47
1 Advances in Random Matrix Theory: Let there be tools Alan Edelman MIT: Dept of Mathematics, Computer Science AI Laboratories World Congress, Bernoulli Society Barcelona, Spain Wednesday July 28, 2004 2/1/2005 Brian Sutton, Plamen Koev, Ioana Dumitriu, Raj Rao and others

Advances in Random Matrix Theory: Let there be tools...3 Tools So many applications … Random matrix theory: catalyst for 21st century special functions, analytical techniques, statistical

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Advances in Random Matrix Theory: Let there be tools

    Alan Edelman

    MIT: Dept of Mathematics, Computer Science AI Laboratories

    World Congress, Bernoulli Society Barcelona, Spain

    Wednesday July 28, 20042/1/2005

    Brian Sutton, Plamen Koev, Ioana Dumitriu,

    Raj Rao and others

  • 2

    Message Ingredient: Take Any important mathematics Then Randomize! This will have many applications! We can’t keep this in the hands of specialists

    anymore: Need tools!

    2/1/2005

  • 3

    Tools

    So many applications … Random matrix theory: catalyst for 21st century

    special functions, analytical techniques, statistical techniques

    In addition to mathematics and papers Need tools for the novice! Need tools for the engineers! Need tools for the specialists!

    2/1/2005

  • 4

    Themes of this talk

    Tools for general beta What is beta? Think of it as a measure of (inverse)

    volatility in “classical” random matrices. Tools for complicated derived random matrices Tools for numerical computation and simulation

    2/1/2005

  • Precise statements require n→∞ etc.

    5

    Let S = random symmetric Gaussian MATLAB: A=randn(n); S=(A+A’)/2;

    S known as the Gaussian Orthogonal Ensemble n=20; s=30000; d=.05; e=[]; %gather up eigenvalues im=1; %imaginary(1) or real(0) for i=1:s,

    v=eig(a)'; e=[e v]; end

    axis('square'); axis([-1.5 1.5 -1 2]); hold on; t=-1:.01:1; plot(t,sqrt(1-t.^2),'r');

    Wigner’s Semi-Circle The classical & most famous rand eig theorem

    Normalized eigenvalue histogram is a semi-circle %matrix size, samples, sample dist

    a=randn(n)+im*sqrt(-1)*randn(n);a=(a+a')/(2*sqrt(2*n*(im+1)));

    hold off; [m x]=hist(e,-1.5:d:1.5); bar(x,m*pi/(2*d*n*s));

  • χ3χG

    Gχ2

    χ

    2/1/2005

    χ6

    G

    χ5

    G χ6

    χ4

    G χ5

    G χ4

    2

    χ3

    χ1 G 1

    Same eigenvalue distribution as GOE: O(n) storage !! O(n2) compute

    6

    sym matrix to tridiagonal form

  • G4β

    χ

    7

    χ6β

    G

    χ5β

    G χ6β

    χ4β

    G χ5β

    χ3β

    χ

    χ2β

    G 3β

    χβ

    G χ2β

    G χβ

    General beta beta:

    2/1/2005

    1: reals 2: complexes 4: quaternions

    Bidiagonal Version corresponds To Wishart matrices of Statistics

  • 8

    Tools Motivation: A condition number problem

    The Polynomial Method 9 trick

    2/1/2005

    Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitriu’s talk

    The tridiagonal numerical 10

  • 9

    Tools Motivation: A condition number problem

    The Polynomial Method 9 trick

    2/1/2005

    Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitriu’s talk

    The tridiagonal numerical 10

  • 10

    Numerical Analysis: Condition Numbers

    κ(A) = “condition number of A” If A=UΣ κ(A) = σmax/σmin . Alternatively, κ(A) = √λ max (A’A)/√λ min (A’A) One number that measures digits lost in finite

    precision and general matrix “badness” Small=good Large=bad

    The condition of a random matrix??? 2/1/2005

    V’ is the svd, then

  • 11

    Von Neumann & co. Solve Ax=b via x= (A’A) -1A’ b

    M ≈A-1 Matrix Residual: ||AM-I||2 ||AM-I||2< 200κ2 n ε

    How should we estimate κ?

    Assume, as a model, that the elements of A areindependent standard normals!

    2/1/2005

  • 12

    Von Neumann & co. estimates (1947-1951)

    “For a ‘random matrix’ of order n the expectation value has been shown to be about n”

    Goldstine, von Neumann

    √10n” Bargmann, Montgomery, vN

    Goldstine, von Neumann

    X ∞

    P(κ

  • 2 / 2 / 2 3

    4 2 x x e x x y − − + =

    Distribution of κ/n

    13

    →∞

    Experiment with n=2002/1/2005

    Random cond numbers, n

  • 14

    Finite n

    n=10 n=25

    n=50 n=100 2/1/2005

  • 15

    Condition Number Distributions P(κ/n > x) ≈ 2/x P(κ/n2 > x) ≈ 4/x2

    Real n x n, nÆ∞

    Complex n x n, nÆ∞

    Generalizations:

    •β: 1=real, 2=complex

    •finite matrices

    •rectangular: m x n

    2/1/2005

  • 2/1/2005 16

    Real n x n, nÆ∞

    Complex n x n, nÆ∞

    Condition Number Distributions P(κ/n > x) ≈ 2/x P(κ/n2 > x) ≈ 4/x2

    Square, nÆ∞: P(κ/nβ > x) ≈ (2ββ-1/Γ(β))/xβ (All Betas!!) General Formula: P(κ>x) ~Cµ/x β(n-m+1),

    where µ= βWm-1,n+1 (β) and C is a known geometrical constant.

    1F1((β/2)(n+1), ((β/2)(n+m-1); -(x/2)Im-1)

    (n-m+1)/2th moment of the largest eigenvalue of

    Density for the largest eig of W is known in terms of from which µ is available

    Tracy-Widom law applies probably all beta for large m,n. Johnstone shows at least beta=1,2.

  • 17

    Tools Motivation: A condition number problem

    The Polynomial Method 9 trick

    2/1/2005

    Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitriu’s talk

    The tridiagonal numerical 10

  • 18

    Multivariate Orthogonal Polynomials &

    The important special functions of the 21st century Begin with w(x) on I

    ∫ pκ(x)pλ(x) ∆(x)β ∏i w(xi)dxi = δκλ Jack Polynomials orthogonal for w=1

    on the unit circle. Analogs of xm 2/1/2005

    Hypergeometrics of Matrix Argument

    Ioana Dumitriu’s talk

  • 192/1/2005

    Multivariate Hypergeometric Functions

  • 202/1/2005

    Multivariate Hypergeometric Functions

  • 21

    Wishart (Laguerre) Matrices! 2/1/2005

  • 2/1/2005 22

    Plamen’s clever idea

  • 23

    Tools Motivation: A condition number problem

    The Polynomial Method 9 trick

    2/1/2005

    Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitriu’s talk

    The tridiagonal numerical 10

  • 2/1/2005 24

    Mops (Dumitriu etc.) Symbolic

  • A=randn(n); S=(A+A’)/2; trace(S^4)

    det(S^3)

    25

    Symbolic MOPS applications

    2/1/2005

  • β=3; hist(eig(S))

    26

    Symbolic MOPS applications

    2/1/2005

  • A=randn(m,n); hist(min(svd(A).^2))

    272/1/2005

    Smallest eigenvalue statistics

  • 28

    Tools Motivation: A condition number problem

    9 trick

    2/1/2005

    Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitriu’s talk The Polynomial Method -- Raj! The tridiagonal numerical 10

  • 29

    Courtesy of the Polynomial Method 2/1/2005

    RM Tool – Raj!

  • 2/1/2005 30

  • ∑ ∫ ∞

    =

    ∞ −

    = − Γ

    = 1 0

    1 1 1 ) (

    1 ) ζ( k

    s u

    s

    k du

    e u

    s s

    6 π

    4 1

    3 1

    2 1 1 ) ζ 2 (

    2

    2 2 2 = + + + + = …

    31

    The Riemann Zeta Function

    On the real line with x>1, for example

    May be analytically extended to the complex plane, with singularity only at x=1.

    2/1/2005

  • 2/1/2005 32

    -3 -2 -1 0 ½ 1 2 3

    ∑ ∫ ∞

    =

    ∞ −

    = − Γ

    = 1 0

    1 1 1 ) (

    1 ) ζ( k

    x u

    x

    k du

    e u

    x x

    All nontrivial roots of ζ(x) satisfy Re(x)=1/2. (Trivial roots at negative even integers.)

    The Riemann Hypothesis

  • 2/1/2005 33

    -3 -2 -1 0 ½ 1 2 3

    The Riemann Hypothesis

    ∑∫∞

    =

    ∞ −

    =−Γ

    =10

    1 11)(

    1)ζ(k

    xu

    x

    kdu

    eu

    xx

    All nontrivial roots of ζ(x) satisfy Re(x)=1/2. (Trivial roots at negative even integers.)

    ζ(x)| along Re(x)=1/2 Zeros =.5+i* 14.134725142 21.022039639 25.010857580 30.424876126 32.935061588 37.586178159 40.918719012 43.327073281 48.005150881 49.773832478 52.970321478 56.446247697 59.347044003

    |

  • 34

    Computation of Zeros 10^k+1

    through 10^k+10,000 for k=12,21,22.

    See http://www.research.att.com/~amo/zeta_tables/

    A=randn(n)+i*randn(n); S=(A+A’)/2;

    2/1/2005

    Odlyzko’s fantastic computation of

    Spacings behave like the eigenvalues of

  • 352/1/2005

    Nearest Neighbor Spacings & Pairwise Correlation Functions

  • 2/1/2005 36

    Painlevé Equations

  • 37

    Spacings

    Normalize so that average spacing = 1.

    jth) Conjecture: These functions are the same for random

    matrices and Riemann zeta

    2/1/2005

    Take a large collection of consecutive zeros/eigenvalues.

    Spacing Function = Histogram of consecutive differences (the (k+1)st – the kth) Pairwise Correlation Function = Histogram of all possible differences (the kth – the

  • 38

    Tools Motivation: A condition number problem

    The Polynomial Method 9 trick

    2/1/2005

    Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitriu’s talk

    The tridiagonal numerical 10

  • 39

    Everyone’s Favorite Tridiagonal

    -21 1

    1-21 1-2

    … ……

    … …

    1 n2

    d2 dx2

    2/1/2005

  • 40

    Everyone’s Favorite Tridiagonal

    -21 1

    1-21 1-2

    … ……

    … …

    1 n2

    d2 dx2

    1 (βn)1/2+

    G

    G G

    dW β1/2+

    2/1/2005

  • 41

    Stochastic Operator Limit

    ,

    N(0,2)χ χN(0,2)χ

    χN(0,2)χ χN(0,2)

    nβ2 1 ~H

    β

    β2β

    2)β(n1)β(n

    1)β(n

    β n

    ⎟⎟⎟⎟⎟⎟

    ⎜⎜⎜⎜⎜⎜

    −−

    β 2 x

    dx d

    2

    2

    +−

    ,G β

    2HH nn β n +≈

    … …

    2/1/2005

    , dW

  • 422/1/2005

    Largest Eigenvalue Plots

  • 43

    MATLAB

    beta=1; n=1e9; opts.disp=0;opts.issym=1;alpha=10; k=round(alpha*n^(1/3)); % cutoff parametersd=sqrt(chi2rnd( beta*(n:-1:(n-k-1))))';H=spdiags( d,1,k,k)+spdiags(randn(k,1),0,k,k);H=(H+H')/sqrt(4*n*beta);eigs(H,1,1,opts)

    2/1/2005

  • 44

    Tricks to get O(n9) speedup • •

    general purpose eigensolvers.) •

    convergence of the largest eigenvalue) •

    structures and numerical choices.) • 1/3

    determined numerically by the top k × k segment of n. (This is aninteresting mathematical statement related to the decay of the Airyfunction.)

    2/1/2005

    Sparse matrix storage (Only O(n) storage is used) Tridiagonal Ensemble Formulas (Any beta is available due to the tridiagonal ensemble) The Lanczos Algorithm for Eigenvalue Computation ( This allows the computation of the extreme eigenvalue faster than typical

    The shift-and-invert accelerator to Lanczos and Arnoldi (Since we know the eigenvalues are near 1, we can accelerate the

    The ARPACK software package as made available seamlessly in MATLAB (The Arnoldi package contains state of the art data

    The observation that if k = 10n , then the largest eigenvalue is

  • 45

    Level Densities

    2/1/2005

  • 46

    Open Problems

    The distribution for general beta Seems to be governed by a convection-diffusion equation

    2/1/2005

  • 47

    Random matrix tools!

    2/1/2005

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 300 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects true /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /False

    /Description >>> setdistillerparams> setpagedevice