72
Advanced Power Systems Advanced Power Systems November 4, 2010, Rev 1

Advanced Power Systems - PSPEIntegral HRM shown in photo) ... Source: US EPA and US DOE,,pgp see notes page for specific references. ... – BMS Interface

  • Upload
    lethuan

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Advanced Power SystemsAdvanced Power Systems 

November 4, 2010, Rev 1

Syracuse UniversitySyracuse UniversityTurbine Powered

Data Center

David R. Blair, P.E.David R. Blair, P.E.November 4, 2010

Serious Growth in Data Center Energy Requirements

Data centers in the U.S. consume over 62 billion kWh annually.annually.Annual energy cost exceeds 4.5 billion dollars.If current trends continue that usage could double byIf current trends continue that usage could double by 2012. Data centers consume 30 times more power per p psquare foot than a standard office building.

This could lead to

Energy Use Expected to Double 

This could lead to…Increased energy costs for business and governmentIncreased emissions including greenhouse gasesIncreased emissions, including greenhouse gases, from electricity generation Increased strain on the existing power grid to meet the increased electricity demand, resulting in:

BlackoutsBBrownoutsRolling Blackouts

Increased capital costs for expansion of data centerIncreased capital costs for expansion of data center capacity and construction of new data centers. 

Data Center Energy Use

PUE = 2 = Total PowerPUE = 2 = IT Equipment Power

27%

50%

Facility Cooling

Other

IT Equipment

23%

IT Equipment

Tri‐Generation Strategy (CCHP)

Electricity

Natural Gas

Heating

Cooling

Tri Gen Strategy…on‐site produced power that is:

• Reliable

p p

Reliable

• Energy Efficient

O ti l• Operational

• Environmentally Friendly

ReliabilityReliability

Mi i C iti l A li tiMission Critical Applications

Information TechnologyCommunicationTransportationDefense 

For Mission Critical the Electric Grid:

• Is Not Reliable Enough

• Is Vulnerable– Storms

– Equipment FailureEquipment Failure

– Terrorist Attack

• Requires Back up Solutions• Requires Back‐up Solutions

• Has Environmental Issues

Traditional Back‐up Solution

• Double Conversion UPS

• BatteriesBatteries

• Stand‐by Generator

Traditional Solution

Optional UPS or

MainSwitch

Utility

TransferSwitch

Mission Critical Load

Rectifier

Non-CriticalLoad

Gas Turbines

Battery

• Continuous power by Grid

Battery

• Continuous power by Grid 

• Stand‐Generator is stopped

• Upon loss of grid power, UPS carries load up to capacity limits of storage battery

d• Stand‐By Generator auto starts

• Transfer switch moves to Stand‐By power position

• UPS rides through mode transition

T i G ti S l ti

• Tri generation advantage

Tri Generation Solution

• Tri generation advantage

• Continuous on‐site power

• Grid is redundant power

• Optionsp– Traditional UPS

– Hybrid UPSHybrid UPS

• Other thoughts

Continuous On‐Site Power

Electricity

Natural Gas

Heating

Cooling

Continuous On‐Site Power

Optional UPS or

MainSwitch

IsolationSwitch

Gas Turbines

Mission Critical Load

DMC

UPS or Rectifier

Non-CriticalLoad

Battery

Utility

• Continuous power by Grid and Turbines 

• Turbines operating in grid connected mode

Critical LoadLoad

Battery

Turbines operating in grid connected mode

• Turbines follow UL1741 Protocol

• Upon loss of grid power, turbines auto stop, and then auto re‐start in stand alone mode 

• DMC provides automatic isolation

• UPS rides through mode transition

Hybrid UPS

MainSwitch

Capstone “patented”

Hybrid UPS Turbines

Critical BusUtility Bus

Mission Non-Critical

Utilityy

Critical LoadLoad

Battery

• Standard UPS Mode with Turbines stopped

• Turbines operating in efficiency mode

• Turbines operating in emergency modeTurbines operating in emergency mode

• Upon loss of grid power, turbines auto start

• Mission Critical Load is powered at all times and isolated from grid disturbance

Capstone Hybrid UPS Turbine

Data Center

Utility Service Bus

Mission Critical

Efficiency Mode –

Turbine is operatingTurbine is operating

17

Capstone Hybrid UPS Turbine

UPS Mode = Conventional Double Conversion UPS

Utility Service Bus

Data CenterData CenterMission Critical

UPS Mode –

T bi i OFFTurbine is OFF

18

Capstone Hybrid UPS Turbine

Utility Service Bus

Data CenterMission Critical

Emergency Mode –Turbine is operatingTurbine is operating

PROPRIETARY AND CONFIDENTIAL BHP Energy Solutions, Ltd19

Energy EfficiencyEnergy Efficiency

Consider l l d bElectric Power supplied by 

the Gridthe Grid

Electric power supplied by the gridElectric power supplied by the grid is 30% efficient at point of use

Useable Thermal Energy is not delivered

100

Useable Thermal Energy is not delivered to consumer

INPU

T10

0% ELECTRICALOUTPUT 29 7%

USEFUL ENERGY74.2%

INPU

T10

0% ELECTRICALOUTPUT 29 7%

USEFUL ENERGY74.2%

100 Units

LOSSES25.8%

OUTPUT 29.7%

LOSSES25.8%

OUTPUT 29.7%

35 Units

OTHER LOSSES 4.8% EXHAUST

LOSSES 21%THERMALOUTPUT

44.5%

OTHER LOSSES 4.8% EXHAUST

LOSSES 21%THERMALOUTPUT

44.5%30 UnitsDelivered

Heat Recovery Reduces Primary Energy Usage185 kW

Useful Energy

120 kW Heat

65 kW Electric

185 kW185 kW Useful Energy

185 kW Useful Energy

39 kW Losses

161 kW Losses

CHP224 kW of Fuel

Traditional Approach346 kW of Fuel

‐‐33% Reduction in Primary Energy‐‐

Tri‐Generation (CCHP)

Electricity

Natural Gas

Heating

Cooling

Titan 250

40C200 C1000

TA 100R MT250

Capstone is best value under 5 MW in a comparison of Electrical Efficiency 3

PGT16PGT20

PGT25

SGT 400SGT 600

Titan 130

Titan 250

34

36

38 TA 100R MT250

OP16‐3B GPB15D

GPB30D GPB60D

GPB70D GPB80D%)

C200C1000

GPB30 BPB70

GPB80GPB180

GE10‐1SGT100

SGT200SGT‐500

SGT‐600

Taurus 60

Taurus 65

Taurus 70

Mars 100

30

32

GPB70D GPB80D

GPB180D GE10‐1

PGT16 PGT20

PGT25 SGT 100

Electrical Grid

ficie

ncy

(%

TA100RMT250

OP16

GPB15

GPB60

Centaur 40

Centaur 50

26

28

PGT25 SGT‐100

SGT‐200 SGT‐300

SGT‐400 SGT‐500

SGT 600 Saturn 20ctric

al E

ff

Saturn 20

20

22

24SGT‐600 Saturn 20

Taurus 60 Taurus 65

Taurus 70 Centaur 40

Centaur 50 Mars 100

Elec

20

0 5 10 15 20 25 30

Power Output (MW)

Centaur 50 Mars 100

Titan 130 Titan 250

Capstone Elliot Ingersoll Rand OPRAH Kawasaki General Electric Siemens Solar

3 Data and results are based on publicly available information from manufacturers and except for Capstone’s products not from Capstone testsData and results are based on publicly available information from manufacturers and except for Capstone s products, not from Capstone tests.

Capstone Technology95 U.S. Technology Patents

Air bearing technologyOne moving partNo coolants oils or greaseNo coolants, oils or grease

Flexible and economic technologyFlexible configurationgLightweight & small footprintMulti‐fuel capability

C t Ad tCapstone AdvantagesLow total cost of ownershipUltra low emissionsHigh reliability

Spring

Foilg y

Shaft

C65 C200 C1000C65 C200 C1000

Hot Water Technology OptionsIntegratedExternal Heat Exchanger g

Heat Exchangerg

Model: C65

Heat Recovery Module ElementsHeat Recovery Module

CHP Control Board

Heat Exchanger Core and Internal Exhaust Ducting

Diverter ActuatorExhaust Ducting

Exhaust is Just Hot Air 1• Specific Heat Essentially Constantp y

• Energy Proportional to Temperature

Specific Heat of Air

1

1.2

kg-K

]

0 4

0.6

0.8

c He

at [k

J/k

0

0.2

0.4

0 100 200 300 400

Spec

ific

0 100 200 300 400

Temperature [C]

1 Steve Gillette, Capstone Turbine CorporationSteve Gillette, Capstone Turbine Corporation

Direct ExhaustDirect ExhaustHeat

ApplicationApplication

Turbine Exhaust Heat replaces gas burners in furniture drying process

The Heat Triangle 2

C65 ExampleC65 Example

600 588F

400

500

erat

ure

[F]

200

300

haus

t Tem

pe

0

100

0 100 200 300 400

Exh

164kW

2 C65 Performance Tech Ref (410048) @ ISO Conditions

Thermal Power [kW]

Direct Exhaust Example 1• 200F      120kW Recovered Energy gy

500

600

F]

588F

C65300

400m

pera

ture

[F

100

200

Exha

ust T

em

0

100

0 100 200 300 400

E

120kW 164kW

Thermal Power [kW]

1 Steve Gillette, Capstone Turbine Corporation

H t W tHot Water Production

using Turbine E h t H tExhaust Heat

Recovery(Integral HRM

shown in photo)

Turn Heat into ColdAbsorption Chiller

Hot Water Fired Direct Exhaust Fired

Chilled Chilled WaterWaterAbsorption Absorption

ChillerChillerHeat Heat

ExchangerExchangerAbsorption Absorption

ChillerChiller Chilled Chilled WaterWaterHot WaterHot Water

F lF l MicroturbineMicroturbine

Exhaust

ElectricityElectricityMi t biMi t bi

Hot WaterHot Water

FuelFuel ElectricityElectricityMicroturbineMicroturbineFuelFuel ElectricityElectricityMicroturbineMicroturbine

100 tonHot Water Fired (Single Effect)

Vapor Absorption p pTechnology

Direct Exhaust FiredDirect Exhaust FiredDouble Effect ChillerDouble Effect Chiller

5kW5kWWasteWaste

260kW Heat Rejection260kW Heat Rejection

100kW100kWChilled WaterChilled Water

Absorption Absorption ChillerChiller

65kW65kWEl t i itEl t i it

MicroturbineMicroturbine

160kW Exhaust160kW Exhaust

230kW230kWFuelFuel

ElectricityElectricity

Chilled Water (Double Effect)

Direct Exhaust Fired, Double Effect Vapor Absorption Technology

OperationOperation

Data Center Energy Use

PUE = 2 = Total PowerPUE = 2 = IT Equipment Power

27%

50%

Facility Cooling

Other

IT Equipment

23%

IT Equipment

Thermal Host• Green Data CenterGreen Data Center

– Essential Electric Power and CoolingNon Essential Loads– Non-Essential Loads

• Seek a “Thermal Host” opportunityf C– Part of or adjacent to Data Center

– Optimize turbine operation– Heating and Cooling Load– Electric Power Load

Optimize dispatch schedule using thermal hostOptimize dispatch schedule using thermal host

Direct Exhaust FiredDouble Effect Chiller

Optimize dispatch schedule using thermal hostOptimize dispatch schedule using thermal host

5kW5kWWasteWaste

260kW Heat Rejection260kW Heat Rejection

Double Effect Chiller

Th l H t

Cooling

100kW

100kW100kWChilled WaterChilled Water

Absorption Absorption ChillerChillerData Center

Thermal Host100kW

65kW65kWMicroturbineMicroturbine

160kW Exhaust160kW Exhaust

230kW230kWFuelFuel

65kW65kWElectricityElectricity

Multiple units optimize efficiency

30

35

20

25

y (%

)

15

Effic

ienc

y

Load Share Efficiency

5

10 Typical Turbine Efficiency

00 100 200 300 400 500 600 700 800 900 1000

Power (kW)

48

Capstone and LEED

Part 1: Sustainable SitesUp to 2 points

Part 3: Energy and AtmosphereUp to 10 pointsUp to 10 points

Part 4: Materials and ResourcesUp to 2 points

Part 5: Indoor Environmental QualityUp to 2 points

Part 6: Innovation and Design ProcessUp to 4 points

CertificationsCertificationsStandard Description Benefit

UL 2200 E i G t S t E dit B ildi A lUL 2200 Engine Generator Sets Expedites Building Approval (e.g. NYC)

UL 1741/IEEE 1547.1 Inverters for Utility Grid Simplifies UtilityyConnection

p yInterconnection (e.g. CA Rule 21, NY)

CARB California Air Resources Board DG Standard

Eliminates or simplifies air permittingBoard DG Standard permitting

Environmentally FriendlyEnvironmentally Friendly

Emissions: Capstone C60‐ICHP vs. utility power & boiler

US EPA Data on Power Plant Emissions Pounds/MWh

0 771.2

1.5

O2

(tons

)

13.5

0.77

CO

13.5

0.026.0

SO2

ToledoNational av.C60 ICHP

3.45.3

NO

x

C60-ICHP

0.15

N

Source: US EPA and US DOE, see notes page for specific references, p g p

Environmentally Friendly

CO2 (lbs/MW) NOx (lbs/MWh)

2500

3000

4

5

6

NOx (lbs/MWh)

0

500

1000

1500

20002885

11350

1

2

3

46

0.15

Nox (lbs)

0

Traditional  Green Data Center

61% Reduction 98% ReductionT diti l

Traditional Capstone Turbines

Traditional-Coal Power Plant-Centrifugal Chiller (5.44 COP)Source: EPA Power Profiler

ASHRAE 90.1 2004

Source: US EPA Environmental Technology Verification Test

Proof of Concept

Th G D tThe Green Data Center at Syracuse 

University

IntroductionIntroduction– Syracuse University and IBM develop

advanced data centeradvanced data center– IBM contributes equipment and services

NYSERDA d f di– NYSERDA awards funding– Advanced Tech Integrator – BHP Energy

A hit t VIP St t– Architect – VIP Structures– E / M Engineer – Towne Engineering

Facility System Integration

G T bi (C t b d)• Gas Turbines (Capstone based)

– Inverter Based

– Super Clean Exhaust

99% U ti

ReliaFlex™

– > 99% Uptime

• Chilled Water Modules

– Exhaust Fired 

H W M d l

Experience

• Hot Water Modules

– Domestic or building heating

• Control System

R M i i

Knowledge– Remote Monitoring

– BMS Interface

• Installation Services

ld Credibility– Design Build

– Single Source Responsibility

Credibility

ObjectivesObjectives– Reduce energy consumption by 50% (IBM)

A hi 60% b tt ffi i– Achieve 60% or better energy efficiency (NYSERDA)D l “b t ti ” it i i “ t– Develop “best practices” criteria, i.e. “system modeling”Integrate and demonstrate multiple– Integrate and demonstrate multiple technologies

Reduce Energy Use by 50%Reduce Energy Use by 50%– Recover energy expended to generate

electric power (CCHP)electric power (CCHP)– Use recovered energy not electricity for

cooling and heatingcooling and heating– Cool equipment directly with chilled water

rather than only cooling the room airrather than only cooling the room air– Use water side economizer and cooling

tower methodstower methods– Avoid power conversion loss

Key FeaturesKey Features– Tri-Generation (CCHP)

Ad d IBM t h l i– Advanced IBM technologies– “Patented” Capstone Hybrid UPS Turbine

AC and DC power distribution– AC and DC power distribution– Thermal Host– Cooling Tower / Water Side Heat Exchangerg g– Propane – Air Back-up Fuel– N+1 x 2 Redundancy– Battery System– Turbines replace traditional UPS

Three Features to ConsiderThree Features to Consider– Advanced Technology Integration– Operating Strategy– Mission Critical Innovation

Ad d T h l I t tiAdvanced Technology IntegrationIntegral Power Plant (CCHP)– Integral Power Plant (CCHP)

– Server Cooling TechnologiesAC and DC Power Distribution– AC and DC Power Distribution

Integral Power Plant (CCHP)

Electricity

Natural Gas

Heating

Cooling

Integral Power Plant (CCHP)

Energy recovery

Directly cooled servers

z196

Liquid Cooled Equipment

z196

p6 - 575

idataplex

19 inch rack serversrack servers

Thermal Imaging – Before and After

AC Power Distribution

DC Power Distribution

Operating Strategy– Turbine in Efficiency Mode (or Emergency

Mode if Grid Fails)– Optimize dispatch schedule

• Data Center PrimaryTh l h t S d• Thermal host Secondary

– Optimum Cooling W t id i• Water side economizer

• Cooling Tower Water when favorable• Exhaust heat driven chillerExhaust heat driven chiller

– Schedule reduced conversion loss

Optimize dispatch schedule Optimize dispatch schedule usingusing thermal hostthermal host

Direct Exhaust Fired

using using thermal hostthermal host

5kW5kW 260kW Heat Rejection260kW Heat Rejection

Double Effect ChillerCooling

WasteWaste

100kW100kWAbsorption Absorption

ChillerChillerData Center

Thermal Host100kW

100kW100kWChilled WaterChilled Water

160kW Exhaust160kW Exhaust

230kW230kWFuelFuel

65kW65kWElectricityElectricity

MicroturbineMicroturbine

Mission Critical Innovation

– Replace traditional UPS– Alternative Back-up SystemsAlternative Back up Systems

• Storage Battery• Utility Grid• Propane - Air

– “Patented” Capstone Hybrid UPS Turbine

Hybrid UPSHybrid UPSMainSwitch

Capstone “patented”

Hybrid UPS Turbines

Critical BusUtility Bus

Mission Non-Critical

Utilityy

Critical LoadLoad

Battery

• Standard UPS Mode with Turbines stopped

• Turbines operating in efficiency mode

• Turbines operating in emergency modeTurbines operating in emergency mode

• Upon loss of grid power, turbines auto start

• Mission Critical Load is powered at all times and isolated from grid disturbance

Tri Gen Strategy…on‐site produced power that is:

• Reliable

p p

Reliable

• Energy Efficient

O ti l• Operational

• Environmentally Friendly

Advanced Power SystemsAdvanced Power Systems 

November 4, 2010 Rev 1