admet pofarm

Embed Size (px)

Citation preview

  • 8/9/2019 admet pofarm

    1/61

    02-12-201

    The pharmacokinetic phase (ADME)

    Absorption is the passage of the drug from its site ofadministration into the general circulatory system after enteraladministration

    Distribution is the transport of the drug from its initialpoint of administration or absorption to its site of action.

    Metabolism is the biotransformation of thedrug into other compounds (metabolites) thatare usually more water soluble than theirparent drug and are usually excreted in the

    urine.

    Excretion is the process by whichunwanted substances are removedfrom the body 1

    Some of the multidisciplinary interfaces with PK

    Pharmacokinetics

    toxicology

    clinical

    Marketing

    Pharmaceutics

    Regulatory

    MedicinalChemistry

    Clinicalpharmacolo

    gy

    biology

    2

    http://www.google.pt/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=1rslJWk2vAInqM&tbnid=XbhpM1BRwMOlGM:&ved=&url=http://www.picstopin.com/2560/-size-112k-2560x1600-from-%E5%8D%A1%E9%80%9A-%E7%AE%80%E6%B4%81-%E6%A1%8C%E9%9D%A2-11304-72k/http:||photo*aoaob*com|imgsrc*baidu*com|forum|pic|item|ffea080896fdea6ae8248882*jpg/&ei=Ho5vUurIG4Wx0QXF5oCwCQ&psig=AFQjCNEpkytrX0hinoZf-y22vZ1BaeCtxw&ust=1383128777312348
  • 8/9/2019 admet pofarm

    2/61

    02-12-201

    ADMET em Qumica Medicinal

    3

    4

    solvel

    estvel

    selectivo

    activo

    seguro

    PK

    novo Bonsfrmacos

    Bonslderes

    ADMET em Qumica Medicinal

    Drug-like properties confer good ADME/Tox characteristics to a compound.

    Medicinal chemists control properties through structure modification.

    Biologists use properties to optimize bioassays and interpret biological experiments

  • 8/9/2019 admet pofarm

    3/61

    02-12-201

    5

    Causas de abandono no desenvolvimento de frmacos

    Edward Harvel Kerns, Li Di, Drug-like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization, Academic Press, 2008.

    Relationship of structural properties and ADME events

    6

  • 8/9/2019 admet pofarm

    4/61

    02-12-201

    7

    Parallel structure activity relationships (SAR) and

    structure property relationships (SPR) strategies SAR SPRIn vitro assays In vitro assayHTS IntegrityEnzyme/receptor assays SolubilityCell-based assays Permeability

    LipophilicitypK aStabilityMetabolite screeningTransportersCYP450 inhibitionCell exposurePlasma protein binding

    In vivo assays In vivo assaysAnimal model PK/exposure

    8

    A typical parallel progression strategy for lead optimization

    In vivo

  • 8/9/2019 admet pofarm

    5/61

    02-12-201

    9

    Integrity LC-MS Start SAR with known purity and correct

    structure

    Aggregation DLS, EM Avoid following the non-specific hits

    Solubility Direct UV Interpret in vitro/in vivo assay

    results

    Turbiditimetry Enhance oral bioavailability

    Develop formulation strategy and potential

    salt forms

    Permeability PAMPA Interpret cell-based assay results

    Caco-2 Enhance oral absorption

    MDCK Diagnose transport mechanism

    PAMPA-BBB Predict BBB penetration

    Develop pro-drug strategy

    Impact of pharmaceutical profiling assays in drug discovery

    Assays Methods Impact in drug discovery

    *DLS, dynamic light scattering; EM, electron microscopy.

    10

    Pgp efflux Monolayer efflux Diagnose efflux transport mechanismCalcein-AM Improve oral absorption, BBB penetrationATPase Reduce cancer cell Pgp-mediated resistance

    Lipophilicity Shake flask Develop QSAR and QSPRHPLC Predict ADME/TOX propertiesMEEKC

    pKa SGA Predict effect of pH on solubility andpermeability

    CE Facilitate process for salt selectionStability Robot and LC-MS Diagnose poor pharmacokinetics

    Enhance metabolic stabilityInitiate metabolite/degradant identification

    CYP450 inhibition Fluorescence Minimize toxicity due to drug drugInteractions

    LC-MS-MSRadiometric

    Impact of pharmaceutical profiling assays in drug discovery

    Assays Methods Impact in drug discovery

  • 8/9/2019 admet pofarm

    6/61

    02-12-201

    11

    Drug discovery stages

    Barriers to Drug Exposure in Living Systems

    membranes, pH, metabolic enzymes, andtransporters

    12

  • 8/9/2019 admet pofarm

    7/61

    02-12-201

    Gastrointestinal Tract Barriers

    (A) passive diffusion

    (B) endocytosis

    (C) uptake transport

    (D) paracellular

    transport

    (E) efflux transport

    Permeation mechanisms

    pH Values and Transit Times of Gastrointestinal Tract Regions

    GI tract region Average pH, fasted Average pH, fed Transit time (h)Stomach 1.4 2.1 3 7 0.5 1Duodenum 4.4 6.6 5.2 6.2Jejunum 4.4 6.6 5.2 6.2 2 4Ileum 6.8 8 6.8 8

    13

    Blood stream sink enhances permeation pH 7.4 creates a trap for bases blood flow increases concentration gradient Capillary to

    Portal Vein

    GI EpithelialCell Layer

    Uptake transport against gradient Salt form

    enhancesdissolution

    pH increases

    ionization of basesfor solubility

    GI Lumen

    Reducedparticle size enhancessurface areafor dissolution

    Formulation dispersion tosmaller particlesor solution enhancessolubility

    Food Effect stimulates bile release

    Bile salts solubilize

    Drug SolidParticle

    14

    Absorption Enhancement in the Intestine

  • 8/9/2019 admet pofarm

    8/61

    02-12-201

    Barriers in the Bloodstream

    Plasma Enzyme Hydrolysis

    Plasma Protein Binding

    Red Blood Cell Binding

    Barriers in the Liver

    Metabolism

    Biliary Excretion

    Barriers in the Kidney

    Blood Tissue Barriers

    Tissue Distribution

    15

    16

  • 8/9/2019 admet pofarm

    9/61

    02-12-201

    17

    BARREIRA HEMATOENCEFLICA

    Protege o crebro e a medula

    Permite a entrada de oxignio e nutrientes

    POUCOS FRMACOS CONSEGUEM ATRAVESSAR A BHE

    Caractersticas fisico-qumicas adequadas

    Processo de transporte adequado

    PharmacokineticsTypical variations in the concentration of a drug with time

    Schematic representation of a therapeutic window

    18

    http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8
  • 8/9/2019 admet pofarm

    10/61

    02-12-201

    Pharmacokinetic Parameters: Definitions, Calculations, andApplications In Discovery

    19

    Pharmacokinetic Parameters: Definitions, Calculations, andApplications In Discovery

    20

  • 8/9/2019 admet pofarm

    11/61

    02-12-201

    Pharmacokinetic Parameters: Definitions, Calculations, andApplications In Discovery

    21

    General PK Parameter Goals for Discovery Compounds Pharmacokinetic Symbol High LowParameter

    Volume of distribution Vd >10 L/kg 45 mL/min/kg 70 mL/min/kg 15 mL/min/kg 3 h 3 h 8 h 50% 2,000 hng /Ml 3 h

  • 8/9/2019 admet pofarm

    12/61

    02-12-201

    Pharmacokinetic Parameters of Selected Drug Compounds

    23

    Pharmacokinetic Parameters of Selected Drug Compounds

    24

  • 8/9/2019 admet pofarm

    13/61

    02-12-201

    Pharmacokinetic Parameters of Selected Drug Compounds

    25

    26

    Molculas que contm grupos

    funcionais e/ou possuem

    propriedades fsicas consistentes

    com frmacos existentes

    Advanced Drug Delivery Reviews 54 (2002) 255 271

    Conceito Drug-like

    Compostos que possuem propriedades

    ADMET suficientemente aceitveis para

    completar ensaios clnicos de fase I Christopher A. Lipinski

  • 8/9/2019 admet pofarm

    14/61

    02-12-201

    27

    Um composto para exibir absoro/permeabilidade dever ter:

    - Um peso molecular < 500

    - No mais que 5 grupos doadores de interao de H

    (somando OHs e NHs)

    -No mais que 10 grupos aceitadores de interao de H

    (somando Os e Ns)

    - Um valor de logP calculado

  • 8/9/2019 admet pofarm

    15/61

    02-12-201

    Lead-likeness

    MW 460 4 Log P 4.2

    Log of water solubility (Log S W)5

    Rotatable bonds 10

    Rings 4

    Hydrogen-bond donors 5

    Hydrogen-bond acceptors 9

    Bioavailability (%F) 30% Clearance (Cl) < 30 mL/min/kg in rat

    0 LogD7.4 3

    Binding to cytochrome P450 isozymes = low

    Plasma protein binding 99.5%

    Acute toxicity and chronic toxicity = none (in

    therapeutic window)

    Genotoxicity, teratogenicity, carcinogenicity =

    none (at dose 5 10 times therapeuticwindow)

    29

    Drug absorption pathway

    30

  • 8/9/2019 admet pofarm

    16/61

    02-12-201

    31

    The multiple mechanisms of transport through the intestinal epithelium

    Solubility

    Ksp = [C+]x[A-]solubility product

    Henrys Law: Cg = KgPg

    solution

    32

  • 8/9/2019 admet pofarm

    17/61

    02-12-201

    Comparison Kinetic Solubility Thermodynamic Solubility

    Initial State DMSO Stock Solid Crystals

    Mixing Time Variable Long mixing

    Temperature Room Temperature Controlled Temperature

    Equilibrium Not Established Established

    Crystal Form Meta-Stable Forms Stable Form

    Target Solubility 100 g/mL 10 mg/mL

    Throughput 150 Compounds/day 20 Compounds/day

    Material 1.5 mg for 4 pHs 100 mg for 20 solvents

    Comparison of Kinetic and Equilibrium Solubility

    33

    Applications of Solubility in Lead Optimization

    Solvents Commonly Used for Solubility Determination of DevelopmentCandidates in Late-Stage Drug Discovery

    Physiological Buffers Formulary Solvents LipophilicitypH 1 Tween 80 OctanolpH 4.5 PEG 200 LabrasolpH 6.6 PEG 400 CyclohexanepH 7.4 Phosal 53 MCTpH 9 Phosal PGSGF Benzyl AlcoholSIF EtOHSIBLM Corn OilPlasma 2% Tween / 0.5% MC

    34

  • 8/9/2019 admet pofarm

    18/61

    02-12-201

    Correlation between Solubility, Permeability and Dose

    35

    Delivering Drug to the Test System

    Typical compound solubilization curve in a cosolvent systemsuch as DMSO /water (solid line).

    Solubility, Solubilization and Dissolution in Drug Delivery During LeadOptimization

    36

  • 8/9/2019 admet pofarm

    19/61

  • 8/9/2019 admet pofarm

    20/61

    02-12-201

    2

    Salt formation

    Examples of the acids and bases used to form the salts of drugs

    the water-insolubleembonate salt isalmosttasteless

    very bitter taste

    39

    Examples of the structures of acids and baseswhose structures contain water solubilising groups

    40

  • 8/9/2019 admet pofarm

    21/61

    02-12-201

    2

    Poor absorption and bioavailability after oral dosing Insufficient solubility for IV dosing Artificially low activity values from bioassays Erratic assay results (biological and property methods) Development challenges (expensive formulations and increased

    development time) Burden shifted to patient (frequent high-dose administrations)

    Solubility

    BiopharmaceuticsClassification

    System

    41

    High Solubility Low Solubility

    High Permeability Class I Class IIDissolution rate limits Solubility limitsabsorption absorption

    Diltiazem FlurbiprofenLabetalol NaproxenEnalaprilPropranolol

    Low Permeability Class III Class IVPermeability limits Significant problems for oralabsorption drug delivery are expected

    Acyclovir TerfenadineFamotidine FurosemideNadolol

    42

  • 8/9/2019 admet pofarm

    22/61

    02-12-201

    2

    The effect of pH on the solubility of acidic and basic drugs

    Henderson Hasselbalch equation

    The pKa of aspirin, a weak acid, is 3.5. Calculate the degree of ionisation of aspirin in the (a)stomach and (b) intestine if the pH of the contents of the stomach is 1 and the pH of thecontents of the intestine is 6.

    43

    Partition

    44

  • 8/9/2019 admet pofarm

    23/61

    02-12-201

    2

    Structure Modification Strategies to Improve Solubility

    Add ionizable groupReduce Log PAdd hydrogen bonding

    Add polar groupReduce molecular weightOut-of-plane substitution to reduce crystal packingConstruct a prodrug

    Log S = 0.8LogPow 0.01(MP25)

    S = [HA]+ [A] AcidS = [B] + [HB+] Base

    45

    The incorporation of water solubilising groups in a structure

    the type of group introduced; whether the introduction is reversible

    or irreversible; the position of incorporation; the chemical route of introduction

    46

  • 8/9/2019 admet pofarm

    24/61

    02-12-201

    2

    Introduction of a side chain with a carboxylic acid or amineenhances the solubility of artemisinin.

    47

    Carboxylic acid groups by alkylation

    Carboxylic acid groups by acylation

    48

  • 8/9/2019 admet pofarm

    25/61

    02-12-201

    2

    Phosphate groups Sulphonic acid groups

    Polyhydroxy and ether residues

    49

    Incorporation of basic groups

    50

  • 8/9/2019 admet pofarm

    26/61

  • 8/9/2019 admet pofarm

    27/61

    02-12-201

    2

    Add Polar Group Reduce Molecular Weight

    53

    Reduction of Crystal Packing Energy

    Introduction of Ethyl Group Disrupted -Stacking, ReducedCrystal Packing Energy and Improved Solubility

    54

  • 8/9/2019 admet pofarm

    28/61

    02-12-201

    2

    Out-of-Plane Substitution

    Construct a Prodrug

    Strategies for Improving Dissolution Rate55

    Particle Size Reduction

    High Energy Solids

    Solubility Enhancement

    Cosolvents

    Ionization and pH Adjustment

    Surfactants

    Dispersed Lipid Phases

    Complexation

    Supersaturation

    Enabling Formulation Strategies for Drug Delivery

    56

  • 8/9/2019 admet pofarm

    29/61

    02-12-201

    2

    Permeability Permeability is the velocity of molecule passage through a membrane barrier.

    Permeability is a determinant of intestinal absorption and oral bioavailability.

    Optimizing passive diffusion is productive because it is the predominant

    mechanism for absorption of most commercial drugs.

    Permeability is increased by removing ionizable groups, increasing Log P , and

    decreasing size and polarity.

    57

    58

  • 8/9/2019 admet pofarm

    30/61

    02-12-201

    3

    59

    The Caco-2 permeability assay

    human epithelial colorectaladenocarcinoma cells

    Comparison of PAMPA and Caco-2 Assay

    Comparison PAMPA Caco-2

    Membrane Phospholipid Cell Monolayer

    Mechanisms Passive Passive, Influx,

    Efflux, Metabolism

    Throughput 500 / week 30 / week

    Cost < $1 / sample ~ $30 / sample

    Manpower 0.35 FTE 2 FTE

    60

    PAMPA=parallel artificial membrane permeability assay

  • 8/9/2019 admet pofarm

    31/61

    02-12-201

    3

    61

    Passive Diffusion Permeability

    Passive diffusion across a membrane is affected by thesolution pH and compound p K a. In this PAMPApermeability experiment, acidic, basic, and neutralcompounds have different permeability at different pHvalues.

    Permeability of IonizableCompounds is pH-Dependent

    62

  • 8/9/2019 admet pofarm

    32/61

    02-12-201

    3

    Drug Drug Serum Protein complex

    Distribution

    I. Action of the membrane on drug molecules

    Diffusion through membranes may become rate limiting

    Membrane may completely prevent diffusion to the active site

    Solvation of the drug in the membrane may lead to conformational changes

    of the drug molecule

    II. Drug action on membrane properties

    Drug may change conformation of acyl groups (trans-gauche)

    Drug may increase membrane surface

    Drug may increase membrane fluidity

    Drug may change membrane potential and hydration of head groups

    Drug may change membrane fusion

    Drug Membrane Interaction

  • 8/9/2019 admet pofarm

    33/61

    02-12-201

    3

    Transporters

    Uptake

    Oligopeptide transporters (PEPT1, PEPT2)

    Organic anion transporters (OATP1, OAT1,

    OAT3)

    Organic cation transporters (OCT1)

    Bile acid transporters (NTCP)

    Nucleoside transporters

    Vitamin transporters

    Glucose transporters (GLUT1)

    Efflux

    P-glycoprotein (Pgp, MDR1)

    Breast cancer resistance protein (BCRP)

    Transporters Affecting Gastrointestinal Absorption of Some Drugs

    Uptake Transporters

    Organic Anion Transporting Polypeptides (OATPs, SLCOs)Di/Tri Peptide Transporters (PEPT1, PEPT2)Organic Anion Transporters (OATs)Organic Cation Transporter (OCT)Large Neutral Amino Acid Transporter (LAT1)Monocarboxylic Acid Transporter (MCT1)Glucose Transporter (GLUT1)Sodium Dependent Taurocholate Co-transporting Polypeptide (NCTP)

  • 8/9/2019 admet pofarm

    34/61

    02-12-201

    3

    Efflux Transporters

    P-glycoprotein (MDR1, ABCB1)

    BCRP, MRP2

    Rules for Pgp Efflux Substrates

    N + O 8 MW > 400Acid with pKa > 4

    Pgp substrate Pgp non-substrate

    N+O 4 MW < 400Base with pKa < 8

  • 8/9/2019 admet pofarm

    35/61

    02-12-201

    3

    Structure Modification Strategies to Reduce Pgp Efflux

    1. Introduce steric hindrance to the hydrogen bond donating atoms by:

    a. Attach a bulky group

    b. Methylate the nitrogen

    2. Decrease H-bond acceptor potential

    a. Add an adjacent electron withdrawing group

    b. Replace or remove the hydrogen bonding group (e.g., amide)

    3. Modify other structural features so that they may interfere with Pgp binding,

    such as adding a strong acid

    4. Modify the overall structures Log P to reduce penetration into the lipid

    bilayer where binding to Pgp occurs

    Increasing steric hindrance reduces Pgp efflux

    Pgp efflux at the BBB was decreased byadding a carboxylic acid moiety

  • 8/9/2019 admet pofarm

    36/61

    02-12-201

    3

    71

    BARREIRA HEMATOENCEFLICA

    Protege o crebro e a medula

    Permite a entrada de oxignio e nutrientes

    POUCOS FRMACOS CONSEGUEM ATRAVESSAR A BHE

    Caractersticas fisico-qumicas adequadas

    Processo de transporte adequado

    72

    Pardridge

    n inter. H < 8-10

    PM < 400-500

    No cidos

    Pardridge, W. M. (1995).Transport of small molecules through the blood-brainbarrier: Biology and methodology . Advanced DrugDelivery Reviews,15 , 5 36.

    Spraklin

    n dadores H < 2

    n aceitadores H < 6

    Propriedades FQ que afectam grandemente permeao trancelular passiva

    Clark e Lobell

    N + O < 6

    PSA 0

    PM = Peso molecularPSA = rea superfcie polarLog D = log. Coeficiente de distribuioCLog P = log. coeficiente de partilha calculado

    http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8http://images.google.pt/imgres?imgurl=www.ispub.com/xml/journals/ija/vol3n2/braina.jpg&imgrefurl=http://www.ispub.com/journals/IJA/Vol3N2/inhal1.htm&h=161&w=202&prev=/images?q=anesthetics&svnum=10&hl=pt-PT&lr=&ie=UTF-8
  • 8/9/2019 admet pofarm

    37/61

    02-12-201

    3

    73

    Processo de transporte adequado

    Aproveitamento do transporte das substncias fisiolgicas

    Ex: L-DOPA (di-hidroxifenilalanina) absorvida como a.a. activo

    posteriormente transformada em dopamina

    Structure Modification Strategies to Improve Brain Penetration Reduce P-glycoprotein efflux

    Reduce hydrogen bonds

    Increase lipophilicity

    Reduce molecular weight

    Replace carboxylic acid groups

    Add an intramolecular hydrogen bond Modify or select structures for affinity to uptake transporters

  • 8/9/2019 admet pofarm

    38/61

  • 8/9/2019 admet pofarm

    39/61

    02-12-201

    3

    Plasma Stability

    Several functional groups are susceptible to plasma degradationand include the following:

    EsterAmideCarbamateLactamLactoneSulfonamide

    Soft Drugs

  • 8/9/2019 admet pofarm

    40/61

  • 8/9/2019 admet pofarm

    41/61

    02-12-201

    4

    Increased steric hindrance of the lactamcarbonyl increased plasma stability

    Introduce electron-withdrawing group todecrease plasma stability and increaseclearance to avoid adverse effects usingantedrug approach

    Solution Stability

    specific conditions and components of a wide range of solutions cancause compound instability

    pHWaterCounter ions of saltsSolution components (e.g., dithiotheital (DTT))ExcipientsEnzymes

    High-performance liquid chromatographymodifiers (especially if concentrated afterpurification)TemperatureLightOxygen

  • 8/9/2019 admet pofarm

    42/61

    02-12-201

    4

    Structure Modifications Strategies for Solution Stability Improvement

    Eliminate or modify unstable group

    Add an electron-withdrawing group

  • 8/9/2019 admet pofarm

    43/61

  • 8/9/2019 admet pofarm

    44/61

    02-12-201

    4

    Plasma Protein Binding

    Compounds can bind to albumin, 1-acid glycoprotein, or lipoproteins in blood.

    Binding reduces free drug in solution for penetration into tissue to reach thetherapeutic target or to the liver and kidney for elimination.

    Species differences in plasma protein binding

    Classification of Acidic Drugs for HSA Binding

    Types of drugs I II IIIReference drugs Warfarin diazepam Indomethacin PhenytoinBinding proteins HSA HSA HSABinding processes Saturable Saturable and nonsaturable

    NonsaturableAssociation constant (M1) 104106 103 105 102103 Binding sites per molecule 1 to 3 6 Many

    Classification of Non-ionized and Basic Drugs

    Types of drug IV V VIReference drugs Digitoxin Erythromycin ImipraminepKa 8.8 9.5Binding protein HSA (NS) HSA (NS) HSA (NS), 1-AGP (S), HDL(NS),

    LDL (NS), VLDL (NS)Drug plasma saturation No Possible Possible

  • 8/9/2019 admet pofarm

    45/61

    02-12-201

    4

    PPB Effects

    Retain drug in plasma compartment Restrict distribution of drug into target tissue (reduce volume of distribution [Vd]) Decrease metabolism, clearance, and prolong t Limit brain penetration Require higher loading doses but lower maintenance doses

    Impact of PPB on Distribution

    Restrictive and Permissive Effects of PPB on Drug Disposition

    Drug Free drug in plasma (%) Volume of distribution (L/kg)RestrictiveFurosemide 4 0.2Ibuprofen

  • 8/9/2019 admet pofarm

    46/61

    02-12-201

    4

    High PPB can restrict BBB permeation

    Blood BBB Brain

    Free drug molecules permeate through the BBB

    Effect of PPB on Clearance

    Restrictive and Permissive Effects of PPB on Liver Extraction

    Drug Bound drug in plasma Liver extraction ConsequencePropranolol >90% >90% PermissiveWarfarin >99%

  • 8/9/2019 admet pofarm

    47/61

    02-12-201

    4

    Structure Modification Strategies for PPB

    Structure Modification Strategies to ReducePPB in Order of Highest to Lowest Potential Effect

    Structure Modification Strategy

    Reduce lipophilicity (Log P for acids, Log D 7.4 for nonacids)

    Reduce acidity (increase p K a of the acid)

    Increase basicity (increase p K a of the base)

    Reduce nonpolar area

    Increase PSA (increasing PSA increases hydrogen bonding)

    Excretion

  • 8/9/2019 admet pofarm

    48/61

    02-12-201

    4

    95

    Drug/metabolite Enantiomer Clearance Units RatioAcebutolol R CLR 124 mL/min 1.03

    S 120Diacetolol R CLR 70 mL/min 1.32(active metabolite S 53of acebutolol)Atenolol (+) CLR 109.7 mL/min 1.03

    (-) 112.5Chloroquine (+) CLR 276 mL/min 1.03

    (-) 267(+) CLRu 824 1.59(-) 519

    Disopyramide* (-)-R CLR 0.75 mL/min/kg 1.17(+)-S 0.64(-)-R CLRu 6.26 1.40(+)-S 8.75

    Mondesisopropyl (-)-R CL R 1.97 mL/min/kg 2.09disopyramide (+)-S 4.11(following (-)-R CLRu 3.21 2.19administration (+)-S 7.02of the drug)

    Renal Clearance of Drug Enantiomers in Man

    CLR, CLRu, and CLTS are the total, unbound, and tubular secretion clearances, respectively*drug administered as the individual enantiomers

    96

    Drug/metabolite Enantiomer Clearance Units Ratio

    Metoprolol (-) CL R 69 mLmin 1.09(+) 75

    Mexiletine (-) CLR 0.5 mL/min/kg 1.0(+) 0.5

    Ofloxacin (+)-R CLR 7.53 L/h 1.05(-)-S 7.14

    Pindolol (+)-R CLR 200 mL/min 1.20(-)-S 240(+)-R CLRu 453 1.18(-)-S 534(+)-R CLTS 157 1.25(-)-S 196(+)-R CLR 170 mL/min 1.31(-)-S 222

    (+)-R CLTS 121 1.40(-)-S 169

    Prenylamine (-)-R CLR 1.3 mL/min 3.08(+)-S 4.0

    Terbutaline* (-) CL R 1.5 mL/min/ kg 1 1.80(+) 2.7

    Tocainide* (-) CLR 55 mL/min 1 1.0(+) 55

    Tranylcypromine (-) CL R 15.3 mL/min 1 1.63(+) 24.9(-)* 8.1 mL/min 1 2.19(+) 17.7

  • 8/9/2019 admet pofarm

    49/61

    02-12-201

    4

    97

    a drug that is rapidly metabolized, that is, a drug with low metabolic stability, will requiremultiple daily dosing or continuous infusion to maintain an adequate therapeutic plasmalevel. Likewise, a highly stable drug, that is, a drug that is not readily metabolized andeliminated, could have a prolonged halflife, which might influence its safety.

    Drug metabolism is a key determinant of several important drugproperties

    Metabolic stability

    Drug drug interactions

    Drug toxicity

    a major cause of drug drug interactions is the interference of the metabolism ofone drug by a co-administered drug.

    a drug might be rendered non-toxic (i.e. detoxification) or more toxic (i.e.metabolic activation) by metabolism.

    Figure 1. Hypothetical plot of a plasma drug concentration vs. time curve in theabsence and presence of an inhibitor for drug transporter(s) (with no effect onclearance) resulted in an increased AUC with no change in t1/2. Inhibition ofdrug metabolizing enzyme(s) by concomitant drug(s) or auto-inactivation ofdrug metabolizing enzyme(s) by the therapeutic agent itself resulted in anincrease of both AUC and t1/2.

    98

  • 8/9/2019 admet pofarm

    50/61

    02-12-201

    Figure 2. Hypothetical plot of a plasma drug concentration vs. time curve in theabsence and presence of an inducer for drug transporter(s) (with no effect onclearance) resulted in a decreased AUC with no change in t1/2. Auto-inductionof drug metabolizing enzyme(s) by the therapeutic agent itself resulted in adecrease of both AUC and t1/2. 99

    100

    Routes of elimination of the top 200 most prescribed drugs in 2002

  • 8/9/2019 admet pofarm

    51/61

    02-12-201

    101

    Cytochrome P450 Inhibition

    Drug drug interactions can occur when two drugs are coadministered and

    compete for the same enzyme.

    In cytochrome P450 (CYP) inhibition, one drug (perpetrator) binds to the

    isozyme and the other drug (victim) is excluded from metabolism, thus

    increasing to a toxic concentration.

    Irreversible binding inactivates CYP and is termed mechanism-basedinhibition.

    CYP inhibition can cause withdrawal from clinical use or restrictive labeling

    for a drug.

    102

  • 8/9/2019 admet pofarm

    52/61

    02-12-201

    103

    Percentage of drugs metabolized bydifferent CYP isoformsCYP isoforms in human liver microsomes andtheir relative abundances

    Summary of Important CYP IsozymesIsozyme Distribution in HLM Drugs metabolized Comments3A family 28% 50% Most abundant2D6 2% 30% Polymorphic, 5% of

    white males lack isozyme2C family 1 8% 10% Polymorphic1A2 13% 4% Enzyme induction

    104

  • 8/9/2019 admet pofarm

    53/61

    02-12-201

    Effects of CYP Inhibition potential risk of DDI

    10 M CYP inhibition low 15% 50% inhibition @ 3 M or 3 M

  • 8/9/2019 admet pofarm

    54/61

    02-12-201

    Structure Modification Strategy

    Decrease the lipophilicity (Log D 7.4) of the molecule

    Add steric hindrance to the heterocycle para to the nitrogen

    Add an electronic substitution (e.g., halogen) that reduces the p K a of the

    nitrogen

    Structure Modification Strategies to Reduce CYP Inhibition

    107

    Structure Modification Strategies to Reduce CYP Inhibition

    108

  • 8/9/2019 admet pofarm

    55/61

    02-12-201

    109

    Possible mechanisms of inhibition for the cytochrome P450s

    Potential outcomes for a testcompound interacting with asubstrate-dependent drugmetabolic pathway

    Examples of reversible and irreversible (arrows) CYP inhibition

    110

  • 8/9/2019 admet pofarm

    56/61

    02-12-201

    Certain compounds block the cardiac K + (hERG) ion channel and induce arrhythmia.

    The safety margin for hERG is IC 50 /C max unbound >30. hERG blocking might be decreased by reducing the basicity, reducing lipophilicity, and

    removing oxygen H-bond acceptors

    hERG Blocking

    Commercial drugs that were withdrawn orhad major labeling restrictions due to hERG

    blocking.

    111

    hERG Blocking Structure Activity Relationship

    structural features that are common to binding in the hERG channel

    A basic amine (positively ionizable, p K a >7.3)

    Hydrophobic/lipophilic substructure(s) (ClogP >3.7)

    Absence of negatively ionizable groups

    Absence of oxygen H-bond acceptors

    112

  • 8/9/2019 admet pofarm

    57/61

    02-12-201

    Structure Modification Strategies for hERG

    Reduce the p K a (basicity) of the amine

    Reduce the lipophilicity and number of substructures in the binding region

    Add acid moiety

    Add oxygen H-bond acceptors

    Rigidify linkers

    113

    Toxicity remains a significant cause of attrition

    during development.

    Many toxic outcomes are possible, including

    carcinogenicity, teratogenicity, reproductive

    toxicity, cytotoxicity, and phospholipidosis.

    Toxic mechanisms include reactive metabolites,

    gene induction, mutagenicity, oxidative stress, and

    autoimmune response.

    The safety window is the concentration range

    between efficacious response and toxic response.

    Toxicity

    114

  • 8/9/2019 admet pofarm

    58/61

  • 8/9/2019 admet pofarm

    59/61

    02-12-201

    Metabolic Activation-Role in Toxicity andIdiosyncratic Reactions

    Types of Reactive Metabolites

    Electrophiles

    Acylators

    Activated Double bonds

    Other Electrophilic Carbon Centers

    Electrophiles Localized on Nitrogen or Sulfur,

    or Derived from Oxidation of SulfurRadicals

    117

    118

    Functional group Reactive species Enzyme system

    Nitro aromatics Radical CYP450/reductaseAnilines Electrophiles CYP450, peroxidasesActivated aromatics Electrophiles, radicals CYP450, peroxidasesPropionic acids Electrophiles Glucuronyl transferaseThiophenes Electrophiles CYP450Furans Electrophiles CYP450Formamides Electrophiles CYP4503-Alkyl indoles Electrophiles CYP450Thioureas Electrophiles CYP450Thioamides Electrophiles CYP450Thiazolidinones Electrophiles CYP450Cyclopropyl amines Radicals CYP450Hydrazines Radicals CYP450Acetylenes Electrophiles CYP450Sulfonylureas Electrophiles CYP450

    Structural alerts, types of reactive species produced, and the enzyme system most

    commonly responsible

  • 8/9/2019 admet pofarm

    60/61

  • 8/9/2019 admet pofarm

    61/61

    02-12-201

    Structure Modification Strategies to Improve Safety

    Avoid substructures that are known to induce toxic responses

    Early synthetic modifications Potentially toxic substructures should not be added to lead series

    structures during lead optimization

    Perform reactive metabolite assays

    Structure elucidation of the metabolites or trapped intermediate

    Utilize the metabolite structural modification strategies

    121

    eliminating the suspect functional group, blocking the potential for metabolism, making metabolism less favorable (most frequently by use of steric hindrance

    or reducing oxidation potential), incorporating metabolic soft spots to direct metabolism away from the suspect

    group

    Strategies to minimize bioactivation risk