102
Introduction Thermal Correlators in QFT Thermal Correlators in AdS space Minkowski Space Correlators : prescription and sample calculations Conclusion and frontiers AdS Space And Thermal Correlators Pinaki Banerjee The Institute of Mathematical Sciences July 3, 2012 Pinaki Banerjee AdS Space And Thermal Correlators

AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

AdS Space And Thermal Correlators

Pinaki Banerjee

The Institute of Mathematical Sciences

July 3, 2012

Pinaki Banerjee AdS Space And Thermal Correlators

Page 2: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Outline

1 Introduction

MotivationThe AdS/CFT correspondenceBrief review of AdS space

2 Thermal Correlators in QFTMinkowski spaceSample calculations for (0+1)d QFT

3 Thermal Correlators in AdS spaceEuclidean spaceDifficulties in Minkowski space

4 Minkowski Space Correlators : prescription and sample calculations

5 Conclusion and frontiers

Pinaki Banerjee AdS Space And Thermal Correlators

Page 3: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Outline

1 IntroductionMotivation

The AdS/CFT correspondenceBrief review of AdS space

2 Thermal Correlators in QFTMinkowski spaceSample calculations for (0+1)d QFT

3 Thermal Correlators in AdS spaceEuclidean spaceDifficulties in Minkowski space

4 Minkowski Space Correlators : prescription and sample calculations

5 Conclusion and frontiers

Pinaki Banerjee AdS Space And Thermal Correlators

Page 4: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Outline

1 IntroductionMotivationThe AdS/CFT correspondence

Brief review of AdS space

2 Thermal Correlators in QFTMinkowski spaceSample calculations for (0+1)d QFT

3 Thermal Correlators in AdS spaceEuclidean spaceDifficulties in Minkowski space

4 Minkowski Space Correlators : prescription and sample calculations

5 Conclusion and frontiers

Pinaki Banerjee AdS Space And Thermal Correlators

Page 5: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Outline

1 IntroductionMotivationThe AdS/CFT correspondenceBrief review of AdS space

2 Thermal Correlators in QFTMinkowski spaceSample calculations for (0+1)d QFT

3 Thermal Correlators in AdS spaceEuclidean spaceDifficulties in Minkowski space

4 Minkowski Space Correlators : prescription and sample calculations

5 Conclusion and frontiers

Pinaki Banerjee AdS Space And Thermal Correlators

Page 6: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Outline

1 IntroductionMotivationThe AdS/CFT correspondenceBrief review of AdS space

2 Thermal Correlators in QFT

Minkowski spaceSample calculations for (0+1)d QFT

3 Thermal Correlators in AdS spaceEuclidean spaceDifficulties in Minkowski space

4 Minkowski Space Correlators : prescription and sample calculations

5 Conclusion and frontiers

Pinaki Banerjee AdS Space And Thermal Correlators

Page 7: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Outline

1 IntroductionMotivationThe AdS/CFT correspondenceBrief review of AdS space

2 Thermal Correlators in QFTMinkowski space

Sample calculations for (0+1)d QFT

3 Thermal Correlators in AdS spaceEuclidean spaceDifficulties in Minkowski space

4 Minkowski Space Correlators : prescription and sample calculations

5 Conclusion and frontiers

Pinaki Banerjee AdS Space And Thermal Correlators

Page 8: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Outline

1 IntroductionMotivationThe AdS/CFT correspondenceBrief review of AdS space

2 Thermal Correlators in QFTMinkowski spaceSample calculations for (0+1)d QFT

3 Thermal Correlators in AdS spaceEuclidean spaceDifficulties in Minkowski space

4 Minkowski Space Correlators : prescription and sample calculations

5 Conclusion and frontiers

Pinaki Banerjee AdS Space And Thermal Correlators

Page 9: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Outline

1 IntroductionMotivationThe AdS/CFT correspondenceBrief review of AdS space

2 Thermal Correlators in QFTMinkowski spaceSample calculations for (0+1)d QFT

3 Thermal Correlators in AdS space

Euclidean spaceDifficulties in Minkowski space

4 Minkowski Space Correlators : prescription and sample calculations

5 Conclusion and frontiers

Pinaki Banerjee AdS Space And Thermal Correlators

Page 10: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Outline

1 IntroductionMotivationThe AdS/CFT correspondenceBrief review of AdS space

2 Thermal Correlators in QFTMinkowski spaceSample calculations for (0+1)d QFT

3 Thermal Correlators in AdS spaceEuclidean space

Difficulties in Minkowski space

4 Minkowski Space Correlators : prescription and sample calculations

5 Conclusion and frontiers

Pinaki Banerjee AdS Space And Thermal Correlators

Page 11: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Outline

1 IntroductionMotivationThe AdS/CFT correspondenceBrief review of AdS space

2 Thermal Correlators in QFTMinkowski spaceSample calculations for (0+1)d QFT

3 Thermal Correlators in AdS spaceEuclidean spaceDifficulties in Minkowski space

4 Minkowski Space Correlators : prescription and sample calculations

5 Conclusion and frontiers

Pinaki Banerjee AdS Space And Thermal Correlators

Page 12: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Outline

1 IntroductionMotivationThe AdS/CFT correspondenceBrief review of AdS space

2 Thermal Correlators in QFTMinkowski spaceSample calculations for (0+1)d QFT

3 Thermal Correlators in AdS spaceEuclidean spaceDifficulties in Minkowski space

4 Minkowski Space Correlators : prescription and sample calculations

5 Conclusion and frontiers

Pinaki Banerjee AdS Space And Thermal Correlators

Page 13: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Outline

1 IntroductionMotivationThe AdS/CFT correspondenceBrief review of AdS space

2 Thermal Correlators in QFTMinkowski spaceSample calculations for (0+1)d QFT

3 Thermal Correlators in AdS spaceEuclidean spaceDifficulties in Minkowski space

4 Minkowski Space Correlators : prescription and sample calculations

5 Conclusion and frontiers

Pinaki Banerjee AdS Space And Thermal Correlators

Page 14: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionMotivation

The idea of gauge/gravity duality presents the most beautiful linkbetween string theory and our observable world.

Historically it came out of string theory. But in the past few years thisduality has proven its independent existence as an effectivedescription of strongly-interacting quantum systems.

The AdS/CFT correspondence is becoming the most promisingtoolkit of condense matter physicists to understand some stronglycoupled systems such as real-time, finite temperature behavior ofstrongly interacting quantum systems, especially those near quantumcritical points.

Pinaki Banerjee AdS Space And Thermal Correlators

Page 15: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionMotivation

The idea of gauge/gravity duality presents the most beautiful linkbetween string theory and our observable world.

Historically it came out of string theory. But in the past few years thisduality has proven its independent existence as an effectivedescription of strongly-interacting quantum systems.

The AdS/CFT correspondence is becoming the most promisingtoolkit of condense matter physicists to understand some stronglycoupled systems such as real-time, finite temperature behavior ofstrongly interacting quantum systems, especially those near quantumcritical points.

Pinaki Banerjee AdS Space And Thermal Correlators

Page 16: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionMotivation

The idea of gauge/gravity duality presents the most beautiful linkbetween string theory and our observable world.

Historically it came out of string theory. But in the past few years thisduality has proven its independent existence as an effectivedescription of strongly-interacting quantum systems.

The AdS/CFT correspondence is becoming the most promisingtoolkit of condense matter physicists to understand some stronglycoupled systems such as real-time, finite temperature behavior ofstrongly interacting quantum systems, especially those near quantumcritical points.

Pinaki Banerjee AdS Space And Thermal Correlators

Page 17: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionThe AdS/CFT correspondence

Partition function of Gravity ≡ Partition function of QFT

The statement of the duality is following :

⟨exp

(∫Sd φ

i0O)⟩

CFT= ZQG (φi0) (1)

This is in Euclidean signature.

ZQG (φi0) is the partition function of Quantum Gravity.

Boundary conditions: φi goes to φi0 on the boundary.

Pinaki Banerjee AdS Space And Thermal Correlators

Page 18: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionThe AdS/CFT correspondence

Partition function of Gravity ≡ Partition function of QFT

The statement of the duality is following :

⟨exp

(∫Sd φ

i0O)⟩

CFT= ZQG (φi0) (1)

This is in Euclidean signature.

ZQG (φi0) is the partition function of Quantum Gravity.

Boundary conditions: φi goes to φi0 on the boundary.

Pinaki Banerjee AdS Space And Thermal Correlators

Page 19: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionThe AdS/CFT correspondence

Partition function of Gravity ≡ Partition function of QFT

The statement of the duality is following :

⟨exp

(∫Sd φ

i0O)⟩

CFT= ZQG (φi0) (1)

This is in Euclidean signature.

ZQG (φi0) is the partition function of Quantum Gravity.

Boundary conditions: φi goes to φi0 on the boundary.

Pinaki Banerjee AdS Space And Thermal Correlators

Page 20: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionThe AdS/CFT correspondence

Partition function of Gravity ≡ Partition function of QFT

The statement of the duality is following :

⟨exp

(∫Sd φ

i0O)⟩

CFT= ZQG (φi0) (1)

This is in Euclidean signature.

ZQG (φi0) is the partition function of Quantum Gravity.

Boundary conditions: φi goes to φi0 on the boundary.

Pinaki Banerjee AdS Space And Thermal Correlators

Page 21: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionThe AdS/CFT correspondence

Partition function of Gravity ≡ Partition function of QFT

The statement of the duality is following :

⟨exp

(∫Sd φ

i0O)⟩

CFT= ZQG (φi0) (1)

This is in Euclidean signature.

ZQG (φi0) is the partition function of Quantum Gravity.

Boundary conditions:

φi goes to φi0 on the boundary.

Pinaki Banerjee AdS Space And Thermal Correlators

Page 22: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionThe AdS/CFT correspondence

Partition function of Gravity ≡ Partition function of QFT

The statement of the duality is following :

⟨exp

(∫Sd φ

i0O)⟩

CFT= ZQG (φi0) (1)

This is in Euclidean signature.

ZQG (φi0) is the partition function of Quantum Gravity.

Boundary conditions: φi goes to φi0 on the boundary.

Pinaki Banerjee AdS Space And Thermal Correlators

Page 23: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Anti de Sitter space is a maximally symmetric space of Lorentziansignature (−,+,+, ...,+), but of constant negative curvature .

Some Quadric surfaces :Sphere :

d+1∑i=1

X 2i = R2 (2)

Hyperboloid :

d∑i=1

X 2i − U2 = ±R2 (3)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 24: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Anti de Sitter space is a maximally symmetric space of Lorentziansignature (−,+,+, ...,+), but of constant negative curvature .

Some Quadric surfaces :

Sphere :

d+1∑i=1

X 2i = R2 (2)

Hyperboloid :

d∑i=1

X 2i − U2 = ±R2 (3)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 25: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Anti de Sitter space is a maximally symmetric space of Lorentziansignature (−,+,+, ...,+), but of constant negative curvature .

Some Quadric surfaces :Sphere :

d+1∑i=1

X 2i = R2 (2)

Hyperboloid :

d∑i=1

X 2i − U2 = ±R2 (3)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 26: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Anti de Sitter space is a maximally symmetric space of Lorentziansignature (−,+,+, ...,+), but of constant negative curvature .

Some Quadric surfaces :Sphere :

d+1∑i=1

X 2i = R2 (2)

Hyperboloid :

d∑i=1

X 2i − U2 = ±R2 (3)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 27: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Some Quadric surfaces :Hyperbolic and de Sitter space :

ds2 =d∑

i=1

dX 2i − dU2 (4)

d∑i=1

X 2i − U2 = ∓R2 (5)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 28: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Some Quadric surfaces :Hyperbolic and de Sitter space :

ds2 =d∑

i=1

dX 2i − dU2 (4)

d∑i=1

X 2i − U2 = ∓R2 (5)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 29: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Some Quadric surfaces :Anti-de Sitter space :

d−1∑i=1

X 2i − U2 − V 2 = −R2 (6)

ds2 =d−1∑i=1

dX 2i − dU2 − dV 2 (7)

The symmetry group : SO(2,d-1)Allows closed time-like curveTopology : AdSd → Rd−1 ⊗ S1 ; dSd → Sd−1 ⊗ R1

Pinaki Banerjee AdS Space And Thermal Correlators

Page 30: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Some Quadric surfaces :Anti-de Sitter space :

d−1∑i=1

X 2i − U2 − V 2 = −R2 (6)

ds2 =d−1∑i=1

dX 2i − dU2 − dV 2 (7)

The symmetry group : SO(2,d-1)Allows closed time-like curveTopology : AdSd → Rd−1 ⊗ S1 ; dSd → Sd−1 ⊗ R1

Pinaki Banerjee AdS Space And Thermal Correlators

Page 31: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Some Quadric surfaces :Anti-de Sitter space :

d−1∑i=1

X 2i − U2 − V 2 = −R2 (6)

ds2 =d−1∑i=1

dX 2i − dU2 − dV 2 (7)

The symmetry group : SO(2,d-1)Allows closed time-like curveTopology : AdSd → Rd−1 ⊗ S1 ; dSd → Sd−1 ⊗ R1

Pinaki Banerjee AdS Space And Thermal Correlators

Page 32: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Some Quadric surfaces :Anti-de Sitter space :

d−1∑i=1

X 2i − U2 − V 2 = −R2 (6)

ds2 =d−1∑i=1

dX 2i − dU2 − dV 2 (7)

The symmetry group : SO(2,d-1)

Allows closed time-like curveTopology : AdSd → Rd−1 ⊗ S1 ; dSd → Sd−1 ⊗ R1

Pinaki Banerjee AdS Space And Thermal Correlators

Page 33: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Some Quadric surfaces :Anti-de Sitter space :

d−1∑i=1

X 2i − U2 − V 2 = −R2 (6)

ds2 =d−1∑i=1

dX 2i − dU2 − dV 2 (7)

The symmetry group : SO(2,d-1)Allows closed time-like curve

Topology : AdSd → Rd−1 ⊗ S1 ; dSd → Sd−1 ⊗ R1

Pinaki Banerjee AdS Space And Thermal Correlators

Page 34: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Some Quadric surfaces :Anti-de Sitter space :

d−1∑i=1

X 2i − U2 − V 2 = −R2 (6)

ds2 =d−1∑i=1

dX 2i − dU2 − dV 2 (7)

The symmetry group : SO(2,d-1)Allows closed time-like curveTopology : AdSd → Rd−1 ⊗ S1 ; dSd → Sd−1 ⊗ R1

Pinaki Banerjee AdS Space And Thermal Correlators

Page 35: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Anti-de Sitter space in different co-ordinates :

Global co-ordinates :

U = R cosh ρ sin τ ; V = R cosh ρ cos τ

X1 = R sinh ρ cosφ ; X2 = R sinh ρ sinφ

ds2 = R2[− cosh2 dτ2 + dρ2 + sinh2 ρdφ2] (8)

The change of co-ordinate , tan θ = sinh ρ

ds2d =

R2

cos2 θ[−dτ2 + dθ2 + sin2 θd~Ω

2

d−2] (9)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 36: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Anti-de Sitter space in different co-ordinates :

Global co-ordinates :

U = R cosh ρ sin τ ; V = R cosh ρ cos τ

X1 = R sinh ρ cosφ ; X2 = R sinh ρ sinφ

ds2 = R2[− cosh2 dτ2 + dρ2 + sinh2 ρdφ2] (8)

The change of co-ordinate , tan θ = sinh ρ

ds2d =

R2

cos2 θ[−dτ2 + dθ2 + sin2 θd~Ω

2

d−2] (9)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 37: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Anti-de Sitter space in different co-ordinates :

Global co-ordinates :

U = R cosh ρ sin τ ; V = R cosh ρ cos τ

X1 = R sinh ρ cosφ ; X2 = R sinh ρ sinφ

ds2 = R2[− cosh2 dτ2 + dρ2 + sinh2 ρdφ2] (8)

The change of co-ordinate , tan θ = sinh ρ

ds2d =

R2

cos2 θ[−dτ2 + dθ2 + sin2 θd~Ω

2

d−2] (9)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 38: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Anti-de Sitter space in different co-ordinates :

Global co-ordinates :

U = R cosh ρ sin τ ; V = R cosh ρ cos τ

X1 = R sinh ρ cosφ ; X2 = R sinh ρ sinφ

ds2 = R2[− cosh2 dτ2 + dρ2 + sinh2 ρdφ2] (8)

The change of co-ordinate , tan θ = sinh ρ

ds2d =

R2

cos2 θ[−dτ2 + dθ2 + sin2 θd~Ω

2

d−2] (9)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 39: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Anti-de Sitter space in different co-ordinates :

Global co-ordinates :

U = R cosh ρ sin τ ; V = R cosh ρ cos τ

X1 = R sinh ρ cosφ ; X2 = R sinh ρ sinφ

ds2 = R2[− cosh2 dτ2 + dρ2 + sinh2 ρdφ2] (8)

The change of co-ordinate , tan θ = sinh ρ

ds2d =

R2

cos2 θ[−dτ2 + dθ2 + sin2 θd~Ω

2

d−2] (9)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 40: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Poincare Co-ordinates :

In this coordinates AdS metric takes the form

ds2 =R2

z2dz2 + (dx)2 − dt2 (10)

Here , z behaves as radial coordinate and the AdS space in two regions ,depending on whether z > 0 or z < 0 . These are known as Poincarecharts .

Pinaki Banerjee AdS Space And Thermal Correlators

Page 41: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Poincare Co-ordinates :

In this coordinates AdS metric takes the form

ds2 =R2

z2dz2 + (dx)2 − dt2 (10)

Here , z behaves as radial coordinate and the AdS space in two regions ,depending on whether z > 0 or z < 0 . These are known as Poincarecharts .

Pinaki Banerjee AdS Space And Thermal Correlators

Page 42: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

IntroductionBrief review of AdS space

Poincare Co-ordinates :

In this coordinates AdS metric takes the form

ds2 =R2

z2dz2 + (dx)2 − dt2 (10)

Here , z behaves as radial coordinate and the AdS space in two regions ,depending on whether z > 0 or z < 0 . These are known as Poincarecharts .

Pinaki Banerjee AdS Space And Thermal Correlators

Page 43: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in QFTMikowski space

O → local, Bosonic operator in a finite temperature QFT .

GR(k) = −i∫

d4xe−ik.xθ(t)〈[O(x), O(0)]〉 (11)

GA(k) = i

∫d4xe−ik.xθ(−t)〈[O(x), O(0)]〉 (12)

GF (k) = −i∫

d4xe−ik.x〈|TO(x)O(0)|〉 (13)

G (k) =1

2

∫d4xe−ik.x〈O(x)O(0) + O(0)O(x)〉 (14)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 44: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in QFTMikowski space

O → local, Bosonic operator in a finite temperature QFT .

GR(k) = −i∫

d4xe−ik.xθ(t)〈[O(x), O(0)]〉 (11)

GA(k) = i

∫d4xe−ik.xθ(−t)〈[O(x), O(0)]〉 (12)

GF (k) = −i∫

d4xe−ik.x〈|TO(x)O(0)|〉 (13)

G (k) =1

2

∫d4xe−ik.x〈O(x)O(0) + O(0)O(x)〉 (14)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 45: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in QFTMikowski space

O → local, Bosonic operator in a finite temperature QFT .

GR(k) = −i∫

d4xe−ik.xθ(t)〈[O(x), O(0)]〉 (11)

GA(k) = i

∫d4xe−ik.xθ(−t)〈[O(x), O(0)]〉 (12)

GF (k) = −i∫

d4xe−ik.x〈|TO(x)O(0)|〉 (13)

G (k) =1

2

∫d4xe−ik.x〈O(x)O(0) + O(0)O(x)〉 (14)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 46: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in QFTMikowski space

O → local, Bosonic operator in a finite temperature QFT .

GR(k) = −i∫

d4xe−ik.xθ(t)〈[O(x), O(0)]〉 (11)

GA(k) = i

∫d4xe−ik.xθ(−t)〈[O(x), O(0)]〉 (12)

GF (k) = −i∫

d4xe−ik.x〈|TO(x)O(0)|〉 (13)

G (k) =1

2

∫d4xe−ik.x〈O(x)O(0) + O(0)O(x)〉 (14)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 47: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in QFTSample calculations for (0+1)d QFT

T = 0:

GF (ω) =

[1

ω2 − ω20 + iε

](15)

GR,A(ω) =1

ω2 − ω20 ∓ sgn(ω)iε

(16)

T 6= 0:

GF (ω) =1

(1− e−βω0)

1

(ω2 − ω20 + iε)

+e−βω0

(ω2 − ω20 − iε)

(17)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 48: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in QFTSample calculations for (0+1)d QFT

T = 0:

GF (ω) =

[1

ω2 − ω20 + iε

](15)

GR,A(ω) =1

ω2 − ω20 ∓ sgn(ω)iε

(16)

T 6= 0:

GF (ω) =1

(1− e−βω0)

1

(ω2 − ω20 + iε)

+e−βω0

(ω2 − ω20 − iε)

(17)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 49: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in QFTSample calculations for (0+1)d QFT

T = 0:

GF (ω) =

[1

ω2 − ω20 + iε

](15)

GR,A(ω) =1

ω2 − ω20 ∓ sgn(ω)iε

(16)

T 6= 0:

GF (ω) =1

(1− e−βω0)

1

(ω2 − ω20 + iε)

+e−βω0

(ω2 − ω20 − iε)

(17)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 50: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in QFTSample calculations for (0+1)d QFT

T = 0:

GF (ω) =

[1

ω2 − ω20 + iε

](15)

GR,A(ω) =1

ω2 − ω20 ∓ sgn(ω)iε

(16)

T 6= 0:

GF (ω) =1

(1− e−βω0)

1

(ω2 − ω20 + iε)

+e−βω0

(ω2 − ω20 − iε)

(17)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 51: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in QFTSample calculations for (0+1)d QFT

T = 0:

GF (ω) =

[1

ω2 − ω20 + iε

](15)

GR,A(ω) =1

ω2 − ω20 ∓ sgn(ω)iε

(16)

T 6= 0:

GF (ω) =1

(1− e−βω0)

1

(ω2 − ω20 + iε)

+e−βω0

(ω2 − ω20 − iε)

(17)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 52: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceEuclidean space

N =4 SYM theory and classical gravity (SUGRA) on AdS5 × S5 .

ds2 =R2

z2(dτ2 + dx2 + dz2) + R2d~Ω5

2(18)

⟨e∫∂M φ0O

⟩= e−Scl [φ], (19)

To study thermal field theory metric will be a non-extremal one ,

ds2 =R2

z2

(f (z)dτ2 + dx2 +

dz2

f (z)

)+ R2d~Ω5

2(20)

f (z) = 1− z4/z4H ; zH = (πT )−1 ; τ ∼ τ + T−1 & z = [0, zH ]

Pinaki Banerjee AdS Space And Thermal Correlators

Page 53: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceEuclidean space

N =4 SYM theory and classical gravity (SUGRA) on AdS5 × S5 .

ds2 =R2

z2(dτ2 + dx2 + dz2) + R2d~Ω5

2(18)

⟨e∫∂M φ0O

⟩= e−Scl [φ], (19)

To study thermal field theory metric will be a non-extremal one ,

ds2 =R2

z2

(f (z)dτ2 + dx2 +

dz2

f (z)

)+ R2d~Ω5

2(20)

f (z) = 1− z4/z4H ; zH = (πT )−1 ; τ ∼ τ + T−1 & z = [0, zH ]

Pinaki Banerjee AdS Space And Thermal Correlators

Page 54: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceEuclidean space

N =4 SYM theory and classical gravity (SUGRA) on AdS5 × S5 .

ds2 =R2

z2(dτ2 + dx2 + dz2) + R2d~Ω5

2(18)

⟨e∫∂M φ0O

⟩= e−Scl [φ], (19)

To study thermal field theory metric will be a non-extremal one ,

ds2 =R2

z2

(f (z)dτ2 + dx2 +

dz2

f (z)

)+ R2d~Ω5

2(20)

f (z) = 1− z4/z4H ; zH = (πT )−1 ; τ ∼ τ + T−1 & z = [0, zH ]

Pinaki Banerjee AdS Space And Thermal Correlators

Page 55: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

The Minkowski analog of the AdS/CFT Correspondence is⟨e i

∫∂M φ0O

⟩= e iScl [φ] (21)

For any curved (d+1) dimension the action of scalar field reads :

S =

∫ √−gdd+1x

[DµφDµφ+ m2φ2)

](22)

S = K

∫ √−gd4x

∫dz[DA(φDAφ)− φDAD

Aφ+ m2φ2)]

(23)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 56: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

The Minkowski analog of the AdS/CFT Correspondence is⟨e i

∫∂M φ0O

⟩= e iScl [φ] (21)

For any curved (d+1) dimension the action of scalar field reads :

S =

∫ √−gdd+1x

[DµφDµφ+ m2φ2)

](22)

S = K

∫ √−gd4x

∫dz[DA(φDAφ)− φDAD

Aφ+ m2φ2)]

(23)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 57: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

The Minkowski analog of the AdS/CFT Correspondence is⟨e i

∫∂M φ0O

⟩= e iScl [φ] (21)

For any curved (d+1) dimension the action of scalar field reads :

S =

∫ √−gdd+1x

[DµφDµφ+ m2φ2)

](22)

S = K

∫ √−gd4x

∫dz[DA(φDAφ)− φDAD

Aφ+ m2φ2)]

(23)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 58: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

S = K

∫ √−gd4x

∫dz [−φ(−m2)φ︸ ︷︷ ︸

SEOM

] + K

∫ √−gd4x

∫dz [DA(φDAφ)]︸ ︷︷ ︸

SBoundary

1√−g ∂z(

√−gg zz∂zφ) + gµν∂µ∂νφ)−m2φ = 0 (24)

φ(z , x) =

∫d4k

(2π)4e ik.x fk(z)φ0(k), (25)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 59: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

S = K

∫ √−gd4x

∫dz [−φ(−m2)φ︸ ︷︷ ︸

SEOM

] + K

∫ √−gd4x

∫dz [DA(φDAφ)]︸ ︷︷ ︸

SBoundary

1√−g ∂z(

√−gg zz∂zφ) + gµν∂µ∂νφ)−m2φ = 0 (24)

φ(z , x) =

∫d4k

(2π)4e ik.x fk(z)φ0(k), (25)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 60: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

S = K

∫ √−gd4x

∫dz [−φ(−m2)φ︸ ︷︷ ︸

SEOM

] + K

∫ √−gd4x

∫dz [DA(φDAφ)]︸ ︷︷ ︸

SBoundary

1√−g ∂z(

√−gg zz∂zφ) + gµν∂µ∂νφ)−m2φ = 0 (24)

φ(z , x) =

∫d4k

(2π)4e ik.x fk(z)φ0(k), (25)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 61: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

φ0(k) is determined by the boundary condition ,

φ(zB , x) =

∫d4k

(2π)4e ik.xφ0(k) ; fk(zB) = 1. (26)

Now substituting it into the EOM we get ,

1√−g ∂z(

√−gg zz∂z fk)− (gµνkµkν + m2)fk = 0 (27)

Boundary condition on fk :

1 fk(zB)=1 , and2 Satisfies the incoming wave boundary condition at horizon (z = zH) .

Pinaki Banerjee AdS Space And Thermal Correlators

Page 62: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

φ0(k) is determined by the boundary condition ,

φ(zB , x) =

∫d4k

(2π)4e ik.xφ0(k) ; fk(zB) = 1. (26)

Now substituting it into the EOM we get ,

1√−g ∂z(

√−gg zz∂z fk)− (gµνkµkν + m2)fk = 0 (27)

Boundary condition on fk :

1 fk(zB)=1 , and2 Satisfies the incoming wave boundary condition at horizon (z = zH) .

Pinaki Banerjee AdS Space And Thermal Correlators

Page 63: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

φ0(k) is determined by the boundary condition ,

φ(zB , x) =

∫d4k

(2π)4e ik.xφ0(k) ; fk(zB) = 1. (26)

Now substituting it into the EOM we get ,

1√−g ∂z(

√−gg zz∂z fk)− (gµνkµkν + m2)fk = 0 (27)

Boundary condition on fk :

1 fk(zB)=1 , and

2 Satisfies the incoming wave boundary condition at horizon (z = zH) .

Pinaki Banerjee AdS Space And Thermal Correlators

Page 64: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

φ0(k) is determined by the boundary condition ,

φ(zB , x) =

∫d4k

(2π)4e ik.xφ0(k) ; fk(zB) = 1. (26)

Now substituting it into the EOM we get ,

1√−g ∂z(

√−gg zz∂z fk)− (gµνkµkν + m2)fk = 0 (27)

Boundary condition on fk :

1 fk(zB)=1 , and2 Satisfies the incoming wave boundary condition at horizon (z = zH) .

Pinaki Banerjee AdS Space And Thermal Correlators

Page 65: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

SBoundary = K

∫ √−gd4x

∫dz [DA(φDAφ)]

= K

∫ √−g d4xφg zz(∂zφ)

∣∣∣∣zHzB

Now substituting the expression for φ we get ,

SBoundary =

∫d4k

(2π)4

φ0(−k)F (k , z)φ0(k)

∣∣∣∣zHzB

(28)

where

F (k , z) = K√−gg zz f−k(z)∂z fk(z). (29)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 66: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

SBoundary = K

∫ √−gd4x

∫dz [DA(φDAφ)]

= K

∫ √−g d4xφg zz(∂zφ)

∣∣∣∣zHzB

Now substituting the expression for φ we get ,

SBoundary =

∫d4k

(2π)4

φ0(−k)F (k , z)φ0(k)

∣∣∣∣zHzB

(28)

where

F (k , z) = K√−gg zz f−k(z)∂z fk(z). (29)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 67: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Thermal Correlators in AdS spaceDifficulties in Minkowski space

The Green’s function is ,

G (k) = −F (k , z)

∣∣∣∣zHzB

−F (−k, z)

∣∣∣∣zHzB

(30)

The problem with this Green’s function is , it is completely real. Butretarded Green’s functions are complex in general.

Pinaki Banerjee AdS Space And Thermal Correlators

Page 68: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsRecipe

GR(k) = −2F (k, z)

∣∣∣∣zB

(31)

1 Find a solution to the (27) with following properties :

It equals to 1 at boundary z = zB ;time-like momenta : It satisfies incoming wave boundary condition athorizon .space-like momenta : The solution is regular at horizon .

2 The retarded Green’s function is given by G = −2F∂M . (at z = zB)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 69: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsRecipe

GR(k) = −2F (k, z)

∣∣∣∣zB

(31)

1 Find a solution to the (27) with following properties :

It equals to 1 at boundary z = zB ;time-like momenta : It satisfies incoming wave boundary condition athorizon .space-like momenta : The solution is regular at horizon .

2 The retarded Green’s function is given by G = −2F∂M . (at z = zB)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 70: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsRecipe

GR(k) = −2F (k, z)

∣∣∣∣zB

(31)

1 Find a solution to the (27) with following properties :

It equals to 1 at boundary z = zB ;

time-like momenta : It satisfies incoming wave boundary condition athorizon .space-like momenta : The solution is regular at horizon .

2 The retarded Green’s function is given by G = −2F∂M . (at z = zB)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 71: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsRecipe

GR(k) = −2F (k, z)

∣∣∣∣zB

(31)

1 Find a solution to the (27) with following properties :

It equals to 1 at boundary z = zB ;time-like momenta : It satisfies incoming wave boundary condition athorizon .

space-like momenta : The solution is regular at horizon .

2 The retarded Green’s function is given by G = −2F∂M . (at z = zB)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 72: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsRecipe

GR(k) = −2F (k, z)

∣∣∣∣zB

(31)

1 Find a solution to the (27) with following properties :

It equals to 1 at boundary z = zB ;time-like momenta : It satisfies incoming wave boundary condition athorizon .space-like momenta : The solution is regular at horizon .

2 The retarded Green’s function is given by G = −2F∂M . (at z = zB)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 73: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsRecipe

GR(k) = −2F (k, z)

∣∣∣∣zB

(31)

1 Find a solution to the (27) with following properties :

It equals to 1 at boundary z = zB ;time-like momenta : It satisfies incoming wave boundary condition athorizon .space-like momenta : The solution is regular at horizon .

2 The retarded Green’s function is given by G = −2F∂M . (at z = zB)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 74: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

For Euclidean correlator of a CFT operator O ,

〈e∫∂M φ0O〉 = e−SE [φ] (32)

Euclidean AdS5 metric is

ds25 =

R2

z2(dz2 + dx2) (33)

The action of massive scalar field on this background is ,

SE = K

∫d4x

zH=∞∫zB=ε

dz√g[g zz(∂zφ)2 + gµν(∂µφ)(∂νφ) + m2φ2

](34)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 75: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

For Euclidean correlator of a CFT operator O ,

〈e∫∂M φ0O〉 = e−SE [φ] (32)

Euclidean AdS5 metric is

ds25 =

R2

z2(dz2 + dx2) (33)

The action of massive scalar field on this background is ,

SE = K

∫d4x

zH=∞∫zB=ε

dz√g[g zz(∂zφ)2 + gµν(∂µφ)(∂νφ) + m2φ2

](34)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 76: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

For Euclidean correlator of a CFT operator O ,

〈e∫∂M φ0O〉 = e−SE [φ] (32)

Euclidean AdS5 metric is

ds25 =

R2

z2(dz2 + dx2) (33)

The action of massive scalar field on this background is ,

SE = K

∫d4x

zH=∞∫zB=ε

dz√g[g zz(∂zφ)2 + gµν(∂µφ)(∂νφ) + m2φ2

](34)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 77: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

For Euclidean correlator of a CFT operator O ,

〈e∫∂M φ0O〉 = e−SE [φ] (32)

Euclidean AdS5 metric is

ds25 =

R2

z2(dz2 + dx2) (33)

The action of massive scalar field on this background is ,

SE = K

∫d4x

zH=∞∫zB=ε

dz√g[g zz(∂zφ)2 + gµν(∂µφ)(∂νφ) + m2φ2

](34)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 78: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

SE =π3R8

4κ210

∫dz

∫d4xz−3

((∂zφ)2 +

z2

R2(∂iφ)2 +

R2m2

z2φ2

)(35)

SE ∼∫

dz

∫d4k

(2π)4

1

z3(∂z fk)(∂z f−k) + k2fk f−k +

R2m2

z2fk f−kφ0(k)φ0(−k)

f ′′k (z)− 3z f′k(z)−

(k2 + m2R2

z2

)fk(z) = 0 (36)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 79: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

SE =π3R8

4κ210

∫dz

∫d4xz−3

((∂zφ)2 +

z2

R2(∂iφ)2 +

R2m2

z2φ2

)(35)

SE ∼∫

dz

∫d4k

(2π)4

1

z3(∂z fk)(∂z f−k) + k2fk f−k +

R2m2

z2fk f−kφ0(k)φ0(−k)

f ′′k (z)− 3z f′k(z)−

(k2 + m2R2

z2

)fk(z) = 0 (36)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 80: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

SE =π3R8

4κ210

∫dz

∫d4xz−3

((∂zφ)2 +

z2

R2(∂iφ)2 +

R2m2

z2φ2

)(35)

SE ∼∫

dz

∫d4k

(2π)4

1

z3(∂z fk)(∂z f−k) + k2fk f−k +

R2m2

z2fk f−kφ0(k)φ0(−k)

f ′′k (z)− 3z f′k(z)−

(k2 + m2R2

z2

)fk(z) = 0 (36)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 81: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

SE =π3R8

4κ210

∫dz

∫d4xz−3

((∂zφ)2 +

z2

R2(∂iφ)2 +

R2m2

z2φ2

)(35)

SE ∼∫

dz

∫d4k

(2π)4

1

z3(∂z fk)(∂z f−k) + k2fk f−k +

R2m2

z2fk f−kφ0(k)φ0(−k)

f ′′k (z)− 3z f′k(z)−

(k2 + m2R2

z2

)fk(z) = 0 (36)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 82: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

Its general solution is ,

φk(z) = Az2Iν(kz) + Bz2I−ν(kz) (37)

The solution is regular at z =∞ and equals to 1 at z = ε , therefore ,

fk(z) =z2Kν(kz)

ε2Kν(kε)(38)

On shell , the action reduces to the boundary term

SE =π3R8

4κ210

∫d4kd4k ′

(2π)8φ0(k)φ0(k ′)F (z , k , k ′)

∣∣∣∣∞ε

(39)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 83: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

Its general solution is ,

φk(z) = Az2Iν(kz) + Bz2I−ν(kz) (37)

The solution is regular at z =∞ and equals to 1 at z = ε , therefore ,

fk(z) =z2Kν(kz)

ε2Kν(kε)(38)

On shell , the action reduces to the boundary term

SE =π3R8

4κ210

∫d4kd4k ′

(2π)8φ0(k)φ0(k ′)F (z , k , k ′)

∣∣∣∣∞ε

(39)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 84: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

Its general solution is ,

φk(z) = Az2Iν(kz) + Bz2I−ν(kz) (37)

The solution is regular at z =∞ and equals to 1 at z = ε , therefore ,

fk(z) =z2Kν(kz)

ε2Kν(kε)(38)

On shell , the action reduces to the boundary term

SE =π3R8

4κ210

∫d4kd4k ′

(2π)8φ0(k)φ0(k ′)F (z , k , k ′)

∣∣∣∣∞ε

(39)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 85: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

The two point function is given by

〈O(k)O(k ′)〉 =Z−1 δ2Z [φ0]

δφ0(k)δφ0(k ′)

∣∣∣∣φ0=0

(40)

=− 2F (z , k , k ′)

∣∣∣∣∞ε

=− (2π)4δ4(k + k ′)π3R8

2κ210

fk ′(z)∂z fk(z)

z3

∣∣∣∣∞ε

Putting the value of fk(z) we get ,

〈O(k)O(k ′)〉 = −π3R8

2κ210

ε2(∆−d)(2π)4δ4(k + k ′)k2ν21−2ν Γ(1− ν)

Γ(ν)+ ...

(41)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 86: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

The two point function is given by

〈O(k)O(k ′)〉 =Z−1 δ2Z [φ0]

δφ0(k)δφ0(k ′)

∣∣∣∣φ0=0

(40)

=− 2F (z , k , k ′)

∣∣∣∣∞ε

=− (2π)4δ4(k + k ′)π3R8

2κ210

fk ′(z)∂z fk(z)

z3

∣∣∣∣∞ε

Putting the value of fk(z) we get ,

〈O(k)O(k ′)〉 = −π3R8

2κ210

ε2(∆−d)(2π)4δ4(k + k ′)k2ν21−2ν Γ(1− ν)

Γ(ν)+ ...

(41)Pinaki Banerjee AdS Space And Thermal Correlators

Page 87: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

For integer ∆ , the propagator will be ,

〈O(k)O(k ′)〉 = − (−1)∆

(∆− 3)!

N2

8π2(2π)4δ4(k + k ′)

k2∆−4

22∆−5ln k2 (42)

For massless case (∆ = 4) , we have

〈O(k)O(k ′)〉 = − N2

64π4(2π)4δ4(k + k ′)k4 ln k2 (43)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 88: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

For integer ∆ , the propagator will be ,

〈O(k)O(k ′)〉 = − (−1)∆

(∆− 3)!

N2

8π2(2π)4δ4(k + k ′)

k2∆−4

22∆−5ln k2 (42)

For massless case (∆ = 4) , we have

〈O(k)O(k ′)〉 = − N2

64π4(2π)4δ4(k + k ′)k4 ln k2 (43)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 89: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

The EOM :

f ′′k (z)− 3

zf ′k(z)− k2fk(z) = 0 (44)

For spacelike momenta , k2 > 0 , we can follow the steps identical tothe Euclidean case.

GR(k) = +N2k4

64π2ln k2 ; k2 > 0 (45)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 90: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

The EOM :

f ′′k (z)− 3

zf ′k(z)− k2fk(z) = 0 (44)

For spacelike momenta , k2 > 0 , we can follow the steps identical tothe Euclidean case.

GR(k) = +N2k4

64π2ln k2 ; k2 > 0 (45)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 91: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

For timelike momenta , we introduce q =√−k2 .

fk(z) =z2H

(1)2 (qz)

ε2H(1)(qε)ν

if ω > 0 (46)

=z2H

(2)2 (qz)

ε2H(2)(qε)2

if ω < 0 (47)

GR(k) =N2k4

64π2(ln k2 − iπ sgn ω) (48)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 92: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

For timelike momenta , we introduce q =√−k2 .

fk(z) =z2H

(1)2 (qz)

ε2H(1)(qε)ν

if ω > 0 (46)

=z2H

(2)2 (qz)

ε2H(2)(qε)2

if ω < 0 (47)

GR(k) =N2k4

64π2(ln k2 − iπ sgn ω) (48)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 93: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

More generally ,

GR(k) =N2K 4

64π2

(ln |k2| − iπθ(−k2) sgn ω

)(49)

We can get the Feynman propagator ,

GF (k) =N2K 4

64π2

[ln |k2| − iπθ(−k2)

](50)

we can also get it by Wick rotating the Euclidean correlator ,

GE (kE ) = −N2K 4

E

64π2ln k2

E (51)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 94: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

More generally ,

GR(k) =N2K 4

64π2

(ln |k2| − iπθ(−k2) sgn ω

)(49)

We can get the Feynman propagator ,

GF (k) =N2K 4

64π2

[ln |k2| − iπθ(−k2)

](50)

we can also get it by Wick rotating the Euclidean correlator ,

GE (kE ) = −N2K 4

E

64π2ln k2

E (51)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 95: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Prescription for Minkowski Space CorrelatorsSample calculation

More generally ,

GR(k) =N2K 4

64π2

(ln |k2| − iπθ(−k2) sgn ω

)(49)

We can get the Feynman propagator ,

GF (k) =N2K 4

64π2

[ln |k2| − iπθ(−k2)

](50)

we can also get it by Wick rotating the Euclidean correlator ,

GE (kE ) = −N2K 4

E

64π2ln k2

E (51)

Pinaki Banerjee AdS Space And Thermal Correlators

Page 96: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Conclusion and frontiers

Previous correlators of SHO are useful...

but ambiguous !

Use better techniques :

Schwinger-Keldysh formalism

GF (ω) =

1ω2−ω2

0+iε+ −i2π

eβω0−1δ(ω2 −m2) 2πie−βω0/2

1−e−βω0δ(ω2 −m2)

2πie−βω0/2

1−e−βω0δ(ω2 −m2) −1

ω2−ω20−iε

+ −i2πeβω0−1

δ(ω2 −m2)

Thermo-field Dynamics !

Pinaki Banerjee AdS Space And Thermal Correlators

Page 97: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Conclusion and frontiers

Previous correlators of SHO are useful... but ambiguous !

Use better techniques :

Schwinger-Keldysh formalism

GF (ω) =

1ω2−ω2

0+iε+ −i2π

eβω0−1δ(ω2 −m2) 2πie−βω0/2

1−e−βω0δ(ω2 −m2)

2πie−βω0/2

1−e−βω0δ(ω2 −m2) −1

ω2−ω20−iε

+ −i2πeβω0−1

δ(ω2 −m2)

Thermo-field Dynamics !

Pinaki Banerjee AdS Space And Thermal Correlators

Page 98: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Conclusion and frontiers

Previous correlators of SHO are useful... but ambiguous !

Use better techniques :

Schwinger-Keldysh formalism

GF (ω) =

1ω2−ω2

0+iε+ −i2π

eβω0−1δ(ω2 −m2) 2πie−βω0/2

1−e−βω0δ(ω2 −m2)

2πie−βω0/2

1−e−βω0δ(ω2 −m2) −1

ω2−ω20−iε

+ −i2πeβω0−1

δ(ω2 −m2)

Thermo-field Dynamics !

Pinaki Banerjee AdS Space And Thermal Correlators

Page 99: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Conclusion and frontiers

Previous correlators of SHO are useful... but ambiguous !

Use better techniques :

Schwinger-Keldysh formalism

GF (ω) =

1ω2−ω2

0+iε+ −i2π

eβω0−1δ(ω2 −m2) 2πie−βω0/2

1−e−βω0δ(ω2 −m2)

2πie−βω0/2

1−e−βω0δ(ω2 −m2) −1

ω2−ω20−iε

+ −i2πeβω0−1

δ(ω2 −m2)

Thermo-field Dynamics !

Pinaki Banerjee AdS Space And Thermal Correlators

Page 100: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Conclusion and frontiers

Previous correlators of SHO are useful... but ambiguous !

Use better techniques :

Schwinger-Keldysh formalism

GF (ω) =

1ω2−ω2

0+iε+ −i2π

eβω0−1δ(ω2 −m2) 2πie−βω0/2

1−e−βω0δ(ω2 −m2)

2πie−βω0/2

1−e−βω0δ(ω2 −m2) −1

ω2−ω20−iε

+ −i2πeβω0−1

δ(ω2 −m2)

Thermo-field Dynamics !

Pinaki Banerjee AdS Space And Thermal Correlators

Page 101: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

Conclusion and frontiers

Previous correlators of SHO are useful... but ambiguous !

Use better techniques :

Schwinger-Keldysh formalism

GF (ω) =

1ω2−ω2

0+iε+ −i2π

eβω0−1δ(ω2 −m2) 2πie−βω0/2

1−e−βω0δ(ω2 −m2)

2πie−βω0/2

1−e−βω0δ(ω2 −m2) −1

ω2−ω20−iε

+ −i2πeβω0−1

δ(ω2 −m2)

Thermo-field Dynamics !

Pinaki Banerjee AdS Space And Thermal Correlators

Page 102: AdS Space And Thermal Correlatorspinakib/presentation.pdf · 1 Introduction Motivation The AdS/CFT correspondence Brief review of AdS space 2 Thermal Correlators in QFT Minkowski

IntroductionThermal Correlators in QFT

Thermal Correlators in AdS spaceMinkowski Space Correlators : prescription and sample calculations

Conclusion and frontiers

thank you!

Pinaki Banerjee AdS Space And Thermal Correlators