250
AECL-9066 ATOMIC ENERGY & S & L'ENERGIE ATOMIOUE OF CANADA LIMITED £ 9 DU CANADA,LIMITEE HYDRAULIC CHARACTERIZATION OF A SMALL GROUNDWATER FLOW SYSTEM IN FRACTURED MONZONITIC GNEISS CARACTERISATION HYDRAULIQUE D'UN PETIT RESEAU D'ECOULEMENT D'EAUX SOUTERRAINES EN FORMATION DE GNEISS MONZONITIQUE K. G. Raven Whiteshell Nuclear Research Etablissement de recherches Establishment nucleaires de Whiteshell Pinawa, Manitoba ROE 1LO August 1986 aout

AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

AECL-9066

ATOMIC ENERGY & S & L'ENERGIE ATOMIOUEOF CANADA LIMITED • £ 9 DU CANADA,LIMITEE

HYDRAULIC CHARACTERIZATION OF A SMALL GROUNDWATER FLOW SYSTEM

IN FRACTURED MONZONITIC GNEISS

CARACTERISATION HYDRAULIQUE D'UN PETIT RESEAU D'ECOULEMENT D'EAUX

SOUTERRAINES EN FORMATION DE GNEISS MONZONITIQUE

K. G. Raven

Whiteshell Nuclear Research Etablissement de recherchesEstablishment nucleaires de Whiteshell

Pinawa, Manitoba ROE 1LOAugust 1986 aout

Page 2: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Copyright © Atomic Energy of Canada Limited, 1986

Page 3: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

ATOMIC ENERGY OF CANADA LIMITED

HYDRAULIC CHARACTERIZATION OF A SMALL GROUNDWATER FLOW

SYSTEM IN FRACTURED MONZONITIC GNEISS

by

K.G. Raven

Whlteshell Nuclear Research EstablishmentPinawa, Manitoba ROE 1L0

1986 AugustAECL-9O66

Page 4: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

CARACTERISATION HYDRAULIQUE D'UN PETIT RESEAU D'ECOULEMENT D'EAUX

SOUTERRAINES EN FORMATION DE GNEISS MONZONITIQUE

par

K..G. Raven*

RÉSUMÉ

On a déterminé, d'après des études en surface et en sondage, lescaractéristiques hydrauliques d'un petit réseau d'eaux souterraines actifdans un bloc de gneiss monzonitique fracturé, de 200 m de long sur 150 m delarge et 50 m de profondeur, situé à Chalk River en Ontario.

Les études en surface, dont l'analyse des lignes d'affaissementprises en photo aérienne, la géophysique terrestre et aéroportée et lacartographie des fractures, ont servi à définir le système de fractureslocal et régional, à trouver un emplacement pour le site d'études et àorienter le programme de forage d'exploration. On a réalisé des études desous-sol dans 17 sondages dont la diagraphie, les essais systématiquesd'injection avec packers â deux éléments, les essais d'injection et depompage hydrauliques et les mesures de charge hydraulique à long terme. Ona effectué les essais d'injection et de pompage hydrauliques et les mesuresdans 90 intervalles d'essais isolés par packers et formés par l'installationde tubages de plusieurs packers dans chaque sondage. Les essais d'injectionet de pompage hydrauliques ont donné des renseignements précis sur l'orificede simples fractures et la propriété de rétention de quatre zones defractures principales (étendue >50 m) équivalentes et sur la propriété dediffusion hydraulique verticale de la masse rocheuse du site d'études. On acombiné les diagraphies de fractures et les résultats d'essais d'injectionpour fournir une représention tensorielle de la conductivitë hydraulique dechaque intervalle d'essais. On présente et interprète les résultats desétudes détaillées pour donner une description complète en trois dimensionsdu réseau d'écoulement d'eaux souterraines.

Il y a présence d'un réseau d'écoulement contrôlé par gravité dansle site d'études de Chalk River. L'écoulement d'eaux souterraines dans laroche est principalement perpendiculaire à une zone de fractures à faiblecharge hydraulique à une profondeur se situant entre 33 et 50 m, l'élémenthorizontal de l'écoulement étant déterminé par la topographie de surface.Il y a des éléments hydrogéologigues importants qui influencent l'écoulementdans le site d'études, à savoir: un filon diabasique imperméable et troisautres zones de fractures à haute perméabilité. Les résultats des étudesmontrent également que la caractérisation des propriétés géométriques ethydrauliques de grandes discontinuités géologiques est essentielle pourcomprendre l'écoulement des fluides dans la roche fracturée.

* Institut National de Recherche en Hydrologie,Direction Générale des Eaux Intérieures, Environnement Canada

l'Énergie Atomique du Canada, LimitéeEtablissement de recherches nucléaires de Whiteshell

Pinawa, Manitoba ROE 1L01986 août

AECL-9066

Page 5: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

HYDRAULIC CHARACTERIZATION OF A SMALL GROUNDWATER

FLOW SYSTEM IN FRACTURED MONZONONITIC GNEISS

by

K.G. Raven*

ABSTRACT

The hydraulic characteristics of a small groundwater flow systemactive in a 200-m by 150-m by 50-m deep block of fractured monzonitic gneisslocated at Chalk. River, Ontario have been determined from surface and bore-hole investigations. Surface investigations including air photo lineamentanalysis, ground and airborne geosphysics and fracture mapping were used todefine the local and regional fracture system, locate the study site anddirect the exploratory drilling program. Subsurface investigations werecompleted in 17 boreholes and included fracture logging, systematicstraddle-packer injection testing, hydraulic interference testing and long-terra hydraulic head monitoring. The interference tests and monitoring wereconducted in 90 packer-isolated test intervals created by installation ofmultiple-packer casings in each borehole. Hydraulic interference testsprovided detailed information on the equivalent single-fracture apertu •: andstorativity of four major (> 50-tn extent) fracture zones and the verticalhydraulic diffusivity of the rock mass of the study site. Fracture logs andinjection test data were combined to generate a tensoral representation ofhydraulic conductivity for each test interval. The results of the detailedinvestigations are presented and interpreted to provide a completethree-dimensional description of the groundwater flow system.

A gravity-controlled flow system occurs at the Chalk River studysite. Groundwater flow in the rock is primarily vertical to a low-hydraulichead, fracture zone at 33 to 50 m depth with a horizontal component of flowdetermined by surface topography. An impermeable diabase dyke and threeadditional high-permeability fracture zones are important hydrogeologicfeatures influencing flow at the study site. The results of the investiga-tions also show that characterization of the geometric and hydraulic proper-ties of large structural discontinuities is essential in understanding theflow of fluids in fractured rocks.

* National Hydrology Research Institute, Inland Waters Directorate,Environment Canada

Atomic Energy of Canada LimitedWhiteshell Nuclear Research Establishment

Pinawa, Manitoba ROE 1L01986 August

AECL-9066

Page 6: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

TABLE OF CONTENTS

Page

LIST OF

LIST OF

FIGURES

TABLES

ACKNOWLEDGEMENTS

1.

2.

3.

4.

INTRODUCTION

SITE DESCRIPTION

2.1 Location2.2 Geology

DRILLING PROGRAM

FRACTURE SYSTEM

VI

1

3

35

10

RACTERIZATION 14

4.1 Surface Fracture Mapping 14

4.2 Borehole Fracture Logging 15

5. BOREHOLE CASING INSTALLATION 24

6. STRADDLE-PACKER INJECTION TESTS 30

6.1 Method 306.2 Results 34

7. HYDRAULIC INTERFERENCE TESTS 437.1 Method 437.2 Results 48

7.2.1 Fracture Zone No. 1 547.2.1.1 FS-10 Pump Tests 547.2.1.2 FS7-3, 8-2, 9-2 and 10-1 Pump Tests 69

7.2.2 Fracture Zone No. 2 757.2.3 Fracture Zone No. 3 797.2.4 Fracture Zone No. 4 857.2.5 Vertical Flow Properties of the Rock Mass 86

Page 7: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

CONTENTS concluded

8. HYDRAULIC HEAD MONITORING 95

9.

TO.

8.1 Hydraulic Head Distribution8.1.1 Rock Mass8.1.2 Fracture Zones No. 1, 2, 3 and 4

HYDRAULIC CONDUCTIVITY TENSOR

9.1 Model Description9.2 Results

SUMMARY

REFERENCES

APPENDICES

A. Fracture Hydrology Logs -

B. Straddle-Packer Injection

DETERMINATIONS

Boreholes FS-1 to FS-17

Test Data - Boreholes

9696104

108

109112

122

129

132

188FS-1 to FS-17

C. Plots of Drawdown Versus Log Time 1n Response to 210August 20-27, 1982 and September 27-29, 1983 PumpTests of Fracture Zone No. 1 from Borehole FS-10

D. Hydraulic Conductivity Tensors Determined for 225FS Test Intervals Based on Injection Test Dataand Borehole Acoustic Televiewer Fracture Logs

Page 8: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

LIST OF FIGURES

Page

1. Approach for Investigating the groundwater flow 2characteristics of fractured rock.

2. Location map of Chalk River Nuclear Laboratories 4(CRNL).

3. Location map of NHRI hydrogeologic test site. The 6CRNL groundwater flow study site 1s located 1n theupper half of the NHRI hydrogeologic test site.

4. Location of CRNL groundwater flow study site with 8respect to major and minor fracture zones and faultsas Identified by air photo lineament analysis and groundEM-VLF surveys.

5. Map of CRNL groundwater flow study site. 9

6. Contoured stereographic plot of poles to fractures 16measured 1n surface outcrops of CRNL groundwaterflow study area.

7. Contoured stereographic plot of poles to fractures 18surveyed 1n FS-ser1es boreholes using boreholetelevision.

8. Contoured stereographic plot of poles to fractures 19logged 1n FS-series boreholes using borehole acousticteleviewer.

9. Site map and fracture orientation data determined from 21surface and borehole mapping. Stereographic plots showcontours of poles to fractures 1n 1% surface area oflower-hemisphere equal area projections.

10. Schematic of multiple-packer, multiple-standpipe casing 25Installed 1n each FS-ser1es borehole.

11. Schematic of surface test equipment used during 31straddle-packer Injection testing and casing-packerwithdrawal tests.

12. Schematic of subsurface test equipment used during 32straddle-packer Injection tests and casing-packerwithdrawal tests.

Page 9: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

ii

LIST OF FIGURES (continued)

Page

13. Schematic of straddle-packer Injection test of a single 36fracture

14. Distribution of the common logarithm of equivalent rock 38mass hydraulic conductivity, Kerfn,1n boreholesFS-1 to FS-17 measured with straddle-packerInjection tests.

15. Schematic of a two-borehole constant-discharge 44hydraulic Interference test. Drawdown response data,P( + ), used to determine Interborehole hydraul1c_properties are Influenced by wellbore storage C atboth activation and observation boreholes. Themagnitude of C 1s proportional to the volume (V) -compressibility (B) product of the borehole testequipment.

16. Vertical, cross-section through centre of CRNL ground- 53water flow study site showing four fracture zonesIdentified from hydraulic testing.

17. Drawdown versus log time response for pumping borehole 55and observation Intervals Intersecting fracture zoneNo. 1 - FS-10 pump test, August 20-27, 1982.

18. Drawdown versus log time response for pumping borehole 56and observation Intervals Intersecting fracture zoneNo. 1 - FS-10 pump test, September 27-29, 1983.

19. Log drawdown versus log time response for pumping 58borehole and observation Intervals Intersecting fracturezone No. 1 - FS-10 pump test, August 20-27, 1982.

20. Log drawdown versus log time response for pumping 59borehole and observation Intervals Intersecting fracturezone No. 1 - FS-10 pump test, September 27-29, 1983.

21. Recovery response for pumping borehole FS-10 and 62observation Interval FS 9-2 Intersecting fracturezone No. 1. The difference 1n recovery response atlate ratio time Indicates a positive skin factor of5.6 at the pumping borehole.

22. Log drawdown versus log time response In fracture 65zone No. 1 during two pump tests from borehole FS-10,with best-fit type curves of Gringarten and Ramey's(1974) single horizontal, uniform-flux fracture model.

Page 10: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Ill

LIST OF FIGURES (continued)

23. Log drawdown versus log time response for observation 70intervals intersecting fracture zone No. 1 with best-fit Theis curves - FS 7-3 pump test, October 1, 1982.

24. Log drawdown versus log time response for observation 71Intervals intersecting fracture zone No. 1 with best-fit Theis curves - FS 8-2 pump test, October 2, 1982.

25. Log drawdown versus log time response for observation 72Intervals Intersecting fracture zone No. 1 with best-fit Theis curves - FS 9-2 pump test, October 4, 1982.

26. Log drawdown versus log time response for observation 73Intervals Intersecting fracture zone No. 1 with best-fit Theis curves - FS 10-1 pump test, October 5, 1982.

27. Log drawdown versus log time response for observation 76intervals intersecting fracture zone No. 2 with best-fit Theis curves - FS 4-2 pump test, August 16-19, 1982.

28. Log drawdown versus log time response for observation 80intervals intersecting fracture zone No. 3 with best-fit Theis curves - FS 6-1 pump test, October 13-16, 1982.

29. Log drawdown versus log time response for observation 81intervals Intersecting fracture zone No. 3 with best-fit Theis curves - FS 6-1 pump test, October 27, 1983.

30. Log drawdown versus log time response for observation 82Intervals intersecting fracture zone No. 3 with best-fit Theis curves - FS 11-2 pump test, October 27-29, 1982.

31. Log drawdown versus log time response for observation 83intervals Intersecting fracture zone No. 3 with best-fit Theis curves - FS 15-3 pump test, October 24-26, 1983.

32. Drawdown versus log time data for observation intervals 88in borehole FS-7 showing vertical response to pumpingfracture zone No. 1 (high K zone) intersecting intervalFS 7-3.

33. Drawdown versus log time data for observation intervals 89in borehole FS-3 showing vertical response to pumpingfracture zone No. 1 (high K zone) located below thebottom of borehole FS-3. Assumed drawdown in fracturezone No. 1 is plotted from Figure 32.

Page 11: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

iv

LIST OF FIGURES (conc"ffl8ed)

Paae

34. Hydrograph for test Intervals 1n Inclined borehole 97FS-2 for the period 19B2, January to 1984, November.Borehole activities that caused perturbations in thehydraulic head record are Indicated.

35. Patterns of groundwater flow 1n fracture zone No. 2 106estimated from equilibrium hydraulic head data recordedon 1982, December 15 and 1984, November 1.

36. Patterns of groundwater flow 1n fracture zone No. 3 107estimated from equilibrium hydraulic head data recordedon 1982, December 15 and 1984, November 1. BoreholeFS-10 was completed with multiple-packer casing on 1982,December 15 and was uncased or open on 1984, November 1.

37. Distribution of the common logarithm of effective 113fracture aperture, 2beff, in boreholes FS-1 to FS-17determined from straddle-packer Injection testsand borehole acoustic televiewer logs.

38. Hydraulic conductivity ellipsoid and reference axes in 115three directions.

39. Stereographic plot of poles to K], «2 principal 117hydraulic conductivity planes for FS test intervals.Hydraulic conductivity tensors determined from acousticteleviewer fracture logs and Injection test data.

40. Plot of vertical hydraulic diffusivity determined from 120pump tests versus the harmonic mean of verticalhydraulic conductivity calculated from the fractureorientation-aperture model. Lines Identify valuesof specific storage required for vertical hydraulicconductivity to equal vertical hydraulic diffusivity.

41. Isometric sketch of CRNL groundwater flow study site 125showing the location of test boreholes, fracture zoneNo. 1, and diabase dyke.

42. Isometric sketch of CRNL groundwater flow study site 127showing the location of test boreholes, fracture zonesNos. 2, 3 and 4 and diabase dyke.

Page 12: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

LIST OF TABLES

Page

1. Summary of Borehole Length and Orientation Statistics 12

2. Summary of Borehole Collar Elevation and Location 13Statistics

3. Mean Orientation of Major Fracture Sets Identified by 23Surface and Borehole Fracture Mapping

4. Mean Orientation of Major Subsurface Fracture Sets by 23Three Subareas

5. FS Test Interval Statistics 27

S. Hydraulic Properties of FS Test Intervals 40

7. Summary of Hydraulic Interference Tests 49

8. Hydraulic Properties Determined from FS-10 Pump 67Tests Using Gringarten Uniform-Flux FractureModel

9. Equivalent Single-Fracture Aperture - Fracture Zone 74No. 1

10. Fracture Storat1v1ty - Fracture Zone No. 1 74

11. Equivalent Single-Fracture Aperture - Fracture 78Zones No. 2 and No. 4

12. Fracture Storat1v1ty - Fracture Zones No. 2 and 78No. 4

13. Equivalent Single-Fracture Aperture - Fracture 84Zone No. 3

14. Fracture Storat1v1ty - Fracture Zone No. 3 84

15. Vertical Hydraulic Diffusivity 93

" Equilibrium Hydraulic Head of FS Test Intervals 98

Page 13: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

ACKNOWLEDGEMENTS

The author would like to acknowledge the able field assistanceprovided by C. Burge, B. Hannah, P. Kornelson, B. Kueper, P. LapcevU,C. Mangione, W. Stensrud and A. Vorauer 1n completing the hydraulictesting, casing Installation and hydraulic head monitoring programs.Special thanks are extended to J.A. Smedley and R.A. Sweezey whosupervised most of the field activities. The technical, mechanical andelectrical support of the CRNL shops 1s greatly appreciated. J.S.O. Lau,J.G. 61sson and F. Auger, Geological Survey of Canada, completed boreholetelevsion surveys and borehole acoustic televiewer logs.

Page 14: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

1. INTRODUCTION

This report describes the results of borehole Investigations

completed on the property of the Chalk River Nuclear Laboratories (CRNL)

to define the physical hydrogeology of a small groundwater flow system 1n

fractured monzonitic gneiss. The work described 1n this report forms

part of a broad research project supported by Atomic Energy of Canada

Limited (AECL) and the National Hydrology Research Institute (NHRI),

Environment Canada to study groundwater flow 1n shallow fractured rock.

Activities described within this report were completed 1n the period 1981

to 1983. Some of the 1981 research activities are also described by

Raven and Smedley (1982).

Activities completed as part of the CRNL groundwater flow study

Include the collection and Interpretation of surface and borehole

geological, geophysical and hydrogeological data, geomechanical studies,

and numerical groundwater flow simulation. The approach adopted 1n this

study to combine these various Investigations (Raven et al. 1985) 1s

shown 1n Figure 1. The central components of the approach Include

development of a geological-structural model to guide hydrogeological

Investigations and a mathematical flow model to Integrate hydrogeological

data. In reference to Figure 1, this report Includes the results of 1)

borehole and surface fracture geometry characterization studies, 2)

hydraulic tests for the measurement of hydraulic conductivity (K..),

specific storage (S ) and natural groundwater flow and pressure

boundaries and 3) hydraulic head monitoring.

Page 15: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

SURFACE &BOREHOLEMAPPING

SURFACE &BOREHOLE

GEOPHYSICS

GEOLOGY & FRACTURE GEOMETRY

K j j ;Ss

1GEOLOGICAL-STRUCTURAL

MODEL

HYDRAULICTESTS

TRACERTESTS

.11 '\ r

FRACTUREDEFORMATION

TESTS

IN SITUSTRESS

MEASURE-MENTS

<5.Ss

iMATHEMATICAL FLOW MODEL

GROUNDWATER FLOWRATE, VELOCITY

1

HYDRAULICHEAD

GROUNDWATERCHEMISTRY.ISOTOPES

FIGURE 1: Approach for investigating the grourvdwater flowcharacteristics of fractured rock.

Page 16: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

TLe data assembled 1n this report provide a complete and

detailed description of the fluid flow properties and hydraulic

boundaries of a 200-m by 150-m by 50-m deep block of fractured monzonitic

gneiss. Hydraulic conductivity tensors and both steady state and

transient (from long-term pump tests) hydraulic head data for 90

packer-Isolated test Intervals 1n 17 boreholes are reported. In addition

to Information on the fundamental nature of flow systems 1n fractured

rock, the CRNL groundwater flow study site provides a unique

three-dimensional data set for the comparison and validation of numerical

groundwater flow codes under both steady state and transient conditions.

It 1s expected that some or all of these data may provide benchmark cases

for future flow code comparisons such as those planned for the

international HYDROCOIN study.

2. SITE DESCRIPTION

2.1 LOCATION

The study site described 1n this report 1s located on the

property of the Chalk River Nuclear Laboratories of Atomic Energy of

Canada Limited. The Chalk River Nuclear Laboratories are located 200

kilometres northwest of Ottawa, Ontario near the town of Chalk River

(Figure 2).

Since 1978, the National Hydrology Research Institute has

developed several test sites on the CRNL property 1n the general area

Page 17: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

•~-Lake

J^-

0

J

\rVipissng** North Bay

"XT3

«kkkk

kk*ki

k ^ ,

Scale50 im

^iioronto ^

\

AlgonquinProvincial

Park

r"

u0 N

* . - - v «

kkkk

T A R 1 0

late Onli'io

Q U E B E

N

C

J CHALK RIVERv / NUCLEAR LABORATORIES

Ottawa

JK.n€uon^^^?£/

_•

1 U. S. A.

FIGURE 2: Location map of Chalk River Nuclear Laboratories(CRNL).

Page 18: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

bounded by Haskinonge, Upper Bass and Lower Bass Lakes. The CRNL

qroundwater flow study site Is located on the eastern side of Haskinonge

Lake 1n the upper half of the rectangular area Identified as the NHRI

hydrogeologic test site 1n Figure 3.

2.2 GEOLOGY

The geology of the Chalk River area has been studied 1n

detail by several workers (Lumbers 1974, Brown and Th1v1erge 1977, Brown

and Rey 1984). The area Is both Hthologically heterogeneous and

structurally complex. The Chalk River area 1s underlain by rocks of the

Grenville Province of the Canadian Shield and 1s situated within the

Ottawa Bonnechere graben system, a major fault zone striking

northwesterly across the region. The main rock unit 1s a folded sheet of

quartz monzonite that is overlain and underlain by paragneiss and

numerous Inclusions of metagabbro, diabase and pegmatite. The early

tectonic-metamorphic history Includes polyphase deformation culminating

1n the formation of large-scale recumbent antiformal-synformal structures

(Brown and Rey 1984) and a highly complex fracture system. Faults and

fracture zones from the centimetre to kilometre scale transect the

Chalk River area.

The study site was selected based on the results of air photo

lineament analysis and surface and airborne EH (electromagnetic) surveys

(Dence and Scott 1980, Scott 1984, S1nha and Hayles 1984). These surveys

Page 19: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

r

N

MASKINONGELAKE

W I 3740 ft1113 »»m

L

FIGURE 3: Location map of NHRI hydrogeologic test site. The CRNLgroundwater flow study site is located in the upper halfof the NHRI hydrogeologic test site.

Page 20: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

were used to locate a 200-m by 150-m area of relatively uniform

fracturing and presumably uniform subsurface fluid flow properites.

Figure 4 shows the location of the selected site with respect to major

and minor fracture zones and faults as Identified by air photo lineament

analysis (Raven and Smedley 1982) and ground EH-VLF (very low frequency)

surveys (Dence and Scott 1980). The most notable structural feature 1n

the vicinity of the study site strikes east-west, bisects the NHRI

hydrogeologic test site and forms the southern boundary of the CRNL

groundwater flow study site. Two minor air photo lineaments trend

northwesterly and Intersect the northwest and southwest corners of the

study site. A minor conductive zone Identified by EH-VLF surveys

transects the northwest corner of the study site. Identification of

these large-scale structural features Intersecting or bordering the study

site 1s Important as these structures are likely to control the

development of groundwater flow systems by acting as either constant

pressure boundaries due to enhanced permeability or Impermeable

boundaries as a result of reduced permeability.

The area selected for study 1s a well-exposed upthrown rock

mass bounded on three and possibly four sides by faults or major fracture

zones. The study area 1s shown 1n detail 1n Figure 5.

Figure 5 shows ground elevation and the location of

boreholes, outcrops and surface water bodies. Bedrock exposure

represents approximately 20 to 30% of the surface area. Local outcrops

Page 21: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

r "i

N

MASKINONGELAKE

AIR PHOTO LINEAMENTS

MajorMinor

GROUND EM VLF CONDUCTIVE ZONE

*~—~~~%— Highly conductive— — — — — Intermediate——————— Poorly Conductive

LFIGURE 4: Location of CRNL groundwater flow study site with respect

to major and minor fracture zones and faults as identifiedby air photo lineament analysis and ground EM-VLF surveys. J

Page 22: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

11 / /

Conioo' lnte'»#t 10Et«>*ation IP fen

J Outcrop

FIGURE 5: Map of CRNL groundwater flow study site.

Page 23: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

70

are composed of foliated granitic and monzonitic gneisses with numerous

pegmatite dykes and stringers. Local gneissossity reflects regional

trends at 315°/30°NE although outcrops 1n the southern end of the study

area show more east-west strikes, possibly reflecting the major east-west

trending structural fracture discussed above. A thin veneer of clean,

medium-grained sand covers the remaining 70% of the site generally

thickening to a maximum of 1 to 3 n In the northwest.

3. DRILLING PROGRAM

Seventeen boreholes (FS-ser1es) were drilled at the study

site 1n the period 1981 to 1983. Average depths of the boreholes are 45

to 50 m. In May 1981, nine 155-mm diameter boreholes (FS 1 to 9) were

drilled using air percussion or downhole hammer drilling techniques.

Boreholes were drilled with air to prevent contamination of formation

waters with drilling fluids. A polyvinyl chloride surface casing was

grouted approximately three metres Into bedrock for each air percussion

borehole. In May 1982, one borehole (FS-7) was deepened and five

additional 155-mm diameter boreholes (FS-10 to 14) were air percussion

drilled. In June 1983, three HQ-s1ze boreholes (FS-15 to 17) were

diamond cored to provide detailed Hthologic Information and overcore

stress measurements for the study site.

Both vertical and Inclined boreholes were drilled. Boreholes

FS-7, 8, 9, 12, 13, 14 and 17 were targeted to Intersect major structural

Page 24: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

11

discontinuities. Boreholes FS-2, 8, 9 and 11 were Inclined normal to the

strike of the major joint sets Identified from surface mapping, (see

section 4.1). Average borehole spacing 1s about 30 m. The location of

boreholes 1s shown 1n Figure 5. A summary of borehole length and

orientation statistics is given in Table 1. Borehole collar elevations

and locations determined from field surveys are listed 1n Table 2.

Lithology logs for each borehole were assembled from the

recovered core and from chip samples collected during the air percussion

drilling process. These lithology logs are Incorporated on fracture

hydrology logs presented 1n Appendix A. Based on these logs the

subsurface Hthology of the site 1s characterized by a garnetiferous

quartz monzonite gneiss with numerous lenses of pegmatite and metagabbro.

A 5- to 10-m thick diabase dyke occupies the east-west

striking lineament that forms the southern boundary of the study site.

Prior to geophysical logging and hydraulic testing, each air

percussion borehole was developed and cleaned using air flushing, pumping

and brushing. Diamond drilled boreholes were developed with repeated

pumping using a submersible electric pump.

Page 25: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

12

Table 1

Borehole

FS-1FS-2FS-3FS-4FS-5FS-6FS-7FS-8FS-9FS-10FS-11FS-12FS-13FS-14FS-15FS-16FS-17

Summary of Borehole

Dril l ing Method

AP*APAPAPAPAPAPAPAPAPAPAPAPAPDC**DCDC

Lenqth and Orientation Statistics

Length1n m BCT1

43.2643.6041.5042.5041.6041.6074.1541.8642.1848.2543.5343.5043.3042.1348.5150.3460.75

Orientation

Vertical130V650

VerticalVerticalVerticalVerticalVertical276V70"236°/70°Vertical0V69°VerticalVerticalVerticalVerticalVerticalVertical

* Denotes 155-mm diameter air percussion drilled** Denotes HQ-s1ze diamond core drilled"I m BCT = metres below casing top.

Page 26: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

13

Table 2

Borehole

FS-1FS-2FS-3FS-4FS-5FS-6FS-7FS-8FS-9FS-10FS-11FS-1 2FS-13FS-14FS-1 5FS-16FS-1 7

Summary of Borehole Collar

Collar Elevation*in m.a.s.l.

130.03131.82131.22132.48132.63134.54129.48130.61132.74137.34135.22135.01134.78135.90134.23133.99133.00

Elevation and Location

Collar Location **Northing

1114.541070.361144.521109.321077.281038.891164.091130.501102.261054.381002.62958.29984.74970.551026.191067.121135.80

Statistics

in mWesting

4857.094885.724900.634911.954928.214935.394945.664958.484967.314964.524954.374965.774977.234997.214936.054938.864916.34

* Denotes elevation of low point on top of surface casing** Locations are relative to CRNL plant co-ordinates that are

rotated 22° counter-clockwise to true north.

Page 27: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

14

4. FRACTURE SYSTEM CHARACTERIZATION

The fluid flow properties of fractured crystalline rock

result from the Interconnection of discontinuous fractures. Detailed

knowledge of the hydraulic and geometric properties of such discontinuous

fracture systems 1s required to understand the patterns of fluid and

solute movement 1n fractured rock. The hydraulic properties of fractures

are usually expressed as an equivalent hydraulic opening or aperture

while the geometric properties of fractures Include orientation, spacing

and size. Data on the hydraulic and geometric properties of fractures

may be Integrated to describe the fluid flow properties of a rock mass

using either deterministic (Snow 1965), or statistical (Rouleau 1984),

methods. In this report (see section 9), data on fracture orientation

and aperture have been combined using the deterministic approach of

Snow (1965).

The geometry of the fracture system at the study site was

Investigated using surface mapping and borehole logging techniques.

4.1 Surface Fracture Happing

Scanline surveys were used to map the fracture system 1n

outcrops at the study site. The location of these scanlines 1s shown on

Figure 5. Fracture location, orientation, trace length, termination

Index (Priest and Hudson 1981), and Infilling characteristics were

recorded for each fracture mapped 1n surface outcrops. Fractures with

trace lengths less than 1.0 m were not mapped.

Page 28: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

15

Fracture orientation data were plotted as poles to fracture

planes and contoured on a lower hemisphere equal area projection to

Identify pole clusters or fracture sets. The resultant plot corrected

for sampling orientation bias using the Terzaghi (1965) technique 1s

shown 1n Figure 6. The contour diagram Indicates the existence of three

major fracture sets. In order of decreasing fracture density, the mean

orientation of the sets determined from visual Inspection are: 105°/75°S,

235°/70°N and 150V90 0. The relative strengths of these fracture sets

vary spatially 1n the study area outcrops indicating statistically

nonhomogeneous fracture characteristics at the scale of the study site

(about 150 m to 200 m). The dominant 105°/75°S fracture set 1s strongest

1n the most southerly outcrops proximal to the major east-west striking

diabase dyke discussed previously and diminishes to a secondary set 1n

the most northerly outcrop. Conversely, the 235V70°N fracture set 1s

dominant 1n the northern outcrop and diminishes significantly to the

south. The 150*790° fracture set maintains relatively uniform expression

1n all surface outcrops.

4.2 Borehole Fracture Logging

Borehole television surveys (Lau 1980) and acoustic

televiewer logging (Zemanek et al. 1969) were carried out by the

Geological Survey of Canada (Lau et al. 1984), to map the subsurface

fracture system Intersecting each borehole. Fracture and vein

orientation, location and character were Identified In both borehole

Page 29: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

16

N

POLES TO PLANES PROJECTEDON LOWER HEMISPHERE OFEQUAL AREA PROJECTIONUSING SCHMIDT METHOD

Contours of Pole Density(% of total poles)

0-1

1-3

3 - 6

6 - 9

9 - 12.4

Total Poles = 264

FIGURE 6- Contoured stereograph!c plot of poles to fractures' measured in surface outcrops of CRNL groundwater

flow study area.

Page 30: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

17

surveys. All boreholes were surveyed using borehole television.

Acoustic televiewer logging was completed 1n all boreholes except

boreholes FS-15 and 16. The results of these surveys are Included 1n

fracture hydrology logs 1n Appendix A. Fractures and veins Identified by

borehole television have been plotted on the fracture hydrology logs as a

straight line connecting the high and low points of the elliptical

borehole wall trace. Acoustic televiewer fracture and vein logs have

been schematically represented on the fracture hydrology logs as they

appeared on 360° photographs of the borehole wall over 0.5 m Intervals.

The fractures Intersecting each borehole have been combined,

plotted and contoured using the method described for surface fracture

analysis. Figures 7 and 8 show the contoured polar plots for fractures

Identified by borehole television surveys and borehole acoustic

televiewer logging respectively. Fracture orientations measured within

the diabase dyke Intersected by the top half of borehole FS-12 and the

entire length of borehole FS-14 are excluded from both figures. Fracture

orientations measured within the highly fractured diabase dyke were

unreliable because of poor fracture definition and detection. The plot

of acoustic televiewer data (Figure 8) Includes fracture orientation data

for boreholes FS-15 and 16 measured by borehole television surveys.

The contoured polar plots from both borehole fracture mapping

methods Indicate the occurrence of similar subsurface fracture sets. The

mean orientation of the major surface and subsurface fracture sets are

Page 31: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

18

POLES TO PLANES PROJECTEDON LOWER HEMISPHERE OFEOUAL AREA PROJECTIONUSING SCHMIDT METHOD

Contours of Pole Density(% of total poles)

0-1

1-2

2-3

3-4

4-6.8

Total Poles = 1489

FIGURE 7: Contoured stereographic plot of poles to fracturessurveyed in FS-series boreholes using boreholetelevision.

Page 32: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

19

POLES TO PLANES PROJECTEDON LOWER HEMISPHERE OFEQUAL AREA PROJECTIONUSING SCHMIDT METHOD

Contours of Pole Density(% of total poles)

0-1

1-2

2-3

3-4

4-6.8

Total Poles = 1609

FIGURE 8: Contoured.stereographic plot of^poles t^fractures^ogged

Page 33: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

20

listed 1n Table 3, 1n order of relative strength, decreasing from left to

right. At the site scale, the surface fracture mapping Identified all

steeply dipping fracture sets to depths of about 50 m. However, the

relative strengths of the two dominant fracture sets were reversed

between surface and subsurface mapping. This reversal reflects the

spatial variation 1n fracture orientation and the bias of surface

outcrops to the southern and central areas of the study site.

Spatial variability of subsurface fracturing was also

Investigated by grouping fracture orientation data into three subareas:

northern, Including data from boreholes FS-1, 2, 3, 4, 7 and 17; central,

with data from boreholes FS-5, 6, 8, 9, 10 and 16;and southern,with data

from boreholes FS-11, 12, 13 and 15. For this comparison we selected

fracture orientation data determined from borehole acoustic televiewer

logging. This data source was preferred over data from borehole

television surveys, because of the superior ability of the acoustic

televiewer logs to Identify fractures within hydrogeologically

significant mafic layers. The resulting contoured polar diagrams and

tabular listing of major subsurface fracture sets by three subareas for

the study site are shown 1n Figure 9 and Table 4. Figure 9 also shows

the location of three major structural discontinuities that Intersect the

study site. The fracture orientation data of Figure 9 show a relative

Increase 1n the strength of the 240° to 260°/75°N fracture set and a

relative decrease in the strength of the 150°/90° fracture set from north

to south through the study site. The 105°/80°S fracture set shows

Page 34: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

21

SURFACE FRACTURES

N

'""'^ N = 264

SUBSURFACE FRACTURESNORTH FS-1. 2. 3. 4. 7. 17

N

N = 717

OUTCROP

I FRACTUREMAPPING

LINE

MAJOR STRUCTURALDISCONTINUITIES

FS-8

FS-1©

BOREHOLEVERTICALINCLINED

FS-FS-12

METRES50

CENTRE FS-5. 6. 8. 9. 10. 16N

SOUTH FS-11. 12. 13. 15N

N = 302

FIGURE 9: Site map and fracture orientation data determined from surfaceand borehole mapping. Stereographic plots show contoursof poles to fractures in 1% surface area of lower-hemisphereequal area projections.

Page 35: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

22

relatively uniform expression 1n all three subareas. The relative

strengths of the subsurface fracture sets reflects, among other geologic

factors, the proximity of the area boreholes to major structural

features. The observed spatial variation 1n fracturing suggests the

fluid flow properties of the rock mass will also show significant spatial

variability or hetereogeneity. Because this variability 1n fluid flow

properties will, 1n part, be related to the presence or absence of major

structural discontinuities, definition of such discontinuities will be

critical to the characterization of a rock mass for detailed

hydrogeologic evaluation.

Page 36: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

23

Table 3

Mean Orientation of Major Fracture Sets Identified bySurface and Borehole Fracture Mapping

Fracture Detection Method

Surface Fracture Mapping

Borehole Acoustic Televiewer

Borehole Television

Mean Orientation of Major Fracture Sets

105°/70°S 235°/70°N 150V90 0

250°/70°N 105°/75°S 145V900 Subhoriz.

250°/70°N 100°/65°S 145V900 Subhoriz.

Table 4

Mean Orientation of Major SubsurfaceFracture Sets by Three Subareas

Subarea and Boreholes

NORTHFS-1, 2, 3, 4, 7, 17

CENTREFS-5, 6, 8, 9, 10, 16

SOUTHFS-11, 12, 13, 15

Mean Orientation of Major Fracture Sets

105°/80°S Subhoriz. 145V900 255°/80°N

105°/80°S 260V80°N 250V65°N Subhoriz.150V900

240°/75°N 105°/75°S 200°/80°N Subhoriz.

Page 37: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

24

5. BOREHOLE CASING INSTALLATION

Each borehole was completed with a multiple-packer,

mult1ple-standp1pe casing to provide long-term access to

hydraulically Isolated test Intervals. The casing system designed by

NHRI, described by Raven and Smedley (1982) and shown schematically 1n

Figure 10, provides simultaneous and continuous access to five to seven

packer-Isolated test Intervals 1n each borehole. Each test Interval 1s

accessed by either 25-mm diameter polyvinyl chloride standpipes or 13-mm

diameter nylon tubing. A1r-1nflated reinforced packers provide hydraulic

seals 1n each borehole. Each packer 1s pressurized with air from surface

using Individual Inflation lines. Monitoring of packer-Inflation

pressures at surface ensures long-term packer Inflation and Integrity of

test Interval seals. Location of the casing packers 1n each borehole are

shown on fracture hydrology logs 1n Appendix A.

Prior to casing Installation, all packers and '0' ring-sealed

casing lengths were pressure tested at surface to ensure Integrity of the

casing system. Casing was Installed 1n each borehole shortly after

completion of drilling, geophysical surveys and straddle-packer

testing. Casing was Installed 1n boreholes FS-1 to-9 1n 1981 August, in

boreholes FS-7 and FS-10 to-14 1n 1982, July and 1n boreholes FS-15 to ^7

1n 1983, August. A total of 78 packers were Installed 1n the seventeen

boreholes at the study site. As of 1985 February only two of the 78

packers have failed. These failures occurred 1n packers FS 2-5 and

FS 8-4.

Page 38: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

25

SURFACE

PACKER INFLATIONMANIFOLD

11.4 cm DIAMETERP.V.C. CASING

SUBSURFACE

INDIVIDUAL PACKERINFLATION LINES

REINFORCEDRUBBER PACKER

2.5 cm DIAMETERP.V.C. STANDPIPE

11.4 cm DIAMETERP.V.C. CASING

REINFORCEDRUBBER PACKER

2.5 cm DIAMETERP.V.C. STANDPIPES

INDIVIDUAL PACKERINFLATION LINES

P.V.C. SURFACE CASING

15.5 cm DIAMETERAIR PERCUSSIONBOREHOLE

ACCESS PORTTO TEST SECTION

v TEST SECTIONf 5 TO 7 PER BOREHOLE

FIGURE 10- Schematic of multiple-packer, multiple-standpipe casinginstalled in each FS-series borehole.

Page 39: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Ninety test Intervals 1n seventeen boreholes provide the data

base for study of the groundwater flow system at CRNL. Depth, length and

volume statistics of these test Intervals are given In Table 5. Test

Interval lengths vary from three to thirteen metres.

Vertical and lateral hydraulic Interference and tracer tests,

groundwater sampling and long-term hydraulic head monitoring have been

completed using the packer-standpipe casing. The casing system provides

superior quality test data from these field activities than 1s otherwise

obtainable from open boreholes by reducing 1) natural Intraborehoie

groundwater flow and 2) Interval volume, mixing and storage effects. A

series of small diameter tools have also been developed

(Raven and Smedley 1982), for testing 1n conjunction with the casing

system.

Page 40: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

27

Table 5

FS Test Interval Statistics

Interval

FS 1-11-21-31-41-5

FS 2-12-22-32-42-5

FS 3-13-23-33-43-53-6

FS 4-14-24-34-44-54-6

FS 5-15-25-35-45-5

FS 6-16-26-36-46-5

FS 7-17-27-37-47-5

Interval Depth

372616

72

342516

93

322315

743

332215

753

322112

7.2.

30.21.16.8.2.

61 .52.44.30.18.

m BCT

.19 -

.81 -

.44 -

.59 -

.03 -

.31 -

.34 -

.58 -

.25 -

.05 -

.10 -

.25 -

.91 -

.97 -

.59 -

.05 -

.00 -60 -15 -93 -18 -05 -

25 -85 -97 -16 -06 -

70 -83 -94 -07 -03 -

65 -79 -82 -78 -85 -

43362615

6

433324158

41312215

73

42322114

74

41312112.

*

.26

.45

.06

.69

.84

.60

.53

.63

.81

.47

.50

.33

.47

.14

.18

.82

501881511540

60470922

6.40

41.29.21.16.

7.

74.60.52.44.30.

6092061732

1595101207

Interval Lengthm

6.079.649.628.104.81

9.298.198.056.565.42

9.408.086.567.172.590.81

9.509.586.676.581.971.35

9.359.628.125.064.34

10.908.094.128.105.29

12.508.167.28

13.3411.22

Interval Volumelitres

47.274.774.662.853.3

72.163.562.450.9

102.1

72.962.750.955.620.038.7

134.074.351.751.015.334.7

72.574.663.039.249.8

84.562.731.962.841.0

96.963.356.5

103.587.0

Page 41: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

28

Table 5 (Cont'd)

FS Test Interval Statistics

Interval

FS

FS

FS

FS

FS

FS

7-67-7

8-18-28-38-48-5

9-19-29-39-49-59-6

10-110-210-310-410-510-6

11-111-211-311-411-511-6

12-112-212-312-412-5

13-113-213-313-413-513-6

Interval Depth

7.3.

34.23.14.4.3.

35.28.19.9.4.3.

39.28.23.15.9.1.

37.28.20.12.4.2.

35.27.19.7.3.

35.29.22.14.7.1.

m BCT *

89 -05 -

11 -73 -86 -16 -05 -

84 -50 -64 -25 -31 -05 -

31 -92 -08 -13 -28 -50 -

13 -29 -92 -93 -09 -00 -

61 -66 -71 -76 -50 -

33 -54 -21 -86 -48 -50 -

18.177.16

41.8633.3322.9514.113.42

42.1833.0327.7218.908.493.55

48.7538.5928.1922.3714.448.62

43.5336.4527.5620.2012.253.38

43.5034.9326.9519.017.07

43.3034.6728.8621.5114.136.80

Interval Length

104

79890

668940

995757

686781

777113

756665

m

.28

.11

.75

.60

.09

.95

.37

.34

.53

.08

.65

.18

.50

.44

.67

.11

.24

.16

.12

.40

.16

.64

.27

.16

.38

.89

.27

.24

.25

.57

.97

.13

.65

.65

.6530

Interval Volumelitres

7964

6074627756

495062743257

737539564016

496351566336

6156568789

613951515157

.7

.3

.1

.5

.6

.2

.3

.2

.6

.6

.9

.4

.2

.2

.0

.6

.2

.0

.4

.6

.3

.5

.4

.3

.6

.2

.4

.2

.3

.3

.8

.8 j

.6

.6

.6

.3

Page 42: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

29

Table 5 (Cont'd)

FS Test Interval Statistics

In te rva l

FS 14-114-214-314-414-5

FS 15-115-215-315-415-5

FS 16-116-216-316-416-5

FS 17-117-217-317-417-5

In te rva l Depth

383018

75

453830150

473730160

514027190

m BCT *

.10 -

.77 -

.88 -

.86 -

.80 -

.49 -

.17 -

.85 -

.95 -

.70 -

.90 -

.50 -

.20 -

.39 -

.52 -

.78 -

.45 -

.01 -

.70 -

.69 -

42.1337.4130.1018.187.15

48.5144.8437.4930.1015.26

50.3447.2136.8329.4915.70

60.7551.1239.7926.3719.05

Interval Length

46

1110

1

366

1414

296

1315

81012

618

m

.03

.64

.22

.32

.35

.02

.67

.64

.15

.56

.44

.71

.63

.10

.18

.97

.67

.78

.67

.36

Interval VolumelUres

3 1 .51 .87.80.

133.

13.29.29.62.53.

10.42.29.57.49.

39.46.56.29.63.

35007

33218

76152

48139

* Denotes metres below casing top.

Page 43: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

30

6. STRADDLE-PACKER INJECTION TESTS

6.1 Method

A comprehensive program of straddle-packer Injection testing

was completed to measure the near-field hydraulic properties of each

borehole. A1r-1nflated straddle packers were used to systematically

Isolate 1.5-m to 2.0-m length test Intervals. Over 350 Injection tests

were completed 1n seventeen boreholes.

During Injection tests, steady-state flow rate (Q) from a

test Interval was measured for an Injection pressure or hydraulic head

(AH) Imposed above ambient or equilibrium conditions. A single

Injection head was used 1n each test. Step Injection or multiple flow

rate tests were not conducted as part of the Injection test program.

Completion of straddle-packer Injection tests requires

assembly of surface and borehole test equipment. Schematics of the

surface and borehole test equipment used at the CRNL groundwater flow

study site are shown 1n Figures 11 and 12. Detailed descriptions of

these equipment and testing procedures are given by Raven (1980) and

Raven and Smedley (1982). Figures 11 and 12 also show the surface and

borehole equipment used to complete pump or withdrawal tests from

multiple-packer, multiple-standpipe casings.

Page 44: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

INJECTION/WITHDRAWAL TESTSSURFACE EQUIPMENT SCHEMATIC

FLOW MEASUREMENT PRESSURE APPLICATION

DIFFERENTIALPRESSURE

TRANSDUCER

THERMOCOUPLE

2-WAYFILTER

FLOW TANKS& MANOMETERS

BUBBLE TUBEFLOWMETER

TO INJECTION

RESFRVOIR VACUUMRESERVOIR R E S E R V 0 | RPOSITIVE

PRESSURERESERVOIR

COMPRESSEDAIR CYLINDERS

P

TOBOREHOLE TOOLS

PACKER

TURBINEFLOWMETER

INFLATION

f*1 To data acquisition syster?

L JFIGURE 11: Schematic of surface test equipment used during straddle-packer injection tests and casing-packer

withdrawal tests.

Page 45: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

32

INJECTION/WITHDRAWAL TESTSBOREHOLE EQUIPMENT SCHEMATIC

P.V.C 2 5 cm DIAMETERSTANDPIPE

Si

OPERATING/SUPPORT CABLE._._ (Inflation, Injection/Withdrawal

Tubes, Electrical Line)

OPEN 15.5 cm DIAMETERBOREHOLE

_PACKER CABLE_HEAD ASSEMBLY

SINGLE-PACKERELEMENT

FLUID-INJECTION/WITHDRAWALPORT

PRESSURE-TRANSDUCERHOUSING

TO TESTINTERVAL

UPPERPACKER

ELEMENT

TRIPLEPRESSURE

TRANSDUCERHOUSING

PERFORATEDSEPARATION

PIPE

LOWERPACKER

ELEMENT

TESTINTERVAL

FIGURE 12: Schematic of subsurface test equipment used duringstraddle-packer injection tests and casing-packerwithdrawal tests.

Page 46: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

33

During each test fluid Injection pressure was monitored

continuously using downhole pressure transducers and maintained constant

with the use of large surface pressure reservoirs. A triple transducer

probe,as shown 1n Figure 12,was frequently used to monitor test Interval

Injection pressure and pressures above and below the packer assembly.

Monitoring of pressures above and below the test Interval assists 1n the

detection of leakage of Injection fluid around the packer seals.

Combined nonlinearity, repeatability and sensitivity specifications of

the downhole pressure transducers and surface recording equipment have a

system sensitivity of 0.01 m hydraulic head. Injection heads of 5 to

25 m were used during most of the tests.

Injection flow rates were measured at surface using variable

diameter constant-head flow tanks (Raven 1980), a turbine flow meter and

a bubble tube flow meter (Gale et al. 1979). This flow rate measurement

system 1s effective over a measurement range of about six orders of

magnitude. The lowest reliable measurement of flow rate was

approximately 4x10" m s" . This lower limit was determined by

thermal expansion and compressibility effects of the Injection fluid and

the test equipment (flexible tubing, packers etc.). The upper flow rate

-4 3-1measurement limit was approximately 1.0x10 m s . This limit was

determined from the frictional head loss characteristics of the Injection

tubing and the requirement of a minimum downhole Injection head of 0.10 m.

Page 47: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

34

Fluid Injection periods for each test varied from 30 to 120

minutes. During this period, measurements of flow rate, Injection

pressure and fluid temperature were recorded 1n digital form and

graphically with multiple-pen strip chart recorders.

Prior to testing 1n each borehole, the straddle-packer probe

was tested at surface for leaks and accuracy of flow rate measurement 1n

a 6-m length plastic pipe.

6.2 Results

Each borehole was systematically tested from static water

level to bottom hole depth with test Interval overlap of 0.05 to 0.27 m.

The measured flow rate (Q) and Injection head (AH) data,expressed as a

ratio Q/AH, reflect the conductive properties of the test Interval.

The flow rate per unit Injection head (Q/AH) data for the test site

based on 1.5- to 2.0-m test Interval lengths range from

5.0xl0"4 m V 1 to less than 1.5X10"11 m V 1 .

The flow rate per unit Injection head data have been plotted

on summary fracture hydrology logs for each borehole 1n Appendix A and

tabulated for each borehole 1n Appendix B.

Two conceptual flow models may be appropriate 1n analyzing

the Injection test data. Assuming flow 1s equally distributed through a

porous media equivalent of the section of fractured rock under test, an

equivalent rock mass hydraulic conductivity K ) may be calculated:

Page 48: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

35erm " AH2^L ln (rb/rw) (1)

where: L 1s test Interval length, r. 1s radius to constant pressure

boundary and r 1s radius of borehole.

Alternatively, if one assumes all of the measured flow 1s the

result of a single fracture Intersecting the test Interval, the Injection

test data may be used to calculate an equivalent single-fracture aperture

(2b , ) . This flow model assumes laminar, radial flow 1n a horizontal

fracture represented as a smooth parallel-plate opening. This flow model

with Injection test data Is schematically represented in Figure 13. The

equivalent single-fracture aperture 1s determined from:

2besf - j^i^g"*" < rb/rw)| (2)

where: y 1s dynamic viscosity of the fluid, p 1s fluid density and g

is acceleration of gravity.

Assuming the equivalent porous media flow model, and r. to

equal to 10 m, the minimum and maximum Q/AH correspond to equivalent

rock mass hydraulic conductivities of 2.9x10" m*s~1and

2.4x10" iii»s". These Q/AH data also represent equivalent single

fracture apertures of 2.7 urn and 900 pm. Because most test Intervals

Intersect more than one fracture and the apertures of the fracture system

are nonuniform, a realistic model of flow to analyze the Injection test

data 1s likely Intermediate between the above two models.

Page 49: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

36

STRADDLE-PACKER INJECTION TEST

HYDRAULIC HEAD

INJECTION HEAD, AH

FIGURE 13: Schematic of straddle-packer injection test of a single fracture.

Page 50: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

37

The results of the Injection testing Identified several zones

of significantly high permeability. In many Instances these zones are

associated with fracturing In thin (<1 m thick) metagabbro layers

within the monzonitic gneiss. The h1gh-permeab1Hty zones also define

large single fractures or narrow Interconnected fracture zones at the

study site. Four major fracture zones were Identified at the study site

based on the results of hydraulic Interference tests. These fracture

zones are discussed 1n detail 1n section 7.2.

The lowest permeability test Intervals were located 1n

borehole FS-14. Borehole FS-14 was drilled Into a 5- to 10-m wide

vertical diabase dyke. The Injection test results 1n borehole FS-14

confirm the results of hydraulic Interference tests completed across the

dyke, which Indicate the dyke behaves as a local Impermeable barrier to

groundwater flow.

The results of all Injection tests and some withdrawal tests

have been analyzed to determine the distribution of equivalent rock mass

hydraulic conductivity (K ) at the study site. The distribution of

the common logarithm of 340 measurements of hydraulic conductivity 1s

shown 1n Figure 14. The distribution 1s truncated at approximately

10" i.i.s"1 (lower measurement limit for Injection tests) and Is

skewed to the right to higher hydraulic conductivity values. The

geometric mean of all hydraulic conductivity determinations for the study

site 1s 2.1xlO"9m.s"i.

Page 51: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

38

16 [

14 L

12h

> 10ozUJD 8 LO iLL)

= 6L

4 |-

BOREHOLES FS-1 TO FS-17N = 340

GEOMETRIC MEAN = 2.1 x 109m.s-i

ID

3

<

UJ

O

~hn n »-12 -11 -10 •9 •8 -7 -6 -5 -4 -3

LOGARITHM OF Kerm IN

FIGURE 14: Distribution of the common logarithm of equivalent rockmass hydraulic conductivity, Kerm>in boreholes FS-1 toFS-17 measured with straddle-packer injection tests.

Page 52: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

39

The results of the Injection tests completed on 1.5- to 2.0-m length

test Intervals have also been combined to determine the Q/AH values for

the longer test Intervals Isolated by the multiple-packer casings. The

Q/AH values as well as estimates of 1sotrop1c equivalent rock mass

hydraulic conductivity (K ) for each casing Interval are listed 1n

Table 6. Hydraulic conductivity was determined for the casing Intervals

because equilibrium and transient hydraulic head data and groundwater

geochemistry were measured 1n the casing Intervals. To evaluate the

ability of numerical models of groundwater flow to describe the CRNL

groundwater flow system requires field measurements of hydraulic head,

hydraulic conductivity and groundwater geochemistry on the same test

Intervals.

Estimates of anisotropic hydraulic conductivity (K..) were

also determined for each casing Interval by Integrating fracture

orientation data measured with borehole acoustic televiewer and fracture

apertures calculated from Injection tests. The method and results of

these hydraulic conductivity tensor determinations are discussed 1n

Section 9.

Page 53: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

40

Table 6

Interval

FS 1-11-21-31-41-5

FS 2-12-22-32-3*2-42-5

FS 3-13-23-2*3-33-43-53-6 nd.

FS 4-14-24-2*4-34-44-5 nd.4-6 nd.

FS 5-15-1*5-25-35-45-5

FS 6-16-1*6-26-36-46-5 nd.

Hydraulic

FlowUnit

1n

6.31.38.01.86.2

2.52.91.16.54.43.9

2.98.57.84.98.02.7

2.81.92.22.81.6

6.58.01.55,47.22.3

5.18.05.35.59.8

Properties

Rate perHead, Q/AH

mV

x 10-10x 10"8

x 10"8

x 10"8

x 10- 1 0

x 10-9

x 10-9x 10"6

x 10"7

x 10~8

x 10"8

x 10"8

x 10"8

x 10"8

x 10"8

x 10-9x 10-"10

-

x 10-9

x 1O~6

x 10"6

x 10"6

x lO"5

_-

x 10"7

x 10"7

x 10"8

x 10-9x 10-9x 10"7

x 10"6

x 10"7

x TO"»x lO-9

x lO-9

-

of FS Test Intervals

Equivalent Rock MassHydraulic Conductivity

K e r m 1n m.s"it

8.0 x 10"11

1.0 x TO"9

6.4 x lO-9

1.7 x lu"9

1.0 x 10" 1 0

2.1 x 10" 1 0

2.7 x 10" 1 0

1.0 x 10"7

6.2 x 10"8

5.2 x lu"9

5.5 x lO-9

2.3 x TO"9

8.1 x lu"9

7.4 x lu"9

5.7 x lu"9

8.6 x 10" 1 0

8.0 x 10"11

-

2.3 x TO"10

1.5 x 10"7

1.8 x 10"7

3.2 x 10"7

1.9 x 10"6

_-

5.3 x lO"8

6.6 x 10-8

1.2 x lO-9

5.1 x 10- 7 0

1.1 x lO-9

4.1 x 10"8

3.6 x 10-7

5.6 x 10"8 i5.0 x 10" 1 0 i1.0 x lO-9

9.3 x 10" 1 0

-

Page 54: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

41

Table 6 (Cont'd)

Hydraulic Properties of FS Test Intervals

Interval

FS

FS

FS

FS

FS

FS

7-17-27-37-47-57-67-7

8-18-28-38-48-5 nd.

9-19-29-39-49-5 nd.9-6 nd.

10-110-210-310-410-510-6 nd.

11-111-211-2*11-311-411-511-6 nd.

12-112-212-312-4*12-5 nd.

FlowUnit

2155143

4112

2135

39138

121117

2914

1n

.9

.4

.0

.0

.7

.4

.0

.0

.8

.7

.5

.2

.3

.0

.4

.4

.4

.7

.7

.3

.5

.7

.3

.7

.1

.0

.2

.3

.3

.5

Rate perHead,.Q/AH

XXXXXXX

XXXX-

XXXX_-

XXXXX-

XXXXXX-

XXXX-

10-8io-7

lO-*10~6

10"810-9io-7

10-9io-5

10"910-9

io-7

10"^io-8

io-8

10-510-910-910-910-9

10"6

10"6

io-6

10-1010-9

10"?nlo-iolO"8

lO-8

Equivalent Rock MassHydraulic Conductivity

Kerm ^n '

1.8 x1.3 x5.3 x2.9 x1.2 x3.3 x5.6 x

4.0 x1.4 x1.6 x1.9 x

-

2.7 x1.5 x2.8 x4.3 x

--

2.8 x7.5 x2.5 x3.9 x1.2 x

-

1.8 x2.5 x1.2 x1.9 x1.2 x6.6 x

-

2.1 x9.8 x1.4 x3.1 x

-

i.s-it

10-9io-8

10"5io-7

10-9io-io10-8

10-1010"6

10-10io-io

lO-8

1Q-510"910-9

10"6

io-io10-1010-1010-9

io-7

io-7

10-7l o-o10-"io-io

10-9IO-1110-910"9

Page 55: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

42

Table 6 (Cont'd)

Hydraulic Properties of FS Test Intervals

Interval

FS 13-113-213-313-413-513-6 nd.

FS 14-1 **14-2 **14-3 *14-4 *14-5 nd.

FS 15-115-215-315-415-5

FS 16-116-216-316-416-5

FS 17-117-217-317-417-5

howUnit

26161

1233

12321

11.8.3.3.

7.1 .4.8.9.

1n

.4

.7

.1

.6

.7

.5

.0

.3

.3

.69785

64104

62198

Rate perHead,„Q/AHJD

X

XXXX-

XXXX-

XXXXX

XXXXX

XXXX

X

' s " 1

10"6

l u " 8

10"3

10'Jio-7

io-nlo-io10-8l u " 8

io-6

lu"?10"6

10"6

io-7

10-510"6

TO"8

l u " 8

10-8

10"6

10-510-5io-7

io-7

EquivalentHydraulic

Kg p(p

21172

2222

43418

51.1 .1 .1 .

7.9.2.1 .4.

Rock MassConductivity

1m

.3

.0

.3

.6

.0

.9

.3

.3

.4

57777

62099

25715

XX

XXX

XXXX-

XXXXX

XXXXX

XXXXX

us-it

io-7

lu"8

10-9TO"8

io-9

10-^210 - "10-910-9

io-7

TO"8

io-7

io-7

10-9

10"6

io-7

10-810-910-9

io-7

io-7

10~6

io-7

TO"8

t Determined from 1.5 to 2.0 metre Interval, 30 to 120 minute durationconstant-pressure Injection tests unless otherwise Indicated.

* Determined from 72 hour duration, constant-pressure withdrawal test 1ncasing Interval.

** Determined from ball recovery test 1n casing Interval,

nd. Not determined due to 1nsuff1cUit data.

Page 56: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

43

7. HYDRAULIC INTERFERENCE TESTS

7.1 Method

Hydraulic Interference tests were completed 1n open boreholes

and from casing test Intervals to evaluate the hydraulic properties of

the rock mass. Both pump (constant discharge) and pulse (constant

drawdown) experiments were conducted at the study site during the period

1902 to 1984.

Most of the Interference tests were configured and analyzed

as constant discharge or pump tests. The principles of a constant

discharge or pump test are shown schematically 1n Figure 15. Drawdown

versus time response 1n an observation Interval 1s monitored for a

constant discharge or Injection stimulus 1n an activation Interval. The

response measured at the observation Interval 1s typically a function of

the hydraulic properties of the medium or rock mass and the response

characteristics of the activation and observation test Intervals. One of

the most Important response characteristics of both the activation and

observation test Intervals 1s their storage capacity. This capacity 1s

expressed as a dimensionless wellbore storage coefficient C

(Earlougher 1977):

C = VJL (3)

where V 1s the test Interval volume, p Is the test Interval

compressibility, r 1s the radius of the borehole and S 1s the

Page 57: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

HYDRAULIC INTERFERENCE TEST

ACTIVATION BOREHOLE OBSERVATION BOREHOLE

WELLBORE STORAGE

=1.6*10* OPEN BOREHOLE=2.0*104-2.5 cm0STANDPIPE=1.3xlO3 PRESSURE TRANSDUCER

COMPLETION

FIGURE 15: Schematic of a two-borehole constant-discharge hydraulic inter -ference test . Drawdown response data, P ( t ) , used to determinei_nterborehole hydraulic properties are influenced by well bore storageC at both activation and observation boreholes. The magnitude of Cis proportional to the volume (V) - compressibility (B) productof the borehole test equipment.

Page 58: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

45

storayvity of medium tested.. The compressibility 3 1s a measure of

the changing volume (AV) and changing pressure (AP) relationships of

the test Interval:

Wellbore or test Interval storage capacity will often mask

the early-time drawdown response during Interference tests and failure to

consider such effects 1n conventional (Theis) analyses will underestimate

transmissiv1ty and overestimate storativity of the medium. The magnitude

of this error Increases with decreasing borehole spacing, decreasing

medium transmissivity (T) and Increasing dimensionless wellbore storage

coefficient.

Jargon (1976) has shown that the time at which the

activation test interval storage effect will become negligible at an

observation test Interval 1s given by:

(« 10.86 . 2(230 + 15s) <777TT2? H T (5)

where s is the dimensionless skin factor (Agarwal et al. 1970) and r is

the borehole spacing. Application of equation 5 to an open borehole with

zero skin yields the approximate equation of Papadopulos et al. (1967)

for the time after which wellbore storage 1s negligible 1n a pumping well:

Page 59: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

46

(6)

Because fractured crystalline rocks typically possess low

transm1ss1v1ty, 1t 1s essential to design Interference tests to minimize

test Interval storage effects. At the CRNL study site, boreholes were

completed with multiple-packer, multiple-standpipe casings and pressure

transducers were often used to monitor drawdowns. As shown 1n Figure 15

this typically resulted 1n a decrease 1n dimensionless wellbore storage

— 5 2coefficient, C, from 1.6x10 for an open borehole to 1.3x10 for a

borehole completed with a packer and pressure transducer. For an

Interference test 1n fractured rock with T = 1x10" m s" , S =

2x10" , r = 25 m and r = 0.08 m, this reduction 1n pumping borehole

storage capacity reduces the period of storage-dominated flow at an

oDservation Interval from 7300 minutes to 160 minutes. This reduction 1s

significant particularly as long-term drawdown data from pumping tests 1n

fractured rock may often reflect complex and uncertain far-field boundary

effects. Therefore, assessment of Interborehoie hydraulic properties

often requires reliable test data at early to Intermediate time.

For the Interference tests completed at the CRNL site

groundwater was withdrawn from 1) open boreholes using a 76-mm diameter

submersible electric pump, and 2) casing test Intervals using either

air-lift pumping or a surface peristaltic pump. Discharge flow rates

were monitored using a turbine flowmeter and measured with a stop watch

and graduated cylinder or bucket.

Page 60: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

47

Drawdown response was measured 1n open pumped boreholes using

either an electric-contact, water-level tape or a submersible pressure

transducer. Both level-sensing devices have sensitivity of 0.01 m. No

drawdown was measured 1n casing test Intervals subjected to a1r-Hft

pumping. Drawdown was measured 1n casing test Intervals pumped with a

peristaltic pump. The peristaltic pump was connected to 22-mm diameter

packer-piezometer probe Inflated at the bottom of the 25-mm diameter PVC

standpipe. The packer-piezometer probe significantly reduced the

wellbore storage coefficient of the pumped Interval, resulting 1n more

reliable drawdown data. A pressure transducer housed within the

packer-piezometer probe measured drawdowns to within 0.01 m.

Drawdown In observation test Intervals was measured 1n three

ways: 1) using an electric-contact, water-level tape 2) with a

submersible pressure transducer both with and without Inflatable packer

and 3) with water-level probes based on the capacitance principal. The

first two methods accurately measured drawdowns to within 0.01 m. The

water-level probes were accurate to within 1.0 mm. Packers were used

with the submersible pressure transducers to reduce observation test

Interval storage effects and to obtain reliable early-time drawdown data.

Flow rate, pressure and water level data were recorded using

a real time datalogger and multiple-pen strip charts. The pressure and

water-level measurements recorded with the data logger were converted to

Page 61: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

48

m

hydraulic head and tabulated as drawdown versus time. The drawdown and

time data were plotted on diagnostic log-log diagrams (GMngarten 1982)

and subject to various type-curve analyses.

7.2 Results

Many hydraulic Interference tests were completed at the CRNL

groundwater flow study site. Nineteen of these tests provided response

data suitable for detailed analysis and Interpretation. In each

Interference test, drawdown response was monitored 1n several test

Intervals. Table 7 summarizes the nineteen Interference tests with

Information on activation borehole or test Interval, date of test,

withdrawal flow rate, test duration, responding observation Intervals and

the hydrogeologic features evaluated 1n each test.

Hydraulic Interference tests provided detailed Information on

the hydraulic properties of discrete narrow fracture zones and of the

bulk rock mass.

During Interference tests at the CRNL study site, drawdown

response was observed Initially along horizontal high-hydraulic

conductivity fracture zones and subsequently 1n test Intervals located

vertically above and below the fracture zones. This response sequence

Indicates that the Interference tests provide Information on the lateral

flow properties of the horizontal fracture zones and the vertical flow

properties of the surrounding rock mass. The response sequence also

Page 62: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Table 7 Sumnary of Hydraulic Interference Tests

Activation Boreholeor Test Interval

FS-7

FS-10

FS-10

FS 7-3

FS 8-2

FS 9-2

FS 10-1

FS-10

FS-10

FS Z-3

Date

15/5/82

20-27/7/82

20-27/8/82

1/10/82

2/10/82

4/10/82

5/10/82

17-21/6/83

27-29/9/83

25-28/9/82

Flow rate Qin n rV 1

*

1.5xlO"4

1.5xlO"4

6.0xl0"5

3.Ox 10" 5

6.0xl0"5

3.0xl0"5

2.0xl0"4

2.2xlO"4

3.5xlO"6

Test Durationin Min

150

10 060

14 430

270

180

180

180

6 145

2 900

4 200

Responding ObservationInterval , FS

5-1,8-2,9-2

5-1,7-3,8-2,9-2,13-2

A l l remaining intervalsin FS-1 to 14

5-1,7-3,8-2,9-2,13-2

A l l remaining intervalsin FS-1 to 14

5-1,8-2,9-2,10-1,13-2

5-1,7-3,9-2,10-1,13-2

5-1,7-3,8-2,10-1,13-2

5-1,7-3,8-2,9-2,13-2

5-1,5-2,5-3,5-4,5-56-1,6-2,6-3,6-4,6-5

9-2,15-1,16-2,17-1

A l l remaining intervalsin FS-15, 16 6 17

3-2,4-4,4-2,5-2

Hydrogeological FeaturesEvaluated

Fracture Zone No. 1

Fracture Zone No. 1

Vertical FlowProperties of RockMass

Fracture Zone No. 1

Vertical FlowProperties of RockMass

Fracture Zone No. 1

Fracture Zone No. 1

Fracture Zone No. 1

Fracture Zone No. 1

Drawdown Responsefor GeomechanicalExperiment

Fracture Zone No. 1

Vert ical FlowProperties of RockMass

Fracture Zones No. 2and No. 4

_ ^ _ _ _ — — — — — — — — i

Page 63: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Table 7 Summary of Hydraulic Interference Tests (Cont'd)

Activation Boreholeor Test Interval Date

FS 4-2 16-19/8/82

FS 4-2 25/10/83

FS 6-1 13-16/10/82

FS 6-1 27/10/83

FS 11-2 27-29/10/82

Flow rate Qin m^s"'

3.5xlO"6

1.0 xlO"5

3.3xlO"6

9.5xlO"6

3.5xlO"6

Test Duration Responding Observationin Min. Interval, FS

2-1, 2-2

3 400 1-2,2-1,2-3,3-2,5-2,7-4

4-1,4-3,4-4,4-5

295 17-3

17-1,17-2,17-4

4 400 2-1,10-4,11-2,13-4

6-2,6-3,6-4,10-3,10-4,11-1,11-3,11-4

770 11-2,15-3,16-3

11-1,11-3,11-4,15-115-2,15-4,16-1,16-2,16-4

2 900 2-1,6-1,10-4,13-4

6-2,6-3,6-4,11-1,11-311-4

Hydrogeological FeaturesEvaluated

Vertical FlowProperties of RockMass

Fracture Zones No. 2and No. 4Vertical FlowProperties of RockMass

Fracture Zones No. 2and No. 4

Vertical FlowProperties of RockMass

Fracture Zone No. 3

Vertical FlowProperties of RockMass

Fracture Zone No. 3

Vertical FlowProperties of RockMass

Fracture Zone No. 3

Vertical FlowProperties of RockMass

enO

Page 64: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Table 7 Sunwary of Hydraulic Interference Tests (Cont'd)

Activation Boreholeor Test Interval

FS 11-2

FS 15-3

FS 5-1

FS 3-2

Date

8-9/9/83

24-26/10/83

7-8/10/82

23-25/9/82

Flow rate Qin mV1

8.3xlO~6

1.7xl0"5

1.3xKT6

2.5xlO"7

Test Durationin Min.

1 240

1 340

1 380

2 800

Responding ObservationInterval, FS

6-1,15-3

6-2,15-1,15-2,15-4

6-1,11-2

6-2,6-3,6-4,11-1,11-311-4,15-1,15-2,15-4

5-2,5-3,5-4

3-1,3-3,3-4

Hydrogeological FeaturesEvaluated

Fracture Zone No. 3

Vertical FlowProperties of RockMass

Fracture Zone No. 3

Vertical FlowProperties of RockMass

Vertical FlowProperties of RockMass

Vertical FlowProperties of RockMass

en

* Constant drawdown pulse test, Q is variable.

Page 65: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

52

demonstrates the Importance of Mgh-hydraul1c conductivity fracture •

zones on the response characteristics of a rock mass to pumping and some

of the potential difficulties 1n analysis and Interpretation of pump

tests 1n fractured rock, when the location of fracture zones are poorly

defined and the monitoring Intervals are excessively long.

It 1s beyond the scope of this report to present the results

of all the hydraulic Interference tests completed at the CRNL

qroundwater flow study site. However, the results of most of the

Important tests conducted to evaluate the flow properties of the fracture

zones are presented. Several examples of vertical response to pumping

the high-hydraulic conductivity fracture zones are also presented.

Complete vertical response records for the entire study site are Included

1n Appendix C.

The program of hydraulic Interference testing Identified four

narrow fracture zones or large single fractures at the study site. These

four fracture zones (Identified as No. 1 to No. 4) have lateral extent

greater than 50 m. Two of the fracture zones are oriented subhorizontal

(No. 1 and No. 2) with one Inclined (No. 3) and one vertical (No. 4).

The fracture zones are shown on a central north-south cross section of

the study site 1n Figure 16. The results of the hydraulic Interference

tests are discussed for each fracture zone.

Page 66: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

CENTRAL CROSS SECTION

FRACTURE ZONE 4

FS-4 FS3

•DIABASE DYKEFRACTUREZONE 3 FRACTURE ZONE 1

0 METRES 50

N

FRACTURE[\^\ ZONE 2

inCO

FIGURE 16: Vertical, cross section through centre of CRNL groundwater flow study site showingfour fracture zones identified from hydraulic testing.

Page 67: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

54

7.2.1 fracture Zone No.1

7.2.1.1 FS-1O Pump Tests

Fracture zone No. 1 1s a narrow subhorizontal fracture zone

Intersected by nine test Intervals. (FS 5-1, 7-3, S-2, 9-2, 10-1, 13-2,

15-1, 16-2 and 17-1) at depths of 33 to 50 m. The fracture zone 1s

associated with a thin (<1 m thick) mafic layer and appears to be

present throughout the study site. Two open-borehole pump tests were

conducted from borehole FS-10 on 1982, August 20-27 and 1983,

September 27-29 to evaluate Interborehole properties to test Intervals

FS 5-1, 7-3, 8-2, 9-2, and 13-2 and FS 15-1, 16-2 and 17-1 respectively.

The layout of test boreholes and plots of drawdown versus log time for

the two pump tests are shown 1n Figures 17 and 18. Two pump tests were

conducted because boreholes FS-15, 16 and 17 were not drilled at the time

the first pump test was completed 1n borehole FS-10.

The drawdown responses shown 1n Figures 17 and 18 are similar

and Indicate a straight line response at late time for both the pumping

and observation Intervals, similar drawdown response for all observation

test Intervals regardless of position relative to the pumping borehole

and a drawdown offset of approximately 4 to 5 m between the pumping and

observation Interval responses.

Page 68: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

z5og<o

0(

2

4

6

8

10

12

FS

-

_

-

D—o—a • m—a rt£g

->o

oo

oo

0

-10 PUMPING WELL RESPONSE

BOREHOLE LAYOUT

0FS-7

•-O FS-8

J0FS-9^ 0 FS-5

A~tD FS-10Q=9.0 l.p.m.

©FS-130 50 100

metres

i

oU

o°0

o oo

° °o

FS-10 PUMP TESTAUG. 20-27 , 1982

MULTIPLE WELL RESPONSE

FS-10 oFS 5-1 •FS 7-3 *FS 8-2 aFS 9-2 •

FS 13-2 *

I

OBSERVATION

* * * * * *

oo

° ooo

o

oo

1

1

INTERVAL RESPONSE

• *

a

fixV

0 )|^

0 ^11o

°oo

oo

Q

o

o o

10TIME SINCE PUMPING STARTED IN MINUTES

FIGURE 17: Drawdown versus log time response for pumping borehole and observation intervals inter-secting fracture zone No. 1 - FS-10 pump test, August 20-27, 1982.

Page 69: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

RES

UJ

2z

z

<

o

0

2

4

6

a

10

12

• * 9 • i , * | B

oo

o

oo

o

-

* " A ° " ̂ A « x* x *

FS-10 PUMPING WELL

o

BOREHOLE LAYOUT

QFS-17

*1i

c,FS-9

FS-16©

Q = 13.5 l.p.m.°FS-15

0 50

metres

1

.RESPONSE

oo

°o°o

o

MULTIPLE WELLFS-10

FS9-2FS 15-1FS 16-2FS 17-1

A »

a A x

K

' • • # a A x

• D Q A x

* • . aai** *•• a A.X

• D

*

OBSERVATION INTERVAL

o

°oRESPONSE ° o

o oax °• °

i

i

X

• D

o

1

FS-10 PUMP TES1SEPT. 27-29, 1983

# # D A "

D A

• a

°o

tn

10 102

TIME SINCE PUMPING STARTED IN MINUTES103 104

FIGURE 18- Drawdown versus log time response for pumping borehole and observation intervals inter-secting fracture zone No. 1 - FS-10 pump test, September 27-29, 1983.

Page 70: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

57

Initial Interpretation of the 1ate-t1me drawdown responses

using Cooper and Jacob (1946) approximation to the Theis solution suggest

the boreholes are located within a homogeneous 1sotrop1c fracture zone

with transm1ss1v1ty of 4x10" m s~ and variable storativity.

Using the parallel-plate model an equivalent single-fracture aperture

2b , may be determined from the transmissivity:

/3(7)

The late-time transmissivity Is equivalent to a fracture

opening of 190 pm. Results from Injection tests and additional pump

tests Indicate the late-time data after approximately 500 to 1000 minutes

reflect a reduced permeability boundary and that Interborehole

permeabilities are significantly higher than an equivalent fracture

aperture of 190 ym.

The existence of a reduced permeability boundary Indicates

early- to Intermediate-time drawdown data are necessary to evaluate

Interborehole hydraulic properties. However, early-time data may be

dominated by wellbore storage effects. Use of equation 5 theoretically

predicts activation wellbore storage effects may Influence drawdown

response up to and beyond 1000 minutes. Therefore, no portion of the

drawdown curve may be anaiysable for Interborehole hydraulic properties.

To confirm this theoretical prediction the drawdown data for both FS-10

pump tests were plotted on log drawdown versus log time scales

(Figure 19 and 20). The log-log plot, (Gringarten 1982) allows

identification of dominating flow regimes. Wellbore and/or fracture

Page 71: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

orLU

Oo

oro

10

1

l0-1

io-2

- - " • • " (

FS-10 PUMPING WELL RESPONSE

oo

o

°o

OBSERVATION INTERVAL «° RESPONSE " ^ - -g°

* f l B -B •

• O * A " "

° a x

• Q D A -

Q aA

• AA a x

a

• a A • x

o -—& %

—,

o o o o O ° o O °o

••ft AX

jf* xxX^ _ j£T a^ J(

a " X

S xx

x

i

i i

•o0W° ° I I

x^

FS-10 PUMP TESTAUG. 20-27, 1982

MULTIPLE WELL RESPONSE

FS-10 o

FS 5-1 •FS 7 3 ^FS 8-2 °FS 9-2 •

FS 13-2 x

i i

10 10' 10J

TIME SINCE PUMPING STARTED IN MINUTES10*

CJ1

oo

FIGURE 19: Log drawdown versus log time response for pumping borehole and observation intervals intersectingfracture zone No. 1 - FS-10 pump test, August 20-27, 1982.

Page 72: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

10-

c/)UJDCUJ

zzoo<

10

102

PUMPING WELL RESPONSEo oco o oo

OBSERVATION INTERVALRESPONSE ^

o o

. 6

ooooooo

FS-10 PUMP TESTSEPT. 27-29, 1983

MULTIPLE WELL RESPONSE

FS-10 oFS 9-2 D

FS 15-1 xFS 16-2 •FS 17-1 A

10 102 103

TIME SINCE PUMPING STARTED IN MINUTES

en10

104

FIGURE 20: Log drawdown versus log time response for pumping borehole and observation intervalsintersecting fracture zone No. 1 - FS-10 pump test, September 27-29, 1983.

Page 73: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

60

storage-dominated flow regimes are Identified by a characteristic unit

slope 1n the drawdown-time data on a log-log plot (Ramey 1970). Wellbore

storage effects are usually considered negligible 1 to 1 1/2 log cycles

1n time after the end of the unit slope (Earlougher 1977). The unit

slope 1s apparent 1n the drawdown responses (Figures 19 and 20) of both

the pumping well and observation Intervals. Storage-dominated flow 1s

persistant to approximately 100 to 500 minutes In both tests. Therefore,

no portion of the drawdown curve may be reliably analyzed using

conventional (Theis) techniques to determine Interboreholes hydraulic

properties. The above pump tests do, however, provide Important

qualitative Information on Interborehole hydraulic properties,

boundaries, hydraulic connections and the behaviour of a large fracture

zone subject to pumping. Based on the observed drawdown response,

fracture zone No. 1 possesses high permeability 1n the vicinity of the

test boreholes (1n excess of 190 ym) and a far-field boundary of

reduced permeability.

The 4 to 5 m drawdown offset observed 1n the pumping borehole

1s likely on consequence of a positive skin effect or reduced

permeability 1n the Immediate vicinity of the pumping borehole. A

positive skin effect causes a drop 1n hydraulic head as fluid enters a

borehole.

This permeability reduction may be due to clogging of

fractures with drill cuttings or as a result of natural permeability

heterogeneity within fractures. Van Everdingen (1953) and Hurst (1953)

Page 74: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

61

represented the skin effect as a skin factor s, based on an

1nf1n1tes1mally thin layer with permeability differing from the medium

permeability, located on the face of the borehole wall. The

dimensionless skin factor s 1s related to the head loss H , through the

skin by:

2irTH—Z-1 (8)

where T 1s medium transmissWHy and Q 1s borehole pumping rate.

Evidence for the existence of a positive skin effect at the

pumping borehole 1s shown clearly 1n Figure 21 where water-level recovery

data are plotted versus log ratio of time since pumping started to time

since pumping stopped. Recovery response of the pumping borehole (FS-10)

are plotted with observation Interval (FS 9-2) response representative of

recovery within the fracture zone. At late time or early ratio time the

recovery responses are Identical. However, at early time or late ratio

time, the responses differ by a maximum of about 4 to 5 m. This maximum

difference represents the head loss H , due to a positive skin effect.

Although not shown 1n this report, the skin factor may also be evaluated

by plotting recovery data versus t where t 1s time on a Cartesian

plot (Raghavan 1977). This analysis yields similar values of H for

the pumping borehole and a small negative skin effect 1n the observation

Interval FS 9-2.

Page 75: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

u

2

4

6

8

10

12

14

• 0

\

6a.

g

't

-

-

-

-

•°o•

Soo

1

1 1 1

-

FS-10 PUMP TESTAUG. 20-27, 1982

RECOVERY RESPONSE

FS-10 oFS 9-2 •

-

o• o

• o•2 o• •° . o

• # < £• • •

o * •

o

-

o

o

0 _

° o. . P o

91

10 10* 10J 104

RATIO OF TIME SINCE PUMPING STARTED TO TIME SINCE PUMPING STOPPED

FIGURE 21: Recovery response for pumping borehole FS-10 and observation interval FS 9-2 intersecting fracturezone No. 1. The difference in recovery response at late ratio time indicates a positive skinfactor of 5.6 at the pumping borehole.

Page 76: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

63

Using equation 8 and assuming an average value of

transm1ss1v1ty determined from Interference and Injection tests,a skin

factor of 5.6 1s calculated for fracture zone No. 1 1n borehole FS-1O.

This skin factor determined from the pumping test may also be checked

with the results of straddle-packer Injection tests which measure

near-borehole fluid flow properties. The flow rate and head data from

Injection tests (see Appendix B) yield an Identical skin factor of 5.6

Indicating the H value determined from the pump test recovery data 1s

reliable, and also that the head loss at the borehole - fracture

Interface Is Unearily proportional to flow rate 1n the range 6.7x10"

m V 1 (Injection test) to 1.5xlO~4 m V 1 (pump test). This

linearity 1n flow rate and head loss further suggests laminar flow in the

fracture zone 1n the vicinity of the pumping borehole.

Although the drawdown versus time data from both FS-10 tests

are, 1n general, not useful 1n determining the Interborehole hydraulic

properties of fracture zone No. 1 by conventional methods, the data may

be amenable to analysis using other models. In particular, the single,

horizontal, uniform - flux fracture model (Gringarten and Ramey 1974) may

be appropriate 1n providing Information on the anisotropic permeabilty

(K , K ) and storativity (S) of the rock mass 1n which horizontal

fracture zone No. 1 1s Imbedded. The flow conceptualization used 1n this

model 1s schematically shown 1n Figure 22. A high-permeability fracture

of radius r, 1s Imbedded 1n an anisotropic porous medium of Infinite

radial extent and thickness h. The porous medium 1s horizontally

Page 77: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

64

bounded by Impermeable layers. The model further assumes that the

horizontal fracture has sufficient permeability that negligible hydraulic

gradients exist along the fracture to the pumping borehole-

Available geologic and hydrogeoiogic Information suggests the

Gringarten fracture model Is applicable to the flow system tested by

pumping fracture zone No. 1 from borehole FS-10. The near-uniform

response 1n observation Intervals Intersecting the fracture zone

Indicates negligible gradients within the fracture zone. Straddle-packer

Injection tests also show the high permeability of the fracture zone

relative to the bulk of the rock mass. The rock mass also shows vertical

flow regimes or drainage to the fracture zone during pumping.

The drawdown data for the fracture zone from the two FS-10

pump tests are shown 1n Figure 22 using data from observation Intervals

FS 8-2 and FS 9-2 and FS 16-2. The drawdown data from the pumping

borehole were not used because of the positive skin effect discussed

previously. The data are plotted on a log-log plot with best-fit type

curves of Gringarten et al. (1972). The type curves show three distinct

flow regimes; borehole- and fracture storage-dominated flow at early time

characterized by a unit slope, vertical linear flow to a horizontal

fracture at Intermediate times characterized by a half slope and radial

flow response at late times. The drawdown data for both pump tests show

storage-dominated flow and vertical linear flow but do not Indicate

radial flow at late time. The drawdown data suggest the persistance of

vertical linear flow from Intermediate time to the end of the test.

Page 78: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

10

if)LU

z

oQ

<tra

1 0

o t

oo

1

FS-10 PUMP TESTSAUG 20-27 1982SEPT 27-29 1983

SINGLE HORIZONTAL UNIFORM FLUXFRACTURE MODEL

FS 16-2 DRAWDOWN DATA

t MATCH POINTSt 1 000 minutess - 1.0 metres

O CASE A hn - 0.05tD-2.1pD. hD - 8.2

O CASE Bhn-0.2tD - 2.8pD/hD-2.2

CASE C hn-005t o - 10pD/hD - 9.6

O-* FS 9-2, 8-2 DRAWDOWN DATA

TYPE CURVE FLOW PERIODS

.FRACTURE STORAGEDOMINATED

O i I

VERTICALFLOW RADIAL FLOW-

I10 10' • 10J

TIME SINCE PUMPING STARTED IN MINUTES

10J

FIGURE 22: Log drawdown versus log time response in fracture zone No. 1 during two pump tests from boreholeFS-10, with best-fit type curves of Gringarten and Ramey's (1974) single, horizontal uniform-fluxfracture model.

Page 79: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

66

The type curves of the Gringarten fracture model were

visually fit to the drawdown data to determine hydraulic properties of

the bulk rock mass. Fracture radius, rf,was selected as 100 m based on

available borehole Information. Rock mass thickness, h,at 65 m was used

based on observed vertical drawdown response during the pump tests. The

resultant model parameters K , K and S are shown 1n Table 8. The

three model fits suggest vertical hydraulic conductivity of about

2x10" m.s'i, radial hydraulic conductivity of 2x10" :n.s"i, and

storativity of 2x10" . The calculated hydraulic conductivities

Indicate enhanced vertical permeability relative to radial permeability

by factors of 10 to 170.

Page 80: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

67

Table 8

Hydraulic Properties Determined FromFS-1O Pump Tests Using Gringarten

Uniform-Flux Fracture Model*

Data

Case AFS 8-2,

Case BFS 8-2,

Case CFS 16-2

9-2

9-2

0.

0.

0.

JL

05

2

05

Hydraulic

Kr

1.5X10"7

1.6xlO"7

2.6xlO"7

Conductivity1n m.s"1

2.5xlO-5

1.7xlO"6

4.4x10-5

Anisotropy

Kr/K7

165

10

170

Storat1v1ty

3xlO-5

2xl0-5

1x10-5

* with rf = 100 m, h = 65 m

Page 81: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

68

The hydraulic conductivity values determined by the

Gringarten model may be compared to the results of straddle-packer

Injection tests. The straddle-packer Injection tests for the entire

study site showed a geometric mean of hydraulic conductivity equal to-9 2 -12.1x10 m s . Because most of the boreholes are vertical, the

mean from the Injection tests likely reflects the radial or horizontal

hydraulic conductivity of the rock mass and to a lesser extent an average

of both horizontal and vertical hydraulic conductivity. The Gringarten

model yielded radial hydraulic conductivity of about 2xlO~ M.S~I and

an average of radial and vertical hydraulic conductivitj (K K )

1n the range 5x10" to 3x10" m.s"1. Therefore, the hydraulic

conductivity of the rock mass determined by the Gringarten model 1s about

two to three orders of magnitude higher than Injection test results. The

discrepancy 1n hydraulic conductivity determined by the two methods may

result from the presence of vertical high-permeability fractures.

Vertical fractures would provide most of the flew to the horizontal

fracture and the pumping borehole resulting 1n overestimation of the

hydraulic conductivity of the rock mass between the vertical fractures.

In addition, our Injection tests likely measure the hydraulic

conductivity of the rock mass between vertical fractures because most of

the boreholes are drilled vertically. The estimate of storativity

determined by the Gringarten model 1s probably also a measure of the

storage properties of a rock mass containing vertical high-permeability

fractures or fracture zones. It 1s likely an unreliable estimate of

specific storage for uniformly fractured rock between vertical fractures

or fracture zones.

Page 82: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

69

7.2.1.1 FS 7-3. 8-2. 9-2 and 10-1 Pump Tests

Four pump tests were completed 1n fracture zone No. 1 using

the multiple-packer, multiple-standpipe casing. The withdrawal flow-5 5 3-1

rates were decreased to 3.0x10 and 6.0x10 m s to reduce the

onset of vertical flow regimes and far-field boundary effects and thus

extend the period of 1nf1n1te-act1ng radial flow for analysis of

Interborehole hydraulic properties. Storage effects 1n activation test

Intervals were minimized by using a1r-Hft pumping techniques 1n the

25-mrn diameter standpipes.

The log drawdown versus log time plots for these four pump

tests are shown 1n Figures 23 to 26. Visually best-fit Theis curves

through the data are also shown on these figures. The Theis curves

generally provide a good fit to the drawdown data throughout the duration

of the tests. Some early-time (less than 5 minutes) and late-time

(greater than 100 minutes) deviations between the data and the type

curves are evident. These deviations reflect storage-dominated flow at

early time and far-field boundary or vertical leakage effects at late

time.

Fracture transm1ss1v1t1es and storativities were determined

from the pump tests using conventional match-point calculations. The

transm1ss1v1ty data were expressed as equivalent single-fracture aperture

2b , using equation 7. The equivalent single-fracture aperture and

storativity data for fracture zone No. 1 are listed 1n activation

Page 83: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

70

10"' -

COLUIXHLU

Z

oo

DCQ

10"- -

1CT

FS 7-3 PUMP TESTOCT 1, 1982

MULTIPLE WELL RESPONSEo FS 5-1a FS 8-2

FS9-2FS 10-1FS 13-2THEIS CURVES

BOREHOLE LAYOUT

FS-7OQ=3.6 /m

-OFS-8

10 10'TIME SINCE PUMPING STARTED IN MINUTES

FIGURE 23: Log drawdown versus log time response for observation intervalsintersecting fracture zone No. 1 with best-f i t Theis curves -FS 7-3 pump test, October 1, 1982

Page 84: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

71

10"1 -

COLUDC

UJ

2

OD

<DCQ 10" • -

10"

I 1FS 8-2 PUMP TEST

OCT2, 1982

MULTIPLE WELL RESPONSEo FS 5-1A FS 7-3• FS 9-2o FS 10-1 »yX FS 13-2 *r

THEIS JTCURVES S

// /

7 A• / rf

- / I 1

' / hii a §

1 I& I

1 / / '

// * •

St.

I//o

/ o

/

o

am

jf o/^ /

AL O/

'* o/

/

/

/

/

/X

i

/

/

/

/ x BOREHOLE LAYOUT

rX

I oPS-7

- O F S ' 8

O=1.6/m-fs.9GFS-5

OFS-10

OFS-13rr c 5C IOC r-

1 1 1

1

-

10 10

TIME SINCE PUMPING STARTED IN MINUTES

FIGURE 24: Log drawdown versus log time response for observation intervalsintersecting fracture zone No. 1 with best-fit Theis curves - FS 8-2pump test, October 2, 1982.

Page 85: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

72

ooLU

crHUJ

oQ

<

a.D

10 '

10 '

FS9-2 PUMP TEST0CT4, 1982

MULTIPLEoA

O

X

WELL RESPONSEFS 5-1FS 7-3FS 8-2FS 10-1FS 13-2

_ THEIS jCURVES xT

BOREHOLE LAYOUT

GFS-5

OFS-13

10 10-

TIME SINCE PUMPING STARTED.IN MINUTES

FIGURE 25- Loq drawdown versus log time response for observation intervalsintersecting fracture zone No. 1 with best-fit Theis curves -FS 9-2 pump test, October 4, 1982.

Page 86: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

73

10 -

COaitrUJ

zOoIIXo 10" -

10"

1 1

FS 10-1 PUMP TESTOCT5, 1982

MULTIPLE WELL RESPONSEo FS 5-1A FS 7-3 .<;• FS 8-2 ^Cfr^• pS 9-2 ^rfS&X FS 13-2 y/y<P ^d

THEIS CURVES J&V J ^

Jf // I

//

BOREHOLE LAYOUT

k

©FS-71 K5 FS-8

nFS-9*° © FS-5

OFS-10Q = 1 . 8 / m

©FS-13n- 0 K IOC rr

110 10r'

TIME SINCE PUMPING STARTED IN MINUTES

FIGURE 26- Log drawdown versus log time response for observation intervalsintersecting fracture zone No. 1 with best-fit Theis curves -FS 10-1 pump test, October 5, 1982.

Page 87: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Table 9

Equivalent Single-Fracture Aperture - Fracture Zone No. 12b esf in

ACTIVATIONINTERVAL

FS 5-17-38-29-110-113-215-116-217-1

FS 5-1

105185290275325----

7-3

900385366390----

8-2

390290490380----

OBSERVATION INTERVAL

9-2

360390558400----

10-1

350350465350----

13-2

23530538026045-

-

15-1

-

-420_130--

16-1

-490_

110-

17-1

_

410

190

Table 10

Fracture Storativity - Fracture Zone No. 1

ACTIVATIONINTERVAL

FS 7-38-29-210-1

FS 5-1

2X10-5

3xlO"5

ixlO"5

2xlO"5

7-3

5xlO-5

2xlO"5

lxlO"5

8-2

6xlO"5

_

4xlO"6

8xlO"6

OBSERVATION

9-2

2xlO'5

7xlO"6

_

lxiO"5

INTERVAL

10-1

8xlO"6

5xlO"6

3xlO"5

-

13-2

8xlO"6

2xlO"5

6xlO"5

lxlO"5

15-1

ixlO"4

16-1

m

lxlO"4

17-1

9xlO'6

Page 88: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

75

Interval - observation Interval matrices 1n Tables 9 and 10. Aperture

estimates 1n Table 9 listed for the same activation and observation

Interval were determined from the results of staddle-packer Injection

tests. The equivalent single-fracture apertures range from 45 to

900 pm with highest values In the northwest corner of the study site

and lowest values to the south. Fracture zone No. 1 has average aperture

values of about 375 urn 1n the northern half of the study site and 150

pm 1n the southern half of the study site. The southern edge of the

fracture zone 1s bound by an Impermeable diabase dyke. Storat1v1t1es

range from 4x10" to 1x10" with an average site value of about

2xlO"5.

7.2.2 Fracture Zone No. 2

Fracture zone No. 2 1s a narrow, subhorizontal fracture zone

Intersected by seven test Intervals (FS 1-2, 2-1, 3-2, 4-2, 5-2, 7-4,

17-3) at depths of 25 to 30 m. Fracture zone No. 2 1s located 1n the

northern half of the study site.

A three-day duration pump test was conducted from test

Interval FS 4-2 to evaluate the Interborehole hydraulic properties of

fracture zone No. 2. Drawdown response was recorded 1n all six

observation test Intervals. Plots of log drawdown versus log time for

observation Intervals FS 1-2, 2-1, 2-3, 3-2, 5-2 and 7-4 together with

the visually best-fit Theis curves are shown 1n Figure 27.

Page 89: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

if)LUcc

OQ

<cra

FS 4-2 PUMP TESTAUG 16-19, 1982

MULTIPLE

D

A

X

O

WELL RESPONSE

FS 1-2

FS2-1FS 2-3

FS 3-2

FS 5-2FS 7-4

THEIS CURVES

BOREHOLE LAYOUT

FS-1o

FS-4

Q 0.19/mm.

FS-5o

FS-2

\

0 m bO

1U 10 '

TIME SINCE PUMPING STARTED IN MINUTES

FIGURE 27: Log drawdown versus log time response for observation intervals intersectingfracture zone No. 2 with bes t - f i t Theis curves - FS 4-2 pump tes t ,August 16-19, 1982.

Page 90: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

77

Interpretation of the drawdown response 1n observation test

Intervals FS 2-1, 2-3, 7-4 and 17-3 are complicated by the proximity of

vertical fracture zone No. 4 to these test Intervals. Fracture zone

No. 4 1s the subsurface expression of the northwest trending lineament

Identified 1n Figures 4 and 9. Fracture zone No. 4 1s located within a

few metres of boreholes FS-7, FS-4 and FS-2. The fracture zone

terminates 1n the vicinity of borehole FS-2. Drawdown response 1n

Intervals T5 2-1, 2-3, 7-4 and 17-3, therefore, reflect the combined

hydraulic properties of fracture zones No. 2 and No. 4.

Equivalent single-fracture apertures 2b , and

storativities were determined for fracture zones No. 2 and No. 4 from

Interference tests and are listed 1n Tables 11 and 12. Apertures listed

for similar activation and observation test Intervals 1n Table 11 were

determined from straddle-packer Injection tests. Tables 11 and 12 also

Include Interference test data from a pump test completed from test

Interval FS 2-3 1n 1982, September 25-28.

Estimates of equivalent single-fracture aperture for fracture

zone No. 2 range from 13 to 355 pm with an average value of about

100 pm. The fracture zone has highest permeability 1n the vicinity of

boreholes FS-4, FS-7 and FS-17 and pinches out 1n all directions at a

radial distance of about 50 m from boreholes FS-4 and FS-17. Average

fracture storativity of 7x10" was determined for fracture zone No. 2

from three observation Interval resDonses.

Page 91: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Table 11

Equivalent Single-Fracture Aperture - Fracture Zones No. 2 and 42bps<: in urn

* Property of Fracture Zone No. 2 onlyt Property of Fracture Zone No. 4 only,determined from vertical pulse test

ACTIVATIONINTERVAL

FS 1-22-12-33-24-25-27-417-3

FS 1-2

19*---

108*---

2-1

13*63*-

123---

2-3

---

140---

OBSERVATION

3-2

--

40*131*---

INTERVAL

4-2

-195-

145*---

4-4

-116

60*---

5-2

116.

90*22*--

7-4

-

165-

186*-

17-3

_196

-355*

-siCO

Table 12

Fracture Storativitv - Fracture Zones No. 2 and 4

ACTIVATION(INTERVAL

FS 2-34-2

FS 1-2

9xlO"5*

2-1

6xlO'5

2-3

7xlO"5

OBSERVATION

3-2

4xlO"5*

INTERVAL

4-2

lxlO"4

4-4

3xlO'5

5-2

2xlO-4

ixlO"4*

7-4

lxlO"5

17-3

5xlO"5

* Property of Fracture Zone No. 2 only

Page 92: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

79

7.2.3 Fracture Zone No. 3 m

Fracture zone No. 3 1s a narrow. Inclined fracture zone

Intersected by seven test Intervals (FS 2-1, 6-1, 10-4, 11-2, 13-4, 15-3

and 16-3) at depths of 18 to 38 m. Based on borehole data, the fracture

zone Intersects the southern and central areas of the study site, strikes

northwest and dips about 25° to the northeast. The fracture zone 1s

likely the subsurface expression of the northeast trending air photo

lineament Intersecting the southwest corner of the study area shown on

Figures 4 and 9. Fracture zone No. 3 1s also associated with thin mafic

layering 1n the quartz monzonite of the study site.

Five pump tests were conducted 1n fracture zone No. 3 using

test Intervals FS 6-1, 11-2, and 15-3 as activation Intervals.

Observation Interval response to four of these pump tests are shown on

log-log plots with visually best-fit Theis curves 1n Figures 28 to 31.

Equivalent single-fracture apertures, 2b f and storat1v1t1es were

determined from match-point calculations and are listed 1n Tables 13 and

14. Equivalent single-fracture apertures vary from 13 to 240 ym with

average value of about 140 pm 1n the central and southern areas of the

study site. The fracture zone appears to pinch out to the northeast and

northwest. Storat1v1t1es range from 1x10" to 1x10" with an average

value of 1x10" .

Page 93: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

C/3LU

ccI—

5

6Q

<CCQ

ID ' -

FS6-1 PUMP TESTOCT 13-16, 1982

yS MULTIPLE

yS •

s oA

D

BOREHOLE LAYOUT

-. FS-2

t ^FS-10 c c c

Q 0.20 / mm

QFS-11

FS-13o0 MI !>0* J

1

1

WELL RESPONSF

FS2-1

FS 11-2FS 10-4

FS 13-4

THEIS CURVES

/

/

/ /

• / /

1

1

-

00o

10 10 10'

TIME SINCE PUMPING STARTED IN MINUTES

FIGURE 28- Log drawdown versus log time response for observat.cn intervals intersectingfracture zone No. 3 with best-f i t Theis curves - FS 6-1 pump test,October 13-16, 1982.

Page 94: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

COaitrLU

OQ

crQ

10

10

FS 6-1 PUMP TESTOCT. 27, 1983

MULTIPLE WELL RESPONSE

• FS11-2

o FS 15-3

FS 16-3

THEIS CURVES

BOREHOLE LAYOUT

OFS-16

FS-6OQ 0.57 I min

OFS-15

OFS-ti

0 metres 30

oo

FIGURE 29:

10 102

TIME SINCE PUMPING STARTED IN MINUTES

Log drawdown versus log time response for observation intervals intersectingfracture zone No. 3 with best-f i t Theis curves - FS 6-1 pump test,October 27, 1983.

10J

Page 95: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

enOf

cc( -2 10

2

oQ

crQ

to

FS 11-2 PUMP TESTOCT 27-29, 1982

MULTIPLE WELL RESPONSE• FS 2-1o FS 6-1

FS 10-4FS 13-4THEIS CURVES

JQ - 0.21 //min

FS-13Q

0 m 50

10 10''

TIME SINCE PUMPING STARTED IN MINUTES

FIGURE 30- Log drawdown versus log time response for observation intervals intersecting' fracture zone No. 3 with best-f i t Theis curves - FS 11-2 pump te s t ,

October 27-29, 1982.

oo

Page 96: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

10

UJQC

LJJ

zoQ<:DCQ

10

PUMP TEST FS 15-3OCT. 24-26, 1983

MULTIPLE WELL RESPONSE

o FS6-1

• FS 11-2

THEIS CURVES

BOREHOLE LAYOUT

OFS-6

Q 1.0 1 mm

FS-11

0 metres 20

10 102

TIME SINCE PUMPING STARTED IN MINUTES103

COOJ

FIGURE 31: Log drawdown versus log time response for observation intervals intersectingfracture zone No. 3 with best-fit Theis curves - FS 15-3 pump test,October 24-?6, 1983.

Page 97: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Table 13

Equivalent Single-Fracture Aperture - Fracture Zone No. 32besf in nm

ACTIVATIONINTERVAL

FS 2-16-110-411-213-415-316-3

FS 2-1

13137-115--

6-1

190

141-145

OBSERVATION

10-4

12014205--

INTERVAL

11-2

110

190_124•

13-4

240

15096

15-3

132

140

125

16-3

135

_

42

Table 14

CO

ACTIVATIONINTERVAL

FS 6-111-215-3

FS 2-1

3xlO~5

2xlO"5

-

Fracture

6-1

lxiO"5

5xlO"6

Storativity -

OBSERVATION

10-4

ixlO"4

5xlO'5

-

Fracture Zone

INTERVAL

11-2

lxlO"6

5xlO"6

No. 3

13-4

ixlO""4xlO"4

15-3

7xlO~6

lxlO"6

16-3

2xlO"5

-

Page 98: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

85

7.2.4 Fracture Zone No. 4

Fracture zone No. 4 is a narrow, vertical fracture zone

striking northwesterly through the north and central sections of the

study site. The fracture zone is the subsurface expression of the

northwest trending lineament that intersects the northwest corner of the

study site and was identified by air photo interpretation. Because the

fracture zone is vertical, there are few, if any, borehole

intersections. Borehole FS-17 may have intersected the fracture zone

over lengths of 10 to 20 m near the bottom of the borehole. Fracture

zone No. 4 is located about one to two metres from boreholes FS-2, FS-4

and FS-7. The fracture zone likely extends from surface to depth,

Intersecting fracture zones No. 2 and No. 1 at depths of 25 and 45 m

respectively. Although the fracture zone has few borehole intersections,

data from vertical interference tests, numerical groundwater flow

modelling (Raven et al. 1985) and hydraulic head monitoring (see section

8) support the existence of a vertical high-permeability fracture zone in

the location of the minor air photo lineament discussed above.

Vertical pulse interference tests were completed in boreholes

FS-2 and FS-4 and analysed using the methods of Hirasaki (1974) to

determine a vertical hydraulic diffusivity K V . Vertical response

measured 1n test intervals in boreholes FS-4 and FS-7, and FS-17 as a

result of pumping fracture zone No. 1, were also analysed to determine

vertical diffusivHy using the Neuman and Witherspoon (1972) ratio method

Page 99: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

86

(see section 7.2.5). The vertical diffusivity values were converted to

equivalent single-fracture apertures 2b , using equation 7 and an

estimate of storativity (5x10" ) determined from Interference tests 1n

fracture zones No. 2 and No. 4. Apertures of 63 ym and 60 ym were

calculated for the FS-2 and FS-4 pulse tests respectively

(see Table 11). Vertical response measured 1n test Intervals 1n

boreholes FS-2, FS-4, FS-7 and FS-17 during pumping of fracture zone

No. 1 yielded equivalent single-fracture apertures of 53, 76, 115 and 94

to 165 ym respectively. Numerical model simulations of flow at the

study site required vertical permeabilities equivalent to single-fracture

apertures of 140 ym to 200 urn to match model-derived hydraulic head

data with field hydraulic head distributions.

In summary, fracture zone No. 4 likely possesses equivalent

single-fracture aperture of about 60 to 200 ym with highest

permeability 1n the northwest corner of the study site near boreholes

FS-7 and FS-17 and lowest permeability 1n the vicinity of borehole FS-2.

Combined equivalent single-fracture apertures and storativities

determined from Interference tests completed 1n fracture zones No. 2 and

No. 4 are listed 1n Tables 11 and 12.

7.2.5 Vertical Flow Properties of the Rock Mass

During pumping of fracture zones No. 1, No. 2 and No. 3

drawdowns were monitored 1n the Iower-permeab1l1ty rock located above and

below the fracture zones. Drawdowns 1n the surrounding low-permeability

Page 100: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

87

rock were typically delayed 1n time and of lower magnitude than drawdowns

1n the fracture zones suggesting vertical flow 1n the surrounding rock

mass. Figures 32 and 33 show the pattern of drawdown response 1n both

the Iow-permeab1l1ty rock surrounding fracture zone No. 1 and in fracture

zone No. 1 during pumping from borehole FS-10. In Figure 32 fracture

zone No. 1 is Intersected by borehole FS-7. In Figure 33 fracture zone

No. 1 is located below the bottom of borehole FS-3. Similar drawdown

response Is observed 1n the overlying rock mass 1n both boreholes

suggesting the response 1s likely a measure of vertical rock mass

properties and not merely casing leaks or poor packer seals.

If we assume the fracture zones and surrounding

Iow-permeab1l1ty rock mass hydr" Hcally behave as aquifers and aquitards

respectively (I.e. horizontal flow in the fracture zones, and vertical

flow in the rest of the rock mass), then the drawdown response 1n the

fracture zones and the surrounding rock mass can be used to calculate the

hydraulic diffusivity, K,of the rock mass. Hydraulic diffusivity is

defined as the ratio of medium transmissivity to storativity or hydraulic

conductivity (K) to specific storage (S ).

K = T/S = K/Ss (9)

Several methods (Hirasaki 1974, Wolfe 1970, Hanshaw and

Bredehoeft 1968, Neuman and Witherspoon 1972) can be used to determine the

vertical diffusivity of Iow-permeab1l1ty rock surrounding a

high-permeability fracture zone. In general, the different methods yield

Page 101: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

2 -

4 -COLU

S 6-

5o§8<Q

10 -

12 -

10

Q=9.0 l.p.m.V

- ^

JFS 10

^ ^ _ _ H I G H

-

O O l " * T

n — 1 1 1 . i . —...

K ZONE

i

O D ^ »^ O ° 0 n + * A™ • O O "*• 4

1 5 . °o °o ++ -

' * °o

*• ° +o o

o °f a

FS

1•7 *,°o °

$7-6 *yZ7-5 +

Tjs 7-3 K

\ 7-2 *•

7 1 o

FS10 PUMP TESTRESPONSE IN FS-7

I

" • • • -

A _A

A

A

+ A++ A ~

o •+

a +

: °0 a•o °

" °oo

V

:

-

i

102 103

TIME SINCE PUMPING STARTED IN MINUTES

0000

10*

FIGURE 32- Drawdown versus log time data for observation intervals in borehole FS-7showing vertical response to pumping fracture zone No. 1 (high K zone)intersecting interval FS 7-3.

Page 102: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

2 -

4 -LU

- 6z5oQ

10 ~

12

Q=9.0

\ FS-10U——

><

_ _ !

l.p.m.

R=108m

V ' HIGH K ZONE

FS-10 PUMP

*—;

TESTRESPONSE IN FS-3

1

*A

\\

FS-3

3-5, •3-4, x3-3,o

3-2,A

3 1 , •

\\

\

1

° °o°o

v •A

A•

\

\ *V

\

\

>

sASSUMEDDRAWDOWNBELOW FS-3

D — • — n 1xx '

*«x

°o

o

A

\

\

\

8-

10 102 103

TIME SINCE PUMPING STARTED IN MINUTES104

0010

FIGURE 33- Drawdown versus loq time data for observation intervals in borehole FS-3' showing vertical response to pumping fracture zone No. 1 (high K zone)

located below the bottom of borehole FS-3. Assumed drawdown in fracturezone No. 1 is plotted from Figure 32.

Page 103: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

90

similar values. In this report we have used the ratio method of Neuman

and Witherspoon (1972) to determine vertical hydraulic d1ffusiv1ty of the

Iow-permeab1Hty rock surrounding fracture zone No. 1 during pumping from

borehole FS-10. Although vertical drawdown responses were recorded for

most of the other pumping tests completed 1n fracture zones No. 1, No. 2

and No. 3 (see Table 7), 1t 1s beyond the scope of this report to present

analysis and Interpretation of all the data. In using the Neuman and

Witherspoon ratio method, we have assumed that both the h1gh-permeab1Hty

fracture zone No. 1 and the Iower-permeab1l1ty surrounding rock behave as

equivalent porous media. It was further assumed that the measured

drawdown response occurred approximately at the mid-point of each

packer-isolated test Interval. The ratio method requires drawdown data

in both the Iow-permeab1lity rock and the fracture zone, and the

hydraulic diffusivity of the fracture zone. With additional information

on vertical distance Z between the mid-point of the test interval and the

fracture zone, application of the ratio method yields an average vertical

hydraulic diffusivity K . For a hetereogeneous layered rock mass with

N layers of thickness b,, the vertical d1ffusU1ty of each layer, K .

may be calculated from the average value < .using (Neuman and

Witherspoon 1972):

(10)

Drawdown data for test Intervals that are located above and

below fracture zone No. 1, and that showed response to FS-10 pump tests

of fracture zone No. 1 are presented 1n Appendix C. Data for all

Page 104: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

91

boreholes are plotted as drawdown 1n metres versus log time 1n minutes.

No drawdowns were observed 1n boreholes FS-12 and FS-14 which were

drilled Into the Impermeable diabase dyke. The drawdown data of

Appendix C were analysed using the ratio method and equation 10 to

determine the hydraulic d1ffus1v1ty of the Iow-permeab1l1ty rock. The

results are shown on Table 15.

Vertical hydraulic d1ffus1v1t1es range from 2.4x10" to1 9 1 A 9 1

1.6x10" m s" with an average value of about 2x10" m s" .

In several Instances, the observed drawdowns suggested the existence of a

h1gh-d1ffus1v1ty vertical fracture between the monitoring Interval and

fracture zone No. 1. These responses occurred 1n some Intervals 1n

boreholes FS-2,-3,-4,-6,-7 and-11. The responses observed 1n boreholes

FS-2,-4 and-7 are likely the result of flow along vertical fracture zone

No. 4. The largest values of vertical hydraulic d1ffus1v1ty were

measured 1n test Intervals 1n boreholes FS-7 and FS-17 located close to

fracture zone No. 4.

Page 105: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

92

Table 15

Vertical Hydraulic D1ffus1v1tv

BoreholeInterval Depth

FS-1

11.7 -24.0 -30.0 -

FS-2

11.8 -19.0 -24.5 -31.7 -

FS-3

13.0 -19.2 -27.0 -39.3 -

FS-4

11.2 -18.5 -27.4 -37.7 -

FS-5

11.0 -15.0 -29.0 -

FS-6

12.0 -19.0 -25.0 -35.0 -

FS-7

5.0 -11.0 -25.0 -

243053

19483148

19274444

45274545

152940

1942.3542.

11.25.37.

and1n m BCT

.0

.0

.0

.0

.7*

.7

.71

.2

.0

.1

.ll

.6*

.4,6*.61

0082

0000T

000*

•S, 1n n^s"1

1/lxlO-4

1.3xlO"4

1.9xlO-3

2.4xlO"5

1.9xlO-3

4.0xl0"4

1.3X10"3

1.4xlO-4

1.7xl0"4

1.7xlO-2

6.7xlO"4

4.5xlO-3

1.1x10-36.8xlO-3

6.2xlO"4

l.OxlO"4

7.5xlO"4

2.4xlO-4

5.0xl0-5

4.0xl0"4

7.0xl0-5

2.0xl0-4

4.0xl0-4

5.4x10-31.1x10-2

Page 106: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

93

Table 15 (Cont'd)

Vertical Hydraulic D1ffus1v1ty

1Borehole and

Interval Depth 1n m BCT

FS-7

37.0 - 50 .5* 2

50.5 - 53.0*50.5 - 67.0*

FS-8

12.2 -- 16.016.0 - 27.527.5 - 33.82

FS-9

10.3 - 25.425.4 - 31.2 2

31.2 - 40.0*

FS-n

8.4 - 12.412.4 - 21.521.5 - 32.732.6 - 41.136.4 - 4 1 . I 1

FS-13

19.0 - 27.027.0 - 33.0 2

33.0 - 37.25

FS-15

23.0 - 34.034.0 - 41.541.5 - 47.0 2

FS-16

23.0 - 33.533.5 - 40.0 2

40.0 - 48.7

Kv 1n m^s"1

4.2xlO-2

2.6xlO"3

5.4xlO-2

l .OxlO-4

4/ lx lO" 4

7-lxlO"4

1.6xlO-3

9,0xl0" 4

1.6xlO~'

l ,8x lO- 5

2.0xlG-4

1.2xlO"4

5.0x10-*2.0x10-*

2.6xlO-5

3 .0x l0 - 5

7.9xlO"4

8.6x10"*9.6xlO-3

3.8x10-2

5.4:<10"4

1.5xiO~3

8.3xll)-2

Page 107: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

94

Table 15 (Cont'd)

Vertical Hydraulic D1ffus1v1ty

Borehole andInterval Depth In m BCT % in m2s~1

FS-17

23.2 - 33.5 2.8X10"3

33.5 - 44,5* 1.ixlO-2

44.5 - 52.0*2 6.2xlO-2

* High d1ffus1v1ty pathway, Hkely the result of a h1gh-permeab1Htyvertical fracture connecting the test Interval and fracture zone No. 1

1 Depth of fracture zone No. 1 Inferred from projections based onIntersections 1n other boreholes.

2 Depth of fracture zone No. 1 Interpreted from borehole hydraulic testsand fracture logs.

Page 108: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

95

8. HYDRAULIC HEAD MONITORING

Measurements of the spatial and temporal distributions of

hydraulic head are essential 1n the study of groundwater flow. Spatial

measurements of hydraulic head are necessary 1n determining the pattern

of groundwater movement 1n a flow system as well as the degree of

hydraulic connection or Isolation between particular test Intervals.

Temporal variations 1n hydraulic head, 1n response to changing surface

Infiltration or pumping provide valuable Information on the boundary

conditions and different hydrogeologic regimes within a groundwater flow

system. Evaluation of numerical simulation models of groundwater flow

under both steady-state and transient conditions further requires

detailed and reliable field measurements of the spatial and temporal

distribution of hydraulic head.

After casing Installation, water levels were monitored more

or less continuously 1n each test Interval using an electric-contact,

water-level tape. Water levels were recorded 1n test Intervals 1n

boreholes FS-1 to-9 from 1981 August, 1n boreholes FS-10 to-14 from

1982 July and 1n boreholes FS-15 to-17 from 1983 August. Measurements

of water level 1n each of the 90 packer-Isolated test Intervals were

converted to hydraulic head values and plotted against time on borehole

hydrographs.

Page 109: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

96

8.1 Hydraulic Head Distribution

8.1.1 Rock Mass

Hydrographs of borehole test Intervals were used to Identify

periods with minimal hydraulic head transients for determination of

equilibrium hydraulic head distributions. An example of the hydraulic

head record for test Intervals 1n borehole FS-2 during the period 1982

January to 1984 November 1s shown 1n Figure 34. It 1s beyond the scope

of this report to present hydrographs for test Intervals 1n all

boreholes. Hydrographs for test Intervals 1n boreholes FS-1 to-9 for the

period 1981 August to 1982 March are given by Raven and Smedley (1982).

Equilibrium hydraulic head data were determined for the

entire study site on two dates, 1982 December 15 and 1984 November 1

(see Table 16). As evident 1n Figure 34 for borehole FS-2, these dates

are essentially free of hydraulic head transients Introduced by borehole

pumping or rapid changes 1n surface Infiltration. The distribution of

hydraulic head given In Table 16 Indicates a relatively simple recharging

groundwater flow system directed north and northwest toward Upper Bass

Lake. The horizontal component of flow 1s governed by surface

topography. Vertical and horizontal gradients at the site average 0.15

and 0.02 respectively.

Page 110: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

£

O

DRILLING ANDPUMP TKSTING

J 1 I I I L

FS 10 PUMP TEST

FS-10 PUMP TEST

I—OHILLING FS 15, 16. 17

I I I I I I I I I I

BOREHOLE FS-2

/

J L J I I LJ f M A M J J * S O N D J F M » M J J A S O N D J f M » M J J

1982 1983 1984

FIGURE 34- Hydrograph for test intervals in inclined borehole FS-2 for the periodic? January to 1984' November. Borehole activities,which caused perturbations in the hydraulic head record, are

indicated.

Page 111: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

98

Table 16

Equilibrium Hydraulic Head of FS Test Intervals

Hydraulic Head1n Metres Above Sea Level

Test Interval 15/12/82 1 /11 /84

FS 1-11-21-31-41-5

FS 2-12-22-32-42-5

FS 3-13-23-33-43-53-6

FS 4-14-24-34-44-54-6

FS 5-15-25-35-45-5

FS 6-16-26-36-46-5

125126127128128

128128129130130

126126127129na1

130

126127128128na130

125128128129130

129130130130132

.89

.63

.42

.02

.70

.23

.66

.02

.37

.61

.44

.46

.50

.65

.20

.99

.02

.74

.79

.40

.59

.13

.41

.06

.07

.58

.38

.48

.90

.32

125.64125126127

.68

.77

.61128.23

127128128130130

125125126.128.na129.

125.125.127.127,na131.

124.127.127.

.34

.09

.25

.31

.41

.49

.51

.52

.67

.97

.76,81,87.90

,21

.6012

.41128.05128.

128.129.129.

92

445992

130.36130. 51

Page 112: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

99

Table 16 (Cont'd)

Equilibrium Hydraulic Head of FS Test Intervals

Test I n te r va l

FS 7-17-27-37-47-57-67-7

FS 8-18-28-38-48-5

FS 9-19-29-39-49-5

FS 10-110-210-310-410-510-6

FS 11-111-211-311-411-511-6

FS 12-112-212-312-412-5

Hydraul ic1n Metres Above

15/12/82

125.60125.59125.58126.16126.42126.59127.91

125.60125.58127.86129.15129.37

125.59125.58125.69127.35130.70

125.58125.64130.26130.68130.67131.00

129.86129.61130.62131.42133.30133.32

135.20135.60135.38134.93133.56

HeadSea Level

1 /11 /84

124.60124.61124.60125.34125.60125.73125.94

124.59124.60126.45127.31129.27

124.58124.58124.62126.11131.32

124.602

124.60124.60124.60124.60124.60

129.16128.51129.86131.14133.40133.40

134.28134.00134.17134.07133.13

Page 113: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

100

Table 16 (Cont'd)

Equilibrium Hydraulic Head of FS Test Intervals

Test In terva l

FS 13-113-213-313-413-513-6

FS 14-114-214-314-414-5

FS 15-115-215-315-415-5

FS 16-116-216-316-416-5

FS 17-117-217-317-417-5

Hydraulic1n Metres Above

15/12/82

125.59125.61131.21133.04133.66133.68

128.283

132.70134.49134.47134.90

_4----

_4

--

-

_4-__-

HeadSea Level

1/11/84

124.63124.65130.65132.87133.20133.66

131.46132.30134.23134.32134.75

125.50125.52128.54129.76131.95

124.55124.60125.78127.53128.81

124.60124.60125.35126.96128.37

1. Test Interval not accessed.2. Open borehole.3. Test Interval recovering from pump test.4. Borehole not drilled at time of measurement.

Page 114: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

101

All test Intervals at the study site show rapid response to

changing surface Infiltration conditions. Typically, the test Intervals

show Increased hydraulic head due to Increased surface Infiltration

during spring snow melt and also when evapotransporation 1s reduced 1n

fall. Decreased hydraulic head 1s observed with decreased surface

Infiltration during winter freeze-up and when potential

evapotransporation exceeds precipitation In summer. These general trends

are evident on the hydrograph for test Intervals 1n borehole FS-2.

Although these seasonal variations 1n hydraulic head may be as large as

1.0 to 1.5 m, they do not substantially change the general pattern of

groundwater movement at the study site. The groundwater flow system

remains dominated by vertical flow throughout the year.

The dominant vertical gradient at the study site 1s

controlled by the presence of a flat-lying, high-permeability fracture

zone (No. 1) of low hydraulic head located at a depth of 33 to 50 m. The

fracture zone, which intersects test intervals FS 5-1, 7-3, 8-2, 9-2,

10-1, 13-2, 15-1, 16-2 and 17-1 has uniform hydraulic head throughout the

study site and acts as a boundary of constant hydraulic head. Analyses

of the seasonal hydraulic head response 1n fracture zone No. 1 and the

overlying rock mass (Raven and Smedley 1982) suggest the hydraulic head

within fracture zone No. 1 1s controlled by surface Infiltration and

hydraulic head conditions acting in Isolated areas within the study site

or outside the Investigation area of the study site. The Influence of

Isolated or remote hydraulic head and Infiltration characteristics on

Page 115: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

102

the study site flow system 1s also shown 1n Table 16. Hydraulic head

data for fracture zone No. 1 and all Intermediate to deep test Intervals

are approximately 1.0 m lower during 1984 November than during 1S82

December. However, only a few near-surface test Intervals show any

significant hydraulic head variation between those two dates, suggesting

relatively uniform surface Infiltration conditions throughout most of the

study site. Therefore, the cause of the hydraulic head change at depth

1s Isolated to selected areas within or remote from the study site. Test

Intervals 1n borehole FS-7, located adjacent to vertical fracture zone

No. 4 1n the northwest corner of the study site show the most consistent

lowering of hydraulic head from surface to depth. This hydraulic

response data 1n conjunction with other hydrogeologic data from hydraulic

testing and groundwater sampling suggest the hydraulic head 1n fracture

zone No. 1 and ultimately 1n all Intermediate to deep test Intervals are

likely controlled through vertical fracture zone No. 4 by a swamp located

Immediately northwest of borehole FS-7.

The behaviour of the flow system studied at CRNL under

varying Infiltration conditions Indicates groundwater flow over a 200-m

by 150-m area and to 50 m depth may be controlled by hydraulic head

conditions 1n a remote, relatively small discharge area.

The hydraulic head record for intervals in borehole FS-2 also

shows the Important short-circuiting effect of open or uncased boreholes

on the distribution of hydraulic head 1n adjacent cased boreholes.

Page 116: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

103

During 1983 May, boreholes FS-15,-16 and-17 were drilled and left

uncased until approximately 1983 mid-September. During diamond drilling

of borehole FS-17, a sharp Increase 1n hydraulic head was observed 1n test

Intervals FS 2-1, 2-2 and 2-3 confirming hydraulic connection between the

test Intervals and borehole FS-17. After completion of drilling the

hydraulic head data for Intervals FS 2-1, 2-2, and 2-3 were about 1.0 m

lower than before drilling. This drop 1n hydraulic head 1s greater than

that attributable to decreasing surface Infiltration and reflects

drainage of the rock mass In the vicinity of borehole FS-2 along fracture

zones No. 2 and No. 4 to borehole FS-17 and down borehole FS-17 to

fracture zone No. 1. With the installation of casing 1n borehole FS-17

in 1985 mid-September, fluid levels 1n test Intervals FS 2-1, 2-2 and

2-3 began to rise to values more representative for the rock mass

surrounding borehole FS-2.

Complete and detailed records of hydraulic head were

collected for 90 test Intervals during drawdown and recovery phases of

pump tests from borehole FS-10 1n 1982 August and 1983 September. The

drawdown records of responding test Intervals (all Intervals except those

1n boreholes FS-12 and-14) are plotted on drawdown versus log time

diagrams In Appendix C. These plots are the most complete set of

transient hydraulic head response data for the study site. These data

are currently being used to evaluate specific storage properties of the

rock mass and the ability of numerical models to simulate flow under

transient conditions.

Page 117: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

104

8.1.2 Fracture Zones No. 1. 2. 3 and 4

Equilibrium hydraulic head data were obtained from 9, 7 and 7

test Intervals Intersecting fracture zones No. 1, 2 and 3 respectively.

Assuming the fracture zones are open or hydraulically connected at all

points within the areas defined by borehole Intersections, the hydraulic

head data have been used to estimate the general pattern of groundwater

movement within the fracture zones. No effort has been made to Include

far-field boundary conditions of each fracture zone on the resulting flow

pattern diagrams.

Fracture zone No. 1 1s Intersected by test Intervals FS 5-1,

7-3, 8-2, 9-2, 10-1, 13-2, 15-1, 16-2 and 17-1. As evident 1n Table 16,

the hydraulic head values for all those test Intervals, except FS 15-1

are within measurement limits (±0.01 m) essentially identical. These

hydraulic head data suggest maximum hydraulic gradients of 0.0001 which

are likely directed to the north. Test Interval FS 15-1 shows an

equilibrium hydraulic head 0.90 m higher than the value within the rest

of the fracture zone. This suggests a region of reduced permeability 1n

fracture zone No. 1 1n the vicinity of borehole FS-15 with recharge

effects dominating the local hydraulic head distribution within the

fracture zone. The low hydraulic gradients throughout fracture zone

No. 1 are consistent with the high hydraulic conductivity of the fracture

zone measured by hydraulic testing.

Page 118: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

105

Fracture zone No. 2 1s Intersected by test Intervals FS 1-2,

2-1, 3-2, 4-2, 5-2, 7-4 and 17-3. As evident for fracture zone No. 1,

equilibrium hydraulic heads within fracture zone No. 2 are approximately

1.0 m lower on 1984 November 1 than on 1982 December 15. However, the

pattern of groundwater flow 1s similar on both dates. Figure 35 shows

the estimated patterns of groundwater movement within the fracture

zone on these dates. Groundwater flows to the north and northwest with

average hydraulic gradients of 0.01 to 0.02. Some local recharge

Indicated by hydraulic head mounding 1s evident 1n the vicinity of

borehole FS-3 on 1984 November 1.

Fracture zone No. 3 1s Intersected by test Intervals FS 2-1,

6-1, 10-4, 11-2, 13-4, 15-3 and 16-3 and dips about 25° to the

northeast. Hydraulic heads 1n this fracture zone are also about 1.0 m

less on 1984 November 1 than on 1982 December 15. However, the

patterns of groundwater movement are significantly different on these

dates, principally as a result of lowering of hydraulic head 1n test

Interval FS 10-4. The hydraulic head In test Interval FS 10-4 was

lowered about five metres by removing the borehole casing and allowing

drainage between fracture zone No. 3 and No. 1. The patterns of

groundwater movement 1n fracture zone No. 3 on these two dates are shown

1n Figure 36. On 1982 December 15, flow was directed down dip to the

northeast with hydraulic gradients of 0.02 to 0.1. On 1984 November 1,

groundwater movement was directed to the northwest toward borehole FS-10

with hydraulic gradients of 0.03 to 0.2. On both dates the lowest

hydraulic gradients were observed 1n the areas of highest fracture

permeability near boreholes FS-6,-11 and-15.

Page 119: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

106

N

126.5FS-1

1512 82DATA

N

1 11 84DATA

50

metres

O Borehole-126.5- Equipotential Line in metres

• Flow Line

FIGURE 35: Patterns of groundwater flow in fracture zone No. 2estimated from equilibrium hydraulic head datarecorded on 1982 December 15 and 1984 November 1.

Page 120: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

107

N

FS-131512 82DATA

N

o126-- •

OFS-13

0I I I !

metres

BoreholeEquipotentia!Flow Line

/

50• i

Line in

321/11 84DATA

metres

FIGURE 36: Patterns of groundwater flow in fracture zoneNo. 3 estimated from equilibrium hydraulic headdata recorded on 1982 December 15 and 1984November 1. Borehole FS-10 was completed withmultiple-packer casing on 1982 December 15 andwas uncased or open on 1984 November 1.

Page 121: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

108

Groundwater flow patterns within vertical fracture zone No. 4

are more difficult to evaluate because of limited borehole

Intersections. However, 1f we assume test Intervals FS 4-2, 4-4, 7-1 to

7-7 and 17-1 to 17-3 are sufficiently close to fracture zone No. 4 to

reflect hydraulic head conditions within the fracture zone we can make

some general statements regarding groundwater motion. Groundwater

appears to flow principally down fracture zone No. 4 with a horizontal

component directed toward the northwest. Average vertical gradients

decrease from 0.1 to 0.02 from borehole FS-4 to FS-7 while average

horizontal gradients between borehole FS-4 and FS-7 are about 0.02.

9. HYDRAULIC CONDUCTIVITY TENSOR DETERMINATIONS

The hydraulic conductivity of fractured crystalline rock 1s

principally a function of the geometry (spacing, continuity, degree of

Interconnection and aperture) of the fracture system as well as the

hydraulic conductivity of the rock matrix and any fracture Infilling

material present. In fractured crystalline rocks, matrix or Intact rock

permeability 1s usually negligible compared to the permeability

attributed to fractures. As fractures and their hydraulic properties are

distributed three dimensionally 1n a rock mass, hydraulic conductivity of

a fractured crystalline rock will be both heterogeneous and anisotropic.

Attempts to describe the anisotropy and heterogeneity of the hydraulic

conductivity field require three dimensional characterization of the

hydraulic properties of the rock mass. As a first attempt at describing

the hydraulic conductivity field at the Chalk River study site,the

Page 122: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

109

results of straddle-packer injection tests and borehole fracture logs

have been Integrated to develop a tensoral representation of the

near-borehole hydraulic conductivity of each test Interval.

9.1 Model Description

A fracture orientation-aperture (FOA) model (Snow 1965, Rocha

and Frandss, 1975) was used to calculate the hydraulic conductivity

tensor for each test Interval. The model assumes that fractures may be

described as planar conduits continuous 1n their own planes and that

mutual Interference effects at fracture Intersections are negligible.

The model also assumes single phase, nonturbulent flow of an

Incompressible Newtonian fluid through rock fractures. Rock fractures

are represented as smooth parallel plates with uniform separation or

opening. The permeability or hydraulic conductivity (Kf) of a smooth

parallel-plate fracture 1s:

(2b)2OQ (11)12 y

where: 2b = aperture or opening of fractureg = acceleration of gravityu = dynamic viscosity of fluidp = fluid density

The hydraulic conductivity tensor or ellipsoid for a test

Interval 1s determined by summing the permeability contribution of

Individual fractures within the test Interval. The contribution of each

fracture 1s determined by calculating the permeability of a cubic element

of a continuous medium having sides equal to the effective fracture

Page 123: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

no

spacing. Thus discharge through the face of the cube 1s equal to

discharge of the fracture under the same gradient.

For fracture orientation data collected from borehole

Investigations the effective fracture spacing 1s the distance between a

fracture and Its repetition Image at a distance L equal to the test

Interval or sampling line length (B1anch1 and Snow 1969). In equation

form:

W = L| Oi . 0 ^ (12)

where: W = effective fracture spacingL = test Interval or sampling line lengthn^ = direction cosines of normal to fractureD^ = direction cosines of sample line.

The contribution of a single fracture with aperture 2b to the

continuous medium permeability tensor Is (Snow 1965):

12pL|ni . Oil

where: K^j = hydraulic conductivity tensor of an equivalentcontinuous medium

4^j = Kronecker deltaM^j = a 3 x 3 matrix formed by the direction cosines

of the normal to the conduit.

By summing the contribution of Individual fractures and

diagonalizing the resulting symmetric tensor, the principal hydraulic

conductivities and associated principal directions of an equivalent

continuous medium are calculated. Thus the FOA model employed in this

analysis generates a continuous porous media equivalent representation of

Page 124: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Ill

the permeability of the rock mass. However, the generation of the

equivalent continuous medium 1s based upon Individual fracture

characteristics. Because the fracture orientation-aperture model

neglects finite fracture length,1t can generally be expected to

overestimate rock mass hydraulic conductivity.

In order to determine the principal hydraulic conductivities.

Information on fracture aperture and orientation are required. Fracture

orientation data were obtained from both borehole television and acoustic

televiewer surveys. However, for this model, fracture orientations have

been determined only from borehole acoustic television surveys. Fracture

apertures were estimated Indirectly from the results of Injection tests.

For this initial calculation we have assumed that all fractures within a

1.5- to 2.0-m injection test interval are equally conductive. It Is

recognized that fractures within an Injection test interval probably do

not contribute equally to flow. However, from a practical standpoint

given the close spacing of fractures 1n several borehole Intervals 1t

would be impossible to resolve the individual permeabilities of fractures

with small packer spadngs and thus some averaging Is Inevitable. A

distribution of fracture apertures 1s ensured in most casing test

intervals as the Intervals are generally comprised of several Injection

test Intervals.

Individual fracture apertures were determined from flow rate

per unit head data by the application of the following equation based on

the parallel-plate model.

Page 125: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

112

2beff - j?_^_ln(rb/rw)j 1/3 (14)

/AHN 2irpg j

where: 2beff = effective fracture aperturer[, = radius of Influence of Injection test, assumed to be

10 mrw = radius of boreholeQ/AH = flow rate per unit Injection headN = Number of conductive fractures 1n an Injection test

test Interval.

As evident 1n equation 14, no attempt has been made to

correct fracture aperture estimates for fractures that Intersect the

borehole axis at angles other than 90°.

Over fourteen hundred estimates of effective fracture

aperture were determined from Injection tests and borehole fracture logs

measured 1n seventeen boreholes. Calculated apertures ranged from 1.5 to

500 ym with a geometric mean of 11.8 pm. The distribution of

effective fracture apertures for the entire study site 1s shown 1n

Figure 37.

9.2 Results

A hydraulic conductivity tensor, K..,was determined for

each packer-Isolated test Interval by summing the effective permeability

contributions of Individual fractures. The resultant symmetric tensor,

K.,,was diagonalized to determine the principal hydraulic

conductivities (eigenvalues) and principal directions (eigenvectors).

The principal hydraulic conductivities (K^ K« and K.) 1n three

Page 126: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

113

16

14-

12-

o

=5

LU

u. B~

6-

4-

2-

BOREHOLES FS-1 TO FS-17N=1494

GEOMETRIC MEAN = 11.8 nm

0 0 10 15 ' 2.0LOG.APERTURE)

2 5 3 0

1 1 i

10 100 1000APERTURE IN

FIGURE 37: Distribution of the common logarithm of effectivefracture aperture, 2beff,in boreholes FS-1 toFS-17 determined from straddle-packer injectiontests and borehole acoustic televiewer logs.

Page 127: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

114

orthogonal directions define a hydraulic conductivity ellipsoid as shown

1n Figure 38. The principal directions relative to three geographic

reference axes are defined by three direction cosines

(I.e.,1,, m,, n,, for K.). Geographic reference axes of one

south, two east and three down are used 1n this report. The principal

hydraulic conductivities and principal directions for each

packer-Isolated test Interval are listed 1n Appendix D. The geometric

mean of the K K. principal hydraulic conductivity plane and the

anisotropy ratio K /K. were calculated and are also shown 1n

Appendix 0.

Principal hydraulic conductivities listed 1n Appendix D range

from 10" to 10" I.I.S"1 with anisotropy ratios between 1 and 10,

although some values 1n excess of 100 were calculated for test Intervals

with few fractures of similar orientation. Because of the number and

general scatter of fracture orientations, (see Figures 8 and 9), the

relatively low anisotropy ratios are not unexpected. However, 1t 1s

Important to note that the principal hydraulic conductivities shown 1n

Appendix 0 do not consider the significant effect of Individual

h1gh-permeab1Hty fractures such as fracture zones No. 1, 2, 3 and 4.

The effect of these h1gh-permeab1Hty fractures are averaged with other

less permeable fractures located within a straddle-packer test Interval.

The hydraulic conductivity ellipsoids calculated for each

test Interval 1n Appendix D are generally spheroidal to oblate spheroidal

Page 128: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

115

HYDRAULIC CONDUCTIVITYELLIPSOID

,2, . xf + _xi2 + x* \K,' K,'

. m 2 . n2i

X,. X2. X3 - GEOGRAPHIC REFERENCE AXES

X,1. X2. X3 - PRINCIPAL HYDRAULIC

CONDUCTIVITY REFERENCE AXES

K,. K2. K3 - PRINCIPAL HYDRAULICCONDUCTIVITY AXES

II,. m,. n,i - DIRECTIONAL COSINES OFPRINCIPAL HYDRAULICCONDUCTIVITY AXES

FIGURE 38: Hydraulic conductivity ellipsoid and reference axesin three directions.

Page 129: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

116

1n shape. With Increasing anisotropy ratio the spheroids become more

oblate or flattened as the minor principal hydraulic conductivity K3

decreases. In general, regardless of anisotropy ratio the K and K.

hydraulic conductivities are similar for each test Interval. Thus each

hydraulic conductivity plane may be defined in part by the major (K,)

and Intermediate (K_) principal hydraulic conductivities. The

geometric mean and orientation of the K K principal hydraulic

conductivity plane have been used to compare hydraulic conductivity

ellipsoids on stereographic plots.

The poles to the K..K- principal hydraulic conductivity

planes or K axes are plotted 1n Figure 39. The magnitude of geometric

mean of the K K plane has been represented by circles of variable

diameter for each pole. The circle diameters are proportional to the

common logarithm of the geometric mean of the K K plane calculated

1n metres per second.

Figure 39 shows a large amount of scatter 1n the orientation

of the principal hydraulic conductivity planes. Some clustering of K

poles are evident on the stereographic plot suggesting preferred

directions of permeability 1n the rock mass at the scale of the study

site. From visual Inspection of Figure 39, enhanced permeability Is

evident 1n the following planes: subhorizontal, east-northeast

striking-steeply northwest dipping and to a lesser degree east-southeast

striking-steeply southwest dipping. These directions of enhanced

Page 130: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

117

POLES TO KnK2 PRINCIPALHYDRAULIC CONDUCTIVITY PLANE.LOWER HEMISPHEREEQUAL AREA PROJECTION.

FIGURE 39- Stereographic plot of polesto Kj K2 principal hydraulicconductivity planes for FS testintervals. Hydraulic conduc-t i v i t y tensors determined fromacoustic televiewer fracturelogs and injection test data.

LOGARITHM OFGEOMETRIC MEAN OFK^z PRINCIPAL HYDRAULICCONDUCTIVITY AXESIN m/s, Log {KAK2)

Vi

o < - 9.0

o - 9 . 0 - -8.0

C - 8 . 0 - -7.0

C - 7 . 0 - -6.0

C - 6 . 0 - -5.0

O >-5.0

Page 131: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

118

permeability correspond to the orientation of three major fracture sets

Identified from borehole logging (see Figure 8 and Table 3, section 4).

This correspondence 1s not unexpected as the anisotropy of the hydraulic

conductivity tensors are determined from the orientation of the borehole

fractures. The large number of poles to the K,K_ principal hydraulic

conductivity plane clustered 1n the centre of the plot relative to the

borehole fracture polar plot (Figure 8) suggest the subhorizontal

fractures possess larger apertures than the subvertical fracture sets.

The larger apertures likely result from stress relief or a decrease 1n

normal load 1n response to glacial and erosional onloading.

It 1s difficult to assess the reliability of the hydraulic

conductivity tensors determined from the FOA model. Certainly the

geometric mean of the hydraulic conductivity ellipsoid, I.e.1/3(K,KpK3) for each test Interval 1s, as expected, nearly

Identical to the equivalent rock mass hydraulic conductivity (K )erm

determined from Injection tests (Table 6). However, an Independent

measure of the hydraulic conductivity properties of the rock mass is

required for reliable assessment of the FOA model.

Vertical response 1n the rock mass from pumping fracture zone

No. 1 provides an Independent estimate of the vertical flow properties of

the rock mass for comparison with the results from the fracture

orientation-aperture model. However, the comparison 1s not

straightforward. Vertical hydraulic d1ffus1v1ty (see Section 7.2.5) 1s

Page 132: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

119

determined from the vertical response monitoring, while vertical

hydraulic conductivity 1s calculated from the FOA model. An estimate of

specific storage, S , 1s required to calculate vertical hydraulic

conductivity from vertical hydraulic diffusivity. To overcome this

difficulty we have plotted (see Figure 40) vertical hydraulic

d1ffus1v1ty K calculated from pump test response (see Table 6) against

vertical hydraulic conductivity < determined from the fracture

orientation-aperture model. To compare the hydraulic d1ffus1v1ty, which

measures the vertical flow properties between FS test Intervals,to the

hydraulic conductivity, which 1s calculated for each FS test Interval, some

averaging 1s necessary. The harmonic mean of vertical hydraulic

conductivity was determined between FS test Intervals for comparison with

the vertical d1ffus1v1ty 1n Figure 40. Lines Identifying the range of

specific storages required for the hydraulic d1ffus1v1ty values to be

equal to the hydraulic conductivity estimates are shown on Figure 40.

Host of the data points fall between the specific storage lines

-6 -410 to 10 . Although the points show significant scatter, a

central or average value of specific storage of 10~ 1s Indicated. The

spread 1n data points are similar for test Intervals that are close to

high permeability fracture zones (I.e. fracture zone No. 4) and for test

Intervals 1n more uniformly fractured rock.

The range of specific storages required for equivalence

between the hydraulic J1ffus1v1ty anc conductivity values are consistent

with storage values determined from other hydraulic Interference tests.

Page 133: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

• TEST INTERVAL CLOSETO HIGH-PERMEABILITYVERTICAL FRACTURE

O TEST INTERVAL INUNIFORMLY FRACTUREDROCK

I I

o

1010 109 108 107 106

HARMONIC MEAN OF VERTICAL HYDRAULIC CONDUCTIVITY, Kv IN m/S105

FIGURE 40- Plot of vertical hydraulic diffusivity determined from pump tests versus the harmonicmean of vertical hydraulic conductivity calculated from the fracture orientation-aperture model. Lines identify values of specific storage required for verticalhydraulic conductivity to equal vertical hydraulic diffusivity.

Page 134: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

121

Interference tests completed 1n fracture zones No. 1, 2, 3 and 4 yielded

storat1v1t1es of 10~ to 10~ with an average value of 10~ . For

these fracture zones the effective width 1s unity and therefore, the

storat1v1t1es are equal to specific storages.

Two-dimensional numerical simulations of steady-state

(Raven et al. 1985) and transient groundwater flow at the study site were

compared to field hydraulic head data to evaluate the reliability of the

hydraulic properties determined by the fracture orientation-aperture

model. The results of the steady-state modelling suggest the FOA model

provides reasonable estimates of anisotropic hydraulic conductivity for

the upper 30 m of the rock mass but overestimates hydraulic conductivity

below 30 m depth. The transient groundwater flow modelling Indicated an

average specific storage value of 10" was appropriate 1n describing

the drawdown response 1n the rock mass above fracture zone No. 1.

In summary, the FOA model used In this study appears based on

Independent hydraulic property measurement and numerical model

simulations to provide an adequate description of the anisotropic

hydraulic conductivity of uniformly fractured rock masses above 30 m

depth. The FOA model 1s expected to be less reliable 1n describing the

vertical flow properties of a rock mass Intersected by high-permeability

vertical fracture zones and Investigated with vertical boreholes. There

1s, however, evidence (from Figure 40) to suggest the FOA model may

provide a reasonable estimate of enhanced vertical hydraulic conductivity

Page 135: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

122

when the Investigating boreholes are located close to vertical fracture

zones.

10. SUMMARY

The hydraulic characteristics of a 200-m by 150-m by 50-m

deep block of fractured monzonitic gneiss have been measured using

surface and borehole methods as part of a study Investigating groundwater

flow systems 1n fractured rock. The surface and borehole methods

Included air photo and geosphysical lineament analysis, fracture mapping

and logging, injection and Interference testing and hydraulic head

monitoring. The results of these Investigations have been combined and

interpreted to provide a three-dimensional picture of the groundwater

flow system at Chalk River. The Investigations also provided fundamental

information on groundwater flow systems in fractured rock and the

usefulness of various Investigative techniques 1n defining such systems.

The results of studies summarized In this report Indicate

that large structural features such as fracture zones faults, dykes,

etc., play an Important role 1n controlling flow systems 1n fractured

rock. In the CRNL study, large structural discontinuities hydraulically

behaved as 1) short-circuiting groundwater flow pathways (I.e., fracture

zone No. 4), 2) Impermeable groundwater flow boundaries (1.e., diabase

dykes) and 3) constant potential groundwater flow boundaries (i.e.,

fracture zone No. 1). Because of their hydrogeologic significance,

Page 136: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

123

Identification of major structural discontinuities 1s Important 1n any

detailed hydrogeologic study. A1r photo lineament analysis, surface and

airborne EM-VLF surveys, and surface mapping were valuable tools 1n

Identifying and predicting the occurrence of major structural

discontinuities 1n the subsurface. All Inclined and steeply dipping

major structural discontinuities at the study site Intersected by

boreholes were Identified by these techniques. SubhoMzontal fracture

zones Intersected by boreholes were not detected from surface

Investigations.

The flow properties of the rock blocks defined by major

structural discontinuities result from the Interconnection of

smaller scale discontinuous fractures. Statistical characterization of

this fracture system 1s Important 1n estimating hydraulic properties and

Interpreting hydraulic tests. Several methods of fracture system

characterization were successfully used at the CRNL study site. Surface

fracture mapping using scanline surveys Identified all major Inclined

fracture sets to depths of 50 m. Borehole television surveys and

borehole acouster televiewer logging Identified all major fracture sets,

both horizontal and Inclined. Borehole acoustic televiewer logging

provided superior fracture detection capability 1n mafic or dark-coloured

rock.

Detailed analysis of fracture orientation data by three

subareas showed that the fracture system 1s not statistically

homogeneous at the scale of the study site. This spatial variation 1n

Page 137: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

124

fracture characteristics 1s 1n part related to the presence or absence of

major structural discontinuities in different subareas. This

nonhomogeneity in fracture characteristics suggests the size of rock mass

suitable for equivalent porous medium representation or

discrete-stochastic fracture flow modelling at the CRNL study site 1s

equal to or less than the size of the subareas (characteristic length «

50-100 m). Analysis of Individual borehole fracture data (Lau et al.

1984) indicates this suitable size 1s likely less than a characteristic

length determined by average borehole spacing (25-50 m). For the

hydraulic conductivity tensors determined in section 9, characteristic

lengths were determined by the location of casing packers and ranged

between three and thirteen metres.

Single-borehole injection tests and multiple-borehole

interference tests have proven extremely useful 1n defining the hydraulic

properties of the rock mass. Injection tests provide cost-effective and

reliable information on the hydraulic conductivity of the rock mass In

the Immediate vicinity of the boreholes. Interference tests,which are

more difficult to complete and interpret,provide Information on

Interborehole hydraulic properties. Interference tests need to be

carefully designed to minimize the tr'fect of borehole and far-field

boundary conditions on Interborehole hydraulic response.

A fracture orientation-aperture model has been used to

integrate fracture orientation and Injection test data and calculate a

Page 138: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

125

hydraulic conducivity tensor for each FS test Interval. The hydraulic

conductivity tensors calculated by the model are not highly anisotropic

and,based on numerical model simulations and Independent hydraulic tests,

appear to provide a reasonable estimate of hydraulic properties of the

rock mass above 30 m depth at CRNL. Below 30 m depth the model

apparently overestimates hydraulic conductivity.

The results of hydraulic testing, fracture logging and

hydraulic head monitoring Indicate a simple gravity-controlled

groundwater flow system occurs at the CRNL study site. Flow 1n this

system 1s primarily vertical to a Iow-hydraul1c head fracture zone (No.

1) located at 33 to 50 m depth. The horizontal component of flow 1s

directed to the northwest and reflects surface topography. An east-west

striking diabase dyke forms a southern Impermeable boundary for the flow

system. The location of the low-head fracture zone and the diabase dyke

are shown together with study-site boreholes 1n Figure 41. The location

and orientation of fracture zone No. 1 shown in Figure 41 was determined

from nine borehole Intersections and various hydraulic Interference

tests. Hydraulic head within fracture zone No. 1 and most of the

Intermediate to deep test Intervals appear to be controlled through a

vertical fracture zone (No. 4) by a surface bog located northwest of the

study site.

Four major fracture zones of high permeability (No. 1 to

No. 4) were Identified at the study site. The location of fracture zones

No. 2, 3 and 4 is shown together with study-site boreholes 1n

Page 139: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

126

DIABASE DYKE

FRACTUREZONE No. 1

FIGURE 41: Isometric sketch of CRNL groundwater flow study siteshowing the location of test boreholes, fracture zoneNo. 1, and diabase dyke.

Page 140: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

127

DIABASE DYKE FRACTUREZONE No. 3

FRACTUREZONE No. 4

FRACTUREZONE No. 2

FIGURE 42: Isometric sketch of CRNL groundwater flow study s i teshowing the location of test boreholes, fracture zonesNo. 2, 3 and 4 and diabase dyke.

Page 141: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

128

Figure 42. High permeability 1n fracture zones No. 1 and No. 3 and

portions of fracture zone No. 2 were associated with thin (<lm thick)

mafic layers 1n the monzonitic gneiss. These mafic zones are clearly

Important hydrogeologic features at the CRNL study site.

The results of this study also suggest that undetected

vertical fractures may play an Important role 1n controlling flow within

the shallow system at CRNL. Hydraulic Interference tests to measure

vertical hydraulic d1ffus1v1ty Indicate the presence of vertical

fractures and fracture zones (I.e. No. 4). However, the ability to

detect vertical fracturing at CRNL 1s limited by the dominant borehole

orientation of vertical to steeply plunging. Future Investigations

should Include a higher percentage of Inclined boreholes despite the

added difficulty associated with drilling, logging and testing in such

boreholes.

Page 142: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

129

REFERENCES

Agarwal , R.G., Al-Huss1any, R., and H.J. Ramey, Jr. 1970.An Investigation of wellbore storage and skin effect 1n unsteadyliquid flow, 1. Analytical treatment, Soc. Pet. Eng. J.t 10, 3,279-290.

B1anch1, L. and D.T. Snow 1969. Permeability of crystalline rockInterpreted from measured orientations and apertures of fractures,Annals of Arid Zone, 8, 2, 231-245.

Brown, P.A., and R.H. Th1v1erge 1977. General geology, fracturing anddrill site selection - CRNL, Geological Survey of Canada unpublishedreport GD-PR-817.

Brown, P.A. and N.A.C. Rey 1984. Geologic and structural conditions atChalk River. Proc. Workshop on Geophysical and RelatedGeosc1ent1f1c Studies at Chalk River, December, ed. Thomas, M.D. andD1xon, D.F., 1n press.

Cooper, H.H., Jr., and C.E. Jacob 1946. A generalized graphical methodfor evaluating formation constants and summarizing well fieldhistory. Trans. Amer. Geophys. Union, 27, 526-534.

Dence, M.R., and W.J. Scott 1980. The Use of geophysics 1n the CanadianNuclear Fuel Waste Management Program with examples from the ChalkRiver Research Areas, Atomic Energy of Canada Limited TechnicalRecord, TR-102*.

Earlougher, R.C. Jr., 1977. Advances 1n well test analysis. Soc. ofPet. Eng. of AIME Special Monograph., Volume 5.

Gale, J.E., Forster C , and R. Nadon 1979. Permeability of fracturediow-permeab1l1ty rocks, Final Report to Lawrence Berkeley Laboratory,Waterloo Research Institute Project No. 803-12. University ofWaterloo, Waterloo, Ontario.

Gringarten, A.C., Ramey, H.J., Jr., and R. Raghavan 1972. Pressureanalysis for fractured wells, Soc. Pet. Eng. paper 4051 presented SPEAIME 47*n annual meeting, San Antonio, Texas, October.

Gringarten, A.C., and H.J. Ramey Jr., 1974. Unsteady-state pressuredistributions created by a well with a single horizontal fracture,partial penetration, or restricted entry, Soc. Pet. Eng. J., 14, 4,413-426.

Gringarten, A.C., 1982. Flow-test evaluation of fractured reservoirs, 1nGeol. Soc. Amer. Special Paper 189, Recent Trends 1n Hydrogeology,237-263.

* Atomic Energy of Canada Limited Technical Records are unrestricted,unpublished reports available from the Scientific Documents DistributionOffice, Atomic Energy of Canada Limited Research Company, Chalk River,Ontario, KOJ 1J0.

Page 143: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

130

Hanshaw, B.B. and J.D. Bredehoeft 1968. On the maintenance ofanomalous fluid pressures: II Source layer at depth, Geol. Soc.Amer. Bull., 79, 1107-1122.

Hirasaki, G.J., 1974. Pulse tests and other early transient pressureanalyses for 1n-s1tu estimation of vertical permeability, Soc. Pet.Eng. J. Trans., 257, 75-90.

Hurst, W., 1953. Establishment of the skin effect and U s Impediment tofluid flow 1n a wellbore, Pet. Eng., 25, B-6.

Jargon, J.R., 1976. Effect of wellbore storage and wellbore damage atthe active well on Interference test analysis, J. Pet. Tech., 851-858.

Lau, J.S.O., 1980. Borehole television survey, Underground RockEngineering, CIH Special Volume 22, 204-210.

Lau, J.S.O., Auger, L.F., and J.G. Bisson 1984. Borehole televisionsurvey and acoustic televiewer logging at the National HydrologyResearch Institute's Hydrogeologic test site at Chalk River, Proc.Workshop on Geophysical and Related Geosc1ent1f1c Studies at ChalkRiver, ed., Thomas, H.D. and D1xon, D.F., 1n press.

Lumbers, S.B., 1974. Precambrian geology, Hattawa - Deep River Area,District of N1p1ss1ng and County of Renfrew, Ontario Department ofMines Miscellaneous Paper 59.

Neuman, S.P., and P.A. WHherspoon 1972. Field determination of thehydraulic properties of leaky multiple aquifer systems. Water Resour.Res., 8, 5, 1284-1298.

Papadopoulos, I.S., and H.H. Cooper, Jr., 1967. Drawdown 1n a well oflarge diameter, Water Resour. Res., 3, 1, 241-244.

Priest, S.D., and J.A. Hudson 1981. Estimation of discontinuity spacingand trace length using scanline surveys, Int. J. Rock. Mech. M1n.Sc1. and Geomech. Abstr., 18, 183-197.

Raghavan, R., 1977. Pressure behaviour of wells Intercepting fractures,Proc. Invitational Well-testing Symp., October 19-21, Berkeley,California, Lawrence Berkley Laboratory Report 7027, 117-160.

Ramey, H.J., Jr., 1970. Short time well test data Interpretation In thepresence of skin effect and wellbore storage, J. Pet. Tech., 22, 1,97-104.

Raven, K.G., 1980. Studies 1n Fracture Hydrology at Chalk River NuclearLaboratories: 1977/78/79. Atomic Energy of Canada Limited TechnicalRecord, TR-113.*

Raven, K.6. and J.A. Smedley 1982. CRNL ground water flow study -summary of FY 1981 research activities, unpublished NationalHydrology Research Institute report submitted to Atomic Energy ofCanada Ltd., for publication as AECL Technical Record.*

Page 144: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

131

Raven, K.G., Smedley, J.A., Sweezey, R.A., and K.S. Novakowski 1985.Field Investigations of a small ground water flow system 1n fracturedmonzonitic gneiss. Proc. 17 t n Inter. Assoc. of HydrogeologistsMeeting, Hydrogeology of Rocks of Low Permeability, Tucson, ArizonaJanuary 7-11.

Rocha, M. and F. Frandss 1975. Determination of permeability Inanisotropic rock masses from Integral samples, Rock Hech., 9, 67-93.

Rouleau, A., 1984. Statistical characterization and numerical simulationof a fracture system - application to groundwater flow 1n the Strlpagranite, Ph.D. Thesis, University of Waterloo, Waterloo, Ontario.

Scott, W.J., 1984, VLF surveys at Chalk River, Proc. Workshop onGeophysical and Related Geosc1ent1f1c Studies at Chalk River,December, ed. Thomas, M.D. and D1xon D.F., 1n press.

S1nha, A.K. and J.G. Hayles 1984. Surface electromagnetic surveys atChalk River, Proc. Workshop on Geophysical and Related Geosdenstif 1cstudies at Chalk River, December, ed. Thomas, M.D. and D1xonr D.F.,1n press.

Snow, D.T., 1965. A parallel plate model of fractured permeable media,Ph.D. Thesis, University of California, Berkeley.

Terzaghi, R.D., 1965. Sources of error In Joint surveys, Geotechnique,15, 287-304.

van Everdingen, A.F., 1953. The skin effect and its Influence on theproductive capacity of a well, Amer. Inst. M1n. Eng. Trans., 198,171-176.

Wolfe, R.G., 1970. Field and laboratory determination of the hydraulicdiffusivity of a confining bed, Water Resour. Res., 6, 1, 194-202.

Zemanek, J., Caldwell, R.L., Glen, E.E., Halcomb, S.V., Norton, L.J., andA.J.D. Strauss 1969. The borehole televiewer - A new logging conceptfor fracture location and other types of borehole Inspection, Jour.Pet. Tech., 21, 762-774.

Page 145: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

132

APPENDIX A

Fracture Hydrology Logs

Boreholes FS-1 to FS-17

LHhologic data were determined from 1.5-metre Interval chip samples

collected during drilling for boreholes FS-1 to FS-14 and from recovered

core for boreholes FS-15 to FS-17.

Borehole television Identified fractures and veins are plotted as a

straight line connecting the high and low points of the elliptical

borehole wall trace.

Acoustic televiewer Identified fractures and veins are schematically

represented as they appeared on the 360° photographs of the borehole wall

over 0.5 metre Intervals.

Borehole casing packers are Identified as P., P_, etc.

Flow rate per unit head data are from short-term, straddle-packer

Injection tests.

Page 146: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

133

BOREHOLE _ _ L L _ l i _

CASING ELEVATION 1 3 0 0 1 "• '<26.60'l

ORIENTATION VERTICAL

PACE 1 Of 3

FRACTURE LOGS

UJ• c

ao

S

INJECTION TEST DATALOG [Q/H (em*/*) ]

FLOWRATE PER UNIT HEAD

•3 2

- 1

- 2

- 3

- 4

- 5

- 6

- 7

- 8

- 9

- 10

- 11

- 12

- 13

- 14

«

OVERBURDEN

A

I I

P.V.C SURFACE CASING

OPENHOLE S.W.L.

•FROM 1.5m INTERVALCHIP SAMPLES • MONZONITE I PEGMATITE |METAGAM«)

Page 147: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

134

BOREHOLE. F.S. • 1 PAGE. . Of.

in >uj a

f" 3

FRACTURE LOGS

a*INJECTION TEST DATA

LOG [Q/H (cm2 / i j ]FLOWRATE PER UNIT HEAD

•7

- 1 6

- 1 7

- 1 8

- 1 9

- 2 0

- 2 1

- 2 2

- 2 3

- 2 4

- 2 5

- 2 6

- 2 7

- 2 8

- 2 9

- 3 0

- 3 1

/ \

1

P2 1

Page 148: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

135

BOR

LE

NG

TH

IN

ME

TR

ES

- 3 3

- 3 5

- 3 7

- 3 8

- 3 9

— 40

- 4 1

- 4 2

- 4 3

— 44

- 4 5

- 4 6

- 47

- 4 8

EHOLE_

1g

s11

F S - 1 PAftF 3 OF 3

FRACTURE LOGS INJECTION TEST DATA£ LOG [Q/H (cm2/«j)

3 U * FLOWRATE PER UNIT HEAD

o > S i <""" * •- U 7 6 5 4 3 2 1 0

\

<—'

PI •

| 1 | 1 | |

-

-

-

LOWER

TESTINGLIMIT

-

-

13 ?fi m BTT

-

-

-

-

Page 149: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

136

r ~i

BOREHOLE f •»• •» OfllFNTlTION "EHP 130 , PLUNGE W

CASING ELEVATION »31.t3 •» 1432.50M PAGE ' OF 3

2 5X oc o

FRACTURE LOSS INJECTION TEST DATALOG [Q/H icm2/«i]

FLOWRATE PER UNIT HEAD

§3 s

- 1

- 2

- 3

- 4

- 5

- 6

- 7

- 8

- 9

- 1 0

- 1 1

- 13

- 14

OVERBUROEN

P5 1

P4 I

P.V.C. SURFACE CASING

OPENHOLE S.W.L.

"FROM 1.5m INTERVALCHIP SAMPLES • MONZONITE I PEGMATITE IMETA GAMKO

l_ _l

Page 150: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

INJECTION TEST DATALOG [Q/H [cm2/$l]

FLOWRATE PER UNIT HEAD

Page 151: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

138

~l

BOREHOLE. F S 2 PkM 3 OF 3

FRACTURE LOCS

- 3 3

- 3 4

- 3 5

- 3 6

- 3 7

- 3 8

- 3 9

- 4 0

- 4 1

- 4 2

- 4 3

— 44

- 4 5

- 4 6

- 4 7

- 4 8

INJECTION TEST DATALOG [Q H >cm2 «"

FLOWRATE PER UNIT HEAD

8 i5><L>

2 1

VI

BOTTOM OF HOLE = 43 60 m B C T

L _1

Page 152: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

139

BOREHOLE F s • 3

CASING ELEVATION 131 26 m (430.52 )

. ORIENTATION . VERTICAL

PAGE 1 OF 3

FRACTURE LOGS INJECTION TEST DATALOG [Q'H icm2-«l]

FLOWRATE PER UNIT HEAD

U<

rmm i

- 2

- 3

... A

- 5

- 6

- 7

- 3

- 9

- 10

- 11

- 12

- 13

- 14

•II

NOAMPLE

OVERBURDEN

PS

P4 1

P.V.C. SURFACE CASING

OPENHOLE S.W.L

LOWERTESTINGLIMIT

•FROM 1 5m INTERVALCHIP SAMPLES • MONZONITE PEGMATITE META GABBRO

Page 153: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

J L

L

Kj K) K) N) M fO

v> on -»j tn o* M w rorj fo

/ / I I I I If

i i i i J L I I I

LENGTHIN METRES

LITHOt-OGY'

BOREHOLE 5

ACOUSTICTELEVIEWER

CASING

"So•« ^ zm X _,

2

J

Page 154: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

141

~l

BOREHOLE. F.S 3 PAGE. OF.

FRACTURE LOGS

ao

!£ §o

§2o _JU UJ

INJECTION TEST DATALOG [0 H icm2 ff;

FLOWRATE PER UNIT HEAD

•5 -4

-33

- 34

-35

-36

- 37

- 38

- 39

-40

-41

-42

-43

- 44

-45

-46

- 47

-48

BOTTOM OF HOLE = 41.50 m B.C.T

_l

Page 155: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

142

BOREHOLE. F.S 4 ORIENTATION. VERTICAL

CASING ELEVATION. 132 48 m 1434 66 ' PAGE ' OF 3_

ao

FRACTURE LOGS INJECTION TEST DATALOG [Q/H |cm?/«)]

FLOWRATE PER UNIT HEAD

- I

- 2

- 3

- 4

- 5

- 6

- 7

- 8

- 9

- 10

- 11

- 12

- 13

OVERBURDEN

P5

P3

I

P.V.C. SURFACE CASING

OPENHOLE S W.L

•FROM 1.5m INTERVALCHIP SAMPLES

{ j MONZONITE PEGMATITE META GABMO

Page 156: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

to onn r K> fo ro K> to ro

01 m * . u> rsj » -

i 1 1 r

fin I

J \ i i ' i i i

LENGTHIN METRES

LITHOLOGV

BOREHOLETV

ACOUSTICTELEVIEWER

CASING

sis52

Page 157: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

144

BOREHOLE. F.S -4 PAHf OF

Ui C"

xg SU i * »

FRACTURE LOGS

UJu

INJECTION TEST DATALOG [Q/H icm2/s)]

FLOWRATE PEK UNIT HEAD

9 ul

as-

- 3 3

- 3 4

- 3 5

- 3 6

- 3 7

- 3 B

- 39

- 4 0

- 4 1

- 4 2

- 4 3

- 4 4

- 4 5

- 4 6

- 47

- 4 8

NOT

OGGEO

NOTLOGGED

B O T T O M O F H O L E = 4 2 . S O m B C T

Page 158: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

145

BOREHOLE. F.S. -5 ORIENTATION VERTICAL

CASING ELEVATION. 132.63 m 1435.131 PAGE 1 Of 3

3

FRACTURE LOGS

it*

INJECTION TEST DATALOG [C./H (ctnVt)]

FLOWRATE PER UNIT HEAD

(9

- 1

- 2

- 3

- 4

- 5

- 6

- 7

- 8

- 9

- 10

- 11

- 12

- 13

- 14

\

P3 I

P.V.C. SURFACE CASING

OPEWHOLE S.W.I.

• FROM 1 5m INTERVALCHIP SAMPLES

J MONZONITE m$ PEGMATITE META GABBRO

Page 159: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

J L

1 r i r

IM Wll/l/lllX O»X(

J L J 1 I I I I I I I

LENGTHIN METRES

LITHOLOGV

BOREHOLE

rOOvi

ACOUSTICTELEVIEWER

CASING

Page 160: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

147

BOREHOLE. r.s 5 PAGE_L_ OF

FRACTURE LOGS

iioo

o * isU u< I-

INJECTION TEST DAT*LOG [Q/H IcrrVi l ]

FLOWRATE PER UNIT HEADozin< 2 1

- 3 3

- 34

- 3 5

- 3 6

- 3 8

- 39

- 4 0

- 4 1

- 4 2

- 4 3

- 4 4

- 4 5

- 4 6

- 4 7

- 4 8

BOTTOM OF HOL

P1

- 41.60 m e.C.T.

JT I I

Page 161: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

148

BOREHOLE. FS 6 ORIENTATION VERTICAL

CASING ELEVATION. 1 3 4 5 3 m | 4 4 1 4 2 1 PAGE » OF

19O

FRACTURE LOGS

Ul

U ui

INJECTION UST DATALOG [Q H ,cm! *•]

FLOWRATE PER UNIT HEAD

3 2

- 1

- 2

- 3

- 4

- 5

- 6

- 7

- 10

- 11

- 12

- 131 ?

s/

K A

P V C SURFACE CASING

prENHOLC 5WL

IJ

1

• FROM I S m INTERVALCHIP SAMPLES • MONZONITE ISSiSly PEGMATITE MET* GABBPO

Page 162: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

U <»

J L

to IVJIo

I

to

/ / / /// / / /U

J I I I J L J L J L

LENGTHIN METRES

LITHOLOGV

BOREHOLET V

ACOUSTICTELEVIEWER

CASING

J^9m o oSi*

11"

Page 163: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

150

BOREHOLE. FS 6 PAGE 3 OF

FRACTURE IOGS

Vt *~

z K O

- 3 3

- 34

- 3 5

- 3 6

- 3 8

- 39

- 4 0

- 41

- 4 2

- 4 3

— 44

- 4 5

- 4 6

- 47

- 4 8

oX

c

* t-

BOTTOM OF HOLE = 41 60 m B C T

INJECTION TEST DATALOG [Q H l cm J j)]

FLOWRATE PER UNIT HEAD

J

i

Page 164: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

151

BOREHOLE. F.S • 7 ORIENTATION. VERTICAL

CASING ELEVATION _ _ _ J £ H L 2 J l £ 1 5 £ l . PACE ' Of

Ui CJ

- ^ O

FRACTURE LOGS

y *

INJECTION TEST DATALOG [Q'M (cm* u ]WRATE PER UNIT HIFLOWRA EAD

•4 . 3

- 1

- 2

- 3

- 4

- 5

- 6

- 7

- 8

- 9

- 10

- 11

- 12

- 13

- 14

OVERBUROEN

.(JL

P6

P V C SURFACE CASING

OPENHOLE S.W.L

LOWERTESTINGLIMIT

• FROM 1.5m INTERVALCHIP SAMPLES • MONZONITE \yyW\ PEGMATITE META GABBRO

Page 165: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

-31 i : i i i i i i i i i i i5 <0 00 -sj O (S< *k U» K) ^* O <*> O

i i

lift MM f M 1 /w

•9*

1 1 1 1 i i 1

LENGTHIN METRES

LITH0L0GV

TO

BOREHOLE 2TV %

mLOG

ACOUSTICTELEVIEWER

CASING

5 ?4JEC

LOG

WR

A

5

Ifim »O

O

| B

Oftl:HO

U

Im

Si

tn

Page 166: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

r

153

BOREHOLE. S • 7 PAGE_1_OF_5_

FRACTURE LOGS

g 5 s y*:£ 3 o P H;S o J -3 >• S X oc © Zji _ t: o * o ul £ - I CO H- < h-

- 3 3

- 34

- 3 5

- 3 6

- 37

- 3 6

- 39

- 4 0

- 4 1

- 4 2

- 4 3

- 4 4

- 4 5

- 4 6

- 47

A-

5

P3

INJECTION TEST DATALOG '0 H .cm2 §r

FLOWRATE PER UNIT HEAD

2

•0.45

Page 167: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

154

BOREHOLE. F.S. • 7 PAGE_1_OF_5_

u> >•ui o

• ce o

FRACTURE LOGS

UJ

a*

INJECTION TEST DATALOG [Q H i c m 2 n ]

FLOWRATE PER UNIT HEAD

3 "o _j

- 5 0

- 5 1

- 5 2

- 5 3

- 5 4

- 5 5

- 5 6

- 5 7

- 5 8

- 5 9

- 6 0

- 6 1

- 6 2

- 6 3

- 6 4

- 6 5

P2

•0 .50-

Page 168: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

155

BOREHOLE

LE

NG

TH

IN

ME

TR

ES

LIT

HO

LO

GY

-

- 6 7

- 6 9

— 70

- 7 2

- 7 3

- 7 4

- 7 5

- 7 6

- 7 7

- 7 8

- 7 9

- 8 0

- 8 1

- 8 2

IJ

F.S 7

FRACTURE LOGS

§ |g •i|> Si 5• - *- ° .7 .6

"" .

- ^ - ^

V—•

\\

OS—

V

% W

1—

* -

BOTTOM OF HOLE - 74.15 m B C.T.

pint 5 OF *

INJECTION TEST DATALOG [Q H icm J . «|]

FLOWRATE PER UNIT HEAD

5 4 3 2 -1 0

—r i 1 T 7 1

-

LOWERTESTINGLIMIT

-

-

-

-

-

-

-

-

Page 169: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

r ~i

Do5o

o

3

^

i r "i r r00

i 1 1 1 1 1 r

I I

tun IIIrm T i i

^^**^^*-"^**'""'^'*™^^*zs^

<r>

I I

LENGTHIN METRES

LITHOLOGY*

BOREHOLETV.

ACOUSTICTELEVIEWER

CASING

2 ~"*

> o2 »

S

L J

Page 170: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

157

r ~\

BOREHOLE. F.S 8 P A G E _ i _ OF.

FRACTURE LOGS

a

INJECTION TEST DATALOG [Q 'H |cm2 / f | ]

FLOWRATE PER UNIT HEAD

- 1 6

- 1 7

- 1 8

- 1 9

- 2 0

- 2 1

- 2 2

- 2 3

- 2 4

- 2 5

- 2 6

- 2 7

- 2 8

- 2 9

- 3 0

- 3 1

M

0I

L_ _l

Page 171: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

158

~l

BOREHOLE

LE

NG

TH

IN

ME

TR

ES

LITH

OLO

GY

-

- 3 3

- 3 5

- 3 7

- 3 8

- 39

- 4 0

- 4 1

— 42

- 4 3

- 4 4

- 4 5

- 4 6

- 47

- 4B

1

if

F.S. »

FRACTURI

UJ

ICD h-

- ^

\

PAf.F 3 OF 3

I LOGS INJECTION TEST DATAg LOG 10 H ,cm2 ff,

U * FLOWRATE PER UNIT HEAO• - a u

iS I«™ " 7 6 5 4 3 2 1 0

V

\)

NOT

LOG GED

Pi 1

1 7 1 1 J 1 1 I 1

_

-

-

-

86 m B C T

-

-

-

-

-

l_ _l

Page 172: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

159

BOREHOLE f * •» ORIENTATION TREND 236 PLUNGE 70

EASINC, ELEVATION 132.74 m 1435.49 I PAGE ' OF 3

UJ O

* f 35* ?

FRACTURE LOGS INJECTION TEST DATALOG [0 H icm2 t i ]

>WRATE PER UNIT HIFLOWRATE EAD

a

8 SI •2 1

- 1

- 2

- 3

- 4

- 5

- 6

- 7

- 8

- 9

- 10

- 11

- 12

- 13

- 14

OVERBURDEN

\

P5

1

P.V.C. SURFACE CASING

OPENHOLE S.W.I.

•FROM 1.5m INTERVALCHIP SAMPLES • MONZONITE m PEGMATITE META GABBRO

Page 173: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

S

£ 2

DNISV3

N3M3IA1131„, 3US003V

3Ul

5 A l(3 31OH3MO8<

I 1 I I

S « «o w !

i i 1 1 1 r

in if//// mm

Page 174: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

161

BOREHOLE. F.S -9 P»GE_L_ OF_3_

FRACTURE LOGS

i£ 9

INJECTION TEST DATALOG [Q/H (cm2/i)]

FLOWRATE PER UNIT HEAD

- 3 3

- 34

- 3 5

- 3 6

- 3 7

- 3 8

- 39

- 4 0

- 4 1

- 4 2

- 4 3

- 4 4

- 4 5

- 4 6

- 4 7

- 4 8

L \

I

NOTLOGGED

BOTTOM OF HOLE = 42 IB m BCT.

P I I I

Page 175: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

162

BOREHOLE. F.S. • 10 . ORIENTATION VERTICAL

CASING ELEVATION 137.34 m |45O.61'I M C E 1 OF 3

.8 g

FRACTURE LOGS INJECTION TEST DATALOG [Q/H Icm2/i|]

FLOWRAU PER UNIT HEAD

- 1

- 2

- 3

- 4

- 5

- 6

- 7

- 8

- 9

- 1 0

- 12

- 13

- 14

NOTISGGID

V

I

r V C SURFACE CASING

OPENHOIE SW.L

LOWER TESTING LIMIT

•FROM 1 5m INTERVALCHIP SAMPLES • MONZONITE Wm PEGMATITE IMETA GAIBRO

Page 176: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

1

n 1 1 1 i rM ro M U M

1 rM ro

i r i r

XI /I/IIII III I

-LJJLLJ.= m O-> ^ m

i i i i i i i i i i i i i i i i

LENGTHIN METRES

LITHOLOGV

BOREHOLET V

ACOUSTICTELEVIEWER

CASING

enU)

Page 177: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

164

BOREHOLE F 5 10 PAGE_i_ OF_JL

FRACTURE LOGSaUJ

o2o ui

INJECTION TEST DATALOG [0 H icm2 *i"

FLOWRATE PER UNIT HEAD

- 3 3

- 34

- 3 5

- 3 6

- 3 7

- 3 8

- 39

— 40

- 4 1

- 4 2

- 4 3

- 4 4

- 4 5

- 4 6

- 47

- 4 8

1

BOTTOM or HOLE = 48.7S m B C TI I I I

_1

Page 178: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

165

BOREHOLE. F.S. - 11 .ORIENTATION. TREND 0 . PLUNGE i t

CASING ELEVATION. 135.22 m I443.*2'l PACE » Of 3

g

t

FRACTURE LOGS INJECTION TEST DATALOG [ Q H icn.2 n ]

FLOWRATE PER UNIT HEAO

sit

- 1

- 2

- 3

- 5

- 6

- 7

- 8

- 9

- 10

- U

- 12

- 13

- 1 4

HOTIKGfD

P4

P.VC SURFACE CASING

OPENHOLE S.W.L

-*• LOWER TfSTINC LWIT

•FROM 1.5m WTEPVALCHIP SAMPLES • MONZONITE PEGMATITE META C A M M )

Page 179: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

166

BOREHOU. Ft 11 PAGE_L_OF_L

E l I

FRACTURE LOGS

3INJECTION TEST DATA

LOG [Q/H (cm2tl]FLOWRATE PER UNIT HEAD

- 1 6

- 1 7

- 1 8

- 1 9

- 2 0

- 2 1

- 2 2

- 2 3

- 2 4

- 2 S

- 2 6

- 2 7

-28

- 2 9

- 3 0

- 3 1

P3 1

1

i r

LOWERTESTINGLIMIT

Page 180: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

167

BOREHOLE. F.S 11 PAGE_L_ OF

- 3 3

- 3 4

- 3 5

- 3 6

- 37

- 3 8

- 3 9

- 4 0

- 4 1

- 4 2

- 4 3

- 4 4

- 4 5

- 4 6

- 4 7

- 4 B

FRACTURE LOGS

UJ

§S i

BOTTOM OF

PI

INJECTION TEST DATALOG [Q H . c m ! t>*

FLOWRATE PER UNIT HEAD

OLE - 4 3 . S 3 m B C T

Page 181: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

168

~l

ORIENTATION VtBTICAl

CASING ELEVATION 135.01 in »42 931

INJECTION TEST DATALOG [0..H Icm2.ll]

FLOWRATE PER UNIT HEAD

P V.C SURFACE CASING

DIABASE

META GABBRO• FROM 1 5m INTERVALCHIP SAMPLES

Page 182: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

169

BOREHOLE F.S 12 PAfiF 2 OF 3

in >uj o

. a o

FRACTURE LOGS

2 JO h- w

X V> >UJ 3 UJ

§> SiOf < 1-

INJECTION TEST OATALOG [0 H .cm2 «,*

FLOWRATE PER UNIT HEAD

<u

- 1 6

- 1 7

- 1 8

- 1 9

- 2 0

- 2 1

- 2 2

-23

-24

- 2 5

- 2 6 fg

- 2 7

- 2 8

- 2 9

- 3 0

- 3 1

m>*,P3 i

P2 ii

WITHDRAWALTEST DATA

Page 183: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

170

~l

BOREHOLE. f.S 12 PAGE__1_ OF_L

FRACTURE LOGS

2

INJECTION TEST DATALOG ' 0 H .cm2 t"

FLOWRATE PER UNIT HEAD

-33

- 34

-35

-36

-37

38

39

-40

-41

-42

-43

-44

-45

-46

- 47

-48

PII

BOTTOM OF HOLE = 43 50 m 8 C T

Page 184: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

171

BOREHOLE *•«- , ORIENTATION VERTICAL

CASING ELEVATION 134,78m 1442,20) PAGE 1 OF 3

*FRACTURE LOGS

o

INJECTION TEST DATALOG [Q/H lem*/$| ]

FLOWRATE PER UNIT HEAD

a

- 1

- 2

- 3

- 5

- e

- 8

- 9

- 10

- 1 1

- 12

- 13

- 14

OVERBURDEN

NOT

LOGGED

x?

PS

P.V.C SURFACE CASING

OPENHOLE S W.L

•FROM 1.5m INTERVALCHIP SAMPLES • MONZONITE Mm PEGMATITE META GABBRO

Page 185: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

w r n f / \ A \ // i i i i / / nil

I I IfO

u ro

J I I I I L J L I L J L

LENGTHIN METRES

LITHOLOGY-

BOREHOLE CJTV. £

ACOUSTICTELEVIEWER

CASING

"So

3*2

r5

ro

Page 186: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

173

BOREHOLE. F $ 13 PAGE_!_ OF_i_

<n >-

FRACTURE LOGS

3 iin

INJECTION TEST DATALOG [0 H .cm2 »r

FLOWRATE PER UNIT HEAD

3 2

- 3 3

- 3 4

- 3 5

- 3 6

- 3 7

- 3 8

- 39

— 40

- 4 1

- 4 2

- 4 3

- 4 4

- 4 5

- 4 6

- 47

- 4 8

BOTTOM OF HOLE = 43.30 m BCT.

Page 187: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

174

BOREHOLE. F.i. • 14 ORIENTATION VERTICAL

CASING ELEVATION 135.90 m I44SJ6') PACE » Of 3

FRACTURE LOGS

ill

INJECTION TEST DATALOG [Q H icm2 n ]

FLOWRATE PER UNIT HEAD

3£ 5

- 1

- 2

- 3

- 4

- 5

- 6

- 7

- 9

- 1 0

- 11

- 13

- 14

OVERBURDEN

• FROM 1.5m INTERVALCHIP SAMPLES

P4

OPENHOLE S W.L

P.V.C SURFACE CASING

| | MONZONITE } PEGMATITE

WITHDRAWALTEST DATA

YA'A DIABASE

META GABBRO

Page 188: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

t t t t

s5s

LENGTHIN METRES

LITHOLOGV

30REH0LET V

ACOUSTICTELEVIEWER

CASING

Page 189: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

176

BOREHOLE. F.S. • 14 PAGE 3 OF L

FRACTURE LOGS

§US

I*

UJ

3u

U in« t-

INJECTION TEST DATALOG Q H t i n 2 s"

FLOWRATE PER UNIT HEAD

- 3 3

- 3 4

- 3 5

- 3 6

- 37

- 38

- 39

- 4 0

- 4 1

- 4 2

- 4 3

— 44

- 4 5

- 4 6

- 4 7

- 4 8

i i

LOWERTESTINGLIMIT

\WITHDRAWAL

TEST DATA

BOTTOM OF HOLE = 42.13 n t S C T

Page 190: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

177

BOREHOLE ORIENTATION VERTICAL

CASING ELEVATION. 134.23 m (440.38 W.) PAGE 1 O F .

FRACTURE LOGS INJECTION TEST DATALOG [Q H icm2 t) l

>WRATE PER UNIT HFLOWRATE EAD

•4

1 1 rSTEEL SURFACE CASING

OPENHOLE S.W.L.

- 1

- 2

- 3

- 4

- 5

- 7

- 9

- 10

- 11

- 13

- 14

NOT

LOOSED

• FROM RECOVEREDHO-SIZE CORE

MONZONITE ™ PEGMATITE META GABBRO

Page 191: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

178

BOHEHOLE

Ui p

iS &£ 2ap 9B X

-16

- 1 7

- 1 8

- 1 9

- 2 0

— 21

- 2 2

- 2 3

- 2 5

- 2 6

- 2 7

- 2 8

- 2 9

- 3 1

FS-1S

FRACTURE LOGSat

IOLE

iTIC

IEW

G

S ,• o 3 1

M

n

1

1

PAG f t or »

INJECTION TEST OATAIOC [Q H icm2 »']

FLOWRATE PER UNIT HEAD

7 - 6 - 5 - 4 -3 -2 1 0

i

_

-

-

-

-

-

-

-

-

-

Page 192: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

179

BOREHOLE fS-15 PAGE_l_Of.

FRACTURE LOGS

ii 1

INJECTION TEST DATALOG [Q H icni2 (i)

FLOWRATE PER UNIT HEAD

Ou.4

"T"

- 3 3

- 34

- 3 5

- 3 6

- 3 7

- 3 8

- 39

- 4 0

- 4 1

- 4 2

- 4 3

- 4 4

- 4 5

- 4 6

- 4 7

- 4 8mm

i

BOTTOM OF HOLE - 4I.S1 mBCT

Page 193: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

180

BOREHOLE . ORIENTATION VERTICAL

CASING ELEVATION < * » » » " < « " « " > PACE i or «

IA >

ii I

FRACTURE LOGS INJECTION TEST DATALOG [0 H icml'ti]

FLOWRATE PER UNIT HEAD

a

I

- l

- 2

- 3

- 4

- 5

- 6

- 7

- 8

- 9

- 10

- 11

- 12

- 13

- 14

NOT

LOOOtOSTEEL SURFACE CASINO

' OPENHOLE S.W.L

• FROM RECOVEREDHO-SIZE CORE MONZONITE I PEGMATITE MET* GAMftO

Page 194: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Iwo

I9

7J M l 1/7 I /III IllllillWilllJI

LENGTHIN METRES

LITHOLOGY'

BOREHOLETV.

ACOUSTICTELEVIEWER

CASING

-4 2

11"

Page 195: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

182

BOREHOLE PAfiF » Of «_

in >•

g gU O

FRACTURE LOGS

3 !1 !u :

INJECTION TEST DATALOG [Q M <cm2 n"

FLOWRATE PER UNIT HEAD

- 3 3

- 34

- 3 5

- 3 6

- 3 7

- 3 8

- 3 9

- 4 0

- 4 1

- 4 2

- 4 3

- 4 4

- 4 5

- 4 6

- 4 7

PI I

Page 196: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

183

BOR

LE

NG

TH

IN

ME

TR

ES

- 5 0

- 5 1

- 5 2

- 5 3

- 5 4

- 5 5

- 5 6

- 5 7

- 5 B

- 5 9

- 6 0

- 6 1

- 6 2

- 6 3

- 6 4

- 6 5

EHOLE.

>-uo

1

atOMcaM

FS-16 PAGE 4 Of 4

FRACTURE LOGS INJECTION TEST DATAJ LOG [0 H icm^j i ]

S a * FLOWRATE PER UNIT HEAD

I §1 so> S i 5""" * " ° 7 6 5 4 -3 -2 -1 0

O S S - 1 1 1 1 1 1 1

BOTTOM OF HOLE » ' M . M mSCT

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Page 197: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

134

BOREHOLE F S " 1 T . ORIENTATION VERTICAL

CASING ELEVATION 133.00 m <«3»35 fl.) PAGE 1 Of 4

FRACTURE LOGS

II IB

OR

TV 1

INJECTION TEST DATALOG [ Q H icm?,n]

FLOWRATE PER UNIT HEAD

-5 4

- 1

- 2

- 3

- 4

- 5

- 6

- 7

- 8

- 9

- 10

- 11

- 12

- 13

- 14

NOT

LOOSED

i I r

STEEL SURFACE CASING

OPENHOLE S.W.L.

• FROM RECOVEREDHQ-SIZED CORE MONZONITE PEGMATITE META GAMftO

Page 198: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

135

Page 199: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

\ I I I* » » »•*J O* U» **

l\(\[\\

I I I I

w I

-L-—I 1 I I \ I I i I i J L

LENGTHIN METRES

LITHOLOGY'

BOREHOLE 3

OClV)

ACOUSTICTELEVIEWER

CASING

h

Page 200: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

187

BOREHOLE PAGE 4 0f_4_

15 3

FRACTURE LOGS

O i

INJECTION TEST DATALOG [Q H .cm2 t".

FLOWRATE PER UNIT HEAD

- 5 0

- 5 1

- 5 2

- 5 3

- 5 4

- 5 5

- 5 6

- 5 7

- 5 8

- 5 9

- 6 0

- 6 1

- 6 2

- 6 3

- 6 4

- 6 5

PI

NOT

lOOSED

BOTTOM OF HOLE = 60.75 m CT

Page 201: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

188

APPENDIX B

Straddle-Packer Injection Test Data

Boreholes FS-1 to FS-17

Page 202: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

189

TABLE B-1

INJECTION TEST SUMMARY

BOREHOLE FS-1

1n

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

Depth of TestIn te rva l

Metres B.C.T.1

.00

.00

.00

.00

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

00

00 -

00 -

00 -

- 6.27

- 8.27

- 10.27

- 12.27

- 14.27

- 16.27

- 18.27

- 20.27

- 22.27

- 24.27

26.27

28.27

30.27

32.27

34.27

36.27

38.27

40.27

42.27

I n j e c t i o n HeadAH

1n m

18.6

18.3

18.8

19.0

18.7

18.3

18.3

17.8

17.8

18.7

18.8

18.3

18.0

17.5

18.4

17.3

18.3

17.3

18.1

Flow Rate Flow

% i1n nrs~ •

1.0 x 10"8

4.1 x 10~9

2.1 x 10 " '

1.1 x 10"7

1.7 x 10" 8

2.7 x 10"8

3.4 x 10"8

5.7 x 10"8

7.6 x 10" 8

6.7 x 10"7

6.2 x 10" 7

6.7 x 10" 8

7.9 x 10"8

8.0 x 10" 8

1.9 x 10"8

2.5 x 10" 8

1.9 x 10" 8

7.6 x l u " 1 0 *

1.1 x 10"8

Rate per Unit HeadQ/AH

1n m's"1

5.5 x l u " 1 0

2.2 x Ï O - 1 0

1.1 x 10" 8

5.7 x 10"9

9.1 x 1 0 - 1 0

1.5 x 10"9

1.9 x 10"9

3.2 x 10" 9

4.3 x 10"9

3.4 x 10" 8

3.3 x 10" 8

3.7 x 1O~9

4.4 x 10~9

4.6 x 1O~9

1.1 x 10"9

1.4 x 10"9

1.1 x 10~9

4.4 x 10" 1 1

5.9 x I f f 1 0

Below casing top

Page 203: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

190

TABLE B-2

INJECTION TEST SUMMARY

BOREHOLE FS-2

1n

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36.

38.

40.

Depth of TestInterval

Metres B.C.T.

.00

.00

.00

.00

.00 •

.00 •

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

00 -

00 -

00 -

00 -

00 -

00 -

00 -

- 6.27

- 8.27

- 10.27

- 12.27

- 14.27

- 16.27

- 18.27

- 20.27

• 22.27

- 24.27

26.27

28.27

30.27

32.27

34.27

36.27

38.27

40.27

42.27

Injection HeadAHAn m

15.5

15.6

15.7

15.5

15.2

14.8

14.3

14.5

10.4

14.7

15.2

14.8

18.1

15.7

15.8

15.6

16.1

16.3

16.5

Flow Rate Flow

1n mJs-'

5.9 x 10"7

5.7 x 10"9

5.0 x 10"9

1.2 x 10~8

6.2 x 10"7

4.3 x 10"8

1.3 x 10"8

5.3 x 10"9

1.1 x 1O'5

7.6 x 10~9

3.8 x 10"10*

3.7 x 10"8

3.8 x 10"10*

3.8 x 10"9

9.1 x 10"9

2.7 x 10"8

1.2 x 10~8

5.2 x 10"9

4.7 x 10"9

Rate per U n H HeadQ/AH

1n m^s-i

3.8 x 10"8

3.6 x 1O"10

3.1 x 1O-10

7.7 x IQ'10

4.1 x 10"8

2.9 x 10"9

8.8 x 10"10

3.7 x lu"10

7.1 x 10"6

5.2 x lu"10

2.5 x 10"11

2.5 x 10"9

2.1 x 10"11

2.4 x lu"10

5.8 x lu"10

1.7 x 10"9

7.5 x lO'10

3.2 x lu"10

2.8 x IQ'10

Lowest measurable flow rate

Page 204: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

191

TABLE B-3

INJECTION TEST SUMMARY

80REH0LE FS-3

Depth of TestInterval

1n Metres B.C.T.

4.00 - 6.27

6.00 - 8.27

8.00 - 10.27

10.00 - 12.27

12.00 - 14.27

14.00 - 16.27

16.00 - 18.27

18.00 - 20.27

20.00 - 22.27

22.00 - 24.27

24.00 - 26.27

26.00 - 28.27

28.00 - 30.27

30.00 - 32.27

32.00 - 34.27

34.00 - 36.27

36.00 - 38.27

38.20 - 40.47

Injection HeadAH1n m

8.50

9.60

9.20

15.6

15.5

16.2

17.5

15.4

15.5

18.0

15.6

16.4

16.4

16.0

16.4

15.8

15.8

15.3

Flow Rate Flow

°* i1n itrs"1

1.9 x 10"9

3.8 x 10"10*

2.3 x 10"8

1.6 x 10"8

6.3 x 10"8

6.4 x 10"9

1.3 x 10"8

6.0 x 10"8

3.0 x 1O~9

3.6 x 10"9

1.0 x 10"8

7.2 x 10"7

6.4 x 10"7

1.5 x 10"8

2.3 x 10"9

2.9 x 10"8

9.9 x 10"8

3.5 x 10"7

Rate per Unit HeadO/AH

1n m^s"^

2.3 x lu"10

4.0 x 1 0 ' n

2.5 x 10"9

1.0 x 10~9

4.1 x 10"9

3.9 x ID"10

7.4 x ID"10

3.9 x 10"9

2.0 x 10-10

2.0 x IQ"10

6.5 x lu'10

4.4 x 10"8

3.9 x 10"8

9.5 x ID'10

1.4 xlO- 1 0

1.8 x 10"9

6.3 x 10"9

2.3 x 10"8

* Lowest measurable flow rate

Page 205: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

192

TABLE B-4

INJECTION TEST SUMMARY

BOREHOLE FS-4

1n

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

Depth of TestInterval

Metres B.C.T.

.00

.00

.00 •

.00 •

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

00 -

00 -

- 6.

- 8.

- 10.

- 12.

- 14.

- 16.

- 18.

- 20.

- 22.

24.

- 26.

28.

30.

32.

34.

42.

02

27

27

27

27

27

27

27

27

27

27

21

27

27

27

50

Injection HeadAH1n m

9

14

14

3

4

9

9

13

14

15

12

14

14

12.

14.

17.

.70

.4

.9

.80

.10

.30

.70

.0

1

4

5

0

9

9

1

6

Flow

1n i

3

5

1

3

3

1

1

5

3

2

1

1.

.

1.

3.

3.

.8

.7

.1

.9

.3

i, I

8

2

1

9

3

7

9

3

1

0

Rate

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

io-1{

IQ"9

ID"9

lu"5

lu"5

io-5

IQ"5

io-6

IQ'7

ID"8

io-5

io-6

IQ"7

10"5

io-8

io-8

Flow Rate per Unit HeadQ/AH

1n ra^s"^

>* 3

3

7

1

7

1

1

4

2

1

1

1

1.

1.

2.

1.

.9

.9

.3

.0

.9

.8

.9

.0

.2

9

0

2

2

0

2

7

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

IO-11

io- 1 0

IO-11

ID"5

io-6

io-6

IQ"6

ID"7

IQ"8

IQ"9

ID"6

IQ"7

ID"8

IG"6

IQ"9

ID"9

* Lowest measurable flow rate

Page 206: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

193

TABLE B-5

INJECTION TEST SUMMARY

BOREHOLE FS-5

Oepth of TestInterval

1n Metres B.C.T.

4.00

6.00

8.00 •

10.00 -

12.00 -

14.00 -

16.00 -

18.00 -

20.00 -

22.00 -

24.00 -

26.00 -

28.00 -

30.00 -

32.00 -

34.00 -

36.00 -

38.00 -

40.00 -

- 6.27

- 8.27

- 10.27

- 12.27

- 14.27

- 16.27

- 18.27

- 20.27

• 22.27

24.27

26.27

28.27

30.27

32.27

34.27

36.27

38.27

40.27

41.60

Injection HeadÛHIn m

10.3

15.4

15.4

15.7

15.5

15.5

15.5

15.4

15.4

15.2

15.2

14.8

15.5

16.7

18.1

16.8

18.8

18.5

0.30

Flow Rate

1n mJs~'

2.4 x 10"6

1.9 x 10"8

2.6 x 10"8

9.0 x 10"8

1.7 x 10"8

2.2 x 10"8

1.9 x 10"8

1.8 x 10"8

1.6 x 10"8

2.0 x 10"8

2.7 x 10"8

5.7 x 10~8

1.2 x 10"7

9.9 x 10"9

7.9 x 10~9

8.0 x 10"9

5.4 x 10"7

1.0 x 10"6

1 .7 x 10"7

Flow Rate per Unit HeadQ/AH

1n m^s"^

2.3 x 10"7

1.2 x 10"9

1.7 x 10"9

5.7 x 10"9

1.1 x 10"9

1.4 x 10"9

1.2 x 10"9

1.2 x 10~9

1.1 x 10"9

1.3 x 10"9

1.8 x 10"9

3.9 x 10~9

8.0 x 10"9

5.9 x lu"10

4.4 x lu"10

4.8 x IG"10

2.9 x 10"8

5.5 x 10"8

5.6 x 10"7

Page 207: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

194

TABLE B-6

INJECTION TEST SUMMARY

BOREHOLE FS-6

In

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

Oepth of TestIn te rva l

Metres B.C.T.

.00 - 8.27

.00 - 10.27

.00 - 12.27

.00 - 14.27

.00 - 16.27

.00 - 18.27

.00 - 20.27

.00 - ?2.27

.00 - 24.27

.00 - 26.27

.00 - 28.27

.00 - 30.27

.00 - 32.27

.00 - 34.27

.00 - 36.27

.00 - 38.27

.00 - 40.27

In jec t i on HeadAH

1n m

15.5

14.0

14.2

14.3

13.4

14.5

14.3

14.6

14.1

8.20

8.00

7.00

6.60

6.10

2.90

5.10

4.80

Flow RateQ

1n m3s"1

3.8 x 10~8

3.4 x 10"8

1.1 x 10~8

1.1 x 10"8

9.1 x 10"8

1.1 x 10~8

7.6 x 10~8

1.3 x 10"8

1.8 x 10"8

2.7 x 10"8

5.3 x 10"9

4.9 x 10"9

3.5 x 1 0 ' 9

3.3 x 10"9

1.5 x 10"5

1.6 x 10"8

6.0 x 10"9

Flow Rate per Unit HeadQ/AH

1n m2s~1

2.5 x 10"9

2.4 x 10"9

8.0 x 10 " 1 0

8.0 x 10 " 1 0

6.8 x 10"9

7.2 x 10 - 1 0

5.3 x 10"9

8.8 x 10" 1 0

1.2 x 10"9

3.3 x 10"9

6.7 x I D " 1 0

7.1 x 10~1 0

1.4 x 10~ 9

5.4 x 10~ 8

5.1 x 10~ 6

3.1 x 10~9

1.3 x 10~9

Page 208: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

195

TABLE B-7

INJECTION TEST SUMMARY

BOREHOLE FS-7

In

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

Depth of TestInterval

Metres B.C.T.

.00

.00

.00

.00 -

.00

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

- 6.10

- 8.10

- 10.10

- 12.10

- 14.10

- 16.10

- 18.10

- 20.10

- 22.10

- 24.10

- 26.10

- 28.10

- 30.10

32.10

34.10

36.10

38.10

40.10

42.10

Injection HeadÛHin m

19.0

19.3

15.7

19.7

20.3

20.2

6.20

6.30

21.6

22.1

21.2

22.1

22.9

23.5

21.6

22.0

8.40

22.2

21.1

Flow

1n

2.6

3.1

6.7

2.7

2.4

1.7

6.1

1.5

8.7

6.9

1.4

1.9

1.8

3.9

2.6

1.4

4.0

2.6

2.6

Rate Flow

.x 10"6

x 10"6

x IQ"10*

x 10"8

x 10"8

x 10"8

x 10"9

x 10"8

x 10"8

x 10"8

x 10"7

x 10"8

x 10~8

x 10"8

x 10"6

x 10"7

x TO"5

x 10"8

x 10'7

Rate per Unit HeadQ/ÛH

1n m^s"1

1.3 x 10"7

1.6 x 10"7

4.3 x 10'11

1.4 x 10"9

1.2 x 10"9

8.3 x IQ"10

9.8 x 10"10

2.4 x 10"9

4.0 x 10"9

3.1 x 10"9

6.4 x 10"9

8.5 x lO"10

7.6 x ID"10

1.7 x 10"9

1.2 x 10"7

6.2 x 10'9

4.8 x 10"6

1.2 x 10'9

1.2 x 10"8

Page 209: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

196

TABLE B-7 (Cont'd)

INJECTION TEST SUMMARY

BOREHOLE FS-7

| 42

44

46

Depth of TestInterval

Metres B.C.T.

.00 - 44

.00-46

.00-48

10

10

10

Injection HeadAH1n m

20

20

19

4

6

3

Flow Rate

1n mJs~'

2

5

3

6

0

6

x 10"6

x 10"8

x 10"6

Flow Rate per Unit HeadQ/AH

In m2s"1

1

2

1

3 x 10~7

4 x 10"9

9 x 10~7

48.00 - 50.10 0.20 6.5 x 10"5 2.8 x 10~4

47.00 - 49.10 20.3 2.5 x 10"8 1.2 x 10~9

49.50 - 51.60 0.14 7.0 x 10"5 5.0 x 10" 4

50.00 - 52.10 14.2 3.2 x 10" 5 2.3 x 10" 6

52.00 - 54.10 24.2 2.7 x 10~6 1.1 x 10" 7

54.00 - 56.10 25.0 1.5 x 10 ' 7 6.1 x 10"9

55.00 - 57.10 24.2 1.5 x 10~7 6.1 x 10"9

57.00 - 59.10 23.6 1.1 x 10~7 4.7 x 10"9

58.00 - 60.10 23.4 2.8 x 10~7 1.2 x 10" 8

60.00 - 62.10 23.5 1.7 x 10" 7 7.4 x 10"9

62.00 - 64.10 23.9 3.7 x 10" 8 1.6 x 10~9

64.00 - 66.10 23.3 2.6 X 10" 8 1.1 x 10"9

66.00 - 68.10 22.5 5.7 x 1 0 ' 7 2.5 x 10" 8

68.00 - 70.10 23.1 2.9 x 10" 8 1.3 x 10" 9

-9 - ID70.00 - 72.10 21.9 6.0 x 10 2.7 x 10

71.00 - 73.10 22.9 6.7 x 1 0 " 1 0 * 2.9 x TO"11

* Lowest measurable flow rate

Page 210: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

197

TABLE B-8

INJECTION TEST SUMMARY

BOREHOLE FS-8

in

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

Depth of TestInterval

Metres B.C.T.

.00 - 10.27

.00 - 12.27

.00 - 14.27

.00 - 16.27

.00 - 18.27

.00 - 20.27

.00 - 22.27

.00 - 24.27

.00 - 26.27

.00 - 28.27

.00 - 30.27

.00 - 32.27

.00 - 34.27

.00 - 36.27

.00 - 38.27

.00 - 40.27

Injection HeadAH1n m

14.8

14.8

17.4

17.5

16.9

17.0

16.7

18.6

16.7

9.80

2.30

16.8

17.8

17.7

16.0

16.5

Flow

1n i

2.7

5.7

9.5

4.2

9.5

5.3

7.6

7.6

1.3

2.6

4.2

6.2

1.9

3.6

3.4

2.7

Rate

x 10"9

x 10"9

x 10"9

x 10~9

x 10"9

x 10"9

xlO- 9

x 10"9

x 10"8

x 10"5

x 10"5

x 10"7

x 10"9

x 10"8

x 10"8

x 10"8

Flow Rate per Unit HeadQ/AH

in m^s-l

1.8 x l O - 1 0

3.9 x ID"10

5.5 x 10~ 1 0

2.4 x IC"10

5.6 x IQ"10

3.1 x IQ"10

4.6 x IQ"10

4.1 x IQ"10

8.0 x 10" 1 0

2.6 x 10"6

1.8 x 10"5

3.7 x 10"8

1.1 x l O - 1 0

2.0 x 10"9

2.1 x 10"9

1.6 xlO- 1 0

Page 211: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

198

1n

8

10

12

14

16

18

20

22

24

26

28

, 30

, 32

1 34j

36

38

Depth of TestInterval

Metres B.C.T.

.00 - 10.27

.00 - 12.27

.00 - 14.27

.00 - 16.27

.00 - 18.27

.00 - 20.27

.00 - 22.27

.00 - 24.27

.00 - 26.27

.00 - 28.27

.00 - 30.27

.00 - 32.27

.00 - 34.27

.00 - 36.27

.00 - 38.27

.00 - 40.27

TABLE B-9

INJECTION TEST SUMMARY

InjectionAH1n m

12.6

13.9

15.4

14.7

15.1

14.2

16.6

16.1

15.3

14.3

13.9

14.7

0.40

14.7

14.3

15.3

BOREHOLE FS-9

Head Flow Rate Flow

1n nv*s~^

1.3 x 10"8

8.2 x 10~7

5.7 x 10~9

4.6 x 10~9

2.2 x 10~8

4.2 x 10'9

7.6 x ID" 1 0

9.1 x 10~9

2.1 x 10"8

4.7 x 10"7

4.3 x 10"7

8.6 x 10"8

5.1 x 10~5

1.5 x 10"9

1.7 x 10"8

3.4 x 10"6

Rate per Unit HeadQ/AH

1n ttrS~'

1.0 x 10~9

5.6 x 10~8

3.7 x ID" 1 0

3.1 x ID"10

1.5 x l O - 1 0

3.0 x ID" 1 0

4.6 X TO"11

5.7 x 10-10

1.4 x 10~9

3.3 x 10~8

3.1 x 10"8

5.9 x 10"9

1.3 x 10"4

1.0 x TO"1

1.2 x 10~9

2.2 x 10~7

Page 212: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

199

TABLE B-10

INJECTION TEST SUMMARY

BOREHOLE FS-1O

1n

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

45

Depth of TestIn terva l

Metres B.C.T.

.00

.00

.00

.00

.00

. 0 0 •

. 0 0 •

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

00 -

58 -

- 14.10

- 16.10

- 18.10

- 20.10

- 22.10

- 24.10

- 26.10

- 28.10

- 30.10

32.10

- 34.10

- 36.10

- 38.10

• 40.10

42.10

44.10

46.10

47.68

In jec t ion HeadAH

1n m

11.3

11.5

10.7

12.2

12.5

13.2

12.4

14.4

14.9

15.6

15.6

12.8

12.6

14.7

12.3

2.00

22.2

25.8

Flow Rate FlowQ

1n m^s"^

9.4 x 10"9

6.7 x l u " 1 0 *

2.0 x 10 ' 8

2.1 x 10"8

6.7 x 1 0 ' 1 0 *

6.7 x 10~10*

1.1 x 10"8

8.7 x 10"9

8.7 x 10 ' 9

5.4 x 10"9

7.4 x 10"9

1.8 x 10~8

8.7 x 10"8

4.0 x 10"9

1.9 x 10"8

6.7 x 10"5

1.5 x 1O"7

1.0 x 10~8

Rate per Unit HeadQ/AH

1n m^s"!

8.3 x 10~10

5.9 x 10"1 1

1.9 x 10"9

1.8 x 10~9

5.4 x 10"1 1

5.1 x 10"1 1

8.7 x 10- 1 0

6.1 x IQ" 1 0

5.9 x l u " 1 0

3.5 x IQ" 1 0

4.7 x IQ" 1 0

1.4 x I0 " 9

6.9 x 10"9

2.7 x l u " 1 0

1.5 x 10"9

3.4 x 10"5

6.7 x 10"9

3.9 x 10~10

* Lowest measurable flow rate

Page 213: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

200

TABLE B-IT

INJECTION TEST SUMMARY

BOREHOLE FS-11

In

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

40

Depth of TestInterval

Metres B.C.T.

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

00 -

.00 -

00 -

42 -

8.10

10.10

12.10

14.10

16.10

18.10

20.10

22.10

24.10

26.10

28.10

30.10

32.10

34.10

36.10

38.10

40.10

42.10

42.52

Injection HeadAH1n m

17.2

10.6

17.2

17.7

19.2

20.0

14.8

18.8

16.6

17.7

18.1

17.8

18.9

14.5

8.10

18.8

11.7

23.9

23.5

Flow Rate Flow

% !in mJs-'

1.7 x 10"8

2.7 x 10"8

1.3 x 10"8

4.8 x 10"8

6.7 x IQ"10*

6.7 x ID"10*

6.7 x 10-10*

6.7 x lu"10*

2.8 x 10"8

6.7 x lu"10*

6.7 x IQ'10*

8.1 x 10"9

3.6 x 10"8

4.0 x 10"8

2.2 x 10"5

6.7 x 10"9

1.7 x 10~5

3.1 x 10"8

1.5 x 10"8

Rate per Unit HeadQ/AH

1n m^s"1

9.7 x IQ"10

2.5 x 10"9

7.8 x lu'10

2.7 x 10"9

3.5 x 10"11

3.4 x 10"11

4.5 x 10"11

3.6 x 10"11

1.7 x 10"9

3.8 x 10"11

3.7 x 10"11

4.5 x lu"10

1.9 x 10~9

2.8 x 10'9

2.7 x 10"6

3.6 x lu"10

1.5 x 10~6

1.3 x 10"9

6.3 x IQ'10

* Lowest measurable flow rate

Page 214: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

201

In

6

8

18

20

22

24

26

28

30

32

34

36

38

40

40

*

1

Depth of TestIn terva l

Metres B.C.T.

.00

.00

.00

. 0 0 •

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.00 -

.55 -

- 8.10

- 18.001

- 20.10

- 22.10

- 24.10

- 26.10

- 28.10

- 30.10

- 32.10

- 34.10

- 36.10

- 38.10

40.10

42.10

42.65

Lowest measurable

« • • A i l v 4 • *

TABLE B-12

INJECTION TEST SUMMARY

BOREHOLE

In jec t ion HeadAH

1n m

5.80

7.46

13.2

12.1

13.0

13.2

13.1

13.3

12.4

12.6

11.8

12.7

12.9

12.8

11.9

flow rate

FS-12

Flow Rate

1n mJs~'

1.0 x 10" 8

3.3 x 10" 7

1.7 x 10" 8

6.1 x 10" 8

2.2 x 10" 8

1.9 x 10" 8

6.7 x 10" 9

4.7 x 10~9

2.7 x 10" 9

6.7 x IQ" 1 0

7.1 x 10" 8

6.4 x 10" 8

3.4 x 10" 8

3.6 x 10" 8

1.2 x 10"7

Flow Rate per Uni t HeadQ/AH

1n m^s"^

_91.7 x 10

4.4 x 10" 8

1.4 x 10" 9

1.0 x 10" 8

1.7 x 10" 9

1.4 x 10" 9

5.1 x I Q " 1 0

3.5 x I Q " 1 0

2.2 x I Q " 1 0

8.0 x 1O"11

6.0 x 10" 9

5.0 x 10" 9

2.6 x 10" 9

2.8 x 10" 9

9.7 x 10" 9

Withdrawal test data.

Page 215: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

202

In

B

10

12

14

16

18

20

22

24

26

28

30

32

34.

36

38.

40.

Depth of TestInterval

Metres B.C.T.

.00

.00

.00

.00 •

.00 -

.00 •

.00 -

.00 -

00 -

00 -

00 -

00 -

00 -

00 -

00 -

00 -

00 -

- 10.10

- 12.10

- 14.10

- 16.10

- 18.10

- 20.10

- 22.10

- 24.10

- 26.10

28.10

30.10

32.10

34.10

36.10

38.10

40.10

42.10

TABLE B-13

INJECTION TEST SUMMARY

InjectionAH1n m

16.2

16.9

16.8

16.5

16.6

13.4

15.5

15.5

14.7

11.2

13.6

12.2

12.1

15.1

11.5

14.3

17.0

BOREHOLE FS-13

Head Flow Rate

% i1n m^s"1

5.2 x 10"8

1.7 x 10"7

5.4 x 10"8

4.0 x 10"7

8.1 x 10"9

8.7 x 10"6

2.7 x 10"9

4.7 x 10"9

5.4 x 10~9

1.1 x 10"7

1.7 x 10"8

4.6 x 10"8

7.6 x 10"7

1.1 x 10"7

2.8 x 10"5

1.6 x 10"7

1.6 x 10~7

Flow Rate per Unit HeadO/AH

1n m^s-l

3.2 x 10"9

1.0 x 10"3

3.2 x 10"9

2.0 x 10"8

4.9 x lu"10

6.5 x 1O"7

1 . 7 X 1 0 - 1 0

3.0 x lu'10

3.7 x ID"10

9.8 x 10~9

1.2 x 10"9

3.8 x 10"9

6.3 x 10"8

7.5 x 10"9

2.4 x 10"6

ja1.1 X 10

9.5 x 10"9

Page 216: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

203

TABLE B-14

INJECTION TEST SUMMARY

BOREHOLE FS-14

Depth of TestInterval

1n Metres B.C.T.

5.80 -

26.00 •

28.00 -

30.00 -

32.00 -

34.00 -

38.10 -

- 26.001

- 28.10

- 30.10

- 32.10

- 34.10

- 37.411

• 4 2 . 1 3 1

Injection HeadAH1n m

8.43

14.1

14.5

14.9

14.4

9.71

12.9

FlowQ

1n m

5.6 x

1.5 x

6.7 x

6.7 x

6.7 x

1.9 x

1.9 x

Rate

3S-1

io-7

io-8

io-10*

ID"10*

io-10*

io-9

io-10

Flow Rate per Unit HeadQ/AH

1n m s~

6.6 x 10"8

1.0 x 10"9

4.6 x 1O"11

4.5 x 10"11

4.7 x 1O"11

2.0 x ID" 1 0

1.5 x 10"11

* Lowest measurable flow rate

1. Withdrawal test data

Page 217: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

204

TA8LE B-15

INJECTION TEST SUMMARY

BOREHOLE FS-15

1n

7

9

10

12

13

15

16

18

19

21

22

24

25

21

28

30

31

33

34

Depth of TestInterval

Metres B.C.T.

.50 - 9.05

.00 - 10.55

.50 - 12.05

.00 - 13.55

.50 - 15.05

.00 - 16.55

.50 - 18.05

.00 - 19.55

.50 - 21.05

.00 - 22.55

.50 - 24.05

.00 - 25.55

.50 - 27.05

.00 - 28.55

.50 - 30.05

.00 - 31.55

.50 - 33.05

.00 - 34.55

.50 - 36.05

Injection HeadAH1n m

19.6

20.8

13.4

14.8

15.2

16.7

7.28

8.32

7.16

9.97

14.4

15.7

14.9

15.6

17.0

11.8

14.1

14.3

9.28

FlowQ

1n m

2.4 x

2.5 x

1.6 x

2.8 x

3.6 x

8.5 x

1.6 x

5.1 x

1.9 x

1.0 x

1.1 X

1.3 x

4.9 x

1.7 x

8.7 x

3.3 x

1.8 x

2.0 x

5.1 x

Rate

3S-1

lu"8

IC"8

io-6

IQ"7

ID"8

lu"8

io-6

io-8

io-6

io-6

io-5

ID"5

io-9

io-8

IG"6

io-8

io-5

io-5

io-6

Flow Rate per Unit HeadQ/AH

1n rn^s"1

1.2 x 10" 9

1.2 x 10"9

1.2 x 10"7

1.9 x 10"8

2.4 x 10"9

5.1 x 10"9

2.2 x 10"7

6.1 x 10"6

2.7 x 10"7

1.0 x 10"7

8.0 x 10"7

8.2 x 10"7

3.3 x 10"9

1.1 x 10"9

5.3 x 10"7

2.8 x 10"9

1.3 x 10"6

1.4 x 10"6

5.5 x 10"7

Page 218: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

205

TABLE B-15 (Cont'd)

INJECTION TEST SUMMARY

BOREHOLE FS-15

Depth of TestInterval

1n Metres B.C.T.

36.00 - 37.55

37.50 - 39.05

39.00 - 40.55

40.50 - 42.05

42.00 - 43.55

43.50 - 45.05

45.00 - 46.55

45.74 - 47.29

Injection HeadAHIn m

13.2

18.1

20.2

19.7

18.8

16.2

20.5

12.7

FlowQ

in m

5.7 x

1.2 x

1.7 x

7.4 x

1.0 x

4.0 x

4.0 x

2.0 x

Rate

3S-1

ID"6

io-8

ID"7

io-8

io-6

ID"6

ID"7

ID"5

Flow Rate per Unit HeadQ/AH

1n m^s"1

4.3 x 10"7

6.7 x ID"10

8.6 x 10"9

3.8 x 10"9

5.5 x 10"8

2.5 x 1O"7

1.9 x 10"8

1.6 x 10"6

Page 219: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

206

TABLE B-16

INJECTION TEST SUMMARY

BOREHOLE FS-16

Depth of TestInterval

1n Metres B.C.T.

10.50 - 12.05

12.00 - 13.55

13.50 - 15.05

15.00 - 16.55

16.50 - 18.05

18.00 - 19.55

19.50 - 21.05

21.00 - 22.55

22.50 - 24.05

24.00 - 25.55

25.50 - 27.05

27.00 - 28.55

28.50 - 30.05

30.00 - 31.55

31.50 - 33.05

33.00 - 34.55

34.50 - 36.05

36.00 - 37.55

37.50 - 39.05

Injection HeadAH1n m

20.9

19.6

19.4

25.6

23.8

24.1

22.4

24.0

23.7

23.2

23.6

23.2

23.3

24.4

24.2

23.6

23.7

24.9

25.0

FlowQ

1n m

4.9 x

9.9 x

9.9 x

2.1 x

2.3 x

1.7 x

1.1 X

4.9 x

4.9 x

4.6 x

1.2 x

2.3 x

5.2 x

1.1 X

7.4 x

1.3 x

5.2 x

1.3 x

4.9 x

Rate

3S-1

io-7

io-8

IQ"8

IQ"8

IQ"7

ID"7

io-7

IQ"8

io-8

IQ"8

io-8

io-8

IG"9

io-8

IC"8

IQ"6

ID"7

io-8

lu"8

Flow Rate per Unit HeadQ/AH

1n m^s"1

2.4 x 10"8

5.1 x 10"9

5.1 x 10"9

8.3 x IQ"10

9.9 x 10"9

7.2 x 10"9

4.9 x 10"9

2.1 x 10"9

2.1 x 10~9

2.0 x 10"9

5.0 x IQ"10

9.8 x 10" 1 0

2.2 x IQ"10

4.3 x ID"10

3.1 x 10"9

5.6 x 10"8

2.2 x 10~8

5.1 x IQ"10

2.0 x TO"9

Page 220: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

207

TABLE B-16 (Cont'd)

INJECTION TEST SUMMARY

BOREHOLE FS-16

in

39

40

42

43

45

46

47

Depth of TestInterval

Metres B.C.T.

.00 - 41.55

.50 - 42.05

.00 - 43.55

.50 - 45.05

.00 - 46.55

.50 - 48.05

.48 - 49.03

Injection HeadAH1n m

20.9

17.6

15.8

9.22

10.0

8.94

1.57

Flow0

in m

1.8 x

1.0 x

9.1 x

9.4 x

1.4 x

1 .6 x

3.6 x

Rate

3S-1

io-5

io-5

io-9

ID"8

ID"8

io-8

io-5

Flow Rate

1n

8.

5.

5.

8.

1.

1.

2.

per Unit HeadQ/AH

6 x 10"7

8 x 10"7

8 x ID"10

1 x 10"9

4 x 10~9

8 x 10"9

3 x 10"5

Page 221: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

208

TABLE B-17

INJECTION TEST SUMMARY

BOREHOLE FS-17

Depth of TestInterval

in Metres B.C.T.

8.38 - 9.93

9.88 - 11.43

11.38 - 12.93

12.88 - 14.43

14.38 - 15.93

15.88 - 17.43

17.38 - 18.93

18.88 - 20.43

20.38 - 21.93

21.88 - 23.43

23.38 - 24.93

24.88 - 26.43

26.38 - 27.93

27.88 - 29.43

29.38 - 30.93

30.88 - 32.43

32.38 - 33.93

33.88 - 35.43

35.38 - 36.93

Injection HeadAHIn m

12.6

12.4

11.9

11.2

12.2

12.1

11.4

14.8

14.7

12.2

13.8

14.9

13.4

11.7

13.3

8.80

1.04

11.6

12.1

FlowQ

1n m

8.1 x

3.5 x

2.0 x

2.9 x

1.2 x

6.3 x

6.5 x

9.0 x

6.3 x

8.8 x

1.7 x

9.9 x

7.8 x

2.3 x

6.4 x

1.4 x

3.6 x

2.7 x

1.7 x

Rate

3S-1

io-9

io-9

io-7

ID"7

IQ"7

io-6

ID"6

lu"8

ID"7

ID"6

io-6

io-8

lu"7

IQ"6

io-7

lu"5

ID"5

IQ"5

IQ"5

Flow Rate per Unit HeadQ/AH

1n m^s"1

6.4 x lu"10

2.8 x lu"10

1.7 x 10"8

2.6 x 10"8

9.5 x 10"9

5.2 x 10"7

5.7 x 10"7

6.1 x 10"9

4.3 x 10"8

7.1 x 10"7

1.2 x 10"7

6.6 x 10"9

5.8 x 10"8

1.9 x 10~7

4.8 x 10"8

1.6 x 10"6

3.4 x 10"5

2.3 x 10"6

1.4 x 10"6

Page 222: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

209

TABLE B-17 (Cont'd)

INJECTION TEST SUMMARY

BOREHOLE FS-17

1n

36

38

39

41

42

44

45

47

48

50

51

53

54

56

57

Depth of TestInterval

Metres B.C.T.

.88

.38

.88

.38

.88 -

.38 -

.88 -

.38 -

.88 -

.38 -

.88 -

.38 -

.88 -

.38 -

.18 -

- 38

- 39

- 41

- 42

- 44

- 45

- 47

- 48

- 50

• 51

53

54

- 56

57

58

.43

.93

.43

.93

.43

.93

.43

.93

.43

.93

.43

.93

.43

.93

.73

Injection HeadAH1n m

13

17

19

18

12

2

18

17

16

6

5

14

16

19

18

.9

.3

.1

.8

.5

.97

.2

.1

.7

.03

.82

.7

.5

.0

.7

FlowQ

1n m

9

2

2

8

1

2

1

6

1

2

2

8

8

2

1

.0

.4

.1

.7

.1

.9

.1

.3

.7

.9

.7

.3

.4

.5

.4

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Rate

3S-1

ID"6

io-7

ID"7

io-8

ID"5

io-5

IQ"7

IQ"5

io-6

io-5

IQ"5

io-6

IQ"7

ID"7

io-7

Flow Rate per Unit HeadQ/AH

in m2s"1

6

1

1.

4.

9.

9.

6.

3.

9.

4.

4.

5.

5.

1 .

7.

5

4

1

6

2

9

0

7

9

9

6

6

1

3

3

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

io-7

io-8

io-8 !

io-9 :j

i

io-9

io-7

IG"8

io-6

ID"6

io-7

lO"8

IQ"8

ID"9

Page 223: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

210

APPENDIX C

Plots of

Drawdown Versus Log Time

1n Response to

August 20-27, 1982 and September 27-29, 1983

Pump Tests of Fracture Zone No. 1 from Borehole FS-10

Page 224: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

o B^n fl

FS-10 PUMP TESTAUG 20-27. 1982

RESPONSE IN FS-1

h » .

u1 4

1-3 o

1-2 X

10 10' 103

TIME SINCE PUMPING STARTED IN MINUTES10'

Page 225: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

-e*e* Xo • , o x- » B » J

1 -

A OA 1

A O

OQ

o 4

F S 1 0 PUMP TEST

AUG 20-27. 1982

RESPONSE IN FS-2

2-5 •

24 o

2-3 *

2 2 o

i

2 1 X

10 10'TIME SINCE PUMPING STARTED IN MINUTES

Page 226: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

C/lLU

t-tuS

5oQ

0

1

2

3

4

5

6

FS-10 PUMP TESTAUG 20-27, 1982

*" RESPONSE IN FS 3

_

M

3 5

3-4 a

3 3 *

3 2 o

3 1 X

-

I

* S( OA X Q

* §ox°XO

x°A oxo

X

A

A _

AA

o

XoX

»o

o _XO

X

oX

o _X

o

Xo _

XoX

0 _

Xo

x o

J !10 10' 10'

OJ

TIME SINCE PUMPING STARTED IN MINUTES

Page 227: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

DRAWDOWN IN METRES

en ro

m y

zom-oc2T>

CO

H

men

J.u

o

I

1 M <=>w 9 -om rsj c_ vi S

r r z " "V* co 09 m

1 ro *5

1

a Koc

oO

Oo xc

O XO X

O Xo x

O XO X

o x

O XO X

O X

o xox

Page 228: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

X XX X ° A *

(AUJ

D

o

a:o

F S 1 0 PUMP TESTAUG 20-27, 1982

RESPONSE IN FS-5

10

s 5-5 •

5-4 a

5-3 A

5-2 o

5 1 x

x

10 10'

TIME SINCE PUMPING STARTED IN MINUTES

Page 229: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

x x x xx xx x xx*o ax

FS-10 PUMP TESTAUG 20-27, 1982

RESPONSE IN FS-6

"OS]

6-5 •

6-4 •

6-3 *

6-2 o

6-1 X

10TIME SINCE PUMPING STARTED IN MINUTES

Page 230: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

5oo

0

2

4

6

8

10

FS-10 PUMP TESTAUG 20

RESPONS

i

_

•27, 1982

5E IN FS-7

7 7 •

7 6 A

7-5 +

7-4 n

7 3 X

i

7-2 ••

7 1 o

i

Hi •—

s ' * !* % °

1 • • • • • •AA

A A A

+ A+

+ A

+

a +

o a

* o

AA

AA

A+

+ |+

++

° ••o

Q*o

••

•_

A

A

++

++

D

°no% *

H

n

-

+

a

?

I

10 10 10J

TIME SINCE PUMPING STARTED IN MINUTES

Page 231: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

COUl

ocUl

szzoO

o

0,

2

4

6

8

10

o o o

-

-

° ° 0 o 0 x * x

oo

0o

oo

o o

FS-10 PUMP TESTAUG 20-27, 1982

RESPONSE IN FS-8

8-5 •

8-4 •

8-3 *

8-2 o

8 1 X

i

U t t — j — o — & n —

x xX

X

xX

X

X° X

oo

o

oo

o

oo

i

ft"A

X

O

fA

X

O

«»—• *94\

AA

A _

A

-

X

X

X

X

XX

x

oo

oo

00

10 10* 10J

TIME SINCE PUMPING STARTED IN MINUTES

Page 232: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

• • • • « • «• « « , .

CO

o

8

FS-10 PUMP TESTAUG 20-27, 1982

RESPONSE IN FS-9

6 •9 5

9-4 a

9 3 A

9 2 o

9-1 X10

10

TIME SINCE PUMPING STARTED IN MINUTES

10'

Page 233: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

0

1

2

3

4

5

A

a ^ If—?P—» 1 If—p«u g u n i

FS-10 PUMP TESTAUG 20-27, 1982

RESPONSE IN FS 11

116 A

11 5 •

11-4 oi

11-3 A

11-2 o

i

111 x

5 * oo x° o x

OX yn A v°oxx

O ° o >c

1

, x x x

°o x

oo

•» m fl^ 1

A "oqooA

-

Xw

V

Oo x

O Xvo A _

°0o

-

-

1

roroo

10 10* 10J

TIME SINCE PUMPING STARTED IN MINUTES

Page 234: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

LJ» L r U

x x x x Y

to 4Hioc

o

ac° 8

10

FS-10 PUMP TESTAUG 20-27, 1982

RESPONSE IN FS-13

13-6

13-5

13-4

13-3

13 2

A

D

O

131 x

Xx,

10 10" 10°

TIME SINCE PUMPING STARTED IN MINUTES

10'

Page 235: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

AA

xoxo

xoXo

*o

FS-10 PUMP TESTSEPT. 27-29, 1983

RESPONSE IN FS-15

I

15-4 D

15-3 A

15-2 o

Ho

o

\

o

ro

10 102 103

TIME SINCE PUMPING STARTED IN MINUTES104

Page 236: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

AT B- -B B *-S, B B B B B-

CC

tn 4i

z

o

<cco

8

10

o * * xO * X

o o

FS-10 PUMP TESTSEPT. 27-29, 1983

RESPONSE IN FS-16

16-4 a

16-3 A

16-2 o

16-1 x

a

a

On * x ao oo x

o°o **

o,OX A

°n*Ox A

OXox A

o x A

O \ A

o"x •0 X A

oOx°x

roro

10 102 103

TIME SINCE PUMPING STARTED IN MINUTES

104

Page 237: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Ui

cc

s 4

z

o

1 6oco

8

> * x o

FS-10 PUMP TESTSEPT.27-29, 1983

RESPONSE IN FS-17

17-4 a

17-3 A

17-2 o

17-1 x

tfoX O

X O

ua •

X x8

o* o

X

oX

RDD.

n

o 'xo*o

XoXxo

ro-p.

10

10 102 103

TIME SINCE PUMPING STARTED IN MINUTES10"

Page 238: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

225

APPENDIX D

Hydraulic Conductivity Tensors Determined for

FS Test Intervals Based on

Injection Test Data and Borehole Acoustic

Televiewer Fracture Logs

Page 239: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Principal Hydraulic Conductivities and Principal Directions

iPrincipal Hydraulic Conductivities

and Principal Directions*

i FS| Test K iInterval (ms*1)

VIt),

n l1 ( 2 1(ms-1

')

hn2

Geometric AnisotropyMean Ratio

K,/K3

- .157 - .8831-1 1.1 x 10"1 0 - .873 1.1 x 10"1 0 - .086 4.0 x 10"14

- .462 .462

.216 .5911-2 1.5 x 10"9 - .933 1.4 x 10"9 .359 4.4 x 10"1 0

- .288 - .722

.308 - .0401-3 1.9 x 10"8 - .316 1.8 x 10"8 - .947 4.9 x 10"9

- .897 .319

.325 - .3111-4 3.3 x lO"9 - .834 2.0 x NT 9 - .540 1.7 x 10"9

- .447 .782

-.247 - .4101-5 3.7 x lO"1 0 - .599 3.2 x 10"1 0 - .648 6.0 x 1 0 " n

.762 - .642

- .022 .7182-1 4.3 x 10-'° -.723 2.8 x 1<H° .470 1.7 x 10"10

.691 .514

-.272 -.8762-2 7.3 x 10-9 - .317 6.7 x 10"9 «.310 9.3 x 10"Io

-.909 .370

.443- .480 1.1 x 10"1 0 2750.0

.757

.777

-.014 1.5 x 10"9 3.4.630

.950

.063 1.9 x 10"8 3.9

.305

.893

.115 2.7 x UT9 1.9

.434

-.878.471 3.5 x 10-10 6.2.086

.696-.507 3.67 x 10- l 0 2.5-.508

.399-.896 7.0 x 10-9 7.8

.193

roa

* Direction cosines relative to geographic reference axes.

Page 240: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Principal Hydraulic Conductivities and Principal Directions

FSTest

Interval

Kl(ms"l)

h*mini

Principal Hydraulic Conductivitiesand Principal Directions*

*2(ms"')

m2 K3n2 (ms"])

m3n3

GeometricMean

(K^K 2)1 / 2

(rns"1)

AnisotropyRatio

K,/K3

.527 -.817 .2322-3 1.4 x 10"7 -.705 1.3 x 10'7 -.574 6.1 x 10"8 -.418 1.4 x 10"7 2.3

I -.475 -.057 .878

; -.310 -.090 .946I 2-4 8.6 x lO'8 -.917 8.4 x 10'8 .293 5.8 x KT9 -.273 8.5 x 10"8 14.8! -.252 -.952 -.173!I .123 - .992 -.037] 2-5 2.1 x lO"10 -.933 1.5 x 10"10 -.103 8.1 x KT1 1 -.346 1.8 x 10"10 2.6: - .399 -.077 .938

'. - .169 .907 - .385! 3-1 3.4 x 10"9 -.973 2.5 x 10"9 -.093 1.6 x 10"9 .210 3.0 x 10"9 2.1S .155 .411 .899ii

1 - .273 -.894 -.356! 3-2 2.3 x 10"8 .418 1.9 x 10"8 .223 7.3 x 10"9 -.881 2.1 x 10"8 3.2I -.866 .389 -.313

I| -.805 -.055 .591i 3-3 4.4 x 10"9 -.379 4.1 x 10"9 -.150 4.4 x 10"10 -.801 4.3 x 10"9 10.0• .133 -.987 .089

I -.787 .270 .5543-4 2.2 x 10"9 -.602 1.6 x 10"9 -.140 7.5 x 10"10 -.786 1.9 x 10"9 2.9

-.135 -.953 .273

Page 241: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Principal Hydraulic Conductivities and Principal Directions

FSTest K ]

Interval (ms*l)

Principal Hydraulic Conductivitiesand Principal Directions*

Ifml

Geometric AnisotropyMean Ratio

(ms"1)m2

"2 (ms"1)m3

4-2

4-3

4-4

5-1

5-2

1.9

3.0

4.6

1.7

6.1

X

X

X

X

X

io-7

io-7

10"6

10" 7

io-9

- .982- .087

.169

- .463- .773

.435

.871

.352- .342

- .716-.175

.642

- .233- .278

.932

1.8 x 10"7

2.9 x lO"7

3.1 x 10"6

1.7 x 10-7

5.0 x 10"9

-.108.987 3.1 x 10-8

-.118

-.858.515 1.7 x 10"8

.002

-.455.321 1.7 x 10"6

-.830

-.691.153 9.6 x 10"9

-.706

-.496-.790 1.8 x 10"9

-.360

.157

.135 1.9 x 10"7

.978

.225

.372 3.0 x lO"7

.901

-.183.879 3.9 x 10"6

.440

.096-.949 1.7 x 10"7

-.300

-.836.546 5.6 x 10"9

-.046

.095 -.462 -.8823-5 3.9 x 10"10 .243 3.7 x 10-1° .870 2.1 x 10"11 -.429 3.8 x 10"l0 18.6

-.966 .173 -.195

j .290 - .282 -.914i 4-1 5.3 x 10 - 1 0 .644 5.2 x 10"1 0 .765 2.7 x 1 0 " n - .032 5.3 x 10-1° 20.

- .708 .579 -.404

6.1

18.0

2.7

18.0

3.4

ro

Page 242: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Principal Hydraulic Conductivities and Principal Directions

Principal Hydraulic Conductivitiesand Principal Directions*

FSTest

Interval (ms-1)ml"1 (tns-1)

-.391

5-3 1.6 x lO-9 _>822 u 4 x 10-9.415

5-4 2.0 x 10

5-5 1.8 x

,-9.211.977.011

.455

.849

.269

1.2 x

1.6 x

.1206-1 6.1 x 10"6 -.163 5.5 x 10'6

i .979

16-2 1.7 x 10i-9

6-3 4.5 x 10,-8

.225

.691

.687

.010

.005

.999

1.5 x lO-9

4.1 x 10"8

m2

n 2

393258882

839187512

116243963

574794202

098718689

180984004

4.0

8.4

2.5

7.4

3.2

4.2

(ms-1)

x 10

x 10-1°

x 10"8

x 10"'

x 10-1°

x lO- 9

-.070 .3226-4 2.4 x 10"9 -,97b 2.0 x 10"9 .179 4.8 x 10"10 .133 2.2 x 10"9

.212 .930 .301

13m3

n3

.832- .508- .222

- .503.100.859

- .883.470

-.012

- .810- .586

.002

.969

.087

- .230

.984

.180

.011

-.944

.133

Geometric

(K

1.5

1.6

1.7

5.8

1.6

4.3

2.2

Mean

2 ) l /2(ms-1)

X

X

X

X

X

X

X

10-9

10-9

lO-7

10"6

10"9

io-8

10-9

AnisotropyRatio

K1/K3

4.0

2.4

7.2

8.2

5.3

10.

5.0

roro10

Page 243: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Principal Hydraulic Conductivities and Principal Directions

Principal Hydraulic Conductivitiesand Principal Directions*

GeometricMean

FSTest K,

Interval (ms~ "1 (ms-1)K 3 i(ms-1) (ms -1)

AnisotropyRatio

7-1 3.0 x 10',-9-.996-.058.061

1.9 x 10.075

|-9 -.281 1.3 x 10'9

.957

-.039.958 2.5 x 10'9

.2842.3

7-2 1.4 x 10"8-.496.830-.257

1.3 x 10".749.258 1.2 x 10"9

.611

.440

.495 1.4 x 10"8

.74912.

7-3 2.0 x 10"5

7-4 4.9 x 10"7

-.034 -.775.989 2.0 x 10"5 .066 1.0 x 10'7

-.146 .629

.076 -.914

.670 4.4 x 10"7 .344 6.2 x 10'8

-.738 .218

.631

.135 2.0 x 10"5 200.

.764

-.400-.658 4.7 x 10"7 8.1-.639

roo

-.1097-5 5.4 x 10"9 -.387 4.7 x 10

.916

-.362 -.926'-9 ..842 1.9 x 10"9 .375 5.1 x 10"9

-.399 .0492.8

-.7457-6 6.9 x 10"9 -.667

-.003

.667 -.0154.4 x 10"9 -.745 2.7 x 10*9 .013 5.7 x 10"9

.020 1.0002.6

-.8357-7 4.0 x 10"8 -.534

.134

.443 .3284.0 x 10"8 -.795 9.3 x lO'10 -.287 4.0 x lO"8

-.414 .90043.0

8-1 No Televiewer data

Page 244: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Principal Hydraulic Conductivities and Principal Directions

FSTest

Interval

8-2

8-3

8-4

|: 9-1I

! 9 - 2i

! 9-3

9-4

4.

1.

3

4

3

5

1

*1(ms

2 x

2 x

1 X

.1 X

.2 x

.9 x

.0 x

• •

- 1 )

10-5

io-8

10-9

io-8

10-5

10-9

io-8

-

mlnl

-.076.992.103

.045

.280-.959

-.209.955

-.213

-.214-.966.148

-.106-.984.146

-.075.886

-.457

.586-.687.430

Principal Hydrauland Principal

(ms"1)

4.1 x 10"5

1.2 x 10"8

3.1 x 10"9

3.1 x 10"8

1.9 x 10"5

5.8 x 10"9

7.6 x 10"9

ic ConductivDirections*

'2<«2n2

.076

.108-.991

-.183.946.268

.171-.178-.969

.919-.148.364

-.198-.123-.973

.507-.360-.783

.041-.505-.862

1.

4.

4

1

1

3

6

4

7

3

.1

.4

.1

.2

it

K

ies

3 .(ms'1)

X

X

X

X

X

X

X

10"6

10-10

IO-"

io-8

10"5

lo-io

io-9

— -

13m3n3

-.994-.067-.084

-.982-.164-.094

-.963-.239-.126

-.330.214.920

-.975.132.182

-.858-.291-.423

-.809-.523.268

4.

1.

3

3

2

5

8

Ge

(K

2

2

1

.6

.5

.9

.7

ometricMean

lK(*

X

X

X

X

X

X

X

I/O

2) /2s'1)

10-5

10-8

IO-9

10-8

lu"5

lu"9

IQ"9

Anisot ropyRatio

*1

30.

25.

72

3

2

19

1

0

0

.0

.7

.3

.0

.6

10

Page 245: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Principal Hydraulic Conductivities and Principal Directions

FSTest

Interval

10-1

10-2

10-3II

i

i 10-4

i' 10-5

11-1

11-2

i.

(ms-1)

3.5

1.6

2.3

7.6

4.0

4.2

1.6

X

X

X

X

X

X

X

10"6

10-9

10-9

io-io

io-w

io-7

10~6

1,*ml"1

-.079-.961-.266

-.605.445

-.660

.384-.254.888

-.563.826.023

-.987-.119-.106

-.809.542.227

-.479.387.788

Principal Hydrau lie Conductivitand Principal Directions*

<2 .(ms-1)

2.5 x 10"6

1.2 x lO-9

2.2 x lO-9

7.0 x 10"10

3.9 x 10"10

3.5 x 10"7

1.6 x 10"6

*2m2n2

-.996.085

-.013

-.049.807.589

.718-.523-.460

-.449-.282-.848

.061

.336-.940

-.234-.652.722

.505-.613.608

1.1

5.8

2.

7

4

9

3

4

4

.9

.4

.8

K

ies

3 .(ms-1)

X

X

X

X

X

X

X

10"6

10-10

10-10

lO"11

10-12

10"8

10-9

._ . -

hm3n3

-.035-.264.964

-.795-.389.466

-.581-.814.019

-.695-.487.529

.148-.934-.325

.539

.531

.654

-.718.689

-.099

3

1

2

7

4

3

1

Geometric

(K

.0

.4

.3

.3

.0

.8

.6

Mean

,K2) j/*(ms"1)

x 10"6

x 10*9

x lO-9

x 10--

x 10-!0

x 10"7

x 10"6

..__.

AnisotropyRatio

*l/K3

3.2

2.8

9.6

10.0

81.0

4.5

420.

Page 246: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Principal Hydraulic Conductivities and Principal Directions

FSTest

Interval

11-3

11-4

11-5

12-1

12-2

12-3

12-4

K l(ms"1)

3.4 x 10"10

3.6 x 10"11

5.8 x 10"10

3.9 x 10"9

1.3 x 10"9

3.n >. 10"9

7.2 x 10"9

1,*m ln l

-.366-.894-.261

-.845.466

-.262

.402-.369

.838

-.607-.468

.643

.464-.836-.293

-.122-.496

.860

.491-.177-.853

Principal Hydraulic Conductivitiesand Principal Directions*

K2(ms"1)

3.4 x 10"10

- .

3.4 x lO'11 - .- .

3.1 x 10"10 - .™ •

3.5 x 10"9

-•

™ •

1.2 x 10"9

2.7 x 10"9

7.0 x 10"9

12m2

n2

210352912

247094964

024911412

530365766

872490018

642701313

380838393

4.3

1.2

2.9

1.5

1.5

1.5

2.1

r

K3 .(ms"1)

x 10"1 2

x 10" ' '

x 10 - 1 0

x 10-9

x 10- 1 0

x lO"9

x 10"9

1.1m3

"3

.907- .279-.317

-.474- .880-.036

-.916- .185

.357

-.593.805.027

.159- .247

.956

.757

.514

.403

-.784-.517-.344

GeometricMean

(K1K2) ^ 2

(ms-1)

3.4 x 10-1°

3.5 x 10-H

4.2 x 10-10

3.7 x 10"9

1.3 x 10"9

3.2 x lO"9

7.1 x 10"9

1Anisotropy •

Ratio

K1/K3 I

79.0

i

3.0

2.0 j

2.6

8.7

i

2.5 j

3.4

JCOCO

Page 247: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Principal Hydraulic Conductivities and Principal Directions

FSTest

Interval

13-1i

i

13-2

it

1! 13-3Ii

; 13-4

i 13-5

|

14-1

I 14-2

14-3

5.7

2.4

1.2

1.7

6.6

9.1

6.5

1.7

K l i(ms-1)

"•

X

X

X

X

X

X

X

X

io-7

io-8

io-8

io-7

io-9

io-12

io- n

io-8

Vm in i

.629- .368

.685

.691

-.419.589

-.634.269.726

.484

.182- .856

.507- .268- .819

-.203.706

- .679

.084

.629

.773

-.088.258

-.962

Principa Hydraulic Conductivitiesand Principal Directions*

y

4.3

1.7

1.2

1.3

5.4

8.2

6.5

1.5

C2 1(ms-1)

X

X

X

X

X

X

X

X

io-7

10"8

10"8

10" 7

10-9

io- «

lo-ii

10"8

hmg

"2__

.441- .556-.704

.602- .118- .790

.668-.284

.688

-.719.641

- .270

-.382.782

-.492

.090

.704

.705

.203-.770

.605

- .451.851.269

2.1

7.1

1.6

6.9

1.3

1.4

3.7

2.6

t

K 3 i

X

X

X

X

X

X

X

X

io-7

10-9

io-9

10" 8

io-9

10-12

lo-ii

io-9

hm3

_"3_

- .640-.745

.188

- .400-.900- .171

- .391- .920- .001

-.500- .746- .441

-.773- .562-.294

.975

.083- .206

-.976-.106

.192

- .888- .458-.042

GeometricMean

(KiK2)y2

(ms-1)

5.0 x 10"7

2.0 x 10"8

1.3 x 10-8

1.5 x 10"7

6.0 x 10"9

8.7 x 10"12

6.5 x 10-H

1.6 x 10"8

AnisotropyRatio

*l/K3

2.7

3.4

8.1

2.5

5.1

6.5

1.8

6.5

INSCO

Page 248: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Principal Hydraulic Conductivities and Principal Directions

FSTest K]

Interval (ms"1)

Principal Hydraulic Conductivities Geometricand Principal Directions* Mean

12K2

"1 - 1 )iti2 K 3 m3

(Jü£ll 13_ JKlD

I .059 .394 -.917!• 14-4 3.7 x 10"8 -.128 3.1 x 10"8 -.908 8.1 x 10"9 -.399 3.4 x 10"8

.990 -.141 .003

.775 .493 -.39715-1 2.0 x 1O"6 -.355 1.7 x 10"6 -.182 3.2 x 10'7 -.917 1.9 x 10"6

I .524 -.851 -.034

.482 -.862 -.15715-2 5.2 x 10"8 -.840 4.1 x 10"8 -.506 2.6 x 10"8 .198 4.7 x 10"8

: .250 -.037 .968

.535 .273 - .79915-3 4.5 x 10-7 -.814 3.3 x lO'7 -.085 3.0 x 10"7 -.575 3.9 x 10"7

.225 -.958 -.177

.247 .321 -.91415-4 1.8 x 10"6 -.729 1.5 x 10"6 -.561 3.7 x 10"7 -.394 1.7 x 10"6

.639 -.763 -.096

-.083 .511 -.856j 15-5 1.7 x 10"8 -.986 1.4 x 10"8 .085 4.2 x 10"9 .147 1.6 x 10"8

.147 .855 .497

! .069 -.874 .481J16-1 6.6 x 10"6 .956 6.1 x 10"6 -.080 4.7 x 10"6 -.281 6.4 x 10"6

I .284 .479 .831

• .707 -.482 ,517116-2 2.0 x 10-7 -.510 1.4 x 10"7 -.855 1.3 x 10"7 -.100 1.7 x 10"7

.490 -.193 -.850

AnisotropyRatio

<l/K3

4.6

6.3

2.0

1.5

4.9 !

4.1

1.4

1.5

rototn

Page 249: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

Principal Hydraulic Conductivities and Principal Directions

FSTest

Interval

Principal Hydraulic Conductivitiesand Principal Directions*

h* h hm l K 2 , m 2 K3 m 3

GeometricMean

I '

- .274 .114 - .95516-3 1.6 x 10"8 - .956 1.2 x 10"8 - .144 1.1 x N T 8 .257 1.4 x 10"8

.108 - .983 - .148

.422 -.695 -.58216-4 2.6 x 10"9 - .747 2.1 x 10"9 - .630 9.0 x 10" 1 0 .211 2.4 x 10"9

.514 - .346 .785

- .020 - .917 - .39816-5 2.5 x 10"9 1.000 1.9 x 10"9 - .015 6.8 x 10" 1 0 - .015 2.2 x 10"9

.008 - .398 .917

! .303 - .926 .224'17 -1 1.3 x 10"6 .911 9.9 x 10"7 .212 4 .7 x 10"7 - .355 1.1 x 10"6

! .282 .312 .908

'. - .850 .059 - .52417-2 1.6 x 10"6 - .435 1.3 x 10~6 - .641 4.6 x 10"7 .633 1.5 x 10"6

- .299 .766 .570

AnisotropyRatio

1.5

2.9

3.7

2.8

3.5

l\5

u>

-.715 - .613 - .335.17-3 8.3 x 10"6 - .291 7.6 x 10"6 - .175 3.1 x 10"6 .941 8.0 x 10"6

.635 -.770 .053

.638 - .697 .32817-4 1.3 x 10"7 .723 1.2 x N T 7 .689 2.2 x 10"8 .055 1.3 x 10"7

- .265 .202 .943

2.7

5.9

- .780 .540 .31617-5 7.4 x 10"8 - .613 5.6 x 10"8 - .761 4 .8 x 1 0 ' 8 - .215 6.5 x 10"8

.125 - .361 .9141.5

Page 250: AECL-9066 ATOMIC ENERGY &S& L'ENERGIE ATOMIOUE OF … · 2015-03-30 · aecl-9066 atomic energy &s& l'energie atomioue of canada limited •£9 du canada,limitee hydraulic characterization

ISSN 0067-0367 ISSN 0067-0367

To identify individual documents in the series

we have assigned an AECL— number to each.

Please refer to the AECL— number when

requesting additional copies of this document

from

Scientific Document Distribution Office

Atomic Energy of Canada Limited

Chalk River, Ontario, Canada

K0J 1J0

Pour identifier les rapports individuels faisant partie de cette

serie nous avons assigne un numero AECL—a chacun.

Veuillez faire mention du numero AECL—si vous

demandez d'autres exemplaires de ce rapport

au

Service de Distribution des Documents Officiels

L'Energie Atomique du Canada Limitee

Chalk River, Ontario, Canada

KOJ 1J0

Price: $11.00 per copy prix: $11.00 par exemplaire