26
Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2 , O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre, Mechanics, KTH Co-workers: M. Chevalier, M. Berggren, D. Henningson

Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Embed Size (px)

Citation preview

Page 1: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Aerodynamic Shape Optimization of Laminar Wings

A. Hanifi1,2, O. Amoignon1 & J. Pralits1

1Swedish Defence Research Agency, FOI2Linné Flow Centre, Mechanics, KTH

Co-workers: M. Chevalier, M. Berggren, D. Henningson

Page 2: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Why laminar flow? Environmental issues!

A Vision for European Aeronautics in 2020:

”A 50% cut in CO2 emissions per passenger kilometre (which means a 50% cut in fuel consumption in the new aircraft of 2020) and an 80% cut in nitrogen oxide emissions.”

”A reduction in perceived noise to one half of current average levels.”

Advisory Council for Aeronautics Research in Europe

Page 3: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Drag breakdown

G. Schrauf, AIAA 2008

Page 4: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Friction drag reduction

Possible area for Laminar Flow Control:

Laminar wings, tail, fin and nacelles -> 15% lower fuel consumption

Page 5: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Transition control

Transition is caused by

breakdown of growing

disturbances inside the

boundary layer.

Prevent/delay transition by

suppressing the growth

of small perturbations.

instability waves

Page 6: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Control parameters

Growth of perturbations can be controlled through e.g.:

• Wall suction/blowing

• Wall heating/cooling

• Roughness elements

• Pressure gradient (geometry)

} active control

} passive control

Page 7: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Theory

We use a gradient-based optimization algorithm to minimize a given objective function J for a set of control parameters .

J can be disturbance growth, drag, …

can be wall suction, geometry, …

Problem to solve:?

J

Page 8: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Parameters

Geometry parameters :

Mean flow:

Disturbance energy:

Gradient to find:

iy

Q

iy

E

Q

E

NLF: HLFC:

Page 9: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Gradients

Gradients can be obtained by :

• Finite differences : one set of

calculations for each control

parameter (expensive when no.

control parameters is large),

• Adjoint methods : gradient for all

control parameters can be found by

only one set of calculations including

the adjoint equations (efficient for

large no. control parameters).

i

e

ei y

P

P

Q

Q

E

y

E

Adjoint Stability

equations

Adjoint Boundary-layer

equations

Adjoint Euler

equations

Page 10: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

• Solve Euler, BL and stability equations for a given geometry,

• Solve the adjoint equations,

• Evaluate the gradients,

• Use an optimization scheme to update geometry

• Repeat the loop until convergence

Solution procedure

*ShapeOpt is a KTH-FOI software (NOLOT/PSE was developed by FOI and DLR)

PSEEuler BL

Adj.BL

Adj. PSE

Adj.Euler

Optimization

EE

AESOP ShapeOpt

Page 11: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Minimize the objective function:

J = uE + dCD + L(CL-CL0)2 + m(CM-CM

0)2

can be replaced by constraints

Problem formulation

Page 12: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Comparison between gradient obtained from solution of adjoint equations and finite differences. (Here, control parameters are the surface nodes)

Accuracy of gradient

dydxwvuEJ 222

Fixed nose radius

Page 13: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Low Mach No., 2D airfoil (wing tip)

Subsonic 2D airfoil:

• M∞ = 0.39

• Re∞ = 13 Mil

Constraints:

• Thickness ≥ 0.12

• CL ≥ CL0

• CM ≥ CM0

J= uE + dCD

Amoignon, Hanifi, Pralits & Chevalier (CESAR)

Transition (N=10) moved from x/C=22% to x/C=55%

Page 14: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Low Mach No., 2D airfoil

Optimisation history

Page 15: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Low Mach No., 2D airfoil (wing root)

Subsonic 2D airfoil:

• NASA TP 1786

• M∞ = 0.374

• Re∞ = 12.1 Mil

Constraints:

• Thickness ≥ t0

• CL ≥ CL0

• CM ≥ CM0

J= uE + dCD

Amoignon, Hanifi, Pralits & Chevalier (CESAR)

Transition (N=10) moved from x/C=15% to x/C=50% (caused by separation)

InitialIntermediateFinal

Page 16: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Low Mach No., 2D airfoil (wing root)

RANS computations with transition prescribed at:

N=10 or Separation

Need to account for separation.

Separation at high AoA

Amoignon, Hanifi, Pralits & Chevalier (CESAR)

Page 17: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Low Mach No., 2D airfoil (wing root)

Optimization of upper and lower surface for laminar flow

Amoignon, Hanifi, Pralits & Chevalier (CESAR)

Page 18: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,
Page 19: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

The boundary-layer computations stop at point of separation:

No stability analyses possible behind that point.

Force point of separation to move downstream:

Minimize integral of shape factor H12

Page 20: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Minimize a new object function

where Hsp is a large value.

dxHdxHJTE

sp

sp x

x

sp

x

0

12

Page 21: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Minimizing H12

Not so good!

Page 22: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Minimizing H12 + CD

D

x

x

sp

x

CdxHdxHJTE

sp

sp

0

12

Page 23: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

Include a measure of wall friction directly into the object function:

cf is evaluated based on BL computations.

Turbulent computations downstream of separation point if no turbulent separation occurs.

Gradient of J is easily computed if transition point is fixed.

Difficulty: to compute transition point wrt to control parameters.

TEx

f dxcJ0

Page 24: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

3D geometry

Extension to 3D geometry:

Simultaneous optimization of several cross-sections

Important issues:

• quality of surface mesh (preferably structured)

• extrapolation of gradient values

• paramerization of the geometry

Page 25: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

2D constant-chord wing

Structured grid(medium)

Unstructured grid(medium)

Unstructured grid(fine)

Page 26: Aerodynamic Shape Optimization of Laminar Wings A. Hanifi 1,2, O. Amoignon 1 & J. Pralits 1 1 Swedish Defence Research Agency, FOI 2 Linné Flow Centre,

2D constant-chord wing

Structured grid(medium)

Unstructured grid(medium)

Unstructured grid(fine)