25
Advances in Informatics and Computing in Civil and Construction Engineering Ivan Mutis · Timo Hartmann   Editors Proceedings of the 35th CIB W78 2018 Conference: IT in Design, Construction, and Management

Advances in Informatics and Computing in Civil and ... BIM-Based... · The 35th CIB W78 conference took place in Chicago in 2018, with a theme focused on fostering, encouraging, and

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Advances in Informatics and Computing in Civil and Construction Engineering

    Ivan Mutis · Timo Hartmann   Editors

    Proceedings of the 35th CIB W78 2018 Conference: IT in Design, Construction, and Management

  • Advances in Informatics and Computing in Civiland Construction Engineering

    [email protected]

  • Ivan Mutis • Timo HartmannEditors

    Advances in Informaticsand Computing in Civiland Construction EngineeringProceedings of the 35th CIB W78 2018Conference: IT in Design, Construction,and Management

    123

    [email protected]

  • EditorsIvan MutisCAEEIllinois Institute of TechnologyChicago, IL, USA

    Timo HartmannInstitute of Civil EngineeringTU BerlinBerlin, Germany

    ISBN 978-3-030-00219-0 ISBN 978-3-030-00220-6 (eBook)https://doi.org/10.1007/978-3-030-00220-6

    Library of Congress Control Number: 2018953319

    © Springer Nature Switzerland AG 2019This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material isconcerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproductionon microfilms or in any other physical way, and transmission or information storage and retrieval, electronicadaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does notimply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws andregulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the advice and information in this book are believedto be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,express or implied, with respect to the material contained herein or for any errors or omissions that may have beenmade. The publisher remains neutral with regard to jurisdictional claims in published maps and institutionalaffiliations.

    This Springer imprint is published by the registered company Springer Nature Switzerland AGThe registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

    [email protected]

  • Letter from the Editors

    The 35th CIB W78 conference took place in Chicago in 2018, with a theme focused onfostering, encouraging, and promoting research and development in the application ofintegrated information technology (IT) throughout the life cycle of the design, construction,and occupancy of buildings and related facilities. Organized by Professors David Arditi andIvan Mutis (Illinois Institute of Technology, Chicago), Timo Hartmann (TechnischeUniversität Berlin), Robert Amor (University of Auckland), and with special and valuablesupport from Bill East (Prairie Sky Consulting, USA), it brought together more than 200scholars from 40 countries, who presented the innovative and unique concepts and methodsfeatured in this collection of papers.

    With the publication of these contributions, we expect to scaffold scholars’ motivations toinspire and discover the pressing research questions that need to be answered in the comingdecade. Framed under topic clusters as described in the introductory section, the Editorsorganized the responses of the 2018 worldwide, open call for submissions. Taking the numberof submissions in each focus area as an indicator of research potential, the open call elicitedthe lowest response in the area of Systems of Integrated Computer and Physical Components(Cyber-Physical-Systems), which suggests underdevelopment of initiatives for scientificquestions in this area. We look forward to seeing greater response to this area in the future.

    Ultimately, the success of this event and its contribution to the field of informatics andcomputing in civil and construction engineering is the result of countless hours ofinvestigation, development, and work from scholars across the globe. The Editors andorganizing committee thank all who have supported the effort. We thank in particular the paperreviewers.

    The research and approaches that have been developed and presented at this conference canimmediately deliver extraordinary innovations to construction practices with benefitsattributable to individuals, organizations, and the industry, as a whole. Looking forward,the legacy of this conference will be carried not only through its influence on the constructionpractice but also on research for years to come.

    Ivan MutisTimo Hartmann

    v

    [email protected]

  • About CIB and CIB W78

    CIB, officially named International Council for Research and Innovation in BuildingConstruction, was established in 1953 under the name Conseil International du Bâtiment. Thefoundational objectives of CIB were to stimulate and facilitate the international cooperationand exchange of information between governmental research institutes in the building andconstruction sector, with an emphasis on those engaged in technical fields of research. Sinceits inception, the association has developed into a worldwide network that connects more than5000 experts. These specialists represent the research institutes, university, and industry- andgovernment-related entities that constitute the approximate 500-member organizations of CIB.Though the size and strength of the organization today has grown compared to the past, thefocus of CIB and its members remains the same: the active collection of research andinnovation information for all aspects of building and construction.

    CIB W78, or work group 78, is one of the largest and most active working commissions ofCIB. The scope of W78’s work is broad, but its primary mission is to proactively encouragethe integration of Information and Communication Technologies (ICT) into a facility’s lifecycle. It achieves this goal by disseminating research and knowledge among an internationalcommunity of scholars and practitioners in a variety of means, most notably the annualinternational conference.

    vii

    [email protected]

  • Contents

    Part I Information Integration and Informatics

    1 Barriers of Automated BIM Use: Examining Factorsof Project Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Jason Lucas and Sai Sri Neeharika Vijayarao

    2 Simulation of Construction Processes as a Link Between BIM Modelsand Construction Progression On-site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Ector Oliveira, Cláudio Ferreira Júnior, and Fabiano Correa

    3 In Search of Sustainable Design Patterns: Combining Data Miningand Semantic Data Modelling on Disparate Building Data . . . . . . . . . . . . . 19Ekaterina Petrova, Pieter Pauwels, Kjeld Svidt, and Rasmus Lund Jensen

    4 The Role of Knowledge-Based Information on BIMfor Built Heritage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27C. K. Cogima, P. V. V. Paiva, E. Dezen-Kempter, M. A. G. Carvalho,and Lucio Soibelman

    5 Heritage Building Information Modelling (HBIM): A Reviewof Published Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Ian J. Ewart and Valentina Zuecco

    6 Next Generation of Transportation Infrastructure Management:Fusion of Intelligent Transportation Systems (ITS) and BridgeInformation Modeling (BrIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Alireza Adibfar and Aaron Costin

    7 Blockchain in the Construction Sector: A Socio-technical SystemsFramework for the Construction Industry. . . . . . . . . . . . . . . . . . . . . . . . . . . 51Jennifer Li, David Greenwood, and Mohamad Kassem

    8 Formalized Knowledge Representation to Support Integrated Planningof Highway Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Jojo France-Mensah and William J. O’Brien

    9 An Automated Layer Classification Method for Converting CADDrawings to 3D BIM Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Mengtian Yin, Zihao Ye, Llewellyn Tang, and Shuhong Li

    10 Defining Levels of Development for 4D Simulation of Major CapitalConstruction Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Michel Guevremont and Amin Hammad

    11 Modularized BIM Data Validation Framework Integrating VisualProgramming Language with LegalRuleML . . . . . . . . . . . . . . . . . . . . . . . . . 85Pedram Ghannad, Yong-Cheol Lee, Johannes Dimyadi, and Wawan Solihin

    ix

    [email protected]

  • 12 Coupling Between a Building Spatial Design Optimisation Toolboxand BouwConnect BIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Sjonnie Boonstra, Koen van der Blom, Hèrm Hofmeyer,Joost van den Buijs, and Michael T. M. Emmerich

    13 Reusability and Its Limitations of the Modules of Existing BIM DataExchange Requirements for New MVDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Yong-Cheol Lee, Pedram Ghannad, and Jin-Kook Lee

    14 Employment of Semantic Web Technologies for CapturingComprehensive Parametric Building Models . . . . . . . . . . . . . . . . . . . . . . . . . 111Farhad Sadeghineko, Bimal Kumar, and Warren Chan

    15 BIM Coordination Oriented to Facility Management . . . . . . . . . . . . . . . . . . 123Mónica Viviana Sierra-Aparicio, JoséLuis Ponz-Tienda,and Juan Pablo Romero-Cortés

    16 OpenBIM Based IVE Ontology: An Ontological Approach to ImproveInteroperability for Virtual Reality Applications. . . . . . . . . . . . . . . . . . . . . . 129Anne-Solene Dris, Francois Lehericey, Valerie Gouranton,and Bruno Arnaldi

    17 BIM and Through-Life Information Management: A SystemsEngineering Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Yu Chen and Julie Jupp

    18 A Lean Design Management Process Based on Planning the Levelof Detail in BIM-Based Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147Petteri Uusitalo, Olli Seppänen, Antti Peltokorpi, and Hylton Olivieri

    Part II Cyber-Human-Systems

    19 The BIMbot: A Cognitive Assistant in the BIM Room . . . . . . . . . . . . . . . . . 155Ivan Mutis, Adithya Ramachandran, and Marc Gil Martinez

    20 Perceived Productivity Effects of Mobile ICTin Construction Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165Abid Hasan, Kumar Neeraj Jha, Raufdeen Rameezdeen, SeungJun Ahn,and Bassam Baroudi

    21 Mobile EEG-Based Workers’ Stress Recognition by Applying DeepNeural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173Houtan Jebelli, Mohammad Mahdi Khalili, and SangHyun Lee

    22 Feasibility of Wearable Electromyography (EMG) to AssessConstruction Workers’ Muscle Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181Houtan Jebelli and SangHyun Lee

    23 Tacit Knowledge: How Can We Capture It?. . . . . . . . . . . . . . . . . . . . . . . . . 189Jacqueline Jepson, Konstantinos Kirytopoulos, and Nicholas Chileshe

    24 Inside the Collective Mind: Features Extraction to Support AutomatedDesign Space Explorations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199Lucian-Constantin Ungureanu and Timo Hartmann

    25 Detecting Falls-from-Height with Wearable Sensors and ReducingConsequences of Occupational Fall Accidents Leveraging IoT . . . . . . . . . . 207Onur Dogan and Asli Akcamete

    26 Using Augmented Reality to Facilitate Construction Site Activities . . . . . . . 215Serkan Kivrak and Gokhan Arslan

    x Contents

    [email protected]

  • 27 Semantic Frame-Based Information Extraction from Utility RegulatoryDocuments to Support Compliance Checking . . . . . . . . . . . . . . . . . . . . . . . . 223Xin Xu and Hubo Cai

    28 Ontology-Based Semantic Retrieval Method of Energy ConsumptionManagement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231Ya-Qi Xiao, Zhen-Zhong Hu, and Jia-Rui Lin

    29 Visualisation of Risk Information in BIM to Support Risk Mitigationand Communication: Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239Yang Zou, Lari Tuominen, Olli Seppänen, and Brian H. W. Guo

    30 Team Interactions in Digitally-Mediated Design Meetings . . . . . . . . . . . . . . 247Jacob Ofori-Darko, Dragana Nikolic, and Chris Harty

    31 User Perceptions of and Needs for Smart Home Technologyin South Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255Kelvin Bradfield and Chris Allen

    32 Seamless Integration of Multi-touch Table and Immersive VRfor Collaborative Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263Mattias Roupé, Mikael Johansson, Laura Maftei, Rikard Lundstedt,and Mikael Viklund-Tallgren

    33 Development and Usability Testing of a Panoramic Augmented RealityEnvironment for Fall Hazard Safety Training . . . . . . . . . . . . . . . . . . . . . . . 271R. Eiris Pereira, H. F. Moore, M. Gheisari, and B. Esmaeili

    34 The Negative Effects of Mobile ICT on Productivity in IndianConstruction Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281Abid Hasan, Kumar Neeraj Jha, Raufdeen Rameezdeen, SeungJun Ahn,and Bassam Baroudi

    35 Augmented Reality Combined with Location-Based ManagementSystem to Improve the Construction Process, Quality Controland Information Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289Julia Ratajczak, Alice Schweigkofler, Michael Riedl, and Dominik T. Matt

    36 Workflow in Virtual Reality Tool Development for AEC Industry . . . . . . . 297Lucky Agung Pratama and Carrie Sturts Dossick

    37 Implementation of Augmented Reality Throughout the Lifecycleof Construction Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307Fopefoluwa Bademosi and Raja R. A. Issa

    38 Challenges Around Integrating Collaborative Immersive Technologiesinto a Large Infrastructure Engineering Project . . . . . . . . . . . . . . . . . . . . . . 315Laura Maftei, Dragana Nikolic, and Jennifer Whyte

    Part III Computer Support in Design and Construction

    39 Cybersecurity Management Framework for a Cloud-Based BIMModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325Ivan Mutis and Anitha Paramashivam

    40 A System for Early Detection of Maintainability Issues Using BIM . . . . . . 335Bahadir Veli Barbarosoglu and David Arditi

    41 Towards Automated Analysis of Ambiguity in Modular ConstructionContract Documents (A Qualitative & Quantitative Study) . . . . . . . . . . . . . 343Ali Azghandi Roshnavand, Mazdak Nik-Bakht, and Sang H. Han

    Contents xi

    [email protected]

  • 42 Adopting Parametric Construction Analysis in IntegratedDesign Teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351Alireza Borhani, Carrie Sturts Dossick, Christopher Meek, Devin Kleiner,and John Haymaker

    43 Integrating BIM, Optimization and a Multi-criteria Decision-MakingMethod in Building Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359Elaheh Jalilzadehazhari and Peter Johansson

    44 A BIM-Based Decision Support System for Building Maintenance . . . . . . . 371Fulvio Re Cecconi, Nicola Moretti, Sebastiano Maltese,and Lavinia Chiara Tagliabue

    45 Structural Behavior Analysis and Optimization, Integrating MATLABwith Autodesk Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379Giulia Cerè, Wanqing Zhao, and Yacine Rezgui

    46 An Assessment of BIM-CAREM Against the Selected BIM CapabilityAssessment Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387Gokcen Yilmaz, Asli Akcamete, and Onur Demirors

    47 Towards a BIM-Agile Method in Architectural Design Assessmentof a Pedagogical Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397Henri-Jean Gless, Gilles Halin, and Damien Hanser

    48 A Generalized Adaptive Framework for Automating Design ReviewProcess: Technical Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405Nawari O. Nawari

    49 An Integrated Simulation-Based Methodology for Considering WeatherEffects on Formwork Removal Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415Robert Larsson

    50 Exploring Future Stakeholder Feedback on Performance-Based DesignAcross the Virtuality Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423Sooji Ha, Neda Mohammadi, L. Sena Soysal, John E. Taylor,Abigail Francisco, Sean Flanagan, and Semra Çomu Yapıcı

    51 A BIM Based Simulation Framework for Fire Evacuation Planning. . . . . . 431Qi Sun and Yelda Turkan

    52 Where Do We Look? An Eye-Tracking Study of ArchitecturalFeatures in Building Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439Zhengbo Zou and Semiha Ergan

    53 Developing a Framework of a Multi-objective and Multi-criteria BasedApproach for Integration of LCA-LCC and Dynamic Analysisin Industrialized Multi-storey Timber Construction . . . . . . . . . . . . . . . . . . . 447Hamid Movaffaghi and Ibrahim Yitmen

    54 Collective Decision-Making with 4D BIM: Collaboration GroupPersona Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455Veronika Bolshakova, Annie Guerriero, Hugo Carvalho, and Gilles Halin

    55 Post-occupancy Evaluation Parameters in Multi-objectiveOptimization–Based Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463Elie Daher, Sylvain Kubicki, and Annie Guerriero

    56 Social Paradigms in Contemporary Airport Design . . . . . . . . . . . . . . . . . . . 471Filippo Bosi, Maria Antonietta Esposito, and Arto Kiviniemi

    xii Contents

    [email protected]

  • 57 A Method for Facilitating 4D Modeling by Automating TaskInformation Generation and Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479Murat Altun and Asli Akcamete

    Part IV Intelligent Autonomous Systems

    58 An Autonomous Thermal Scanning System with Which to Obtain 3DThermal Models of Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489Antonio Adán, Samuel A. Prieto, Blanca Quintana, Tomás Prado,and Juan García

    59 Productivity Improvement in the Construction Industry: A Case Studyof Mechanization in Singapore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497Chea Zhiqiang, Gurumurthy Balasubramaniam, and Ruwini Edirisinghe

    60 Automated Building Information Models Reconstruction Using 2DMechanical Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505Chi Yon Cho, Xuesong Liu, and Burcu Akinci

    61 Architectural Symmetry Detection from 3D Urban Point Clouds:A Derivative-Free Optimization (DFO) Approach. . . . . . . . . . . . . . . . . . . . . 513Fan Xue, Ke Chen, and Weisheng Lu

    62 Sequential Pattern Analyses of Damages on Bridge Elementsfor Preventive Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521Kowoon Chang, Soram Lim, Seokho Chi, and Bon-Gang Hwang

    63 Sound Event Recognition-Based Classification Model for AutomatedEmergency Detection in Indoor Environment . . . . . . . . . . . . . . . . . . . . . . . . 529Kyungjun Min, Minhyuk Jung, Jinwoo Kim, and Seokho Chi

    64 Improved Window Detection in Facade Images . . . . . . . . . . . . . . . . . . . . . . 537Marcel Neuhausen and Markus König

    65 Path Planning of LiDAR-Equipped UAV for Bridge InspectionConsidering Potential Locations of Defects . . . . . . . . . . . . . . . . . . . . . . . . . . 545Neshat Bolourian and Amin Hammad

    66 Automatic Annotation of Web Images for Domain-SpecificCrack Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553Peter Cheng-Yang Liu and Nora El-Gohary

    67 A Machine Learning Approach for Compliance Checking-SpecificSemantic Role Labeling of Building Code Sentences . . . . . . . . . . . . . . . . . . 561Ruichuan Zhang and Nora El-Gohary

    68 Requirement Text Detection from Contract Packages to SupportProject Definition Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569Tuyen Le, Chau Le, H. David Jeong, Stephen B. Gilbert,and Evgeny Chukharev-Hudilainen

    69 In Search of Open and Practical Language-Driven BIM-BasedAutomated Rule Checking Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577Wawan Solihin, Johannes Dimyadi, and Yong-Cheol Lee

    70 Image-Based Localization for Facilitating Construction Field Reportingon Mobile Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585Youyi Feng and Mani Golparvar-Fard

    Contents xiii

    [email protected]

  • 71 Towards an Automated Asphalt Paving ConstructionInspection Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593Clyde Newcomer, Joshua Withrow, Roy E. Sturgill Jr., and Gabriel B. Dadi

    72 Computer Vision and Deep Learning for Real-Time PavementDistress Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601Kristina Doycheva, Christian Koch, and Markus König

    73 A Flight Simulator for Unmanned Aerial Vehicle Flights OverConstruction Job Sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609Hashem Izadi Moud, Mohamad A. Razkenari, Ian Flood, and Charles Kibert

    74 Bridge Inspection Using Bridge Information Modeling (BrIM)and Unmanned Aerial System (UAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617Yiye Xu and Yelda Turkan

    Part V Cyber-Physical-Systems

    75 Comparison Between Current Methods of Indoor Network Analysisfor Emergency Response Through BIM/CAD-GIS Integration . . . . . . . . . . 627Akram Mahdaviparsa and Tamera McCuen

    76 Instrumentation and Data Collection Methodology to EnhanceProductivity in Construction Sites Using Embedded Systemsand IoT Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637Alejandra M. Carmona, Ana I. Chaparro, Ricardo Velásquez,Juan Botero-Valencia, Luis Castano-Londono, David Marquez-Viloria,and Ana M. Mesa

    77 A Cyber-Physical Middleware Platform for Buildingsin Smart Cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645Balaji Kalluri, Clayton Miller, Bharath Seshadri, and Arno Schlueter

    78 A Framework for CPS-Based Real-Time Mobile Crane Operations . . . . . . 653Congwen Kan, Chimay J. Anumba, and John I. Messner

    79 Drive Towards Real-Time Reasoning of Building Performance:Development of a Live, Cloud-Based System. . . . . . . . . . . . . . . . . . . . . . . . . 661Ruwini Edirisinghe and Jin Woo

    80 Bayesian Network Modeling of Airport Runway Incursion OccurringProcesses for Predictive Accident Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 669Zhe Sun, Cheng Zhang, Pingbo Tang, Yuhao Wang, and Yongming Liu

    81 A Low-Cost System for Monitoring Tower Crane ProductivityCycles Combining Inertial Measurement Units, Load Cellsand Lora Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677Alejandra M. Carmona, Ana I. Chaparro, Susana Pardo, Ricardo Velásquez,Juan Botero-Valencia, Luis Castano-Londono, David Marquez-Viloria,Cristóbal Botero, and Ana M. Mesa

    82 The Interface Layer of a BIM-IoT Prototype for Energy ConsumptionMonitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685Fernanda Almeida Machado, Cassio Gião Dezotti, and Regina Coeli Ruschel

    83 Predicting Energy Consumption of Office Buildings: A Hybrid MachineLearning-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695Kadir Amasyali and Nora El-Gohary

    xiv Contents

    [email protected]

  • Part VI Computing and Innovations for Design Sustainable Buildingsand Infrastructure

    84 Thermal Performance Assessment of Curtain Walls of FullyOperational Buildings Using Infrared Thermography and UnmannedAerial Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703Ivan Mutis and Albert Ficapal Romero

    85 BIM and Lean-Business Process Reengineering for EnergyManagement Optimization of Existing Building Stock . . . . . . . . . . . . . . . . . 711Athanasios Chassiakos, Stylianos Karatzas, and Panagiotis Farmakis

    86 Geographic Information Systems (GIS) Based Visual AnalyticsFramework for Highway Project Performance Evaluation. . . . . . . . . . . . . . 719Chau Le, Tuyen Le, and H. David Jeong

    87 Usage of Interface Management in Adaptive Reuse of Buildings . . . . . . . . . 725Ekin Eray, Benjamin Sanchez, Seokyoung Kang, and Carl Haas

    88 Semantic Enrichment of As-is BIMs for Building Energy Simulation . . . . . 733Huaquan Ying, Hui Zhou, Qiuchen Lu, Sanghoon Lee, and Ying Hong

    89 Proof of Concept for a BIM-Based Material Passport . . . . . . . . . . . . . . . . . 741Iva Kovacic, Meliha Honic, and Helmut Rechberger

    90 Learning from Class-Imbalanced Bridge and Weather Datafor Supporting Bridge Deterioration Prediction . . . . . . . . . . . . . . . . . . . . . . 749Kaijian Liu and Nora El-Gohary

    91 Machine-Learning-Based Model for Supporting Energy PerformanceBenchmarking for Office Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757Lufan Wang and Nora M. El-Gohary

    92 Occupants Behavior-Based Design Study Using BIM-GIS Integration:An Alternative Design Approach for Architects . . . . . . . . . . . . . . . . . . . . . . 765Mahdi Afkhamiaghda, Akram Mahdaviparsa, Kereshmeh Afsari,and Tamera McCuen

    93 Standardization of Whole Life Cost Estimation for Early DesignDecision-Making Utilizing BIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773Mariangela Zanni, Tim Sharpe, Philipp Lammers, Leo Arnold,and James Pickard

    94 Data Model Centered Road Maintenance Support System UsingMobile Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781Satoshi Kubota

    95 Ontology-Based Semantic Modeling of Disaster Resilient ConstructionOperations: Towards a Knowledge-Based Decision Support System . . . . . . 789Sunil Dhakal and Lu Zhang

    96 A Methodology for Real-Time 3D Visualization of Asphalt ThermalBehaviour During Road Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797D. S. Makarov, F. Vahdatikhaki, S. R. Miller, and A. G. Dorée

    97 Eliminating Building and Construction Waste with Computer-AidedManufacturing and Prefabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805Gerard Finch and Guy Marriage

    Contents xv

    [email protected]

  • 98 A Methodological Proposal for Risk Analysis in the Constructionof Tunnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815Luis Guillermo Garzón Ospina, Astrid Johanna Bernal Rueda,Andrés Felipe Moggio Bessolo, and Jose Luis Ponz Tienda

    99 Technology Alternatives for Workplace Safety Risk Mitigationin Construction: Exploratory Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823Ali Karakhan, Yiye Xu, Chukwuma Nnaji, and Ola Alsaffar

    Part VII Education, Training, and Learning with Technologies

    100 BIM4VET, Towards BIM Training Recommendationfor AEC Professionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833Annie Guerriero, Sylvain Kubicki, V. Maquil, N. Mack, Yacine Rezgui, H. Li,S. Lamb, A. Bradley, and J.-P. Poli

    101 Teaching Effective Collaborative Information Deliveryand Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841Dragana Nikolic and Robert M. Leicht

    102 A Story of Online Construction Masters’ Project: Is an Active OnlineIndependent Study Course Possible? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849Gulbin Ozcan-Deniz

    103 Lessons Learned from a Multi-year Initiative to Integrate Data-DrivenDesign Using BIM into Undergraduate Architectural Education . . . . . . . . . 857J. Benner and J. J. McArthur

    104 Integrated and Collaborative Architectural Design: 10 Yearsof Experience Teaching BIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865João Alberto da Motta Gaspar, Regina Coeli Ruschel,and Evandro Ziggiatti Monteiro

    105 Toward a Roadmap for BIM Adoption and Implementationby Small-Sized Construction Companies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873Wylie Ferron and Yelda Turkan

    106 BIM Implementation in Mega Projects: Challenges and Enablersin the Istanbul Grand Airport (IGA) Project . . . . . . . . . . . . . . . . . . . . . . . . 881Basak Keskin, Beliz Ozorhon, and Ozan Koseoglu

    107 Virtual Learning for Workers in Robot DeployedConstruction Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889Soyoung Moon, Burcin Becerik-Gerber, and Lucio Soibelman

    108 Building Energy Modeling in Airport Architecture Design . . . . . . . . . . . . . 897Maria Antonietta Esposito and Alessandra Donato

    Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

    Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909

    xvi Contents

    [email protected]

  • Introduction

    A Vision for Research and Innovation in Informatics and Computing inCivil and Construction Engineering

    While we move into the first quarter of the twenty-first century, the practice of civil,construction, and building engineering embraces an incommensurable transformation in theway we deliver products, process data, and interact with agents and technology. Newparadigms focused on sustainable practices, and the effective use of data and information andcomputing technologies, and automation have framed the trends we see in research initiativesand fundamental problems in civil and construction engineering disciplines. The continuousexpansion of interdisciplinary work among computing, informatics, and construction and civilengineering merges perspectives to create integrated or hybrid methods of observing,dissecting and solving central problems and of integrating relevant theories. The 2018conference and this related publication is an effort to register diversity of thinking tounderstand a phenomenon, problem, dataset, or methods that enable value creation in practiceand expand the frontiers of new, integrated knowledge.

    We view the worldwide, open call for research initiatives as a survey of innovations andnovel approaches to phenomena and problems in computing and informatics in civil andconstruction engineering. The compilation is organized under seven concept clusters to alignthe contributions to the forefront of trends on investment for scientific research. The selectionin clusters was decided to better capture new advancements of knowledge within the focusareas. The conceptualization and focus were based mainly on reflections from visionarydocuments [1–3]. The focus areas cover the spectrum of aims of scientific questions and thefundamental aspects that advance understanding or solve problems. Within each area,evolving technology may transform activities and subsequently shape research practices in thecoming decade (Fig. 1).

    Ivan MutisTimo Hartmann

    xvii

    [email protected]

  • References

    1. National Science Foundation (NSF).: NSF’s 10 Big Ideas. (2018) Available: https://www.nsf.gov/news/special_reports/big_ideas/

    2. National Science Foundation (NSF).: Building the future investing in discovery and innovation. In: NationalScience Board, National Science Foundation (NSF), vol. NSF-18-45, Arlington, Virginia (2018)

    3. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: The next computing revolution. In:Design Automation Conference, pp. 731–736. (2010)

    Fig. 1 Conference topics clustered in focus areas

    xviii Introduction

    [email protected]

  • Part I

    Information Integration and Informatics

    [email protected]

  • 44A BIM-Based Decision Support Systemfor Building MaintenanceFulvio Re Cecconi , Nicola Moretti , Sebastiano Maltese ,and Lavinia Chiara Tagliabue

    AbstractAvailable data about asset condition and performances can be conveyed into different Key Performance Indicators (KPIs).Many KPIs measuring technical, functional and economic/financial asset performances can be found in literature.Nevertheless, they are often strictly related to a specific scope, thus they provide an incomplete depiction of the wholeassets performances. The objective of this research is to provide facility managers and asset owners with an easyinstrument to prioritize maintenance. In order to reduce costs related to its use, the instrument, developed in the form of aDecision Support System (DSS), is based on existing and reliable performances metrics and leverages new technologieslike Building Information Modelling (BIM). Accordingly, the Facility Condition Index (FCI) is combined with theD index, a KPI related to the age of building components, developed by the authors. The joint use of the FCI and theD index, allows facility managers to make more conscious decisions. The proposed DSS helps in the definition of the bestmaintenance plan, providing a ranking of building components which require more urgent maintenance interventions.Although the DSS should be tested measuring its ability to preserve buildings and their performances on a long term, thefirst results are positive, as confirmed by the application to a case study on an office building in Italy. Moreover, theusability of the instrument has been appreciated by the users in a medium size Italian company.

    KeywordsDSS ! Maintenance ! FCI ! Building condition assessment

    44.1 Introduction

    Management of building maintenance is one of the biggest challenges in Facility Management (FM) since in this sector,nowadays, most of the economic resources related to the construction industry are spent. Additionally, a more sustainablebuilt environment can be reached only by improving energy and environmental performances of physical assets optimizing,as instance, the maintenance choices [1].

    Despite the huge amount of data produced and recorded by new technologies during the whole lifecycle of a building,facility managers make decisions on maintenance with limited knowledge concerning buildings condition [1]. Available data

    F. Re Cecconi ! N. MorettiPolitecnico di Milano, 20133 Milan, Italye-mail: [email protected]

    N. Morettie-mail: [email protected]

    S. MalteseUniversity of Applied Sciences and Arts of Southern Switzerland, 6952 Canobbio, Switzerlande-mail: [email protected]

    L. C. Tagliabue (&)University of Brescia, Brescia, Italye-mail: [email protected]

    © Springer Nature Switzerland AG 2019I. Mutis and T. Hartmann (eds.), Advances in Informatics and Computing in Civil and Construction Engineering,https://doi.org/10.1007/978-3-030-00220-6_44

    371

    [email protected]

    http://orcid.org/0000-0001-7716-8854http://orcid.org/0000-0002-7197-8677http://orcid.org/0000-0002-1635-217Xhttp://orcid.org/0000-0002-3059-4204http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00220-6_44&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00220-6_44&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00220-6_44&domain=pdf

  • about asset condition and performances can be conveyed into different Key Performance Indicators (KPIs) [2]. Nevertheless,KPIs are often strictly related to a specific field, thus they provide an incomplete picture of the whole assets performances.

    The objective of this research is to provide facility managers and asset owners with an easy instrument to prioritizemaintenance, based on existing and reliable performance metrics and leveraging new technologies like Building InformationModelling (BIM). For this purpose, a Decision Support System (DSS) based on the Facility Condition Index (FCI) andservice life of building components has been developed. The DSS has been integrated within the Building InformationModelling (BIM) approach and a has been tested through a case study concerning an office building located in Erba, Italy.

    44.2 Background of the Research

    In this paragraph the background of the research is presented, stressing on the possibilities and advantages provided by theuse of an effective Decision Support System (DSS) for Operations Maintenance and Repair (OM&R) management.Moreover, potentialities and criticalities of the Facility Condition Index (FCI), one of the most acknowledged KPIs formaintenance management are presented.

    44.2.1 Decision Support Systems for Management of Buildings

    Decision Support Systems (DSS) are frequently used when dealing with the built environment [3, 4]. Their importance liesin the possibility of comparing multiple features, computed both through subjective and objective parameters and calculationmethods. DSS weaknesses generally include: the high influence of the weights used, the reliability of the parameterscalculated and their need for large amount of data to be gathered and elaborated in order to produce reliable results. Ingeneral, they should be used in the early project phases, although their precision is higher when more data are available(and less changes are possible).

    DSS can be based on several data processing techniques though, usually, they are all based on Multi-Criteria AnalysisTechniques, which allow data normalization, elaboration, comparison and eventually, alternatives’ ranking and selection.

    A robust method, frequently used in association with a DSS [5], is the Analytical Hierarchy Process (AHP), which allowsfor parameters weights calculation. The method was first proposed by the mathematician Saaty in the 80s [6] and isfrequently and successfully coupled with the Delphi method, no matter the topic, in order to enhance the quality of theweights calculated and achieving more precise results [7].

    Another issue to be faced in the development of a DSS concerns the connection with the data to be gathered, the less workneeds to be done, the faster will be the analysis, thus the connection with the BIM processes [8], can enhance a betterinformation flow.

    44.2.2 Facility Condition Index

    The Facility Condition Index (FCI) is a metric widely exploited for assessment of assets [3], thanks to its scalability from thesingle component to the whole real property [9, 10]. Therefore, it is a powerful tool which makes assets comparable inmeasures of maintenance performances. In its basic form it is used for evaluation of costs of deferred maintenance (DM),over the Current Replacement Value (CRV) of the component [11]. The FCI allows to quantify in a scale from 0 to 100(where 0 represents the best value) the condition of an asset based on the expense dedicated to maintenance operations [11].The assessment phase is a crucial issue for the calculation of the metric. Nevertheless, the calculation methodology can varyaccording to the objective to be achieved [12]. Moreover, a standardized definition of algorithms to be used cannot be foundin literature [13].

    The FCI is affected by some other issues. For instance, the ratio calculated through the indicator does not represent themagnitude of the DM interventions, since the output value is mainly influenced by the CRV. For this reason, the FCIcalculated for two similar components characterized by similar deferred maintenance interventions (with analogous cost),could be affected by substantial differences according to the value of the CRV. Accordingly, the FCI should be employedalong with other indicators and coefficient, able to balance the effect of the CRV and to grasp the strategic importance of acomponent [14, 15].

    372 F. Re Cecconi et al.

    [email protected]

  • 44.3 Research Methodology

    Building Information Modeling (BIM) can be considered the cornerstone of research in construction field in recent years [16,17] and it is widely acknowledged that asset owners will gain considerable advantages from a comprehensive AssetInformation Model (AIM) furthering the strategic framework for asset management [18]. The AIM, as defined in BSI PAS1192-3:2014 [19], is the foundation of the proposed research methodology that can be described by two main steps:

    1. the transition from the physical asset to the digital asset, namely the AIM;2. the maintenance operations prioritization through the DSS, reading data from the AIM.

    The first phase of the research (Fig. 44.1) consists in the creation of a template for the development of BIM models ofexisting buildings. The survey and the digitization of the building and its surroundings can be expensive issues [20], whichfrequently prevent the adoption of BIM processes for management of the built environment. Therefore, a BIM modelcharacterized by a low level of detail, which can be incrementally upgraded during operation, has been developed. Thischoice allowed to create a model with approximately one day of work, starting from as-built CAD drawings and carrying outa streamlined survey of the asset and its parts. The BIM template must be constantly updated, to automate some activitiesand to improve the quality of the output. The BIM model has been developed, using Autodesk Revit, connecting the buildingobjects to a specific phase of the management process, so to create a depiction of the asset status at a specific date. Themodel, intended as geometrical objects and information associated to them, can be considered the digital twin of the physicalasset and is used, in this case, for maintenance prioritization. This approach can ease the building maintenance operation,reaching higher levels of automation in maintenance management process [21].

    The data contained in the BIM model are associated with data coming from an external source, namely the maintenancecosts database (DB). The maintenance cost DB is based on the Uniclass II standard [22]. This classification system has beenused to define the minimum level of breakdown of the building, that would allow an effective association with maintenanceinterventions and costs. Costs of maintenance interventions and components’ replacement values have been definedemploying the Milan’s Municipal pricelist [23]. From a methodological point of view, this allows to define a standard set ofbuilding components associated with maintenance interventions and cost, though a case-by-case analysis has to be carriedout when the methodology is implemented.

    Once the standard maintenance cost DB is defined, the Building Condition Assessment (BCA) survey phase can start.Through the BCA campaign, deferred maintenance interventions as well as the related costs are identified. Survey results arestored in the BIM model created following the bespoke BIM template that allows an easy data extraction by the DSSDynamo script (phase 2).

    BIM Template

    Survey

    Digital asset

    Physical asset

    1 2 Dynamo script

    Thematic plans

    Prioritized maintenance

    list

    DSS

    BCAOptimization

    Algorithm

    Maintenance costs DB

    Fig. 44.1 Research schema

    44 A BIM-Based Decision Support System for Building Maintenance 373

    [email protected]

  • Among the information stored, the one related to building components’ service life are of primary importance for theprioritization algorithm. Reference Service Life data are stored in the IFC2X4 property set named Pset_ServiceLife. Thisproperty set was introduced with the version 4 of the (Industry Foundation Classes) IFC standard [24] as a replacement ofIfcServiceLife and is applicable to every IfcElement. For the purpose of this research, two are the property of thePset_ServiceLife used: ServiceLifeType and ServiceLifeDuration. The first one describes the type of value stored in theServiceLifeDuration property, it allows for 5 types of IfcPropertyEnumeratedValue and the only one used in this research is“REFERENCESERVICELIFE”, i.e. the typical service life that is quoted for an artefact under reference operating conditions[25]. The ServiceLifeDuration property contains the IfcDurationMeasure, namely the length or duration of a service life[25]. The actual service life is not stored in the model since it is calculated by the Dynamo script from the InstallationDatevalue provided by Construction Operations Building Information Exchange (COBie) [26] information.

    Once the data are available, it is possible to run the algorithm, obtaining two types of output: the list of prioritizedmaintenance operations and graphical representations, e.g. thematic plans and 3D views.

    44.4 DSS Development

    As stated in paragraph 44.2.2, FCI gives better results when combined with other KPIs for maintenance operationsprioritization. The developed DSS is based on a combination of two KPIs for each component, the FCI and the D index: ametric that measures the service life of the component. The D index is derived from D+ and D− indexes developed by Dejacoet al. [27]. Since only two parameters are used in the DSS, no weighting system has been used, therefore the AHP methodhas not been applied.

    The D+ and D− indexes cannot be used in their original form because the authors used respectively two differentcalculation methodologies, according to the age of the components, compared to the Reference Service Life (RSL).Moreover, although the two indexes are limited between 0 and 1, they work exactly the opposite way the FCI works, namelyhigher values indicate a higher performance. Thus, the D index employed in the DSS is computed with the same parametersdefined by Dejaco et al. [27] but in a slight different way: starting from 0 when the component is newly installed, the D indexincreases when the component gets old (see Eq. 44.1).

    D ¼aslrsl#

    12 if asl$ rsl

    12 # 1 þ

    asl& rslasl

    ! "if asl[ rsl

    #ð44:1Þ

    where

    • asl is the actual service life of the component, i.e. the time span from when the component has been installed or built,until now;

    • rsl is the reference service life of the component [28].

    Equation (44.1) shows how the D index is computed with two different equations according to the age of the component.When the actual service life of the component is lower than its reference service life, D ranges from 0 to 0.5 and is calculatedlikewise D+ by Dejaco et al. When component actual service life is bigger than the reference one, i.e. the component is tooold, D ranges from 0.5 to 1 and is computed similarly to D− by Dejaco et al. Noteworthy, in D index the value 1 is anasymptote, like it is 0 for D−. Figure 44.2 shows how the D index varies with the actual service life of a component that has areference service life of 25 years.

    The proposed DSS contributes in easing informed decision-making through a graph where on the X axes is plotted theFCI of the component and on the Y axes the respective D index. This kind of graph allows to identify three areas delimitedby two ellipses (Fig. 44.3):

    • the critical condition ellipse: is an ellipse with the major axis parallel to the Y axis and passing through two pointsC1(0.10, 0) and C2 (0, 0.50). Noteworthy, 0.10 is the FCI threshold for critical component (C1) and D = 0.50 means thatthe actual service life of the component is equal to its reference service life;

    • the poor condition ellipse: is an ellipse with the major axis parallel to the Y axis and passing through two points P1(0.05,0) and P2 (0, 0.25). It may be highlighted that 0.05 is the FCI threshold for poor component (P1) and D = 0.25 means thatthe actual service life of the component is half of its reference service life.

    374 F. Re Cecconi et al.

    [email protected]

  • Other important information given by the DSS is the distance of each point (representing a component’s condition) fromthe critical or poor ellipse. The bigger the distance the greater the need of maintenance of the component. Components incritical or poor condition are classified in 5 severity classes (Fig. 44.5), according to the distance from the boundary ellipse,either critical or poor. Decision makers can then focus maintenance budget for components that actually need more urgentlymaintenance.

    44.5 Application of the DSS

    To validate the proposed approach, a demonstration on an office building near Como (Italy) was carried out. The asset, builtin 2006, is currently occupied by a construction company and a notary firm. It consists of one underground and three storiesabove ground (around 1000 m2 of gross surface per story). According to the proposed methodology, the BCA has beencarried out and the maintenance cost DB has been developed and adapted to the building under analysis. Figure 44.3 showsthe condition of each component analyzed, highlighting that there are objects that may need maintenance even if their FCI islower than 5%, since they are close to their reference service life (D = 50%) or even above. Among these latter, some partsof the mechanical system are very well maintained (FCI = 0%) but too old (D > 50%).

    Structural components surveyed are characterized by a very good FCI (an average of 4.29%) and a very low D (around8%), since the building is quite new. Although, most of the components are in critical conditions, as can be seen in Fig. 44.4,and 30% of the analyzed elements are in poor condition. If the budget for maintenance is not enough to intervene on allcritical and poor components, the one on which resources should be spent can be identified by measuring the distance ofeach point from the boundary ellipse (Fig. 44.3).

    To help decision makers, the distances from the boundary ellipse of critical and poor components have been classifiedaccording to five severity classes. Figure 44.5a shows that most of the critical components are in the first severity class (theless critical) and only one component among the critical ones is in the most severe condition (Severity 5). Figure 44.5bshows that most of the poor components are in the intermediate class of severity (Severity 3) and none is in the most severeone (Severity 5).

    In Fig. 44.6 the BIM model of the case study is presented. Results computed through the DSS are stored in a customproperty set called “MaintPrior”. In Fig. 44.7 the property set filled with the values computed for the roof of the building isshown.

    0 10 20 30 40 50 60 700.0

    0.2

    0.4

    0.6

    0.8

    Service life

    DIn

    dex

    Fig. 44.2 Diagram of the D index for a component with RSL = 25 years

    44 A BIM-Based Decision Support System for Building Maintenance 375

    [email protected]

  • 44.6 Discussion and Conclusions

    Asset managers must often make decisions about maintenance and renewal alternatives based on sparse data concerning theactual assets’ condition [29] wasting, as a consequence, a huge amount of economic resources. Thus, a DSS easing theprioritization of maintenance operations has a great importance for asset owners. The proposed DSS, based on two KPIs,the FCI and the D index, classifies building components according to their need for maintenance interventions. The use ofthe D index helps in overcoming the limitations of the FCI. The proposed DSS has led to good results in the case study,although some drawbacks still have to be addressed. For instance, the method does not take into account the cultural orhistoric value of the asset, the asset owner’s peculiar requirements or necessities and the intended use of the building.Despite the limitations, the usability of the tools has been appreciated by the firms appointed for maintenance management of

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    80%

    90%

    0% 5% 10% 15% 20% 25% 30% 35%

    D

    FCIComponents Poor conditions limit Critical conditions limit

    Fig. 44.3 Components condition

    52%

    30%

    18%

    Critical Components Poor Components Good components

    Fig. 44.4 Percentage ofcomponents in critical, poor andgood condition

    376 F. Re Cecconi et al.

    [email protected]

  • the office building in Erba, Italy, on which the case study has been carried out, mainly because the DSS leveragessemi-automated BIM processes to save and retrieve data. The future research work will be focused on widening the scope ofthe DSS, through the integration of further KPIs according to specific clients’ needs and according to specific building types.Moreover, the DSS will be further integrated and automated within the BIM approach.

    (a) Critical Components (b) Poor Components

    29

    3

    0

    5

    10

    5

    10

    15

    20

    25

    30

    35

    Severity 1 Severity 2 Severity 3 Severity 4 Severity 5

    2

    5

    11

    3

    00

    2

    4

    6

    8

    10

    12

    Severity 1 Severity 2 Severity 3 Severity 4 Severity 5

    Fig. 44.5 Severity of the condition of components in critical (a) and poor (b) condition

    Fig. 44.6 BIM model of the case study

    Fig. 44.7 Custom property set

    44 A BIM-Based Decision Support System for Building Maintenance 377

    [email protected]

  • References

    1. Pärn, E.A., Edwards, D.J., Sing, M.C.P.: The building information modelling trajectory in facilities management: a review. Autom. Constr.75, 45–55 (2017)

    2. Lavy, S., Garcia, J.A., Dixit, M.K.: KPIs for facility’s performance assessment, Part II: identification of variables and deriving expressions forcore indicators. Facilities 32(5/6), 275–294 (2014)

    3. Kaklauskas, A., Zavadskas, E.K., Raslanas, S.: Multivariant design and multiple criteria analysis of building refurbishment. Energy Build. 37,361–372 (2005)

    4. Caccavelli, D., Gugerli, H.: TOBUS—a European diagnosis and decision-making tool for office building upgrading. Energy Build. 34,113–119 (2002)

    5. Wong, J.K.W., Li, H.: Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of intelligent buildingsystems. Build. Environ. 43, 108–125 (2008)

    6. Saaty, R.W.: The analytic hierarchy process—what it is and how it is used. Math. Model. 9(3–5), 161–176 (1987)7. Zhu, Q., Du Tina, J., Meng, F., Wu, K., Sun, X.: Using a Delphi method and the analytic hierarchy process to evaluate Chinese search

    engines: a case study on Chinese search engines. Online Inf. Rev. 35(6), 942–956 (2011)8. Jalaei, F., Jrade, A., Nassiri, M.: Integrating decision support system (DSS) and building information modeling (BIM) to optimize the

    selection of sustainable building components. J. Inf. Technol. Constr. (ITcon) 20(25), 399–420 (2015)9. Maltese, S., Dejaco, M.C., Re Cecconi, F.: Dynamic Facility Condition Index calculation for asset management. In: 14th International

    Conference on Durability of Building Materials and Components, 29–31 May 201710. U.S. Department of Defense U.S. Department of Defense. Available at: https://www.defense.gov/. Accessed 4 Feb. 201711. Rush, S.C.: Managing the facilities portfolio: a practical approach to institutional facility renewal and deferred maintenance. NACUBO (1991)12. U.S. Department of interior, Policy on Deferred Maintenance, Current Replacement Value and Facility Condition Index in Life-Cycle Cost

    Management (2008)13. Roberts, L.W.: Measuring school facility conditions: an illustration of the importance of purpose. J. Manuf. Technol. Manage. 20(5), 547–567

    (2009)14. U.S. Department of interior, Asset Priority Index Guidance (2005)15. Marzouk, M., Awad, E.: Establishing multi-level performance condition indices for public schools maintenance program using AHP and

    fuzzy logic. Stud. Inf. Control 25(3), 343–352 (2016)16. Bui, N., Merschbrock, C., Munkvold, B.E.: A review of building information modelling for construction in developing countries. Procedia

    Eng. 164, 487–494 (2016)17. Walasek, D., Barszcz, A.: Analysis of the adoption rate of building information modeling [BIM] and its return on investment [ROI]. Procedia

    Eng. 172, 1227–1234 (2017)18. Eastman, C., Teicholz, P., Sacks, R., Liston, K.: Chapter 12: BIM for owners and facility managers. In: BIM Handbook: A Guide to Building

    Information Modeling for Owners, Managers, Designers, Engineers, and Contractors, 1st ed., Wiley, Hoboken, pp. 93–147 (2008)19. The British Standards Institution, PAS 1192-3:2014. Specification for information management for the operational phase of assets using

    building information modelling (2014)20. Volk, R., Stengel, J., Schultmann, F.: Building Information Modeling (BIM) for existing buildings. Literature review and future needs.

    Autom. Constr. 38, 109–127 (2014)21. Chen, W., Chen, K., Cheng, J.C.P., Wang, Q., Gan, V.J.L.: Automation in construction BIM-based framework for automatic scheduling of

    facility maintenance work orders. Autom. Constr. 91(March), 15–30 (2018)22. The National Building Specification, Classification, https://toolkit.thenbs.com/articles/classification. Accessed April 201823. Comune di Milano, Listino Prezzi edizione 2018, http://www.comune.milano.it/wps/portal/ist/it/amministrazione/trasparente/OperePubbliche/

    listino_Prezzi/Edizione+201824. International Organization for Standardization, ISO/PRF 16739-1:2017, Industry Foundation Classes (IFC) for data sharing in the

    construction and facility management industries—Part 1: Data schema using EXPRESS schema definitions (2017)25. International Organization for Standardization, ISO 15686-4:2014, Building Construction—Service Life Planning—Part 4: Service Life

    Planning using Building Information Modelling (2014)26. The British Standards Institution, PAS 1192-4:2014 Collaborative production of information. Fulfilling employer’s information exchange

    requirements using COBie. Code of practice (2014)27. Dejaco, M.C., Cecconi, F.R., Maltese, S.: Key performance indicators for building condition assessment. J. Build. Eng. 9, 17–28 (2017)28. International Organization for Standardization, ISO 15686-1:2011 Buildings and constructed assets—Service life planning—Part 1: General

    principles and framework (2011)29. Vanier, D.J., Tesfamariam, S., Sadiq, R., Lounis, Z.: Decision models to prioritize maintenance and renewal alternatives, in Joint International

    Conference on Computing and Decision Making in Civil and Building Engineering, 2006, Montréal, Canada, pp. 2594–2603 (2006)

    378 F. Re Cecconi et al.

    [email protected]

    https://www.defense.gov/https://toolkit.thenbs.com/articles/classificationhttp://www.comune.milano.it/wps/portal/ist/it/amministrazione/trasparente/OperePubbliche/listino_Prezzi/Edizione%2b2018http://www.comune.milano.it/wps/portal/ist/it/amministrazione/trasparente/OperePubbliche/listino_Prezzi/Edizione%2b2018

    Letter from the EditorsAbout CIB and CIB W78IntroductionContentsPar7Sec2

    Information Integration and Informatics1 Barriers of Automated BIM Use: Examining Factors of Project DeliveryAbstract1.1 Introduction1.2 Phase 1: Reliability Model1.2.1 Findings from Phase 1

    1.3 Phase 2: Project Delivery and Trust1.3.1 Research Design1.3.2 Identifying Project Delivery Variables that Impact BIM Use1.3.3 Survey 11.3.4 Survey 2

    1.4 Findings and Observations1.5 ConclusionReferences

    2 Simulation of Construction Processes as a Link Between BIM Models and Construction Progression On-siteAbstract2.1 Introduction2.2 Background2.3 Methodology2.4 Proposed Framework for Integration of 4D BIM Models and Sensor Data of Construction Activity Progress2.5 Case Study: Masonry2.5.1 Simulation on Excel Spreadsheets2.5.2 ProModel Simulation2.5.3 Results

    2.6 ConclusionsAcknowledgementsReferences

    3 In Search of Sustainable Design Patterns: Combining Data Mining and Semantic Data Modelling on Disparate Building DataAbstract3.1 Introduction3.2 Data Analytics and Knowledge Discovery in the AEC Industry3.3 BIM and Semantic Representations of Building Data3.4 Combining Semantics and KDD to Enhance High-performance Design: Proposed System Architecture3.5 Use Case: Gigantium Cultural and Sports Center3.5.1 Capturing the Building Semantics Using a Semantic Graph3.5.2 Knowledge Discovery in Operational Building Data

    3.6 ConclusionAcknowledgementsReferences

    4 The Role of Knowledge-Based Information on BIM for Built HeritageAbstract4.1 Introduction4.2 State of Art4.3 Overview of the Approach4.4 Building the Knowledge-Based Information Model4.4.1 Case Study: The Oscar Niemeyer’s Ballroom in the Pampulha Modern Ensemble4.4.2 Non-geometric Data4.4.3 Geometric Data4.4.4 Modeling Through the Point Clouds4.4.5 Knowledge-Based

    4.5 Conclusions and Future WorksReferences

    5 Heritage Building Information Modelling (HBIM): A Review of Published Case StudiesAbstract5.1 Introduction: The Distinctive Nature of Heritage BIM5.1.1 Perspectives on BIM5.1.2 Understanding HBIM

    5.2 Methodology: A Case Study Database5.3 Analysis and Discussion5.3.1 Introduction5.3.2 Trends in the Uptake of HBIM5.3.3 The Stated Purpose of HBIM Systems5.3.4 Stakeholder Involvement and Responses

    5.4 ConclusionsReferences

    6 Next Generation of Transportation Infrastructure Management: Fusion of Intelligent Transportation Systems (ITS) and Bridge Information Modeling (BrIM)Abstract6.1 Introduction6.2 Methodology6.3 Overview of the Current Infrastructure6.4 Intelligent Transportation Systems (ITS)6.4.1 Components of ITS

    6.5 ITS-BrIM Fusion Data Framework6.6 ConclusionReferences

    7 Blockchain in the Construction Sector: A Socio-technical Systems Framework for the Construction IndustryAbstract7.1 Introduction7.2 Distributed Ledger Technology (DLT): Key Concepts7.3 Emergent Framework7.4 Methodology7.4.1 Socio-Technical Systems7.4.2 Systematic Literature Review7.4.3 Focus Group Discussion

    7.5 ConclusionsReferences

    8 Formalized Knowledge Representation to Support Integrated Planning of Highway ProjectsAbstract8.1 Introduction8.2 Background8.2.1 AEC/FM8.2.2 Transportation Infrastructure Management8.2.3 Research Gap

    8.3 Research Objective and Approach8.4 Proposed Ontology8.4.1 Highway Project8.4.2 Conflict Detection Process8.4.3 Inter-project Conflict

    8.5 Implementation and Validation8.5.1 Logical Consistency (Ontology Verification)8.5.2 Competency Evaluation

    8.6 ConclusionReferences

    9 An Automated Layer Classification Method for Converting CAD Drawings to 3D BIM ModelsAbstract9.1 Introduction9.2 Methodology9.3 Literature Review9.3.1 Architecture Drawing Standard9.3.2 Current Work on 3D Model Converting

    9.4 Automatic Layer Classification Method9.4.1 Layer Property in Construction Structural Drawings9.4.2 Overview of Automated Layer Classification Method9.4.3 Detailed Method to Classify Typical Layers9.4.3.1 Axis Text Layer9.4.3.2 Dimension Layer9.4.3.3 Window and Door Layer9.4.3.4 Wall Layer

    9.5 Performance Evaluation9.6 Value of Automated Layer Classification9.7 ConclusionReferences

    10 Defining Levels of Development for 4D Simulation of Major Capital Construction ProjectsAbstract10.1 Introduction10.2 Related Work10.3 Methodology10.4 Case Studies10.5 Summary and ConclusionsReferences

    11 Modularized BIM Data Validation Framework Integrating Visual Programming Language with LegalRuleMLAbstract11.1 Introduction11.2 Literature Review11.2.1 Formal Representation and Semantic Interoperability Using RuleML and LegalRuleML11.2.2 Graphical Scripting or Visual Programming Language in Rule Checking

    11.3 Methodology11.4 LegalRuleML and Visual Programming-Based Rule-Checking System11.4.1 The Human-Readable Layer and Machine-Computable Layer11.4.2 The Rule-Checking Layer

    11.5 Rule Classification and Parametrization11.5.1 Rules and LegalRuleML11.5.2 Rule Mapping in LegalRuleML

    11.6 Example Case Study11.7 Discussion and ConclusionReferences

    12 Coupling Between a Building Spatial Design Optimisation Toolbox and BouwConnect BIMAbstract12.1 Introduction12.1.1 Building Design Optimisation12.1.2 Optimisation and BIM12.1.3 Motivation

    12.2 Framework12.2.1 Optimisation Toolbox12.2.2 The BouwConnect BIM Environment12.2.3 Coupling

    12.3 Case Study12.3.1 Design Process12.3.2 Discussion

    12.4 Conclusion and OutlookAcknowledgementsReferences

    13 Reusability and Its Limitations of the Modules of Existing BIM Data Exchange Requirements for New MVDsAbstract13.1 Introduction13.2 Background13.3 Methodology13.3.1 A Modularized Concept13.3.2 A Concept in the IfcDoc Application13.3.3 Problems in Reusability of Concepts and MVDs for New MVD

    13.4 ConclusionReferences

    14 Employment of Semantic Web Technologies for Capturing Comprehensive Parametric Building ModelsAbstract14.1 Introduction14.2 Related Work14.3 Parametric Modelling Using Semantic Web Technologies14.3.1 Challenges and Limitations14.3.2 RDF as a Semantic Web Standard and Technology14.3.3 Data Aggregation and Processing14.3.4 Data Standardization and BIM Capture

    14.4 ConclusionsAcknowledgementsReferences

    15 BIM Coordination Oriented to Facility ManagementAbstract15.1 Introduction15.2 The State of the Art of BIM Project Coordination and Facility Management15.3 The Relationships in the Buildings Lifecycle15.4 The Inclusion of FM During the Project’s Life Cycle15.5 The FM Coordination Matrix15.6 Results15.7 Conclusions and Further ResearchAcknowledgementsReferences

    16 OpenBIM Based IVE Ontology: An Ontological Approach to Improve Interoperability for Virtual Reality ApplicationsAbstract16.1 Introduction16.1.1 AECO in France, a Sector Highly Exposed to Occupational Accidents16.1.2 Training, Essential Lever16.1.3 Goal

    16.2 Related Works16.2.1 Generate the Virtual World

    16.3 Proposed Solution and Results16.3.1 Interoperability of IFC into a Virtual Environment16.3.2 The Creation of Ontologies16.3.3 OpenBIM Based IVE Ontology—Model Used16.3.4 OpenBIM Based IVE Ontology—Generation and Evaluation16.3.5 OpenBIM Based IVE Ontology—Presentation16.3.6 OpenBIM Based IVE Ontology—Broadcasting16.3.7 Design of the Application

    16.4 Conclusion and Future WorksReferences

    17 BIM and Through-Life Information Management: A Systems Engineering PerspectiveAbstract17.1 Introduction17.2 Background17.3 Systems Engineering Management Activities and Enablers17.3.1 Systems Engineering Management Activities

    17.4 Systems Engineering Management Enablers17.5 Discussion17.6 ConclusionReferences

    18 A Lean Design Management Process Based on Planning the Level of Detail in BIM-Based DesignAbstract18.1 Introduction18.2 Background18.2.1 Lean Design Management18.2.2 Level of Detail in BIM-Based Design

    18.3 Method18.4 Current Design Management Processes and Challenges in Finland18.5 LDM Overall Process18.6 ConclusionReferences

    Cyber-Human-Systems19 The BIMbot: A Cognitive Assistant in the BIM RoomAbstract19.1 Introduction19.2 Related Work19.3 Methodology19.3.1 Pre-design Phase19.3.1.1 Conflicts/Interferences at the Pre-design Phase

    19.3.2 Cognitive Agent—BIMBot’s Architecture19.3.2.1 Corpus19.3.2.2 Neural Machine Translation - Generative Model19.3.2.3 Rules-Based Model19.3.2.4 Natural Language Processing(NLP) Engine

    19.4 Implementation and Experimentation19.4.1 Training19.4.2 Inferences (Results)

    19.5 Conclusion and Future WorkReferences

    20 Perceived Productivity Effects of Mobile ICT in Construction ProjectsAbstract20.1 Introduction20.2 Literature Review20.3 Research Methodology20.4 Results and Discussions20.4.1 Improved Communication and Information Flow20.4.2 Better Project Execution20.4.3 Improved Access to Data20.4.4 Proper Defect Management

    20.5 ConclusionAcknowledgementsReferences

    21 Mobile EEG-Based Workers’ Stress Recognition by Applying Deep Neural NetworkAbstract21.1 Introduction21.2 EEG-Based Stress Recognition by Applying Deep Learning21.2.1 EEG Signal Pre-processing: Artifacts Removal21.2.2 Fully Connected Deep Neural Network21.2.3 Deep Convolutional Neural Network

    21.3 Experimental Setting21.4 Results and Findings21.5 ConclusionAcknowledgementsReferences

    22 Feasibility of Wearable Electromyography (EMG) to Assess Construction Workers’ Muscle FatigueAbstract22.1 Introduction22.2 Surface EMG to Measure Workers’ Muscle Fatigue22.2.1 Artifacts Removal22.2.2 EMG-Based Metrics

    22.3 Experimental Setting22.4 Results and Findings22.5 ConclusionAcknowledgementsReferences

    23 Tacit Knowledge: How Can We Capture It?Abstract23.1 Introduction23.2 The Process of Knowledge Transfer23.2.1 Explicit Knowledge and Tacit Knowledge23.2.2 Knowledge Transfer23.2.3 The Construction Industry in Australia23.2.4 How Tacit Knowledge Can Be Transferred

    23.3 Research Method23.4 Research Findings and Discussion23.5 ConclusionsReferences

    24 Inside the Collective Mind: Features Extraction to Support Automated Design Space ExplorationsAbstract24.1 Introduction24.2 Human-Computer Interaction Through Natural Language24.3 Research Method24.4 Design Conversation Analysis: Results and Discussions24.4.1 Quantitative Analysis24.4.2 Qualitative Analysis

    24.5 ConclusionsReferences

    25 Detecting Falls-from-Height with Wearable Sensors and Reducing Consequences of Occupational Fall Accidents Leveraging IoTAbstract25.1 Introduction25.2 Objective and Scope25.3 Background Review25.3.1 Technology25.3.2 Safety Related Technology Based Studies in Construction

    25.4 Detection of Occupational Falls25.4.1 Proposed System25.4.2 Implementation of the System25.4.3 Test Results

    25.5 ConclusionsReferences

    26 Using Augmented Reality to Facilitate Construction Site ActivitiesAbstract26.1 Introduction26.2 Augmented Reality in Construction26.3 Method26.4 System Development26.5 ConclusionsAcknowledgementsReferences

    27 Semantic Frame-Based Information Extraction from Utility Regulatory Documents to Support Compliance CheckingAbstract27.1 Introduction27.2 Methodology27.2.1 Semantic Framework and Semantic Frames27.2.2 Preprocessing27.2.3 Syntactic Analysis27.2.4 Semantic Analysis27.2.5 Information Element Mapping

    27.3 ConclusionReferences

    28 Ontology-Based Semantic Retrieval Method of Energy Consumption ManagementAbstract28.1 Introduction28.2 Existing Researches28.3 An Integrated BIM System to Query Sensor Data Based on Ontological Knowledge28.3.1 Building Energy Management Specific Ontology Development28.3.2 The Integration of BIM and Monitoring Data28.3.3 SWRL Generation for Energy Analysis

    28.4 Energy Analysis Through Ontology Query28.5 ConclusionsAcknowledgementsReferences

    29 Visualisation of Risk Information in BIM to Support Risk Mitigation and Communication: Case StudiesAbstract29.1 Introduction29.2 Literature Review29.2.1 BIM-Based Risk Management Research29.2.2 Highlighting Risks in 3D BIM29.2.3 Promoting Risk Visualisation in 4D BIM

    29.3 Method and Case Studies29.3.1 The Proposed Linkage Approach29.3.2 Case Study 1: Managing Risks in 3D Highway BIM29.3.3 Case Study 2: Visualising Risks in 4D Steel Bridge BIM

    29.4 Discussion and ConclusionAcknowledgementsReferences

    30 Team Interactions in Digitally-Mediated Design MeetingsAbstract30.1 Introduction30.2 Background30.2.1 Team Interaction30.2.2 Mediated Team Interactions in AEC

    30.3 Methodology30.3.1 Research Design30.3.2 Results30.3.3 Conclusion

    References

    31 User Perceptions of and Needs for Smart Home Technology in South AfricaAbstract31.1 Introduction31.2 Background31.2.1 Energy Consumption Monitoring31.2.2 Energy Consumption Awareness31.2.3 Energy Inefficiencies in Current Homes31.2.4 Knowledge as a Barrier for Better Home Management Through Technology31.2.5 Energy Savings from Smart Home Technology31.2.6 Privacy and Security Concerns Relating to Smart Homes

    31.3 Methodology31.4 Findings31.5 Conclusions and Recommendations31.5.1 Conclusions31.5.2 Recommendations

    References

    32 Seamless Integration of Multi-touch Table and Immersive VR for Collaborative DesignAbstract32.1 Introduction32.1.1 Related Work

    32.2 The System32.2.1 Multi-touch Table and Big Screen Display32.2.2 VR-System

    32.3 The Study32.3.1 Method

    32.4 Result and Discussion32.4.1 Support Better Understanding and Communication32.4.2 Support Better Creativity, Collaboration and Participation32.4.3 Support for Different Design Spaces

    32.5 ConclusionsReferences

    33 Development and Usability Testing of a Panoramic Augmented Reality Environment for Fall Hazard Safety TrainingAbstract33.1 Introduction33.2 Methodology33.2.1 Panoramic Augmented Reality Platform Development33.2.2 Fall Hazards Augmentations33.2.3 Usability Testing

    33.3 Results and Discussion33.3.1 Participants33.3.2 Hazard Identification Index33.3.3 Platform Usability33.3.4 Lessons Learned

    33.4 Conclusion and Further WorkAcknowledgementsReferences

    34 The Negative Effects of Mobile ICT on Productivity in Indian Construction ProjectsAbstract34.1 Introduction34.2 Literature Review34.3 Research Methodology34.4 Results and Discussions34.4.1 Pressure to Remain Accessible Outside the Work Hours34.4.2 Temptation to Check It Frequently34.4.3 Adverse Effects on Work-Life Balance34.4.4 Compulsion to Work Outside the Normal Work Hours34.4.5 Massive Amount of Information34.4.6 Distraction34.4.7 Less Time to Respond to Changes34.4.8 Loss of Productive Time due to Personal Internet Usage34.4.9 Adverse Effects on Health of the Users34.4.10 Frequent Drawing Changes

    34.5 ConclusionAcknowledgementsReferences

    35 Augmented Reality Combined with Location-Based Management System to Improve the Construction Process, Quality Control and Information FlowAbstract35.1 Introduction35.2 Background35.3 Proposed Solution35.3.1 Concept of the AR4Construction Application35.3.2 AR4Construction: System Architecture35.3.3 Integration of BIM and Scheduling Data in AR4C35.3.4 AR4C Functionalities35.3.5 Testing and Validation

    35.4 ConclusionAcknowledgementsReferences

    36 Workflow in Virtual Reality Tool Development for AEC IndustryAbstract36.1 Introduction36.2 Background36.2.1 Organizational Structure in Developing Virtual Reality Content36.2.2 Asset Creation and Optimization in Virtual Reality36.2.3 Assets Optimization for Virtual Reality36.2.4 Related Studies

    36.3 Research Methodology36.3.1 Study Population36.3.2 Interview Questions

    36.4 Interview Results36.4.1 Organizational Structures in Content Development36.4.2 Technical Aspects36.4.3 Optimization Approach Taken by AEC Firms36.4.4 Challenges in Assets Conversion

    36.5 The Workflow36.6 Conclusion and SuggestionsReferences

    37 Implementation of Augmented Reality Throughout the Lifecycle of Construction ProjectsAbstract37.1 Introduction37.2 Augmented Reality37.2.1 Defining Augmented Reality37.2.2 AR Systems and Enabling Technologies

    37.3 Review Methodology37.4 Augmented Reality Applications in the Project Lifecycle37.4.1 AR and Conceptual Planning37.4.2 AR and Design and Preconstruction37.4.3 AR and Construction37.4.4 AR and Operation and Maintenance

    37.5 Benefits of AR Implementation37.6 Challenges to AR Implementation37.7 Conclusions37.8 Recommendations for Future StudyReferences

    38 Challenges Around Integrating Collaborative Immersive Technologies into a Large Infrastructure Engineering ProjectAbstract38.1 Introduction38.1.1 Organizational Context for Innovation38.1.2 Collaborative Virtual Reality in Construction Practice38.1.3 Technology Frames as a Theoretical Lens

    38.2 Methods38.3 Findings38.3.1 Nature of Technology38.3.2 Technology Strategy38.3.3 Technology in Use

    38.4 Discussion and ConclusionsAcknowledgementsReferences

    Computer Support in Design and Construction39 Cybersecurity Management Framework for a Cloud-Based BIM ModelAbstract39.1 Introduction39.2 Related Studies39.2.1 Building Information Modelling (BIM) Outline39.2.2 Overview of Cloud Computing39.2.2.1 Various Types of Cloud Models

    39.3 Cloud-Based BIM Framework Development39.4 Prototype Implementation39.4.1 Security Challenges in Cloud Computing39.4.2 Cloud-BIM Framework Architecture

    39.5 Experimentation39.6 ConclusionReferences

    40 A System for Early Detection of Maintainability Issues Using BIMAbstract40.1 Introduction40.1.1 Research Problem40.1.2 Research Objective

    40.2 Background40.2.1 Physical Design Characteristics Related to Maintainability40.2.2 Fragmented Structure of Building Design40.2.3 Understanding the Cost Effect of Maintainability Issues40.2.4 Implementation of Maintainability in the Design Phase

    40.3 Proposed System40.4 ConclusionReferences

    41 Towards Automated Analysis of Ambiguity in Modular Construction Contract Documents (A Qualitative & Quantitative Study)Abstract41.1 Introduction41.2 Methodology41.3 Results41.4 ConclusionReferences

    42 Adopting Parametric Construction Analysis in Integrated Design TeamsAbstract42.1 Introduction42.1.1 Motivations for Integrated Design Studio Program42.1.2 Definition of Parametric Design Approach42.1.3 Selected Building Design Project’s Background

    42.2 Methodology42.2.1 Structure of the Integrated Design Team42.2.2 Standard Workflow for the Integrated Studio Program42.2.3 Project Evaluation Framework

    42.3 Provided Tools and Methods42.3.1 Architectural Analysis42.3.2 Construction Analysis42.3.3 Data Visualization

    42.4 ConclusionReferences

    43 Integrating BIM, Optimization and a Multi-criteria Decision-Making Method in Building Design ProcessAbstract43.1 Introduction43.2 Methodology43.2.1 BIM43.2.2 Preparing the BIM Model for Performing an Optimization43.2.3 Optimization and MCDM

    43.3 Results43.4 ConclusionsAcknowledgementsAppendix 1Appendix 2References

    44 A BIM-Based Decision Support System for Building MaintenanceAbstract44.1 Introduction44.2 Background of the Research44.2.1 Decision Support Systems for Management of Buildings44.2.2 Facility Condition Index

    44.3 Research Methodology44.4 DSS Development44.5 Application of the DSS44.6 Discussion and ConclusionsReferences

    45 Structural Behavior Analysis and Optimization, Integrating MATLAB with Autodesk RobotAbstract45.1 Introduction45.2 Methodology45.2.1 Methodology Overview45.2.2 Integration Between Robot API and MATLAB

    45.3 Case Study45.4 ConclusionReferences

    46 An Assessment of BIM-CAREM Against the Selected BIM Capability Assessment ModelsAbstract46.1 Introduction46.2 BIM Capability and Maturity Assessment Models46.2.1 Bim-Carem46.2.2 Assessment Models Used in the Comparison46.2.3 Comparison of the Models

    46.3 Evaluation Using Case Study Data46.4 ConclusionsReferences

    47 Towards a BIM-Agile Method in Architectural Design Assessment of a Pedagogical ExperimentAbstract47.1 Introduction47.2 A Sector in Transition Without Changes in Management47.2.1 France at the Heart of Digital Change47.2.2 Emerging Project Management Practices

    47.3 BIM Technology Needs Agile Practices47.3.1 BIM Technology Brings Complexity47.3.2 A Need for Elicitation, Refinement and Evaluation47.3.3 Agility as a Coordination Vector

    47.4 Agile Practices Identification and Adaptation47.4.1 Design Matrix: Writing Down Intentions47.4.2 Micro Poker: Put Everybody on the Same Page47.4.3 Stand-up Meeting: Taking Stock47.4.4 A BIM-Agile Coach to Oversee the Workshop

    47.5 The Four Practices in Experimentation47.5.1 Design and Digital Manufacturing Workshop47.5.2 A Protocol for One Semester47.5.3 Observations During the Workshop47.5.4 The Survey Results

    47.6 Conclusion and Opening on Professional ExperimentsReferences

    48 A Generalized Adaptive Framework for Automating Design Review Process: Technical PrinciplesAbstract48.1 Introduction48.2 Statement of Contribution48.3 Goals and Objectives48.4 Methodology48.4.1 Theoretical Framework48.4.2 Transformation Reasoning Algorithm (TRA)

    48.5 ConclusionsReferences

    49 An Integrated Simulation-Based Methodology for Considering Weather Effects on Formwork Removal TimesAbstract49.1 Introduction49.2 Research Approach49.3 Concrete Curing and Formwork Removal49.3.1 Concrete Wall Construction49.3.2 Concrete Curing49.3.3 Measures to Shield Concrete Curing Against Cold Weather49.3.4 Simulation of Formwork Removal Times

    49.4 Discrete-Event Simulation Model49.5 Simulation Experiments49.5.1 Construction Project, Curing Strategies and Weather Statistics49.5.2 Design of Experiments49.5.3 Results

    49.6 DiscussionReferences

    50 Exploring Future Stakeholder Feedback on Performance-Based Design Across the Virtuality ContinuumAbstract50.1 Introduction50.2 Visualization Across the Virtuality Continuum50.3 Methods50.3.1 Kendeda Building for Innovative and Sustainable Design at Georgia Tech50.3.2 Research Design and Hypotheses

    50.4 Results50.5 Discussion50.6 ConclusionReferences

    51 A BIM Based Simulation Framework for Fire Evacuation PlanningAbstract51.1 Introduction51.1.1 Background and Motivation

    51.2 Literature Review51.2.1 Simulation Technologies51.2.2 Critical Factors Affecting the Evacuation Time51.2.3 Related Works on Fire Evacuation Design

    51.3 Research Methodology and Implementation51.3.1 Fire Simulation Design51.3.2 Evacuation Simulation Design

    51.4 Preliminary Results51.4.1 Simulation Results51.4.2 Application of Simulation Results

    51.5 Conclusions and Future WorkReferences

    52 Where Do We Look? An Eye-Tracking Study of Architectural Features in Building DesignAbstract52.1 Introduction52.2 Background52.2.1 Eye-Tracking Applications52.2.2 Eye-Tracking Metrics

    52.3 Method52.4 Result and Discussion52.5 Conclusion and Future WorkReferences

    53 Developing a Framework of a Multi-objective and Multi-criteria Based Approach for Integration of LCA-LCC and Dynamic Analysis in Industrialized Multi-storey Timber ConstructionAbstract53.1 Introduction53.2 Background53.2.1 Life Cycle Assessment and Life Cycle Costing53.2.2 Dynamic Analysis of Timber Floor System53.2.3 Analytical Network Process

    53.3 Developing a Multi-objective and Multi-criteria Based Integrated Framework of LCA-LCC for Industrialized Timber Structures53.3.1 Structural Design and Finite Element Models53.3.1.1 Model 153.3.1.2 Model 2

    53.3.2 Life Cycle Assessment53.3.2.1 Definition of Goal and Scope53.3.2.2 Life Cycle Inventory Analysis53.3.2.3 ANP Model for LCC in Industrialized Timber Construction53.3.2.4 Environmental Impact Assessment53.3.2.5 Economic Impact Assessment

    53.4 Discussion53.5 ConclusionsAcknowledgementsReferences

    54 Collective Decision-Making with 4D BIM: Collaboration Group Persona StudyAbstract54.1 Introduction54.2 4D Collective Decision-Making Support Development Steps54.2.1 4D Collab Project Research Stages54.2.2 Digital Interactive Interfaces for 4D BIM Collaborative Context

    54.3 AEC Project Collaboration, Decision-Making and 4D BIM Uses54.3.1 AEC Project Collaboration54.3.2 AEC Project Decision-Making54.3.3 AEC Project Lifecycle and 4D BIM Uses

    54.4 Designing a Collective Decision-Making Support for 4D BIM54.4.1 AEC Project Collaboration Groups and Decision-Making54.4.2 4D BIM Uses AEC Project Collaboration Groups54.4.3 Collaboration Personas Approach54.4.4 Design Methodology of Collaboration Personae Proposition54.4.5 4D BIM Uses and Collaboration Persona Study

    54.5 ConclusionAcknowledgementsReferences

    55 Post-occupancy Evaluation Parameters in Multi-objective Optimization–Based Design ProcessAbstract55.1 Post-occupancy Evaluation Research55.1.1 Definition and State of the Art55.1.2 Benefits of POE55.1.3 POE and Digitalization

    55.2 Parametric Modelling Design Approach55.3 Research Objective, Hypothesis and Research Methodology55.3.1 Research Objectives55.3.2 Hypothesis55.3.3 Research Methodology

    55.4 Proposed Conceptual Framework55.4.1 A Conceptual Framework for Including the POE into a Parametric Approach55.4.2 Application to POE-Based Floorplan Layout Design55.4.3 First Prototype Implementing the Approach55.4.4 Second Prototype

    55.5 Validation55.6 Discussion and ConclusionAcknowledgementsReferences

    56 Social Paradigms in Contemporary Airport DesignAbstract56.1 Background56.1.1 Capacity Challenge56.1.2 Service Quality Challenge56.1.3 The Role of the Architect as a Social Mediator in Design

    56.2 State of the Art of Aviation Industry Design56.2.1 Lean in Project Design Management

    56.3 The Role of Virtual Design and Construction Technologies56.4 Methodology56.4.1 Development of the Innovative Methodology Model

    56.5 ConclusionsReferences

    57 A Method for Facilitating 4D Modeling by Automating Task Information Generation and MappingAbstract57.1 Introduction and Background57.2 Methodology57.2.1 4D Modeling Process57.2.2 A Method for Facilitating 4D Modeling Process

    57.3 Test Case: 4D Modeling with Autodesk Office Building Example57.4 Discussion and ConclusionReferences

    Intelligent Autonomous Systems58 An Autonomous Thermal Scanning System with Which to Obtain 3D Thermal Models of BuildingsAbstract58.1 Introduction: A Brief State of the Art58.2 An Overview of the Autonomous Thermal Scanner System58.3 Obtaining a 360-Thermal Point Cloud58.3.1 Obtaining a Single 3D Thermal Shot58.3.2 360-Thermal Point Cloud from a Position of the Robot

    58.4 Autonomous Thermal Scanning58.4.1 3D Data Processing to Find the Next Thermal Scan58.4.2 Robot Navigation and Integrated 3D Thermal Model

    58.5 Experimental Test58.6 ConclusionsAcknowledgementsReferences

    59 Productivity Improvement in the Construction Industry: A Case Study of Mechanization in SingaporeAbstract59.1 Introduction59.2 Background59.2.1 Mechanization to Improve Productivity59.2.2 Singapore Initiatives

    59.3 Methodology59.4 Data Analysis and Results59.5 Discussion and Recommendations59.6 ConclusionsReferences

    60 Automated Building Information Models Reconstruction Using 2D Mechanical DrawingsAbstract60.1 Introduction60.2 Method60.2.1 Background Research60.2.2 Challenges60.2.3 Available Information by Mechanical Components60.2.4 Relationship Between Symbols and the Surrounding Parts60.2.5 Rules for Reasoning the Relationship

    60.3 Results60.3.1 Vision of the Framework60.3.2 Prototype Implementation

    60.4 ConclusionReferences

    61 Architectural Symmetry Detection from 3D Urban Point Clouds: A Derivative-Free Optimization (DFO) ApproachAbstract61.1 Introduction61.2 Background61.2.1 Symmetry61.2.2 Symmetry Detection Methods

    61.3 Methodology61.4 Experimental Results on a Pilot Case61.5 ConclusionAcknowledgementsReferences

    62 Sequential Pattern Analyses of Damages on Bridge Elements for Preventive MaintenanceAbstract62.1 Introduction62.2 Research Methodology62.2.1 Data Collection62.2.2 Data Preprocessing62.2.3 Cluster Analysis62.2.4 Sequential Pattern Mining

    62.3 Preliminary Test62.4 ConclusionsAcknowledgementsReferences

    63 Sound Event Recognition-Based Classification Model for Automated Emergency Detection in Indoor EnvironmentAbstract63.1 Introduction63.2 Preliminary Study63.2.1 Sound Types of Indoor Emergencies63.2.2 Sound Event Recognition

    63.3 Research Framework63.3.1 Preprocessing63.3.2 Feature Extraction63.3.3 Model Development63.3.4 Evaluation

    63.4 Experiment and Result63.4.1 Data Collection63.4.2 Experiment Setup63.4.3 Results