27
Advantages and limitations in bioherbicides use Advantages and limitations in bioherbicides use Advantages and limitations in bioherbicides use Zvonko Pacanoski

Advantages and limitations in bioherbicides use · 2013-10-15 · Advantages and limitations in bioherbicides use Zvonko Pacanoski . Bioherbicides phytopathogenic microorganisms or

  • Upload
    others

  • View
    101

  • Download
    0

Embed Size (px)

Citation preview

Advantages and limitations in bioherbicides use

Advantages and limitations in bioherbicides use Advantages and limitations in bioherbicides use

Zvonko Pacanoski

Bioherbicides

phytopathogenic microorganisms or microbial phytotoxins useful for biological weed control applied in similar ways to conventional herbicides (Goeden, 1999; Boyetchko et al., 2002; Boyetchko and Peng, 2004)

Bioherbicides serves a more important role as a complimentary component in successful integrated management strategies (Hoagland et al., 2007), and not as a replacement for chemical herbicides and other weed management tactics (Singh et al., 2006)

Advantages of bioherbicides: high degree of specificity of target weed; no effect on non-target and beneficial plants or man; absence of residue build-up in the environment; effectiveness for managing herbicide-resistant (HR) weed populations

Limitations of bioherbicides: - biological constraints - environment constraints - technical constraints and - commercial limitations

Successful stories about bioherbicides

commercialized bioherbicides

200 plant pathogens candidates for development as commercial bioherbicides

Plectosporium tabacinum Galium spp.

Fusarium oxysporum (PSM 197)

S. asiatica (91.3%) S. gesneroides (81.8%) S. hermonthica (94.3%)

Sesbania exaltata Colletotrichum truncatum

Myrothecium verrucaria (IMI 361690)

Chenopodium amaranticolor

Sesbania exaltata Senna obtusifolia Datura stramonium

Trichothecene Orobanche ramosa seeds

Myrothecium verrucaria

Portulaca oleracea Portulaca portulacastrum

Euphorbia maculata Euphorbia prostrata

Phomopsis amaranthicola Amaranthus spp.

Microsphaeropsis amaranthi Phomopsis amaranthicola Amaranthus spp.

Pyricularia setariae Setaria viridis sethoxydim

Colletotrichum truncatum Sesbania exaltata

Dactylaria higginsii Cyperus routndus

Drechslera avenacea Avena fatua

Synergism between bioherbicides and chemical herbicides

Combinations of some bioherbicides and synthetic herbicides can be synergistic (Caulder and Stowell, 1988; Christy et al. 1993), resulting from lowered weed defense responses caused by the herbicides, thus making the weeds more susceptible to pathogen attack (Hoagland, 1996; 2000).

trimethylsulfonium salt of glyphosate Xanthomonas campestris

Synergism

Senna obtusifolia Alternaria cassiae

acifluorfen

bentazon

Colletotrichum gloesporioides Aeschynomene virginica

Colletotrichum truncatum Sesbania exaltata

Desmodium tortuosum Fusarium lateritium

Synergism

Myrothecium verrucaria Glyphosate

Brunnichia ovata (88%) Campsis radicans (90%)

Synergism

Phoma proboscis

2,4-D MCPP

Convolvulus arvensis

Myrothecium verrucaria Silwet L-77 Pueraria lobata (100 and 90-100%)

Synergism MCPP

Different limitations about bioherbicides use

1. Environmental limitations Environmental factors influence formulation performance of bioherbicides as inoculum production is dependent on sporelation of the formulation.

In the application of bioherbicides, environmental conditions prevailing in the phyllosphere of plants are frequently hostile for biological control agents (KENERLEY & ANDREWS, 1990; ANDREWS, 1992).

A requirement for more than 12 h of dew period for severe infection by a pathogen, has been reported for several potential bioherbicides (BOYETTE & WALKER, 1985; WYMORE et al., 1988; MORIN et al., 1990; MAKOWSKI, 1993) and this may limit the efficacy of the bioherbicide in the field.

phyllosphere of plants

dew period

Nutrient status of the soil

Soil moisture Soil environment

physiology of target plants

Colletotrichum truncatum Sesbania exaltata (95%)

Biological limitations

It is desirable for a bioherbicide to act relatively quickly and have sufficient efficacy to control weeds. Unfortunately, many of the weed pathogens discovered may provide only partial control of only one weed species, even under ideal conditions (CHARUDATTAN, 2005).

Host specificity is related to the basic biology of the pathogen and to host variability (GABRIEL, 1991; LEONARD, 1982). Biological constraints including host variability and resistance, as well (AULD, 2003).

Prunus serotina Chondrostereum purpureum

?

Technological-commercial limitations

Several technological limitations have been identified that could prevent the widespread use of bioherbicides

Pathogenical strains, formulation method and the interaction of these two parameters significantly affect the shelf life of the formulations at room temperature (ALTMAN et al., 1990; HEBBAR et al., 1998).

The most challenging aspect of formulating bioherbicides is to overcome the dew requirement that exists for several of them.

vegetable oil emulsion water-retaining materials invert emulsion

Colletotrichum orbiculare Xanthium spinosum

spray drying process Phomopsis sp. Carthamus lanatus

liquid formulations of bioherbicides

Alternaria eichhorneae

gellan gum

polyacrylamide

alginates

The bioherbicides approach is gaining momentum

New bioherbicides will find place in irrigated lands, wastelands as well as in parasite weeds or resistant weed control

Research on synergy test of pathogens and herbicides for inclusion in IWM, developmental technology, fungal toxins, and application of biotechnology, especially genetic engineering is required

Bioherbicides will not solve all of the environmental and weed management problems associated with synthetic herbicides, nor will replace the current or future arsenal of synthetic herbicides

Their role will probably be complimentary components in successful IWM systems, and in the discovery of novel phytotoxins with new chemistries and new molecular sites of action

Continued research on these areas is important in order to fully understand interactions of microorganisms and plants (crops and weeds), and to discover new phytopathogenic microorganisms or microbial phytotoxins useful as bioherbicides

Conclusion

References ABBAS, H.K. and BOYETTE, C.D. (2000): Solid substrate formulation of the mycoherbicide Colletotrichum truncatum for

hemp sesbania (Sesbania exaltata) control. Biocontrol Sci. Technol., 10: 297–304.

ALTMAN, J., NEATE, S., ROVIRA, A.D. (1990): Herbicide pathogens interaction and mycoherbicides as alternative strategies

for weed control. In: Microbes and Microbial Products as Herbicides (ed. by Hoagland R.E.). ACS Symposium Series 439.

American Chemical Society, Washington DC, 240–259.

AMSELLEM, Z., SHARON, A., GRESSEL, J., QUIMBY, P.C. Jr. (1990): Complete abolition of high inoculum threshold of two

mycoherbicides (Alternaria cassiae and A. crassa) when applied in invert emulsion. Phytopathol., 80: 925–929.

AMSELLEM, Z., SHARON, A., GRESSEL, J (1991): Abolition of selectivity of two mycoherbicidal organisms and enhanced

virulence of avirulent fungi by an invert emulsion. Phytopathol., 81: 925-929.

ANDOLFI, A., BOARI, A., EVIDENTE, A., VURRO, M. (2005): Metabolites inhibiting germination of Orobanche ramosa seeds

produced by Myrothecium verrucaria and Fusarium compactum. Journal of Agricultural and Food Chemistry, 53: 1598-1603.

ANDREWS, J.H. (1992): Biological control in the phyllosphere. Annu. Rev. Phytopathol., 30: 603-635.

AULD, B.A., SAY, M.M., RIDINGS, H.I., ANDREWS, J. (1990): Field applications of Colletotrichum orbiculare to control

Xanthium spinosum. Agric. Ecosyst. Environ., 32: 315–323.

AULD, B.A., TALBOT, H.E., RADBURN, K.B. (1992): Host range of three isolates of Alternaria zinniae, a potential biocontrol

agent for Xanthium sp. Plant Prot. Quar., 7: 114-116.

AULD, B.A. (1993): Vegetable oil suspension emulsions reduce dew dependence of a mycoherbicide. Crop Protection, 12: 477-

479.

AULD, B.A. and MORIN, L. (1995): Constraints in the development of bioherbicides. Weed Technol., 9: 638–652.

AULD, B.A. and MCRAE, C. (1997): Emerging technologies in plant protection - bioherbicides. Proc. 50th N.Z. Plant Protection

Conf., 191-194.

AULD, B.A (2002): Bioherbicidal formulations. Australian Provisional Patent Application 2002952094. Patent Office, IP

Australia, Canberra.

AULD, B.A., HETHERINGTON, S.D., SMITH, H.E. (2003): Advances in bioherbicide formulation. Weed Biology and

Management, 3: 61–67.

BAILEY, B.A., HEBBAR, P.K., STREM, M., LUMSDEN, R.D., DARLINGTON, L.C., CONNICK, W.J. Jr. BOYETTE, C.D.

(1991): Host range and virulence of Colletotrichum truncatum, a potential mycoherbicide for hemp sesbania (Sesbania exaltata).

Plant Dis., 75: 62–64.

BAILEY, B.A., HEBBAR, P.K., STREM, M., LUMSDEN, R.D., DARLINGTON, L.C., CONNICK, W.J. Jr. DAIGLE, D.J.,

LUMSDEN, R.D. (1998): Formulation of Fusarium oxysporum f. Sp. erythroxyli for biocontrol of Erythroxylum coca var. coca.

Weed Sci., 46: 682–689.

BAILEY, K.L., DERBY, J., FALK, S. (2003): Evaluation of Phoma macrostoma for control of broadleaf weeds in turgrass. VI

international Bioherbicide Group Workshop, Canberra, Australia.

BARTON, J. (2005): Bioherbicides: All in a day’s work ... for a superhero. Online. Pages 4-6 in: What’s New in Biological

Control of Weeds? Manaaki Whenua, Landcare Res., New Zealand Ltd.

BAYER, K.N., WOLF, T.M., CALDWELL, B.C., BAIELY, K.L. (1999): Assays for predicting mycoherbicide formulation

compatibility. In: Spencer N., Noweierski R., eds. Abstracts of the 10th International Symposium on Biological Control of Weeds

(Bozeman, MT, USA, 4–9 July 1999). Montana State University, Bozeman, MT, USA, 65.

BOWERS, R.C. (1986): Commercialization of Collego® – an industrialist’ view. Weed Sci., 34: 24–25.

BOYETCHKO, S.M. (1999): Innovative applications of microbial agents for biological weed control. Pages 73-97 in:

Biotechnological Approaches in Biocontrol of Plant Pathogens. K. G. Mukerji, ed. Plenum Publishers, New York.

BOYETCHKO, S.M.., ROSSKOPF, E.N., CAESAR, A.J., CHARUDATTAN, R. (2002): Biological weed control with pathogens:

search for candidates to applications. In: Applied Mycology and Biotechnology, Vol. 2 (ed. by Khachatourians G.G. and Arora

D.K.). Elsevier, Amsterdam, 239–274.

BOYETCHKO, S.M. and PENG, G. (2004): Challenges and strategies for development of mycoherbicides. In: Fungal

Biotechnology in Agricultural, Food, and Environmental Applications (ed. by Arora D.K.). Marcel Dekker, NewYork, 11–121.

BOYETTE, C.D. and WALKER, H.L. (1985): Factors influencing biocontrol of velvetleaf (Abutilont heophrasti) and prickly

sida (Sida spinosa) with Fusarium lateritium. Weed Sci., 33: 209-211.

BOYETTE, C.D., QUIMBY, P.C. Jr., CONNICK, W.J. Jr., DAIGLE, D.J., FULGHAM, F.E. (1991): Progress in the production,

formulation and application of mycoherbicides. p. 209-224 in D.O. TeBeest, ed. Microbial Control of Weeds. Chapman and Hall

Inc., New York.

BOYETTE, C.D. (1991): Host range and virulence of Colletotrichum truncatum, a potential mycoherbicide for hemp sesbania

(Sesbania exaltata). Plant Dis., 75: 62–64.

BOYETTE, C.D.., QUIMBY, P.C. Jr., BRYSON, C.T., EGLEY, G.H., FULGHAM, F.E. (1993): Biological control of hemp

sesbania (Sesbania exaltata) under field conditions with Colletotrichum truncatum formulated in an invert emulsion.Weed Sci.,

41: 497–500.

BOYETTE, C.D. (1994): Unrefined corn oil improves the mycoherbicidal activity of Colletotrichum truncatum for hemp sesbania

(Sesbania exaltata) control. Weed Technology, 8: 526-529.

BOYETTE, C.D., JACKSON, M.A., QUIMBY, P.C. Jr., CONNICK, W.J. Jr., ZIDAK, N.K., ABBAS, H.K. (1999): Biological

control of the weed hemp sesbania with Colletotrichum truncatum. In: Spencer N., Noweierski R., eds. Abstracts of the 10th

International Symposium on Biological Control of Weeds (Bozeman, MT, USA, 4–9 July 1999). Montana State University,

Bozeman, MT, USA, 64.

BOYETTE, C.D. (2000): The bioherbicide approach: using phytopathogens to control weeds. In: Herbicides and their

Mechanisms of Action (ed. by Cobb A.H. and Kirkwood R.C.). Sheffield Academic Press, Sheffield, UK, 134–152..

BOYETTE, C.D., REDDY, K.N., HOAGLAND, R.E. (2006): Glyphosate and bioherbicide interaction for controlling Kudzu

(Pueraria lobata), Redvine (Brunnichia ovata), and Trumpetcreeper (Campsis radicans). Biocontrol Science and Technology,

6(10): 1067-1077.

BOYETTE, C.D., HOAGLAND, R.E., ABBAS, H.K. (2007): Evaluation of the bioherbicide Myrothecium verrucaria for weed

control in tomato (Lycopersicon esculentum). Biocotrol Science and Technology, 17(2): 171-178.

BOYETTE, C.D., HOAGLAND, R.E., WEAVER, M.A. (2008): Interaction of a bioherbicide and glyphosate for controlling hemp

sesbania in glyphosate-resistant soybean. Weed Biology and Management, 8: 18–24.

BOYETTE, C.D., HOAGLAND, R.E., WEAVER, M.A., REDDY, K.N. (2008): Redvine (Brunnichia ovata) and trumpetcreeper

(Campsis radicans) controlled under field conditions by a synergistic interaction of the bioherbicide, Myrothecium verrucaria,

with glyphosate. Weed Biology and Management, 8: 39–45.

BURDON, J. J. (1987): Diseases and Plant Population Biology. Cambridge University Press, Cambridge. 208 p.

CAULDER, J.D. and STOWELL, L. (1988a): Synergistic herbicidal compositions comprising Colletotrichum truncatum and

chemical herbicides. US patent 4,775,405. 6 Jan. 1987.

CAULDER, J.D. and STOWELL, L. (1988b): Synergistic herbicidal compositions comprising Alternaria cassiae and chemical

herbicides. US patent 4,776,873. 27 Jan. 1987.

CHARUDATTAN, R., DEVALERIO, J.T., PRANGE, V.J. (1990): Special problems associated with aquatic weed control. p. 287-

303 in R. R. Baker and P. E. Dunn, eds. New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and

Diseases. Alan R. Liss Inc., New York.

CHARUDATTAN, R. (2001): Biological control of weeds by means of plant pathogens: significance for integrated weed

management in modern agro-ecology. BioControl, 46: 229-260.

CHARUDATTAN, R., ELLIOT, M., DEVALERIO, J.T., HIEBERT, E., PETTERSEN, M.E. (2003): Tobacco mild green mosaic

virus: a virus-based bioherbicide. VI international Bioherbicide Group Workshop, Canberra, Australia.

CHARUDATTAN, R. (2005): Use of plant pathogens as bioherbicides to manage weeds in horticultural crops. Proc. fla. state

hort. soc., 118: 208-214.

CHARUDATTAN, R. (2005): Ecological, practical, and political inputs into selection of weed targets: what makes a good

biological control target? Biol. Control, 35: 183–196.

CHITTICK, A.T. and AULD, B.A. (2001): Polymers in bioherbicide formulation: Xanthium spinosum and Colletotrichum as a

model system. Biocontrol. Sci. Technol., 11: 691–702.

CHITTICK, A.T., ASH, G.J., KENNEDY, R.A., HARPER, J.D.I. (2003): Microencapsulation: an answer to the formulation

quandary? VI international Bioherbicide Group Workshop, Canberra, Australia.

CHRISTY, A.L., HERBST, K.A., KOSTKA, S.J., MULLEN, J.P., CARLSON, S.J. (1993): Synergizing weed biocontrol agents

with chemical herbicides. In: Pest Control with Enhanced Environmental Safety (ed. by Duke S.O., Menn J.J. and Plimmer J.R.).

American Chemical Society, Washington, DC, 87–100.

CINDIO, B., GRASSO, G., CACACE, D. (1991): Water-in-oil-in water double emulsions for food applications: yield analysis

and rheological properties. Food Hydrocol., 4: 339-353.

CONNICK, W.J., DAIGLE, D.J., QUIMBY, P.C. Jr. (1991): An improved invert emulsion with high water retention for

mycoherbicide delivery. Weed Technol., 5: 442-444.

DAIGLE, D.J., CONNICK, W.J., QUIMBY, P.C. Jr., EVANS, J. Jr., TRASK-MORRELL, B., FULGHAM, F.E. (1990): Invert

emulsions: carrier and water source for the mycoherbicide, Alternaria cassiae. Weed Technol., 4: 327-331.

DAIGLE, D.J. and CONNICK, W.J. (1990): Formulation and application technology for microbial weed control. p. 288-304 in

R.E. Hoagland, ed. Microbes and Microbial Products as Herbicides, ACS Symp. Ser. 439. American Chem. Soc., Washington,

DC.

DAIGLE, D.J. (1996): Formulation of Fusarium oxysporum f. Sp. erythroxyli for biocontrol of Erythroxylum coca var. coca.

Weed Sci., 46, 682–689.

DE JONG, M.D., SCHEEPENS, P.C., ZADOKS, J.C. (1990): Risk analysis for biological control: a Dutch case study in

biocontrol of Prunus serotina by the fungus Chondrostereum purpureum. Plant Dis., 74: 189-194.

DE LUCA, M., GROSSOIRD, J.L., MEDARD, J.M., VAUTION, C. (1990): A stable W/O/W multiple emulsion. Cosmetics

Toiletries, 105: 65-69.

DOWLER, C. (1997): Weed survey – Southern states: broadleaf crops subsection. Proc. South.Weed Sci. Soc., 48: 90-325.

EGLEY, G.H., BOYETTE, C.D. (1995): Water-corn oil emulsion enhances conidia germination and mycoherbicidal activity of

Colletotrichum truncatum. Weed Science, 43: 312-317.

GABRIEL, D.W. (1991): Parasitism, host species specificity, and gene-specific host cell death. In D.O. TeBeest, Microbial

Control of Weeds. New York: Chapman and Hall. 115-131.

GHORBANI, R., SEEL, W., LITTERICK, A., LEIFERT, C. (2000): Evaluation of Alternaria alternata for biological control of

Amaranthus retroflexus. Weed Science, 48: 474-480.

GHOSHEH, H.Z. (2005): Constraints in implementing biological weed control: A review.Weed Biology and Management, 5: 83-

92.

GOEDEN, R.D. (1999): Projects on biological control of Russian thistle and milk thistle in California: Failures that contributed to

the science of biological weed control. In: Spencer N., Noweierski R., eds. Abstracts of the 10th International Symposium on

Biological Control of Weeds. Montana State University, Bozeman, MT, USA, 27.

GRACIA-GARZA, J.A., FRAVEL, D.R., BAILEY, B.A., HEBBAR, P.K. (1998): Dispersal of formulations of Fusarium

oxysporum f. sp. erythroxyli and F. oxysporum f. sp. melonis by ants. Phytopathol., 88, 185-189.

HEBBAR, K.P., LUMSDEN, R.D., LEWIS, J.A., POCH, S.M., BAILEY, B.A. (1998): Formulation of mycoherbicidal strain of

Fusarium oxysporum. Weed Sci., 46: 501-507.

HEINY, D.K., MINTZ, A.S., WEIDEMANN, G.J. (1992): Redisposition of Aposphaeria amaranthi in Microsphaeropsis.

Mycotaxon, 44: 137-154.

HEINY, D.K. (1994): Field survival of Phoma proboscis and synergism with herbicides for control of field bindweed. Plant Dis.,

78: 1156–1164.

HETHERINGTON, S.D., SMITH, H.E., SCANES, M.G., AULD, B.A. (2002): Effects of some environmental conditions on the

effectiveness of Drechslera avenacea (Curtis ex Cooke) Shoem.: a potential bioherbicidal organism for Avena fatua L. Biological

Control, 24 (2): 103-109.

HOAGLAND, R.E. (1990): Microbes and microbial products as herbicides. In R.E. Hoagland, ed. Am. Chem. Soc. Symp. Ser.

No. 439. Washington, DC: ACS Books. 341 p.

HOAGLAND, R.E. (1996): Chemical interactions with bioherbicides to improve efficacy.Weed Technol., 10: 651–674.

HOAGLAND, R.E. (2000): Plant pathogens and microbial products as agents for biological weed control. In: Advances in

Microbial Biotechnology (ed. by Tewari J.P., Lakhanpal T.N., Singh J., Gupta R. and Chamola V.P.). APH Publishing, New Delhi,

213–255.

HOAGLAND, R.E. (2001): Microbial allelochemicals and pathogens as bioherbicidal agents.Weed Technol., 15: 835–857.

HOAGLAND, R.E., WEAVER, M.A., BOYETTE, C.D. (2007): Myrothecium verrucaria fungus; A bioherbicide and strategies to

reduce its non-target risks. Allelopathy Journal, 19 (1): 179-192.

IMAIZUMI, S., NISHINO, T., MIYABE, K., FUJIMORI, T., YAMADA, M. (1997): Biological control of annual bluegrass (Poa

annua L.) with a Japanese isolate of Xanthomonas campestris pv. poae ( JT-P482). Biol. Control., 8: 7–14.

JACKSON, M.A. and BOTHAST, R.J. (1990): Carbon concentration and carbon to nitrogen ratio influence submerged culture

conidiation by the potential bioherbicide Colletotrichum truncatum NRRL 13757. Appl. Environ. Microbiol., 56: 3435-3438.

JACKSON, M.A. and SLININGER, P.J. (1993): Submerged culture conidial germination and conidiation of the bioherbicide

Colletotrichum truncatum are influenced by the amino acid composition of the medium. J. Indust. Microbiol., 12: 471-482.

JACKSON, M.A., SCHISLER, D.A., BOYETTE, C.D. (1993): Microsclerotia: alternative infective propagules of the

bioherbicide Colletotrichum truncatum. p. 322 (Abstract) in Proc. 93rd General Meeting of the American Society of

Microbiology, Washington, DC.

JONES, R.W. and HANCOCK, J.G. (1990): Soilbome fungi for biological control of weeds. p. 276-286 in R. E. Hoagland, ed.

Microbes and Microbial Products as Herbicides, ACS Symp. Ser. 439. American Chemical Society, Washington, DC.

KADIR, J.B., CHARUDATTAN, R., STALL, W.M., BEWICK, T.A. (1999): Effect of Dactylaria higginsii on interference of

Cyperus rotundus with L. esculentum. Weed Sci., 47: 682-686.

KADIR, J.B., CHARUDATTAN, R., STALL, W.M., BRECKE, B.J. (2000): Field efficacy of Dactylaria higginsii as a

bioherbicide for the control of purple nutsedge (Cyperus rotundus). Weed Technol., 14:1-6.

KEMPENAAR, C. and SCHEEPENS, P.C. (1999): Dutch case studies showing the success and limitations of biological weed

control. In: Pallet K., ed. The 1999 Brighton Conference on Weeds. The British Crop Protection Council, Brighton, UK, 297–302.

KENNEY, D.S. (1986): DevineTM – the way it was developed – an industrialist’s view. Weed Sci., 34: 15–16.

KENERLEY, C.M. and ANDREWS, J.H. (1990): Interactions of pathogens on plant leaf surfaces. p. 192-217 in R. E. Hoagland,

ed. Microbes and Microbial Products as Herbicides, ACS Symp. Ser. 439. American Chemical Society, Washington, DC.

KLEIN, T.A., AULD, B.A., FANG, W. (1995): Evaluation of oil suspension emulsions of Colletotrichum orbiculare as a

mycoherbicide in field trials. Crop Prot., 14: 193–197.

LEONARD, K.J. (1982): The benefits and potential hazards of genetic heterogeneity in plant pathogens. In R. Charudattan and H.

L. Walker, eds. Biological Control of Weeds with Plant Pathogens. New York: J. Wiley. pp. 99–112.

MAKOWSKI, R.M.D. (1993): Effect of inoculum concentration, temperature, dew period, and plant growth stage on disease of

round-leaved mallow and velvetleaf by Colletotrichum gloeosporioides f .sp. malvae. Phytopathology, 83: 1229-1234.

MARLEY, P.S., KROSCHEL, J., ELZIEN, A. (2005): Host specificity of Fusarium oxysporum Schlect (isolate PSM 197), a

potential mycoherbicide for controlling Striga spp. in West Africa. Weed Research 45: 407–412.

MARTI-MESTRES, G. and NIELLOND, F. (2002): Emulsions in health care applications – An overview. J. Dispersion Sci.

Technol., 23: 419–439.

MCRAE, C.F. and AULD, B.A. (1988): The influence of environmental factors on anthracnose of Xanthium spinosum.

Phytopathology, 78: 1182-1186.

MILLHOLLON, R.W., BERNER, D.K., PAXSON, L.K., JARVIS, B.B., BEAN, G.W. (2003): Myrothecium verrucaria for

control of annual morningglories in sugarcane. Weed Technology, 17: 276-283.

MINTZ, A.S., HEINY, D.K., WEIDEMANN, G.J. (1992): Factors influencing the biocontrol of tumble pigweed (Amaranthus

albus) with Aposphaeria amaranthi. Plant Dis., 76: 267–269.

MORALES-PAYAN, J.P., CHARUDATTAN, R., STALL, W.M., DEVALERIO, J.T. (2003): Efficacy of Dactylaria higginsii to

suppress purple nutsedge (Cyperus rotundus) in pepper (Capsicum annuum) is affected by some surfactants. Phytopathology, 93

(Suppl.):S63 (Abstr.).

MORIN, L., WATSON, A.K., REELEDER, R.D. (1990): Effect of dew, inoculum density, and spray additives on infection of

field bindweed by Phomopsis convolvulus. Can. J. Plant Pathol., 12: 48-56.

MORTENSEN, K. (1996): Constraints in development and commercialization of a plant pathogen, Colletotrichum

gloeosporioides f. sp. malvae, for biological weed control. In H. Brown, G. Cussans, M.Devine, S. Duke, C. Fernandez-

Quintanilla, A. Helweg, R. Labrada, M. Landes, P. Kudsk, and J. Streibig, eds. Proc. 2nd Int. Weed Control Congress.

Flakkebjerg, Denmark: Weed Control, Pesticides, Ecology. pp. 1297–1300.

NIKANDROW, A., WEIDEMANN, G.J., AULD B.A. (1990): Incidence and pathogenicity of Colletotrichum orbiculare and a

Phomopsis sp. on Xanthium sp. Plant Dis., 74: 796-799.

ORTIZ-RIBBING, L. and WILLIAMS, M.M. (2006): Potential of Phomopsis amaranthicola and Microsphaeropsis amaranthi, as

bioherbicides for several weedy Amaranthus species. Crop Protection, 25: 39–46.

PATZOLDT, W.L., TRANEL, P.J., ALEXANDER, A.L., SCHMIZER, P.R. (2001): A common ragweed population resistant to

cloransulam-methyl. Weed Sci., 49: 485–490.

PENG, G., BYER, K.N., BAILEY, K.L. (2004): Pyricularia setariae: a potential bioherbicide agent for control of green foxtail

(Setaria viridis). Weed Science, 52:105–114.

PILGERAM, A.L., CARSTEN, L.D., SANDS, D.C. (2002): Genetic improvement of bioherbicides. In: The Mycota, X Industrial

Applications (ed. Osiewacz A.D.). Springer-Verlag, Berlin, 367–374.

QUIMBY, P.C. Jr., FULGHAM, F.E., BOYETTE, C.D., CONNICK, W.J. Jr. (1989): An invert emulsion replaces dew in

biocontrol of sicklepod - a preliminary study. In: Hovde DA, Beestman GB, editors. Pesticide formulations and application

systems. ASTM-STP 980. West Conshohocken, PA: American Society for Testing Materials. pp 264-270.

ROSSKOPF, E.N. (1997): Evaluation of Phomopsis amaranthicola sp. nov. as a biological control agent for Amaranthus spp.

Ph.D. Dissertation, University of FL, Gainesville, FL, USA.

ROSSKOPF, E.N., CHARUDATTAN, R., KADIR, J.B. (1999): Use of plant pathogens in weed control. In: Handbook of Weed

Control (ed. by Katar E.H.). Academic Press, NewYork, 891–911.

ROSSKOPF, E.N., CHARUDATTAN, R., SHABANA, Y.M., BENNY, G.L. (2000a): Phomopsis amaranthicola. Mycologia, 92:

114–122.

ROSSKOPF, E.N., CHARUDATTAN, R., DEVALERIO, J.T., STALL, V.M. (2000b): Field evaluation of Phomopsis

amaranthicola, a biological control agent of Amaranthus spp. Plant Dis., 84: 1225–1230.

ROSSKOPF, E.N., YANDOC, C., DEVALERIO, J.T., KADIR, J.B., CHARUDATTAN, R. (2003): Evaluation of the

bioherbicidal fungus Dactylaria higginsii as a component of an IPM approach to pest management in tomato. Phytopathology, 93

(Suppl.):S75 (Abstr.).

SANDRIN, T.R., TEBEEST, D.O., WEIDEMANN, G.J. (2003): Soybean and sunflower oils increase the infectivity of

Colleototrichum gloeosporioides f. sp. aeschynomene to northern jointvetch. Biological Control., 26: 244-252.

SCHEEPENS, P.C., MÜLLER-SCHÄRER, H., KEMPENAAR, C. (2001): Opportunities for biological weed control in Europe.

Biol. Control, 46: 127–138.

SCHISLER, D.A., JACKSON, M.A., BOTHAST, R.J. (1991): Influence of nutrition during conidiation of Colletotrichum

truncatum on conidial germination and efficacy in inciting disease on Sesbania exaltata. Phytopathol., 81: 587-590.

SEMIDEY, N., CHARUDATTAN, R., MORALES-PAYAN, J.P., DEVALERIO, J.T. (2003): Response of Cyperus rotundus and

Allium cepa to Dactylaria higginsii in Puerto Rico. XVI Congreso Latinoamericano de Malezas y el XXIV Congreso Nacional de

la Asociación Mexicana de la Ciencia de la Maleza, Manzanillo, Colima, Mexico.

SHABANA, Y.M., BAKA, Z.A., ABDEL-FATTAH, G.M. (1997) Alternaria eichhorniae, a biological control agent for

waterhyacinth: Mycoherbicidal formulation and physiological and ultrastructural host responses. European J. Plant Pathology,

103: 99-111.

SHARON, A., GHIRLANDO, R., GRESSEL, J. (1992): Isolation, purification, and identification of 2-(p-hydroxyphenoxy)-5,6-

dihydroxychromone: a fungal induced phytoalexin. Plant Physiol., 98: 303–308.

SINGH, H.P., BATISH, D.R., KOHLI, R.K. (2006): Handbook of Sustainable Weed Management. Food Products press.

Binghamton, NY.

TeBEEST, D.O. (1991): Microbial Control of weerds, (Ed., D.O. TeBeest). Chapman and Hall, Newyork. 284 pp.

TeBEEST, D.O., YANG, X.B., CISAR, C.R. (1992a): The status of biological control of weeds with fungal pathogens. Annu. Rev.

Phytopathol., 30: 637- 657.

TeBEEST, D.O., CISAR, C.R., SPIEGEL, F.W. (1992b): Partial characterization of progeny from a cross between Colletotrichum

gloeosporioides f. sp. aeschynomene and C. gloeosporioides from Carya. Plant Prot. Quar., 7: 171.

WALKER, H.L. and SCIUMBATO G.L. (1981): Host range studies on four Alternaria isolates pathogenic to cotton (Gossypium

spp.) or spurred anoda (Anoda cristata). Plant Sci. Lett., 22: 71-75.

WALKER, H.L. and TILLEY, A.M. (1997): Evaluation of an isolate of Myrothecium verucaria from sicklepod (Senna obtusifolia)

as a potential mycoherbicide agent. Biotogical Control, 10: 104-112.

WATSON, A.K. and WYMORE, X. (1990): Identifying limiting factors in the biocontrol of weeds. In: New Direction in

Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases (ed. by Baker R.R. and Dunn P.E.). Alan R. Liss,

New York, 305–316.

WATSON, A.K. (2003): Where did it go wrong? Why is the concept of bioherbicide suffering from limited success? VI

international Bioherbicide Group Workshop, Canberra, Australia.

WEIDEMANN, G.J. (1988): Effects of nutritional amendments on conidial production of Fusarium solani f. sp. cucurbitae on

sodium alginate granules and on control of Texas gourd. Plant Dis., 72: 757-759.

WEIDEMANN, G.J. and TeBEEST, D.O. (1990): Genetic variability of fungal pathogens and their weed hosts. p. 176-183 in R.

E. Hoagland, ed. Microbes and Microbial Products as Herbicides, ACS Symp. Ser. 439. American Chemical Society, Washington,

DC.

WEIDEMANN, G.J. (1992): Risk assessment: determining genetic relatedness and potential asexual gene exchange in biocontrol

fungi. Plant Prot. Quar., 7: 166-168.

WHEELER, G.S. and CENTER, T.D. (2001): Impact of the biological control agent Hydrellia pakistanae (Dipetra: Ephydridae)

on the submersed aquatic weed Hydrilla verticillata (Hydrocharitaceae). Biol. Control, 21: 168–181.

WOMACK, J.G. and BURGE, M.N. (1993): Mycoherbicide formulation and the potential for bracken control. Pestic. Sci., 37:

337-341.

WOMACK, J.G., ECCLESTON, G.M., BURGE, M.N. (1996): A vegetable oil based invert emulsion for mycoherbicide

delivery. Biol. Control., 6: 23–28.

WYMORE, L.A., POIRIER, C. WATSON, A.K., GOTLIEB, A.R. (1988): Colletotrichum coccodes, a potential bioherbicide for

control of velvetleaf (Abutilon theophrasti). Plant Dis., 72: 534-538.

ZHANG, W. (1999): Development of bioherbicides for biological control of cleavers. Alberta Research Council, Canadian Seed

Growers, Association Research and Development Funding.

YANG, S. M., JOHNSON, D. R., DOWLER, W. M., CONNICK, W. J. Jr. (1993): Infection of leafy spurge by Alternaria

alternata and A. angustiovoidea in the absence of dew. Phytopathology, 83: 953-958.

YANG, S. and JONG, S.C. (1995a): Host range determination of Myrothecium verrucaria isolared from leafy spurge. Plant

Disease, 79: 994-997.

YANG, S. and JONG, S.C. (1995b): Factors influencing pathogenicity of Myrothecium verrucoria isolated from Euphorbia esula

on species of Euphorbia. Plant Disease, 79: 998-1002.