigure463. TheNIRbandisusuallybestfor

    interpretingwatertemperature. Water

    temperatureisnotrecognizableonvisibleimagery

    becauseillumination

    is

    the

    key

    means

    of

    deriving

    theproduct,nottemperature. Watertemperature

    isalsonotrecognizableonwatervaporimagery. Visibleimagerymustbeused,ifavailable,toverify

    thereisnosignificantcloudcoverageinthelowerlevels.

    4.6.4 SYNOPTICSCALECLOUDORGANIZATIONS

    Commacloudsareassociatedwithsynopticscale,lowpressuresystemswithinthemidlatitude

    westerlies. Thereisonebasiccloud

    systemthatstartsthecommacloudand

    threebasiccloudsystemswhichmakeup

    thesynopticscalecommaclouditself.

    Certainparts

    of

    acomma

    cloud

    have

    their

    ownspecialnamesandcanbeusedto

    readilyidentifydifferentfeatures,as

    depictedinFigure464. Thesurgeregion

    iswheredry,subsidingairflowsintothe

    commacloud.

    It

    is

    also

    known

    as

    the

    dry

    slot. Thecommaheadisthenorthwest

    portionofthecloudsystem. Itis

    composedofthedeformationzonecloud

    Figure

    4

    63.

    Gulf

    Stream

    water

    temperatures.

    (Source: NOAA)

    Figure464. Partsofthesynoptic

  • 8/14/2019 Ag3 Rtm Chap 4

    41/119

    4.6.4.1 BaroclinicLeafs

    Abaroclinicleafisamidandupperlevelcloudpatternassociatedwithasystemwhichisjustbeginning

    todevelop,asshowninFigure465overtheNorthPacificOcean. Itnormallyhasashallow"S"shapeon

    thesharpupstreamedgeofthecloudsystem. A

    uniquecharacteristicisthe"V"notchinthetailof

    theleaf(thisiswherethepolarfrontjetisentering

    theleaf). Baroclinicleavesaresmallerthanthe

    moredeveloped

    synoptic

    scale

    comma

    clouds

    and

    maynotbeevidentonthesurfaceanalysis. They

    varymoreinshapethantheothercloudsystems,so

    identifyinglargeregionsoforganizedorunorganized

    midandupperlevelcloudinesscanpossiblyidentify

    thepresenceofabaroclinicleaf,suchasthearea

    overMontanainthesameimage,Figure465.

    4.6.4.2 BaroclinicZoneCloudSystem

    Thebarocliniczonecloudsystemisalarge,

    extensiveareaofmultilayeredcloudswhichare

    associatedwithabarocliniczone(frontalzone). A

    largecirrostratusshieldassociatedwithcoldand

    warmfrontsusuallytopsthemultilayeredclouds.

    Thecloudshieldformsinanareawherethe

    temperaturefield

    is

    out

    of

    phase

    with

    the

    pressure/windfield(describedasbaroclinicity,or,

    simplyput,whenthermaladvectionisoccurring.)

    Precipitation falling from this cloud shield is usually

    Figure465. Baroclinicleafs.(Source: NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    42/119

    4.6.4.3 VorticityCommaCloudSystem

    Thevorticitycommacloudsystemiscomposedofanareaoflowormidlevelconvectiveclouds

    organizedintoacommashapeandiscausedbytheupwardverticalmotionresultingfromthe

    divergenceaheadofavorticitymaximum,asshowninFigure467. Iftheatmosphereisunstable

    enoughtosupportstrongconvection,thecommacanalsobecomposedofthecirrusanvilsof

    cumulonimbuscloudsandprecipitationisconvectivewithrainshowersorsnowshowers.

    Figure467. Vorticitycommacloudsystem.(Source: NOAA)

    4.6.4.4

    DeformationZone

    Cloud

    System

    Thedeformationzonecloudsystemisanelongatedareaofmultilayeredcloudsthatarebeing

    stretched"and"sheared"byanupperleveldeformationzone,asdepictedinFigure467. Themulti

    layeredcloudsareusuallytoppedbyacirrostratusshield. Thecloudmasselongatesalongtheaxisof

    dilatationandshrinksalongtheaxisofcontraction. Theupwardverticalmotioncausingthecloudsis

    usuallydue

    to

    divergence

    aloft

    associated

    with

    the

    ascent

    of

    the

    cold

    conveyor

    belt

    and

    the

    divergent

    quadrantofajetmaximum. Thedeformationoftheupperlevelwindfieldthen"rearranges"thecloud

    massintotheclassicdeformationpattern. Precipitationisnormallystratiformandheaviestinthe

    southern portion of the deformation zone cloud system.

    Vorticity Comma Cloud System

    Deformation Zone Cloud System

  • 8/14/2019 Ag3 Rtm Chap 4

    43/119

    zonecloudsystemislowerandthinnerthanthebarocliniczonecloudsystem. TypeAsystemsare

    formedprimarilyfromMeridionalcyclogenesis.

    Figure468. TypeAOccludedSystem Figure469. TypeBOccludedSystem

    (Source: NOAA)

    4.6.4.6

    TypeB

    Occluded

    Systems

    TypeBsynopticscalecommacloudsystemsshowthebaroclinicanddeformationzonecloudsystems

    merged. Whilethewindcontinuestoflowacrossthebarocliniczonecloudsystemanddeformation

    zonecloudsystemssuchasinTypeAsystem,thewindspeeddropstolessthanjetstreamcriteria.

    Hencewesaythejetstopsandreformsonthenorthernsideofthebarocliniczonecloudsystem.

    Thedeformation

    zone

    cloud

    system

    is

    approximately

    the

    same

    height

    (temperature)

    as

    baroclinic

    zone

    cloudsystem,asviewedinFigure469. TypeBsystemsareformedprimarilyfromsplitflow

    cyclogenesis.

  • 8/14/2019 Ag3 Rtm Chap 4

    44/119

    4.7 ANALYSISOFMETEOROLOGICALFEATURES

    LearningObjective

    Identifysynopticscalemeteorologicalfeaturesidentifiableonsatelliteimagery.Lowlevelfeaturesareeasiesttoidentifyonvisiblesatelliteimagerysincethecontrastbetweenlow

    cloudsandtheEarth'ssurfaceisthegreatest. Still,theidentificationoflowlevelfeaturesismore

    difficultthantheidentificationofupperlevelfeatures. Sincevisibleimageryisonlyavailablehalfofthe

    time,you

    will

    need

    to

    be

    able

    to

    estimate

    the

    position

    of

    these

    features

    using

    infrared

    data.

    As

    an

    assistantforecaster,youwillbelocatingfrontsandpressuresystemsusingsatelliteimagerywhichdoes

    nothavetheresolutionofvisibleimagery,soexactpositionofweatherelementsisoftenmuchmore

    difficulttodetermine. Thebestapproachistocombineconventionaldata,whereavailable,with

    satelliteimageryindata

    sparseregions.

    4.7.1 JETSTREAMS

    Thefirstruleforplacingthe

    jetstreamaxisonsatellite

    imageryistoplaceitabout1

    oflatitude

    poleward

    of

    the

    sharpnorthernedgeofthe

    barocliniczonecloudshield,

    asshowninFigure470.

    Thesecondrulefor

    placementis

    where

    the

    upper

    level

    clouds

    are

    advanced

    downstream

    the

    furthest,

    as

    viewed

    in

    Figure

    471withtheredarrowwherethejetaxisandcloudbandintersects. Thisismostoftenseenwith

    occludedsystemswherethejetaxisentersthesurgeregion. Thesouthernportionofthesurgeregions

    typically displays a U shape where the jet stream starts to intersect the cloud band and will display a

    Figure470. Placingthejetinrelationtothebarocliniccloudshield.

    (Source: NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    45/119

    Figure471. Secondruleofjetplacement.

    Thethirdruleforplacementofthejetstreamiswhennohighcloudsarepresent,theaxisofthejet

    streamwill

    normally

    be

    located

    13

    of

    latitude

    on

    the

    cold

    side

    of

    the

    boundary

    between

    the

    open

    cell

    cumulusandclosedcellstratocumuluscloudfields,asshowninFigure472. Eventhoughthejetstream

    isanupperlevelfeature,wecanstillusethelowlevelcloudsintheabsenceofcirrusbasedonthe

    temperaturesthoseparticularcloudsdevelopin. Opencellcumulusisassociatedwithcoldunstableair,

    whileclosedcellstratocumulusisassociatedwithmorestable,warmair. Sincethejetstreamexists

    where

    there

    is

    a

    significant

    thermal

    discontinuity,

    we

    can

    place

    the

    jet

    stream

    in

    its

    approximate

    positionusingtheboundarybetweenthesetwodifferentlowlevelclouds.

  • 8/14/2019 Ag3 Rtm Chap 4

    46/119

    Thepolarfrontjetaxisflowsthroughsynopticscalecommacloudsystemsinoneoftwoconfigurations,

    TypeAorTypeB. InaTypeAsystem,thejetiscontinuousacrossthesystemandcrossesthecloud

    massat

    or

    just

    north

    of

    the

    surface

    front

    triple

    point.

    There

    will

    be

    adistinct

    separation

    between

    the

    deformationzonecloudsystemandthebarocliniczonecloudsystem. InaTypeBsystem,thejetis

    discontinuousthroughthecloudsystem. Thereisnoseparationbetweenthedeformationzonecloud

    systemandthebarocliniczonecloudsystem. Latentheatreleasehascausedthejettofanoutandwrap

    intothelow.

    Watervapor

    imagery

    is

    avaluable

    tool

    when

    analyzingthejetstream. Often,watervapor

    imageryistheonlyimagerywhichcanbeusedto

    accuratelyplacethejetaxisincloudfreeregions.

    Thejetstreamisassociatedwiththeboundary

    betweendarker(drier)stratosphericairand

    lighter(moister)troposphericare,asseenover

    thecentralUnitedStatesinFigure473. To

    analyzethejetstreamusingwatervapor

    imagery,locatethetightestmoisturegradient

    (wheretheimageturnsmostrapidlyfromwhitetodark)andplacethejetaxisinthedarkbandclosest

    tothe

    area

    of

    moisture

    as

    seen

    in

    Figure

    474.

    Figure

    475

    provides

    explanation

    on

    this

    technique.

    The

    PolarFrontJet(PFJ)liesbetweenthemidlatitudeFerrelCellandthePolarCell. ImaginethePolarFront

    Jet(PFJ)inFigure475ispropagatingawayfromyouandintothepage. Thecoldandmoistupper

    troposphereliestotherightofthePFJaxis,whilethewarmer,dryairofthestratosphereliestotheleft

    ofthePFJaxis. AsthePFJpropagates,itisalsorotatinginacounterclockwisefashion(asyouare

    viewingit.)

    To

    the

    right

    of

    the

    PFJ,

    motion

    is

    upward

    lifting

    any

    existing

    moisture

    and

    enabling

    cloud

    formation. TotheleftofthePFJ,motionisdownwardandsubsidenceisprevalenteliminatingany

    possibilityofcloudformation. Adarkbandthatbecomesbetterdefined(darkening/widening)indicates

    astrengtheningoftheassociatedjetstream.

    Fi ure473. WVima eof etstream.

  • 8/14/2019 Ag3 Rtm Chap 4

    47/119

    4.7.2 UPPERLEVELBAROCLINICLOWS

    Upperlevelbarocliniclowsthatsupportbarocliniclowsatthesurfacewillexhibitalargeverticaltiltand

    areusuallyfoundwiththeupperleveldeformationzone. Atthisstageinthedevelopmentofthe

    system,anextensiveshieldofcoldcloudtopswillbeassociatedwiththesystem. Theupperlowis

    locatedatthecuspoftheupperleveldeformationzonecloudsystem,asdepictedinFigure476. Water

    vaporimageryshowsadarkslotspiralingaroundthelowandadarkregionnormallyonthewestor

    northwestside. Thisisassociatedwiththeaxisofdilatationinthedeformationzone.

    Figure474. WVimageofjetstream.

    Tro os here

    Stratos here

    Figure475. PolarFrontJetin

  • 8/14/2019 Ag3 Rtm Chap 4

    48/119

    4.7.3 UPPERLEVELLOWSASSOCIATEDWITHDECAYINGWAVES

    Upperlevellowsassociatedwithdecayingwavesoftenshowcoldcloudtopsthatarefragmentedand

    disorganized,indicating

    the

    system

    is

    weakening.

    The

    upper

    low

    is

    located

    in

    the

    dry

    region,

    as

    depicted

    inFigure477. Watervaporimagerywillindicateadarkbandthatwrapsalmostcompletelyaroundthe

    low.

    Figure477. Upperlevellowassociatedwithadecayingwave.

    (Source: NOAA)

    4.7.4 CUTOFFLOWS

    Cutoff

    lows

    are

    deep

    pools

    of

    cold

    air

    located

    equatorward

    of

    the

    main

    polar

    front

    jet.

    There

    are

    three

    typicalcloudformationsassociatedwithcutofflows,asdepictedinFigure478.

  • 8/14/2019 Ag3 Rtm Chap 4

    49/119

    Inthebarocliniczonecirrus,thejetstream

    normallyflowsfromthesouthwesttonortheast

    justeast

    of

    the

    low

    center.

    The

    deformation

    zone

    cirrusisabandofcirrus,whichstretchesout,inan

    eastwestornortheastsouthwestdirection,north

    oftheupperlow,asviewedinFigure479. This

    bandofcirrusdevelopsduethedeformationzone

    createdbytheconvergencebetweenthelow

    circulationandtheprevailingflow. Core

    convectionappearsasconvectivecloudslocated

    directlyundertheupperlowwithinthecoldupperlevelcore. Watervaporimageryindicatesadark

    bandspiralingaroundthelow. Weakcutofflowsmaybebarelydiscernableoninfraredimagery,but

    standoutclearlyonwatervaporimagery.

    4.7.5 SURFACELOWS

    Duringtheinitialstagesofdevelopmentof

    amidlatitudecyclone,thefrontalclouds

    associatedwithaslowmovingcoldfrontor

    stationaryfront

    will

    begin

    to

    widen

    and

    haveaslightSshapeonthe+nsideofthe

    cloudband,asviewedinFigure480. The

    surfacelowwillbelocatedhalfwayintothe

    cloudpatternfromtheinflectionpointin

    thefrontalband. Thispatternisquite

    commonwithstablewavesoryoung,

    unstablewavesalongthefrontalboundary.

    Duringtheintensificationstageofthesurfacelowpressurecenter,thesynopticscalecommacloudwill

    Figure480. Initialstageofdevelopmentofa

    baroclinicsurfacelow. (Source:NOAA)

    Figure479. CutofflowovertheMidwestU.S.

    (Source:NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    50/119

    Figure481. Intensificationstageofabaroclinicsurfacelow.(Source:NOAA)

    Duringthematurestage,thesurfacelowisstartingtobecomemoreverticallystackedwiththeupper

    low. Asthesurfacelowoccludes,itmigratesontothecoldsideofthejet,asseeninFigure482. The

    positionofthesurfacelowwillbeontheupstreamedgeofthevorticitycommacloud,beneaththe

    upperleveldryslot,justeastofthedeformationzonecloudsystem. Inmanycases,thedeformation

    zonecirrusandthedryslothavewrappedaroundthesurfacelow.

    H th l l d f l i thi t l ti l i t t th t f

  • 8/14/2019 Ag3 Rtm Chap 4

    51/119

    However,theupperlevelandsurfacelowsare,inthisstage,nearlyverticalinstructuresothecenterof

    thecyclonicswirlinthelowcloudswillidentifythegenerallocationofthesurfacelowpressurecenter.

    asseen

    in

    Figure

    483.

    Figure483. Decayingstageofasurfacelow.(Source:NOAA)

    4.7.6 FRONTS

    Frontsarenormallylocatedwithinacommacloudstructureoranorganizedmultilayeredcloudband. In

    mostcaseswithsatelliteimagery,youcanonlyplacethegeneralpositionofthefront. Togetan

    accuratefrontalposition,youwillneedtosupplementsatelliteanalysiswithconventionalsynopticdata.

    Frontsarenormallyeasiertoidentifyoverwaterthanlandbecausemoremoistureisavailableforcloud

    formationalongthefrontalboundary.

    4.7.6.1 ColdFronts

    Typically,acoldfrontislocatedunderthemultilayered,barocliniczonecirrusofthecommacloud

    structurebeginningattherearportionofthecommacloudstructureclosesttothelow,movingtoward

    the middle of the cloud formation about midway through the comma then toward the forward part of

    An active cold front is slow moving between 5 and 15 knots and will have a more stratified cirrus cloud

  • 8/14/2019 Ag3 Rtm Chap 4

    52/119

    Anactivecoldfrontisslowmoving,between5and15knots,andwillhaveamorestratifiedcirruscloud

    shieldwithuniformcloudtoptemperatureswithanextensivebarocliniczonecloudshield. Thecold

    frontin

    the

    case

    of

    an

    active

    cold

    front,

    will

    be

    located

    near

    the

    east

    side

    of

    the

    comma

    tail

    with

    the

    majorityofthecloudinessbehindthefront,asdepictedinFigure484. Thepolarfrontjetflowsparallel

    tothefrontanddoesnotpushthefrontalong,hencethereasonforitsslowmovementandrelatively

    widecloudshield. Temperatureswilldroprapidlyacrossthefrontanddewpointswilldropgradually

    duetotheassociatedmoisturebeinglocatedatandbehindthefront. Theslopeofthefrontistypically

    shallow.

    Figure484. Active,slowmovingcoldfront.(Source:NOAA)

    Clouds,ifpresent,alongafastmoving,inactivecoldfrontareconvectiveinnature. Strong

    perpendicularwindflow,relativetothefront,pusheslowlevelconvergenceaheadofthefrontoften

    formingsqualllinesaheadofthesurfacefront. Afastmovingcoldfrontwillnothavealargebaroclinic

    zonecloud

    shield.

    The

    cold

    front

    will

    be

    located

    along

    the

    backside

    of

    the

    cloudiness,

    often

    in

    the

    clear

    airasseeninFigure485inthevicinityoftheNorthandSouthCarolinacoastline. Thepolarfrontjetwill

    bemoreperpendiculartothefront,pushingthefrontalongatafasterpace. Temperatureswilldrop

    d ll h f d d ll d dl h d l d

  • 8/14/2019 Ag3 Rtm Chap 4

    53/119

    Figure485. Inactive,fastmovingcoldfront.

    4.7.6.2 WarmFronts

    Warmfrontsaremoredifficulttoposition

    becausecloudinessrangesfromscattered

    tomultilayeredclouds. Thesurfacewarm

    frontislocatedwithintheVnotchor

    wedgeonthewarmsideofthebaroclinic

    zonecloudshield,asdepictedinFigure4

    86. Alowcloudbandnormallyextends

    eastwardalongthefront. Thiscloudiness

    isformedbywarmmoistairascendingthe

    warmfrontalslope. Imbeddedconvection

    mayform

    ahead

    of

    the

    warm

    front

    due

    to

    theliftingofunstableairalongthewarm

    frontalsurface.

    baroclinic zone cloud system as depicted in Figure 487 On water vapor imagery there is a gray shade

  • 8/14/2019 Ag3 Rtm Chap 4

    54/119

    barocliniczonecloudsystem,asdepictedinFigure4 87. Onwatervaporimagery,thereisagrayshade

    differencebetweenthebarocliniczonecirrusandthelowervorticitycommacloud.

    Figure487. TypeAoccludedfront. Figure488. TypeBoccludedfront.

    (Source:NOAA)

    InType

    B

    systems,

    triple

    point

    placement

    is

    not

    so

    straightforward.

    Extrapolation

    of

    the

    warm

    and

    cold

    frontalpositionsisrequiredtofindthetriplepoint. Oncethecoldandwarmfrontshavebeenlocated,

    simplyextendthefrontalsurfacesuntiltheyintersectonthe+nsideofthebarocliniczonecirrus,as

    showninFigure488.

    4.7.6.4 StationaryFronts

    Thestationaryfrontisnormallylocatedalongthesouthernedgeofthecloudbandthattypicallyextends

    moreeasttowestasseeninFigure489. Overwatertheremaybearopecloud,whichindicatesthe

    exactlocationofthefront. Cloudsarenormallycumuliformonthewarmsideofthefront,whilethe

    typeofcloudinessonthecoldsideofthefrontdependsonthestabilityoftheoverlyingwarmairand

    thesteepnessofthefront. Iftheoverlyingwarmairisstable,stratiformcloudinesswilldevelop. Ifthe

    overlyingwarm

    air

    is

    unstable,

    stratiform

    cloudiness

    with

    embedded

    cumuliform

    activity

    will

    develop.

  • 8/14/2019 Ag3 Rtm Chap 4

    55/119

    Figure489. Placementofastationaryfront.(Source:NOAA)

    4.7.7 UPPERLEVELHIGHS

    Upperlevelhighsaredifficulttopositionsincetheyproducesubsidence,downwardverticalmotion,and

    inhibitverticalclouddevelopment. Watervaporimageryisparticularlyusefulforidentifyingclosed

    upperlevelhighs. Withinthelongwaveridge,watervaporimageryindicatesaboundarybetweenthe

    moistairtothewestanddrierairtotheeast. Thisboundaryisnormallyragged.

    Figure490. IRimageofU/Lhigh Figure491. WVimageofU/Lhigh

    (Source: NOAA)

    4.7.8 SURFACEHIGHS

  • 8/14/2019 Ag3 Rtm Chap 4

    56/119

    Highsoverlandcanbelocatedbynotingthe

    effectof

    the

    wind

    flow

    on

    low

    clouds.

    In

    late

    falltoearlyspring,stratocumuluslines

    developontheleewardsideoflakesandoff

    coastlines. Fogandstratusnormallydevelop

    withupslopeflowassociatedwithwestside

    of

    a

    high,

    as

    viewed

    in

    Figure

    4

    92

    over

    OklahomaandArkansas. Surfacehighscan

    alsobeidentifiedbyalackofmidandupper

    levelcloudinessasseenovertheAppalachian

    Mountainsinthesameimage.

    Over

    water,

    the

    high

    center

    is

    located

    using

    a

    combinationofcloudpatternsandthelowpressure

    centerlocation. Inthesouthernhalfofahigh,

    closedcellstratocumulusisnormallypresentwitha

    clearzonetothewest. Westoftheclearzoneis

    anotherfrontalsystemwithlowlevelcloudiness.

    Thehighcenterisnormallylocatedintheeastern

    portionoftheclearzone,asseeninFigure493. The

    ridgeaxisislocatedwherethecloudsshow

    thestrongestanticyclonicturninginthe

    cumuluslines.

    Whentwofrontalsystemscomeincloseproximity,asharpsurfaceridgeisfoundbetweenthem,as

    depictedinFigure494. Onthenorthernsideofthesurfacehigh,windsshiftfromasouthwesterly

    directiontoanorthwesterlydirectioneastofthesurfaceridge. Thesurfaceaxisispositionedalonga

    Figure492. Upslopeflowshowingahightotheeast.

    (Source:NOAA)

    Figure493. Highpressurecenterlocatedoverthecoast

    ofCalifornia.(Source:NOAA)

  • 8/14/2019 Ag3 Rtm Chap 4

    57/119

    Figure494. Surfaceridgebetweentwoclosefrontalsystems.

    (Source:University

    of

    Wisconsin)

    4.7.9 TROPICALWEATHERSYSTEMS

    Tropicalcyc