20
Montreal 2006 – Symposium on Microgrids June 23, 06 Canada Ressources naturelles Canada Natural Reso urces Canad a Advantages and Circuit Configuration of a DC Microgrid Toshifumi ISE Osaka University, JAPAN[email protected] PE&EE Since 2002

Advantages and Circuit Configuration of a DC …microgrid-symposiums.org/wp-content/uploads/2014/12/montreal_ise.pdf · Advantages and Circuit Configuration of a DC Microgrid

Embed Size (px)

Citation preview

Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Advantages and Circuit Configuration of a DC Microgrid

Toshifumi ISE(Osaka University, JAPAN)

[email protected]

PE&EESince 2002

2Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Problems on Microgrids

1)Synchronization of distributed generators

2)Inrush current

(transformers, Induction motors, Induction generators)

3) Three-Phase Unbalance

(single-phase loads, single-phase generators such as photovoltaic)

3Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Recent Trends

1) Introduction of many Inverter loads(AC/DC and DC/AC conversions are included)

2) Introduction of distributed generations with DC output (photovoltaic, fuel cell, variable speed type wind turbine, micro turbine, gas engine)

3) Needs for higher quality power

4Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

DC Loop Type Configuration

PFC

DCDC PV Cell

DCDC PV Cell

DCAC

Load

DCDC SMES

DCAC

G Wind Turbine

MT Micro Turbine

DCDC

FC Fuel Cell

DCDC

Secondary Battery

DCAC

Load

DCAC

Load

4kV

2kV

2kV

PFC Normal QualityLoop

High QualityLoop

22kV/1.2kV

22kV/1.5kV

Bi-directional Rectifier

Diode Rectifier

22kV/1.2kV

22kV/1.5kV

SFCL + Hybrid Switch

PFC

DCDC PV Cell

DCDC PV Cell

DCAC

Load

DCDC SMES

DCAC

GG Wind Turbine

MTMT Micro Turbine

DCDC

FCFC Fuel Cell

DCDC

Secondary Battery

DCAC

Load

DCAC

Load

4kV

2kV

2kV

PFC Normal QualityLoop

High QualityLoop

22kV/1.2kV

22kV/1.5kV

Bi-directional Rectifier

Diode Rectifier

22kV/1.2kV

22kV/1.5kV

SFCL + Hybrid Switch

5Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Circuits for Loss Comparison

DC Loop System

AC Radial System

2 k V

D CA C L o a d 1

1 k m

0 .5 k m

0 .5 k m

1 k m

1 k m

D CA C

D CA C L o a d 2

D CA C L o a d 3

2 k V

D CA C L o a d 1

1 k m

0 .5 k m

0 .5 k m

1 k m

1 k m

D CA C

D CA C L o a d 2

D CA C L o a d 3

1km

0.5km

0.5km

6.6kV

A C

D CA C L oad1

D CA C

D CA C L oad2

D C

D CA C L oad3

D CA C

1km

0.5km

0.5km

6.6kV

A C

D CA C L oad1

D CA C

D CA C L oad2

D C

D CA C L oad3

D CA C

A C

D CA C L oad1

D CA C

D CA C L oad2

D C

D CA C L oad3

D CA C

20MW

20MW

20MW

20MW

20MW

20MW

6Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Reduction of Rectifier Losses

0

2

4

6

8

10

12

0.95 0.96 0.97 0.98 0.99 1

Rectifier Efficiency of DC Loop Type Distribution System

Loss 

[MW]

A C Type Distribution System DC Loop Type Distribution System

7Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Distance of Cable and Losses

0

2

4

6

8

10

12

14

16

0.5 1 1.5 2 2.5

D istance of C able [km ]

Loss 

[MW]

A C Type D istribution System D C Loop Type D istribution System

8Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Loss Reduction due to Loop System

0

2

4

6

8

10

12

14

DC Loop Type DistributionSystem

DC Type Distribution System(W ithout Loop)

Loss [MW]

Losses of Inverters and Rectifier Losses of C able

9Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Loss Reduction by Feeding from Two AC Systems

0

2

4

6

8

10

12

0 10 20 30 40

Power of Load1 [M W ]

Loss [MW]

O ne AC System Two AC System s

10Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Control Method of Rectifiers Using Gain-Scheduling Method

Bi-directional Rectifier

dcV*

dcV

P

*i

Voltage Control

K

AC system

LPFP

K

Gain Scheduling

iP

V

P1K

2K

1 2K K>

K*i

dcV

*dcV +

Controlled Characteristics with Proportional Controller

11Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Effect of Gain Scheduling

V

P 1K

2K

1 2K K>

Voltage regulation

Power sharing

Large Gain KSmall Gain K

Gain Scheduling

Voltage Regulation Power SharingExcellent Fair

Fair ExcellentGoodGood

12Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Control of Multiple Rectifiers

AC system 1AC system 1

AC system 2AC system 2

Bi-directional Rectifier

1d cV*

d cV

1P

*i

Voltage Control

K

LPFP

K

1i1P

Gain Scheduling

2P

2d cV

*d cVK

2P*i2i

Communication line

13Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

10%Load 50%Load 100%LoadVoltage

Gain K0 2 4 6 8 10

0.88

0.86

0.9

0.92

0.94

0.96

0.98

1.0

Gain K

Load power

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1.0

voltage variation 2%

voltage variation 6%

Gain K versus DC Voltage Characteristics

Gain K for Various Load Power with 2% Voltage Variation

14Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Simulation Circuit

sL sR

22 /1.2kV kV 400kW(Max) 300kW(Max)

300kW(Max)

3dcR 1dcR

2dcR

1km

1km

1km

0.5km 0.5km

Cd

1dcV

2dcV

+-

+-

Bi-directional

rectifier

Rectifier power1

Rectifier power2

AC system1

AC system2

15Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Simulation Results of Power Sharing

DC Voltage (kV)

+0.8+0.6+0.4+0.2+0

+1.8

+1.9+2

0.3 0.5 0.7 0.9 1.1 1.3

0.3 0.5 0.7 0.9 1.1 1.3

8%

Power Sharing (MVA)10% 50% 100

%

Load PowerLoad Power100%

Time(s)

Load Power (MW)+0.4+0.3+0.2+0.1+0

+0.5

Load Power

0.3 0.5 0.7 0.9 1.1 1.3

Constant Gain

K=2

DC Voltage (kV)

Power Sharing (MVA)

Load Power (MW)

+0.8+0.6+0.4+0.2+0

+1.8

+1.9

+2

+0.4+0.3+0.2+0.1+0

+0.5

Time(s)0.3 0.5 0.7 0.9 1.1 1.3

0.3 0.5 0.7 0.9 1.1 1.3

0.3 0.5 0.7 0.9 1.1 1.3

1%

Constant Gain

K=30

DC Voltage (kV)

Gain

Power Sharing (MW)

Common Gain

Time(s)

10% 50% 100%

Load Power (MW)

+0.8+0.6+0.4+0.2+0

+1.8

+1.9

+2

+0+10+20+30

+0.4+0.3+0.2+0.1+0

+0.5

0.3 0.5 0.7 0.9 1.1 1.3

0.3 0.5 0.7 0.9 1.1 1.3

0.3 0.5 0.7 0.9 1.1 1.3

0.3 0.5 0.7 0.9 1.1 1.3

Load Power Load PowerLoad Power

2%

Gain-schedulingsystem1 system2 Load1 Load2 Load3

Power Ratio

54:46

Power Ratio

51:49

Power Ratio

57:43

16Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

DCAC

Load2

PFC

22kV/1.5kV

Ls Rs

Cd

PFC

22kV/1.5kV

Ls Rs

Cd

LCフィルタ

Cd2

Cd1 Load1

Cd3 Load3

1km

1km

1km

0.25km

0.5km

DCDC

Ldci

DCDC

Ldci

0.25km

短絡事故短絡事故

SFCL SFCL

SFCL SFCL太陽光発電太陽光発電

二次電池1二次電池1

二次電池2二次電池2

交流システム1交流システム1

交流システム2交流システム2

負荷1負荷1

負荷2負荷2

負荷3負荷3

HS11HS12

HS21HS22

IS1S2

IS1L1

IS2L3

IL1L2

IL2L3

ハイブリッドスイッチ1

ハイブリッドスイッチ1

ハイブリッドスイッチ2

ハイブリッドスイッチ2

DCAC

Load2

PFC

22kV/1.5kV

Ls Rs

Cd

PFC

22kV/1.5kV

Ls Rs

Cd

LC Filter

Cd2

Cd1 Load1

Cd3 Load3

1km

1km

1km

0.25km

0.5km

DCDC

Ldci

DCDC

Ldci

0.25km

短絡事故Fault Point

SFCL SFCL

SFCL SFCL太陽光発電Solar Battery

二次電池1Battery 1

二次電池2Battery 2

交流システム1AC System 1

交流システム2AC System 2

負荷1Load1

負荷2Load2

負荷3Load3

HS11HS12

HS21HS22

IS1S2

IS1L1

IS2L3

IL1L2

IL2L3

ハイブリッドスイッチ1

HybridSwitch 1

ハイブリッドスイッチ2

HybridSwitch 2

Simulation Circuit for Protecting Operation

17Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Current Through the Mechanical Switch

Current Through the Semiconductor Switch

Simulation of Protecting Operation

1ms 1ms

18Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Bulk Power system

Low Voltage Type DC Microgrid

DCDC

ACDC

G

Secondary Battery

Electric Double Layer Capacitor

Co-generator

DCDC

DCDC

Bi-directional Rectifier

Photovoltaic Cell

Communication Line

AC 200 V

AC100VDC 170 VDC 170 V

3φ AC200 V

1φ AC100 V

DC 100 V

Islanding Protector

DC

DC Fuel CellCenter Building

Rectifier

1φ AC100 V

1φ AC100 V

AC100V

AC100V

Power Exchange

Power Exchange

19Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Features of Low Voltage Type DC Microgrid

Distributed scheme of load side converters contributes to provide a super high quality power supplying. Various forms of electric power like single phase 100V, three phase 200V, DC 100V can be obtained without using transformers. If power consumption become more than a power production during a long term isolation, DC micro-grid can stop supplying power for some loads intentionally by load side converters in order to continue supplying power for more important loads.When a temporary overload occurs at one load, electric power can be shared by using additional electric power lines between load side converters.

20Montreal 2006 – Symposium on MicrogridsJune 23, 06 CanadaRessources naturelles

CanadaNatural ResourcesCanada

Features of DC Microgrid

Synchronization of distributed generators are not necessary.

Fluctuation of generated power of distributed generators and load power can be compensated in the dc line by using energy storage devices.

Loads are not affected by voltage sag, voltage swell, three-phase voltage unbalance, and voltage harmonics.

Power quality is not affected by Inrush current, single-phase loads and single-phase generators.

Higher efficiency than AC microgrid is expected.