24
month 200X Use menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 1 © AIRBUS DEUTSCHLAND GMBH. All rights reserved. Confidential and proprietary document. Presented by Daniel Reckzeh Airbus Aero Design & Data Dept. Bremen / Germany Aerodynamic Design of Airbus High-Lift Wings DLR Ehemaligentreffen Braunschweig 17-Jun-05

Aerodynamic Design of High Lift Wings

Embed Size (px)

DESCRIPTION

aerodynamic design book

Citation preview

Page 1: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 1© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Presented by

Daniel Reckzeh

Airbus Aero Design & Data Dept.

Bremen / Germany

Aerodynamic Design of Airbus High-Lift Wings

DLR Ehemaligentreffen Braunschweig 17-Jun-05

Page 2: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 2© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Overview

• Zur Person

• Process & tools for high-lift design at Airbus4The high-lift wing design process4CFD4Windtunnel testing

• Examples from High-lift Wing Design Tasks4Integrated High-Speed / Low-Speed Design4Aero optimisation & Systems constraints4Multidisciplinary optimisation4Configuration issues

Page 3: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 3© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Zur Person

Was ich aus dem DLR mitgenommen habe:

Einstieg in die LuftfahrtbrancheErfahrungen in der „akademischen“ & „industriellen“ Aerodynamik Netzwerkbildung im Rahmen der NWI (Nachwuchsinitiative)

¦

¦

¦

Stationen im DLR:

Wissenschaftlicher Mitarbeiter im DLR Braunschweig (SM-EA) im Rahmen der DLR-DASA „Nachwuchsinitiative“, abgeordnet zu Airbus Bremen, Segment Produktaerodynamik, Fachgebiet: Aerodynamischer Entwurf von Hochauftriebssystemen

1998-2000

Stationen außerhalb des DLR:

Selbständige Tätigkeit (eigenes Ingenieurbüro) im Unterauftrag von Airbus Bremen im TragflügelentwurfAirbus Bremen - Entwurfsingenieur im aerodynamischen Entwurf in der Abteilung „High-Lift devices“

1997-98

2000-03

Airbus Bremen – Engineering / Flight-PhysicsAerodynamic Design & Data Domain (EGA)Leitung der transnationalen Abteilung „High-lift devices“ (Bremen &

Filton)Leitung des Segments „Configuration design“ (Bremen)

Meine jetzige Tätigkeit:

Seit 2003

Seit 2005

Daniel Reckzeh

34 Jahre

Page 4: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 4© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Zur Person

Welche Tätigkeitsbereiche habe ich durchlaufen ?• Build up of a process chain for Geometry tools and CFD-Methods for

high-lift wing design• CFD-Tool development: Modelling of 3D separated flows on complete

aircraft configurations• Windtunnel model specification for high-lift wing development• High-lift windtunnel testing and analysis for R&T and A380• In charge of A380 high-lift wing aerodynamic design• Coordination of A400M Airbus high-lift wing aerodynamic design• Transnational Lead of High-Lift Devices Group, responsible for all

Airbus High-Lift Wing Design activities• Capability Manager Configuration Design

Page 5: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 5© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Organisation Airbus Engineering

Architecture & Integration

Systems and Integration Tests

Structure

Powerplant Systems

Research / Technology

Product Integrity

Flight Operations

Flight Safety Enhancement

Flight Physics

Page 6: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 6© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Organisation Airbus Flight Physics

Flight PhysicsResources Management

Policy and Development

Aerodyn. Design & Data

Aerodyn. Windtunnel Testing

Loads & Aeroelasticity

Aircraft Performance

Mass Properties

Flight Dynamics Simulation

College of Experts

Page 7: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 7© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

OrganisationAero Design & Data Domain Germany

Aerodynamic Design & Data Domain

Germany

Aero Data for Loads

Aero Data for Performance

Data Modelling

High-lift Devices

Fuselage/Tails

Config Design Support

Methods, Tools & Processes

Methods & Tools

Complete Aircraft

Complex CFD

Far-field Impact

Ice Prdiction

Page 8: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 8© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Requirements to the High-Lift Configuration

• Sufficient high lift performance• Low take-off drag• Acceptable handling quality• Low system weight & complexity

a multidisciplinary design problem

Page 9: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 10© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

The High-Lift Wing Aero Design Process

High Lift DevicesAero design &

Master Geometry

Clean

Take off Flap 16°

Landing Flap 34°

Inputs• TLAR (requirements, performance & noise targets)

• General A/C layout• Wing planform• Cruise Wing surface

Tools•CAD•KBE aero design tools•CFD Flow Analysis•Windtunnel testing•Aeroacoustic analysis

Outputs•High-lift configuration layout•High-lift devices shapes•Requirements for system design (Target kinematics, Settings, etc)

Page 10: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 11© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Parametric Shape Design & Analysis Tools

Clean-Wing

Planform Definition

Component Design

2D CFD3D CFD

2D-Setting3D-Setting

Geo-Analysis

Page 11: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 12© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Parametric Shape Design & Analysis Tools

• Examples from Droop Nose Device Design

Shape design incl kinematic constraints

Target kinematicsAerodynamic analysis

Page 12: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 13© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

CFD-based High-Lift Wing Design

Quasi-3D

3D-Panel

2D-Navier-Stokes2D-Panel

3D-Euler 3D-Navier-Stokes

Page 13: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 14© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Windtunnels for Airbus High-Lift Development

A380 „Model chain“ (1)Small Halfmodel X03(Scale 1:32)

• LSWT Bremen (Re=1.5 Mio)• KKK Cologne (Re=7 Mio)• ETW Cologne (Re=25 Mio)

A380 „Model chain“ (2)Large complete model X08(Scale 1:17)• DNW Emmeloord (Re=3.5 Mio)Large halfmodel X08Hl LSWT Filton (Re=3.5 Mio)l F1 Toulouse (Re=12 Mio)l Q5m Farnborough (Re=10 Mio)

A380 „Model chain“ (3)Complete model X06• LSWT Filton

(Re=1.5 Mio)• F1 Toulose

(Re=8 Mio) • Q5m Farnborough

(Re=6 Mio)

Page 14: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 15© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Tools for design verification: CFD vs Windtunnel ?

• CFD and Wintunnel are tools for design analysis.4“CFD delivers fast pretty pictures but with partly questionable results” 4“Windtunnel testing is extremely expensive and requires too much time”

• Way out ? 4“Despite their discrepancies we can not live without the one or the other,

the combination of both advantages makes it.”4CFD to be used in far more intensive combination with Windtunneltesting4The major step ahead for design will be the close-coupled use of reliable

(i.e. validated) complex CFD

Designers’ view (provocative) :

?

Page 15: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 16© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Integrated High-Speed / Low-Speed Design

• Thin outer wing profiles with small leading edge radius: high Slat-angle necessary, therefore long Slat-tracks with high weight andintregration problems

• Thin rear profile thickness (high rear-loading in cruise):low flap-thickness with high boundary layer loading, high flap structure weight, flexible structure gives difficulties in maintaining target flap gap

Page 16: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 17© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

The droop-nose device

Lug

Actuator link

Lever

Arm HL rotationaxis

Link

122°

26°

Droop Nose Device

lower dragreduced maximum lift

Slat

higher maximum liftincreased drag

Selected for inboard wing of A380

Page 17: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 18© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Kinematics system versus Aero target

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

Flap Angle °

Ove

rlap

%

0

0,3

0,6

0,9

1,2

1,5

1,8

2,1

Gap

%

0,00

0,30

0,60

0,90

1,20

1,50

1,80

2,10

0 5 10 15 20 25 30 35 40 45 50 55 60

Flap angle

Gap

[% o

f cle

anw

ing]

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00Target Gap 27-87 FVF (track)

Target Gap 27-87 FVF (dropped hinge)

Target OL 27-87 FVF (track)

Target OL 27-87 FVF (dropped hinge)

Track mechanism fulfills Aero Target, but complex and heavy

Dropped Hinge mechanism insuffiecient to Aero Target, but less complex and lighter

Overlap

Gap

Page 18: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 19© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Multidisciplinary design optimisation

0

0,2

0,4

0,6

0,8

1

1,2

1,4

-1-0,500,511,522,533,544,555 , 56

O v e r l a p O / L [ % o f c h o r d ]

Pivot-Kinematics Linkage-Kinematics Track-Kinematics

100,0%81,5%

75,0%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Syst

emge

wic

ht

Track-System Linkage-System Pivot-System

•Systems dependancies

•Aero dependancies

•Performance dependancies Takeoff Performance

MEGALINER

Runway length [1000 m]

Gro

ss W

eigh

t [10

00 k

g]

Megaliner Reference

Megaliner Reference - delta CD =0,0025 Overlap

Gap

Coupled Sensitivities

Overlap

Gap

Coupled Sensitivities

0

0,2

0,4

0,6

0,8

1

1,2

1,4

- 1-0,500,511,522,533,544,555,56

O v e r l a p O / L [ % o f c h o r d ]

Pivot-Kinematics Linkage-Kinematics Track-Kinematics

Startposition des Flaps für die Optimierung

Referenzposition des Flaps

Optimierte Flap-Position Starting point OptimumReference

Overlap

Gap

Result of coupled optimisation

0

0,2

0,4

0,6

0,8

1

1,2

1,4

- 1-0,500,511,522,533,544,555,56

O v e r l a p O / L [ % o f c h o r d ]

Pivot-Kinematics Linkage-Kinematics Track-Kinematics

Startposition des Flaps für die Optimierung

Referenzposition des Flaps

Optimierte Flap-Position Starting point OptimumReference

Overlap

Gap

Result of coupled optimisation

Page 19: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 20© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Wing Layout Studies

• Flexible wing structure with aileron reversal tendency:Application of an inboard „All-Speed-Aileron“ with increased outer flap span, resp. application of an inboard „Taberon“

Page 20: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 21© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Impact of the landing gear height

Relatively short landing gear legs required • to control aircraft weight• to improve space allocation for I/B flap

Page 21: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 22© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Impact of the landing gear height

fuselage close to groundè rotation limit

α 0°

CL

CL 0

rotation"

α−rot

engine close to wingè engine exhaust jet blowing on flaps

challenge :sufficient lift at α = 8°...10° but maximum lift can be somewhatcompromised (without negativeeffect on T/O performance)

challenges :• prediction of aerodynamic ínterference• vibrations by turbulent engine exhaust• temperatures on high lift elements –

material ?

Page 22: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 23© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Conclusions

• High-Lift Design is a major driver for overall wing design

• Continuing adaptation of the high-lift wing layout to the current aircraft requirements:aerodynamic design not better than necessary

• Optimisation under multidisciplinary constraints: small penalty for aerodynamics can cause large benefit for other disciplines

• Consequent design verification with high Reynolds-number testingand CFD predictions is necessary to reduce (unwanted) margins for the aircraft as far as possible

• Design decisions more and more based on CFD alone

• A closed multidisciplinary design loop is not possible due to the complexity of the task

Page 23: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 24© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

Vielen Dank für die Aufmerksamkeit !Fragen ?

Jetzt, gleich, oder: [email protected]

Page 24: Aerodynamic Design of High Lift Wings

month 200XUse menu "View - Header and Footer" for Presentation Title - Siglum - Reference Page 25© A

IRB

US

DE

UTS

CH

LAN

D G

MB

H.

All

right

s re

serv

ed. C

onfid

entia

l and

pro

prie

tary

doc

umen

t.

© AIRBUS DEUTSCHLAND GMBH. All rights reserved. Confidential and proprietary document.

This document and all information contained herein is the sole property of AIRBUS DEUTSCHLAND GMBH. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS DEUTSCHLAND GMBH. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS DEUTSCHLAND GMBH will be pleased to explain the basis thereof.

AIRBUS, its logo, A300, A310, A318, A319, A320, A321, A330, A340, A350, A380, A400M are registered trademarks.