33
Meteorological Training Course Lecture Series ECMWF, 2002 1 Adiabatic formulation of models By Terry Davies Table of contents 1 . Introduction 2 . Governing equations 2.1 Horizontal coordinate systems 2.2 The shallow water equations 2.3 Map projections 3 . Horizontal discretization 3.1 Finite differences 3.2 Spectral technique 3.3 Finite-element techniques 4 . Vertical coordinates 4.1 Pressure coordinate 4.2 Sigma coordinates 4.3 Hybrid coordinates 4.4 Isentropic coordinates 5 . Vertical discretization 5.1 Vertical differencing schemes for baroclinic primitive equation models REFERENCES 1. INTRODUCTION These notes are not a verbatim record of the lecture series, but rather a condensation of the topics covered. They describe some of the techniques used in the adiabatic formulation of primitive-equation models of the atmosphere. Some sections have been taken directly from earlier notes by D. Burridge and from a paper by A. Simmons and D. Dent. These notes are not complete and need to be supplemented by the following sources: (i) ‘Numerical prediction and dynamic meteorology’ by Haltiner and Williams. This is a very useful textbook and reference book describing many of the basic principles and techniques used in NWP. (ii) ‘Numerical methods for weather prediction’, ECMWF Seminar notes 1983 and, in particular, chapters by Mesinger, Janjic and Arakawa. Unfortunately this volume is out of print but you may be able to find a copy in your home institution.

Adiabatic formulation of models - ECMWF · 2.2 The shallow water equations 2.3 Map projections 3 . Horizontal discretization 3.1 Finite differences 3.2 Spectral technique 3.3 Finite-element

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Meteorological Training Course Lecture Series

    ECMWF, 2002 1

    Adiabatic formulation of models

    By Terry Davies

    Table of contents

    1 . Introduction

    2 . Governing equations

    2.1 Horizontal coordinate systems

    2.2 The shallow water equations

    2.3 Map projections

    3 . Horizontal discretization

    3.1 Finite differences

    3.2 Spectral technique

    3.3 Finite-element techniques

    4 . Vertical coordinates

    4.1 Pressure coordinate

    4.2 Sigma coordinates

    4.3 Hybrid coordinates

    4.4 Isentropic coordinates

    5 . Vertical discretization

    5.1 Vertical differencing schemes for baroclinic primitive equation models

    REFERENCES

    1. INTRODUCTION

    Thesenotesarenot a verbatimrecordof the lectureseries,but rathera condensationof thetopicscovered.They

    describesomeof thetechniquesusedin theadiabaticformulationof primitive-equationmodelsof theatmosphere.

    Somesectionshavebeentakendirectly from earliernotesby D. Burridgeandfrom apaperby A. SimmonsandD.

    Dent. These notes are not complete and need to be supplemented by the following sources:

    (i) ‘Numerical predictionanddynamicmeteorology’by Haltiner andWilliams. This is a very useful

    textbook and reference book describing many of the basic principles and techniques used in NWP.

    (ii) ‘Numerical methodsfor weatherprediction’, ECMWF Seminarnotes1983 and, in particular,

    chaptersby Mesinger, JanjicandArakawa.Unfortunatelythisvolumeis outof print but youmaybe

    able to find a copy in your home institution.

  • Adiabatic formulation of models

    2 Meteorological Training Course Lecture Series

    ECMWF, 2002

    In additionto theabove,usefulmaterialcanalsobefoundin Philips’s articlein ‘Planetaryfluid dynamics’edited

    by P. Morel and‘Numericalmethodsusedin atmosphericmodels’by MesingerandArakawa,GarpPublications

    Series No. 17, Volume 1, (1976).

    2. GOVERNING EQUATIONS

    Taking an inertial (or fixed) frame of reference, Newton's second law can be expressed as

    (1)

    whereF is thesumof all theforcesperunit mass. is thevelocityasobservedin theinertial frame.Weneedtoexpress this equation in a reference frame on earth and which rotates with the earth.

    Let be the angular velocity of the earth, then

    (2)

    whereV is thevelocity relative to theearthandr representsthepositionvectorof theparticleasmeasurefrom theorigin at the earth's centre.

    Now consider the time derivative of a vector in the inertial frame and

    in therotatingframewhere and areunit vectorsalongtheorthogonalaxes

    in the two frames. Thus

    Now , etc. so that we can write

    (3)

    Using the expression in(1) and using(2) we can show that

    Thesecondtermof theright-handsideis theCoriolis forceandthethird termthecentrifugal force.In atmospheric

    motions,theforcesweareconcernedwith arethoseof gravitation,friction andpressure.Normally, thecentrifugal

    force is included in the gravitational force which is taken as constant .

    The equation of motion can be written as

    (4)

    DVaD�----------- F=

    Va

    Va V Ω r×+=

    V V′ � i′ V′� j′ V′ � k′+ +=V V � i V� j V � k+ += i′ j′ k′, , i j k, ,

    DVD�--------- dV′ �

    d�------------i′ dV′�

    d�------------ j′ dV′ �

    d�-----------k′+ +=

    dV �d�----------i dV�

    d�---------- j dV �

    d�----------k V � di

    d�----- V� dj

    d�----- V � dk

    d�------+ + + + +=

    di d�⁄ Ω i×=

    DVD�--------- dV

    d�------- Ω V×+=

    DVaD�----------- dV

    d�------- 2Ω V Ω Ω r×( )×+×+=

    � k=

    d�d�-------- α∇�– 2Ω V � k– F+×–=

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 3

    whereF denotesthefrictional forceand is thespecificvolume, is thedensity. Theequationof masscontinuity expresses the fact that local density changes are brought about by mass divergence.

    (5)

    or, alternatively, .

    The first law of thermodynamics can be written

    (6)

    where is the heatingor cooling from diabaticeffects, is the rate of changeof internal energy and

    represents the work done by expansion.

    For a perfect gas, and we have the equation state of

    (7)

    where is thegasconstantand and arethespecificheatsat constantpressureandvolume,

    respectively.

    Using we can rewrite (6) as

    (8)

    Alternatively, we can expand and rearranging(8) we have

    , (9)

    where .

    In termsof potentialtemperature (or where ) where ,

    hPa.

    We have and, on substituting in(9), and rearranging we find

    (10)

    2.1 Horizontal coordinate systems

    Applicationof theequationsof motionrequirestheuseof anappropriatecoordinatesystem.Theobviouschoice

    for globalmodelsis to choosesphericalpolarcoordinateswith longitude , latitude andradialdistance . The

    map factors in this system are , , and the velocity components are

    α 1 ρ⁄= ρ

    ∂ρ∂ �------ ∇ ρV⋅–=

    dρ d�⁄ ρ∇ V⋅–=

    � d�d�----- � dα

    d�-------+=

    �d� d�⁄

    � dα d�⁄( )� v =

    � � ρ =� � v–= � v

    � v =� vdd�------- �

    dαd�-------+=

    � dαd�------- � d

    d�----- � �--------- �

    d

    d�------- � �---------

    d�d�------–= =

    � � d

    d�------- � �---------ω–=

    ω d� d�⁄=Θ � 0 �⁄( )κ = ΠΘ= Π ��� 0⁄( )κ= κ ���⁄=� 0 1000=

    � dΘd�------- � ΠdΘ

    d�------- � Θ κ�----Π

    d�d�------+=

    � dΘd�------- Θ----

    �=

    λ ϕ ��λ � ϕcos= � ϕ �= ��� 1=

  • Adiabatic formulation of models

    4 Meteorological Training Course Lecture Series

    ECMWF, 2002

    t

    Theradialdistance where is theradiusof theearthand is theverticaldistanceabove thesurface

    of the earth.

    The components of the momentum equation become

    (11)

    (12)

    (13)

    where

    From equations(11), (12) and(13), it can be shown that

    (14)

    i.e. therateof changeof kinetic energy is equalto therateat which theforcesof pressurefriction andgravity do

    work.

    We can also show that

    (15)

    which is the angular momentum principle.

    For long integrations e.g. climate runs, it is important that these principles are maintained.

    In thestudyof larger-scaleatmosphericmotions,at leastfor motionswe areusuallyconcernedwith in numerical

    modelling, the following approximations can be justified.

    (i) Since , we replace by the constant value .

    (ii) The Coriolis and metric terms proportional to are ignored.

    (iii) We make the hydrostatic approximation to equation(13) so that

    � �λdλd�------ � ϕdλ

    d�------cos= = , the eastward component

    � �ϕdϕd�------ � dϕ

    d�------= = , the northward component

    � ��� d�d�------ d�

    d�------= = , the radial component, t

    � � �+= � �

    d�d�------- 2Ω � θ 2Ω � ϕ ��� ϕtan�-------------------

    ����--------–

    1ρ � ϕcos-------------------

    ∂�∂λ------– � λ+ +cos–sin=

    d�d�------ 2Ω � ϕ � 2 ϕtan�------------------–

    ����--------–

    1ρ �------

    ∂�∂ϕ------– � ϕ+sin–=

    d�d�-------- 2Ω � ϕ � 2 � 2+�-----------------

    1ρ---∂�

    ∂ �------– �– ���+ +cos=

    dd�----- ∂∂ �-----

    �ϕacos

    --------------- ∂∂λ------

    ��---

    ∂∂ϕ------ � ∂

    ∂ �-----+ + +=

    dd�----- 1

    2---V2

    V 1ρ---∇�– F � k–+ ⋅=

    dd�----- � Ω � ϕcos+( ) � ϕcos[ ] � ϕ 1ρ � ϕcos-------------------

    ∂�∂λ------– � λ+ cos=

    � �« � �ϕcos

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 5

    (16)

    i.e. the gravity force balances the vertical pressure gradient force.

    Under these assumptions,

    (17)

    (18)

    (19)

    (20)

    where is the Coriolis parameter.

    Equations(18), (19), (20)togetherwith thecontinuityequation(5), theequationof state(7)andthethermodynamic

    equation((8), (9) or (10)) give ustherequirednumberof equationsfor theunknowns ; theseare

    known collectively as the primitive equations.

    However, thereis no predictionequationfor sincewe ignoreverticalaccelerations( ) by our useof the

    hydrostatic approximation. is usually diagnosed from a form of the continuity equation.

    2.2 The shallow water equations

    Theprimitive equationsarenonlinear, andit is only possibleto solve themapproximatelyusingnumericalmeth-

    ods.Someof thepropertiesof theprimitive equations,andalsoof thenumericalschemesusedin their solution,

    can be examined by studying simplified forms of the equations.

    One such set of equations are the shallow water equations.

    If weassumeconstantdensity, thehorizontalpressureforcein theequationsof motionis independentof heightso

    that

    (21)

    where is the height of the free surface.

    If wefurtherassumethatthevelocityfield is initially independentof height,thenit will remainsoandconsequently

    we can omit the vertical advection terns.

    We also assume that the fluid is incompressible so that the continuity equation is

    (22)

    which can be integrated from to (the bottom to the free top surface) to give

    ∂�∂�------ ρ�–=

    � ϕdλd�------ �,acos � dϕ

    d�------ �, d�

    d�------= = =

    d�d�------- 1ρ ϕacos------------------

    ∂�∂λ------– � � ��� ϕtan�----------- � λ+ + +=

    � �� �------- 1ρ �-------∂�∂ϕ------– � �– � 2 ϕtan�-----------– � ϕ+

    ∂�∂�------ ρ�–=

    � 2Ω ϕsin=��� � � ρ , , , , ,

    � d� d�⁄�

    ∇� ρ� ∇ �=�

    ∇ V ∂�

    ∂�-------+⋅ 0=

    � 0= � �=

  • Adiabatic formulation of models

    6 Meteorological Training Course Lecture Series

    ECMWF, 2002

    (23)

    At the bottom whilst at the top, , the rate at which the free surface rises or falls.

    Thus

    (24)

    or

    The set of equations is completed by the momentum equations which are

    (25)

    Theequationsof motionabovearein aform known astheadvective form dueto thepresenceof the term.

    The equations of motion can easily be rearranged into their vector invariant form viz:

    (26)

    where

    is the vorticity in spherical coordinates (cf. with in a Cartesian system) and

    is the kinetic energy.

    Theequationsof motioncanbecombinedandrearrangedinto theirvorticity/divergenceform.Considertheshallow

    water equations in a Cartesian system where the vorticity is .

    (27)

    Operating on the -equation by , the -equation by and subtracting, we obtain

    (28)

    Thedivergencecanbeobtainedby operatingonthe -equationby andthe -equationby andadding

    to obtain

    �∇ V �"!#� 0–+⋅ 0=

    �0 0=

    �$! d� d�⁄=

    �$! ∂ �∂ �------ V ∇

    �⋅+

    �∇ V⋅–= =

    ∂�

    ∂ �------ V ∇� �

    ∇ V⋅+⋅+ 0=

    ∂V∂ �------- V ∇V � k V � ∇

    �+×+⋅+ 0=

    V ∇V⋅

    ∂V∂ �------- ζ %+( )k V ∇ �

    � &+( )+×+ 0=

    ζ 1 ϕacos--------------- ∂

    �∂λ------

    ∂∂ϕ------ � ϕcos( )– =

    ζ ∂ � ∂'⁄ ∂ � ∂(⁄–=&0.5 � 2 � 2+( )=

    ζ ∂ � ∂'⁄ ∂ � ∂(⁄–=∂ �∂ �------ �

    ∂ �∂'------ �

    ∂ �∂(------ � �– �

    ∂�

    ∂'------+ + + 0=∂ �∂ �------ �

    ∂ �∂'------ �

    ∂ �∂(------ � � �

    ∂�

    ∂(------+ + + + 0=� ∂ ∂'⁄ � ∂ ∂(⁄

    ∂ζ∂ �------ ∇ ζ �+( )V[ ]⋅+ 0=

    � ∂ ∂'⁄ � ∂ ∂(⁄

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 7

    (29)

    2.3 Map projections

    Sofar, we have useda sphericalpolarcoordinatesystemin our derivationof theprimitive equations.However, it

    is sometimesnecessaryto mapontoa plane.This is oftendonefor limited-areamodellingand,of course,is nec-

    essary when producing charts.

    Theadvectiveform of theshallow waterequationsin ageneralizedlinearcoordinatesystem with correspond-

    ing map factors and are

    (30)

    (31)

    (32)

    In this system, the vorticity and divergence are given by

    (33)

    (34)

    When , the angles between intersecting curves are preserved and the system is conformal.

    We have already shown that a spherical polar coordinate system has .

    2.3 (a) Polar stereographic projection. Thisprojectionis usedfor mapsandwaswidely usedin modellingin

    limited area models and the hemispheric domain. If is the radius of a latitude circle on the map then

    (35)

    Thelongitudinalangleis definedas sothatwith axeswith origin at thepole, positiveeastwards,

    positivenorthwardsfromourreferencelongitude,then and . In termsof and these

    become

    (36)

    with , where is the map factor ( ). The wind

    components( ) in the ( ) directionsare andarerelatedto thevelocities( ) in

    the spherical system by and .

    ∂)∂ �------- ∇ ζ �+( ) * �×[ ] ∇

    2 � � � 2 � 2+2

    -----------------+ +⋅+ 0=

    '+(,� � � �

    ∂ �∂ �------

    �� �------∂ �∂'------

    �� �------∂ �∂(------ � �

    1� � � �------------ �∂� �

    ∂'--------- �∂� �

    ∂(---------– +–�� �------

    ∂�

    ∂'------+ + + 0=

    ∂ �∂ �------

    �� �------∂ �∂'------

    �� �------∂ �∂(------ � �

    1� � � �------------ �∂� �

    ∂'--------- �∂� �

    ∂(---------– +�� �------

    ∂�

    ∂(------+ + + + 0=

    ∂�

    ∂ �------1� � � �------------

    ∂∂'------� � � �( ) ∂∂(------

    � � � �( )++ 0=

    ζ )

    ζ 1� � � �------------∂

    ∂'------� � �( ) ∂∂(------

    � � �( )–=

    ) 1� � � �------------∂

    ∂'------� � �( ) ∂∂(------

    � � �( )+=� � � �=

    �λ ϕ

    �ϕ,acos �= =

    � 2 Φ2---- whereΦ,atan π

    2--- ϕ–= =

    Θ λ= ',(,( ) '( ' � Θsin= ( � Θcos= ϕ λ

    ' 2 ϕ λsinacos1 ϕsin+( )

    ------------------------------ (, 2 ϕ λcosacos1 ϕsin+( )

    -------------------------------–= =

    � �.- ϕ( ) ϕcos= - ϕ( ) 2 1 ϕsin+( )⁄= � � � � 1 - ϕ( )⁄= =���, '+(, � � �/' ˙ �, � �0( ˙= = � s � s,� �s λ

    �s λsin–cos=

    � �s λ

    �s λcos+sin=

  • Adiabatic formulation of models

    8 Meteorological Training Course Lecture Series

    ECMWF, 2002

    2.3 (b) Mercator (cylindrical) projection. This is commonlyusedfor mapsor for modelling in tropical re-

    gions. The (east–west) and (north–south) coordinates are defined by

    (37)

    where is the latitude at which the projection is true (usually , the equator).The map factor

    .

    3. HORIZONTAL DISCRETIZATION

    So far, we have derived the basichydrodynamicalequationsthat govern atmosphericmotions.Given the initial

    fieldsof massandvelocity it is possibleto treatthesolutionof theseequationsasaninitial valueproblemandthus

    obtainthemassandvelocity distribution at somefuturetime.However, thepartialdifferentialequationsarenon-

    linearandcanonly besolvedby usingnumericaltechniques.Furthermore,thenonlinearityof theequationsmeans

    thatany smallerrorsin theinitial conditionsarelikely to grow, makingthesolutionuselessin adeterministicsense

    after a number of days.

    Thereareavarietyof methodsthatcanbeemployedin thesolutionof theequations.Weshallput theminto three

    broad categories—finite difference, spectral and finite-element techniques.

    3.1 Finite differences

    Thefirst numericaltechniquesusedin thesolutionof theprimitive equationswerebasedon finite differences.In

    thistechniquevaluesandderivativesof thedependentvariablesarerepresentedatdiscretepointsonagrid.Usually

    the grid is regular in the coordinatesystemused,at leastin the horizontal.In the vertical mostcentreshave a

    non-uniformgrid asit seemsdesirableto havefinerresolutionin theboundarylayerandaroundthejet stream.Fur-

    therenhancementsto theperformance(andto someextenttheaccuracy) of finite differenceschemescanbemade

    by staggeringthe dependentvariables,i.e. by holding variablesat different grid-points. Normally staggered

    schemesgiveabettersimulationof geostrophicadjustmentandthey areeithermoreaccurateor moreeconomical

    than equivalent non-staggered schemes.

    In thedesignof any numericalschemecertainconditionsneedto bemetto maintainstability. Sincetheprimitive

    equationsarenonlinear, they areproneto nonlinearcomputationalinstability undercertainconditions.Nonlinear

    instability canbeavoidedby designingschemesin sucha way asto conserve particularproperties,normallyen-

    strophy or kinetic energy. Suchconservationpropertiesareusuallymetby satisfyingintegral constraintsthatare

    alsosatisfiedby thecontinuoussystemof equations.By maintainingtheseconstraintsin longerintegrations,the

    statistical structure of the atmosphere is maintained and it may help to reduce systematic errors.

    Thedesignof conservativefinite-differenceschemeswaspioneeredbyArakawa(1966),Lilly (1964)andSadourny

    (1975),andareview canbefoundin Arakawa(1984).Failureto conserveenstrophy, in particular, eventuallyleads

    to a spuriouscascadeof energy to smallerscales.It is possibleto limit or control this falsecascadeby removing

    energy from thesesmallerscalesby theuseof lateraldiffusion,but excessive lateralsmoothingleadsto enhanced

    energy dissipation.

    To achieveconservationin thediscretizedsystem,successive termsneedto cancelsothatsummingoveradomain

    (equivalent to integrating the continuous equations) leaves only boundary values.

    Conservationpropertiesdo not necessarilyendow a particularschemewith increasedlocal accuracy, which may

    bemoreadvantageousfor theforecastingof small-scalephenomena.Thus,thechoiceof aschemewith or without

    ' (

    ' ϕ0λ (,acos ϕ0 1 ϕsin+ ϕcos-------------------- lnacos= =

    ϕ0 ϕ0 0=- ϕ( ) ϕ0cosϕcos

    -------------- 1� �------1� �------= = =

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 9

    conservation is likely to be dictated by the problem being solved.

    For globalmodels,themoststraightforwardgrid to useis basedonlinesof constantincrementsin latitudeandlon-

    gitude(Fig. 1 ). However, on sucha grid thelongitudinalpointsconverge,andeast–westresolutionconsequently

    increasesasthepolesareapproached.Unlessspecialmeasuresaretaken,this increasein resolutionresultsin the

    violationof theCFL conditionwhenexplicit time-steppingschemesareused.In someformulations,thepolesare

    singular points and usually have to be treated separately.

    Figure 1Illustration of a regular latitude/longitude grid near a pole.

    We candemonstratetheeffectsof converging meridiansby consideringa linearizedversionof theshallow-water

    equations

    (38)

    (39)

    (40)

    wherewe have inserted which will act to highlight the effects of longitudinaldifferencingand, if

    necessary, asa smoothingoperator. We will examinethebehaviour of two differentschemeson anunstaggered

    grid, i.e. are held at the samepoints.First, with a leapfrogscheme,the differentiation is

    replacedby . We usecentraldifferencesfor the spacedifferencingand,after substituting

    solutionsof the form , etcwe arrive at a systemof equations,thedeterminantof

    which is

    ∂ �∂ �------

    ��1� ϕcos----------------

    ∂�

    ∂λ------+ 0=

    ∂ �∂ �------

    ��---

    ∂�

    ∂ϕ------+ 0=

    ∂�

    ∂ �------2� ϕcos---------------- 1

    ∂ �∂λ------ ∂

    ∂ϕ------ � ϕcos( )++ 0=

    1 1 ϕ( )=��� and �, ∂ � ∂ �⁄��3 1+ ��3 1––( ) 2∆ �⁄��3 λ34� ˆ i * ∆λ 5 ∆ϕ+( )[ ]exp=

  • Adiabatic formulation of models

    10 Meteorological Training Course Lecture Series

    ECMWF, 2002

    (41)

    (Note we have also used in the difference equation for ).

    Evaluating the determinant, we obtain roots and the solutions of

    (42)

    where (43)

    i.e. (44)

    or

    (45)

    Revertingbackto onedimension,this is simply or , theusualCFL sta-

    bility condition. For a regular Cartesian, two-dimensional grid we would have .

    Now considerour latitude–longitudegrid whereasthepolesareapproached , becomessmallanddom-

    inatestheCFL condition.Thereareanumberof waysto circumventthisproblem.Oneof thesimplestis to let the

    timestepdecreasetowardsthepoletherebymaintainingtheratio , but this is prohibitively expensive. It is

    just aseasyto restrictthenumberof wavesin thesolution,i.e. not letting the termapproach1. Again,

    therearea varietyof waysof doingthis in practice.Essentiallywe obtaintheFouriercomponentsin thelongitu-

    dinaldirectionandeithertruncateor smooththosemodes(thehigherwavenumbers)thatwouldbeunstableby our

    stability criterionequation(45). We thenperformaninversetransformto obtainour desiredsolution.Essentially

    wearetrying to controltheeffectof in thefirst ternof (45) . For aparticular

    latitude, we only retain those waves so that , or

    , givesus thevalueof thatcanberetainedfor a particularlatitude.If we chooseto

    truncatethesolutionataparticularwavenumber, theprocessis known asFourierdropping.Alternatively, wecan

    smooth the amplitude of a wave that would be unstable by using

    Wealsohavesomefreedomonhow weapplythechoppingor smoothing.Wecanapplythefilter to thedependent

    variables,the tendenciesor the increments.ArakawaandLamb(1981)apply thesmoothingoperators within

    the differencing as in equations(38) and(40).

    It is instructive to repeattheabove stability analysisusinga forward–backwardschemefor time differencing,i.e.

    thetimedifferencingusesaforwardschemeandtheheighttermin thefirst two equationsis at thelatesttimelevel.

    The same procedure as before gives.

    λ2 1– 0 λ�61 ∆�

    � ϕcos( )∆λ----------------------------2i * ∆λ( )sin0 λ2 1– λ� ∆

    �� ∆ϕ-----------2i 5 ∆ϕ( )sin

    λ2 1 ∆ �� ϕcos( )∆λ----------------------------2i * ∆λ( )sin λ

    2 ∆ �� ∆ϕ-----------2i 5 ∆ϕ( )sin λ

    2 1–

    0=

    ϕ 7 1+cos ϕ 7 1–cos ϕ 7cos= = �λ 1±=

    λ4 2λ2– 1 4 8 λ2+ + 0=

    8 � 2 ∆ �( )2 1 2 * ∆λ( )2sin� 2 ∆λ( )2 ϕ2cos-----------------------------------5 ∆ϕ( )2sin

    � 2 ∆ϕ( )2------------------------+=

    λ2 1 2 8– 48 2 4 8–( )±=λ 1 provided that A 1

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 11

    (46)

    Evaluatingthedeterminantasbeforewefind werequire for i.e. in onedimension

    and,for a regularCartesiantwo-dimensional . Themaximumtime stepfor theforward–back-

    ward scheme is twice that for the leapfrog scheme and it has the further advantage of being a 2-level scheme.

    As with theleapfrogscheme,thesmoothingfactor playsthesamerole in determiningthosewave numberswe

    can retain by requiring .

    Anothersolutionto theproblemof converging meridiansis to usea grid developedby Kuriharawherepointsare

    skippedasthe polesareapproached,therebyroughly maintainingthe sameresolution.In its simplestform this

    leadsto overlappingof grid boxesin thenorth–southdirection,which complicatesa little thedifferencingalgo-

    rithms. A more serious drawback of such a grid appears to be associated with larger errors near the poles.

    Theabove examplesinvolvedtheuseof unstaggeredgrids.However, thespacedifferencingin equations(38) to

    (40) only involvesvariablesat pointsadjacentto thoserequiredin thesolutionof theequations.Therefore,it is

    possibleto carry the velocity componentsandheightfield at alternatepoints,therebyreducingthe computation

    time andstorageby half. Thetruncationerrorremainsunaltered.By staggeringthevariablesin this way we have

    effectively made theshortestresolvablewavelength.If we want to include wavesthenwe canreduce

    thegrid lengthby half and,in this case,for comparablecomputationaleffort astheunstaggeredgrid we increase

    the accuracy.

    In two-dimensions,therearemoreoptionsavailablewhenstaggeringthevariables.Oneof themostrecentreviews

    canbefoundin JanicandMesinger(1984).Thevariouschoicesof gridsaredenotedby thelettersA to E. TheA

    grid is the unstaggered arrangement. The other grids are as shown below.

    Theimportancein thestaggeringof thevariablesis not just for computationalefficiency, but is alsorelatedto the

    behaviour in thegeostrophicadjustmentprocess.By examiningthedispersionpropertiesfor eachof thegrids,the

    relativemeritsof eachof thegridscanbeassessed.JanicandMesinger(1984)suggestthatthereis little to choose

    between the B and C grids whereas the unstaggered A grid is poor.

    Wehaveconsideredsofar theadjustmentor gravity-wavepartof oursystemof equations.If necessary, theadvec-

    tive termscanbeincludedin our simplifiedsystem.If we thencarryout a stability analysis,theCFL criterion is

    usuallymodifiedby theadditionof avelocity termsuchas comparedwith . Now

    typically hasa valueof about300m/swhereasmaximumvaluesof arearound100m/s.Hence,thesta-

    bility conditionis dominatedby thegravity-wavespeed.Theadditionof thenonlinearadvectiontermscomplicates

    thesolutionandmakesit muchmoreexpensive to solve. However, sincethestability conditionfor thewinds is

    aroundathird asrestrictiveasthegravity-waveconditionthisexpensecouldbereducedby somehow allowing the

    advectionto setthe time stepratherthanthe gravity-wave speed.Therearebroadlytwo approaches.Oneis the

    λ 1– 0 ��1 ∆�

    � ϕcos( )∆λ----------------------------i * ∆λ( )sin0 1 � ∆

    �� ∆ϕ-----------i 5 ∆ϕ( )sin

    2 1 ∆ �� ϕcos( )∆λ----------------------------i * ∆λ( )sin λ2 ∆ �� ∆ϕ-----------i 5 ∆ϕ( )sin λ 1–

    0=

    8 4≤ λ 1≤ � 2 ∆ � ∆'⁄ 2<2� 2 ∆ � ∆'⁄ 2<1

    1 * ϕ,( ) * ∆λ ϕcos ϕ0cos⁄

  • Adiabatic formulation of models

    12 Meteorological Training Course Lecture Series

    ECMWF, 2002

    semi-implicit approach,wherethegravity-wavetermsaretreatedimplicitly andtheadvectiontermsaretreatedex-

    plicitly. Alternatively, asplit–explicit approachcanbeadopted,wherebothpartsaretreatedexplicitly but separate-

    ly sothatdifferencingschemessuitedto therelevantcharacteristicsof eachproblemcanbeused.For example,a

    forward–backwardschemefor thegravity-waveadjustmentandaLax–Wendroff or aHeunschemefor theadvec-

    tion step.If this approachis used,severaladjustmentstepscanbetakenfor every advectionstep(typically 3 ad-

    justment steps for each advection step).

    3.2 Spectral technique

    TheoperationalECMWF forecastmodelusesa spectraltechniquefor its horizontaldiscretization.Over thepast

    decadeor so this techniquehasbecomethe mostwidely usedmethodof integratingthe governingequationsof

    numericalweatherpredictionover hemisphericor globaldomains.Following thedevelopmentof efficient trans-

    form methodsby Eliasenet al. (1970)andOrszag(1970),andtheconstructionandtestingof multi-level primi-

    tive-equationmodels(e.g.Bourke, 1974;HoskinsandSimmons,1975;Daleyet al., 1976),spectralmodelswere

    introducedfor operationalforecastingin AustraliaandCanadaduring1976.Thetechniquehasbeenutilizedoper-

    ationally in theUSA since1980,in Francesince1982,andin Japanandat ECMWF since1983.Implementation

    of aspectralmodelis plannedin theFederalRepublicof Germany. Themethodis alsoextensively usedby groups

    involved in climate modelling.

    A comprehensiveaccountof thetechniquehasbeengivenby Machenhauer(1979),andafurtherdescriptionof the

    methodhasbeengivenby JarraudandSimmons(1984).Referenceshouldbemadeto theseor otherreviews for

    further discussion of most of the points covered below.

    In theusualapplicationof themethod,thebasicprognosticvariablesarevorticity, divergence,temperature,a hu-

    midity variable,andthelogarithmof surfacepressure.Theirhorizontalrepresentationis in termsof truncatedseries

    of sphericalharmonicfunctions,whosevariationis describedby sinesandcosinesin theeast–westandby associ-

    ated Legendre functions in the north–south. The horizontal variation of a variable is thus given by

    (47)

    where is the latitude and is the sine of the longitude. For the particular choice of normalization adopted at

    and

    .

    As is a realvariable, is equalto thecomplex conjugateof , enablingthemodelto dealexplicitly

    with the for . The sum

    defines the "Fourier coefficients", of the variable .

    <

    <λ µ,( )

    < 3=?>3=

    µ( ) i - λ[ ]exp3 ==@∑= A–=

    A∑=

    λ µ

    >3=

    µ( ) 2B 1+ B -–( )!B -+( )!----------------------1

    23 B !------------ 1 µ2–( )= 2⁄ d3 =+

    dµ3 =+----------------- µ2 1–( ) - 0≥,=

    >3=– µ( ) > 3

    =µ( )=

    < < 3=– < 3

    =< 3= - 0≥

    < 3=9>3=

    µ( )3 ==@∑

    < =µ( )

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 13

    It is becomingincreasinglycommonfor theso-called"triangular"truncationof theexpansionto beused.Thistrun-

    cationis definedby , andgivesuniform resolutionover thesphere.Thesymbol“TN” is the

    usualway of definingtheresolutionof sucha truncation; beingthesmallesttotal wave numberretainedin the

    expansion.Thesmallestresolvedhalf-wavelengthin any particulardirectionis then (320km for T63,190

    km for T106), although the corresponding lateral variation is of larger scale.

    Derivatives of a spectrally represented variable are known analytically:

    (48)

    and

    (49)

    where

    with

    Theorthogonalityof thesphericalharmonicsenablesthe to bedeterminedfrom accordingto theformula

    (50)

    Thecomputationalefficiency of theevaluationof theFouriercoefficientsis enhancedfor globalmodelsby writing

    the summation over (known as theinverse Legendre transform) in the form

    (51)

    Evaluatingthesetwo sumsseparatelyenablesa simpleevaluationof the inversetransformfor thecorresponding

    latitude in the opposite hemisphere:

    (52)

    C Dconstant= = D

    π � D⁄<

    ∂<

    ∂λ------- i - < 3

    =9>3=

    µ( ) i - λ[ ]exp3 ==@∑= A–=

    A∑=

    ∂<

    ∂µ-------

    < 3= d> 3

    =dµ

    -------------- i - λ[ ]exp3 ==

    @∑= A–=

    A∑=

    1 µ2–( )d>3=

    dµ-------------- B ε3 1+

    = >3 1+= B 1+( )ε 3

    = >3 1–=

    +–=

    ε3= B 2 - 2–

    4B 2 1–-------------------

    12---

    =

    < 3= <

    < 3= 1

    4π------

    <λ µ,( )

    >3=

    µ( ) i– - λ[ ]exp λd µd0

    ∫1–

    1

    ∫=

    B

    < 3=9>3=

    µ( )3 ==@∑

    < 3=E>3=

    µ( )< 3=9>3=

    µ( )3 = 1+=3 =+( ) odd

    @∑+3 ==3 =+( ) even

    @∑=

    < 3= >3=

    µ–( )3 ==

    @∑

    < 3= >3=

    µ( )< 3= >3=

    µ( )3 = 1+=3 =+( ) odd

    @∑–3 ==3 =+( ) even

    @∑=

  • Adiabatic formulation of models

    14 Meteorological Training Course Lecture Series

    ECMWF, 2002

    Similarly, the latitudinal integral in(50), the direct Legendre transform, need be taken only over one hemisphere:

    (53)

    The spherical harmonics are eigenfunctions of the Laplacian operator on the sphere:

    (54)

    where is theradiusof theearth.This is utilized in deriving wind componentsfrom vorticity anddivergence.If

    and aretheeastwardandnorthwardvelocity componentsmultiplied by thecosineof latitude,the(relative)

    vorticity and divergence are defined by

    (55)

    and

    (56)

    In terms of a stream function and velocity potential :

    Thus

    (57)

    and

    (58)

    < =µ( )>3=

    µ( ) µd1–

    1

    ∫< =

    µ( )< =

    µ–( )+[ ]>3=

    µ( ) µ for - B even+d0

    1

    ∫=

    < =µ( )< =

    µ–( )–[ ]>3=

    µ( ) µ for - B odd+d0

    1

    ∫=

    ∇2>3=

    µ( ) i - λ[ ]exp{ } BEB 1+( )� 2--------------------->3=

    µ( ) i - λ[ ]exp–=

    �; �)

    ξ 1�---1

    1 µ2–( )-------------------∂ �

    ∂λ------- ∂

    ;∂µ--------–

    =

    ) 1�---1

    1 µ2–( )-------------------∂

    ;∂λ-------- ∂ �

    ∂µ-------+

    =

    ψ χ

    ; 1�--- 1 µ

    2–( )∂ψ∂µ-------– ∂χ

    ∂λ------+

    =

    � 1�---∂ψ∂λ------- 1 µ2–( )∂χ∂µ

    ------+

    =

    ξ ∇2ψ and ) ∇2χ= =

    ; � B 1– B 1+( ) 1– 1 µ2–( )ξ3= d>F=3

    dµ-------------- i -G) 3

    =H>3=

    – I - λ[ ]exp

    3 ==

    @∑= A–=

    A∑=

    � �– B 1– B 1+( ) 1– i - ξ3=H>3=

    1 µ2–( ) ) 3= d> = 3

    dµ--------------+

    I - λ[ ]exp

    3 ==@∑= A–=

    A∑=

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 15

    Thesequenceof calculationsfor eachtime stepof a spectralmodelcannow bebroadlysummarizedasfollows.

    Theanalyticalrepresentationof basicfields(Eqs.(47)) is usedto evaluatethesefields,andderivedfieldssuchas

    horizontalvelocities(Eqs.(48)andEqs.(49)) and(in someimplementations)temperatureandmoisturegradients,

    atanarrayof grid points.Thesegrid-pointvaluesareusedto computecontributionsto thetendenciesof thefields

    at thegrid pointsfrom bothresolveddynamicalprocessesandfrom theparametrizedprocesses.Thesetendencies

    areprojectedback to give tendenciesof the spectralcoefficients,enablingtime-steppingto be completed.The

    transformationto andfrom grid-pointvaluesis particularlyefficient in theeast–west,for whichFastFourierTrans-

    formationcanbeused.Gaussianquadratureis employedfor thelatitudinalintegrationusedin theprojectionback

    to spectralspaceEqs.(53); this requiresthatthegrid in thenorth–southhasaparticulardistribution (theso-called

    "Gaussian"latitudes)for eachresolution,althoughthis canberegardedasa regulargrid for all practicalapplica-

    tionsof outputgrid-pointproductsfrom spectralmodelsattoday'soperationalresolutions.An exacttransformation

    of quadratictermsis achievedby usinga grid which hasa finer resolutionthanthatof thespectralrepresentation,

    with at least pointsin theeast–westand from poleto polefor TN truncation(Fig. 2 ). If,

    asis generally(but not necessarily)thecase,thephysicalparametrizationsarecomputedon this grid, thenprog-

    nosticfieldssuchassurfacetemperatureor snow cover, andoutputfieldssuchasprecipitation,aredefinedandup-

    dated on this grid.

    Figure 2. Illustrationof variousspectraltruncations:Triangulartruncation andRhomboidal

    truncation

    In theformulationadoptedatECMWF, completetendenciesof thetemperature,moistureandlogarithmof surface

    pressurearecomputedin grid-point space,andtransformeddirectly into thecorrespondingtendenciesof spectral

    coefficients.For vorticity anddivergence,integrationby partsis used.Thewind tendenciescanbewritten in the

    form

    (59)

    and

    (60)

    3D

    1+( ) 3D

    1+( ) 2⁄

    TC 8 J )+ +=

    RC 8 +=

    ∂;

    ∂ �-------- �$K1�---

    ∂ L∂λ-------–=

    ∂ �∂ �------- �$M

    1 µ2–( )�-------------------

    ∂ L∂µ-------–=

  • Adiabatic formulation of models

    16 Meteorological Training Course Lecture Series

    ECMWF, 2002

    where , and are quantities that can readily be computed in grid-point space.

    Using equations(50), (55) and(56), (59) and(60) yield

    (61)

    and

    (62)

    Thefactthatthesphericalharmonicsareeigenfunctionsof theLaplacianoperatormakesit relatively simpleto im-

    plementanefficient semi-implicit treatmentof gravity-wave terms.It is alsostraightforwardto implementlinear

    formsof "horizontal"diffusionalongthecoordinatesurfacesdefinedby theverticaldiscretization.Suchdiffusion

    is widely usedin spectralmodels,with largelysatisfactoryresults.Therecan,however, asin finite-differencemod-

    els,be problemsassociatedwith diffusion alongcoordinatesurfaceswhich slopesignificantlyin the vicinity of

    steepterrain,andtheintroductionof otherformsof diffusionmayrequiresignificanteffort andcomputationalcost.

    Recentdevelopmentsof thespectraltechniquehave beenalonga numberof lines.Apart from computationalre-

    finementsof the type discussedin the following section,the techniquehaslent itself to somefurther gains in

    time-steppingefficiency in high-resolutionapplications(Simmonset al., 1988),andthereis promiseof furtherin-

    creasesof efficiency with theuseof a semi-Lagrangiantreatmentof advection(Ritchie, 1988).Theapplicability

    of thetechniquehasbeenwidenedby thedevelopmentof limited-areaspectralmodels(e.g.Tatsumi,1986),and

    of astretchedcoordinatewithin theframework of aglobalmodel(CourtierandGeleyn, 1988,following Schmidt,

    1977).

    3.3 Finite-element techniques

    Finite-elementsaremuchlesswidespreadin operationalNWP whencomparedwith eitherspectralor grid-point

    models.RPNin Canadahavethemostpracticalexperiencein usingfinite-elementsfor bothhorizontalandvertical

    discretization. A review article byStaniforth (1987) gives an introduction and contains useful references.

    Thereis anexperimentalversionof theCentre'smodelthatusesfinite elementsin theverticaland,apartfrom noise

    problemsattheupperboundary, thisversionappearsto givegreateraccuracy morecheaplythanincreasingvertical

    resolution using finite differences.

    �$K �$M L

    ∂ξ3=

    ∂ �-------------1

    4π �----------1

    1 µ2–--------------

    ∂ �$M∂λ

    ----------∂ �$K∂µ

    ----------– > 3

    =µ( ) i - λ–[ ]exp λd µd

    0

    ∫1–

    1

    ∫=

    14π �----------

    1

    1 µ2–-------------- i -G�$M > 3

    =µ( ) 1 µ2–( ) �$K d

    >3=

    dµ--------------+

    i - λ–[ ] λd µdexp0

    ∫1–

    1

    ∫=

    ∂ ) 3=

    ∂ �--------------1

    4π �----------1

    1 µ2–--------------

    ∂�$K∂λ

    ----------∂ �$M∂µ

    ---------- � ∇2 L–+ > 3

    =µ( ) i - λ–[ ]exp λd µd

    0

    ∫1–

    1

    ∫=

    14π �----------

    1

    1 µ2–-------------- i -G�"K > 3

    =µ( ) 1 µ2–( )– �$M d

    >3=

    dµ--------------

    i - λ–[ ] λd µdexp0

    ∫1–

    1

    ∫=

    BEB 1+( )4π � 2--------------------- L

    >3=

    µ( ) i - λ–[ ] λd µdexp0

    ∫1–

    1

    ∫+

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 17

    4. VERTICAL COORDINATES

    Sofar, heightabovemeansealevel hasbeenusedastheverticalcoordinatein oursystemof equations.For mid-lat-

    itudesynoptic-scaledisturbancestheCoriolis forceandpressure-gradientforcearein approximatebalance—the

    geostrophicrelationshipwhichis , adiagnosticrelationshiprelatingthevelocityfield to the

    pressure gradient.

    However, thedensityvarieswith latitudeandheightwhichmake theaboveequationlesseasyto usethananalter-

    nativesystemwhichusespressureastheverticalcoordinate.Othercoordinatesaremoreusefulfor numericaltech-

    niquesin solvingthecompleteequationsof motion.Wecanderivedasystemof equationsfor ageneralizedvertical

    coordinatewhichis assumedto berelatedto theheight by asingle-valuedmonotonicfunction.Thiswasderived

    by Kasahara (1974).

    We have

    (63)

    and

    (64)

    Thus

    (65)

    Using the above, we have

    (66)

    (67)

    (68)

    The total derivative can be transformed into the system using(66) and(67), thus

    (69)

    However, by definition, the total derivative in the system is

    � k V× 1 ρ⁄( ) �∇–=

    ζ ζ '+(N� �, , ,( ) or � �O'+( ζ �, , ,( )= =

    ∂8∂ P------- ζ

    ∂8∂ P------- �

    ∂8∂�-------

    ∂�∂ P------ ζ where P+ '+( or

    �, ,= =

    ∂8∂�-------

    ∂8∂ζ-------∂ζ

    ∂�------=

    ∂8∂ P------- ζ

    ∂8∂ P------- �

    ∂8∂ζ-------∂ζ

    ∂�------∂�∂ P------ ζ+=

    ∂8∂ �------- ζ

    ∂8∂ �------- �

    ∂8∂ζ-------∂ζ

    ∂�------∂�∂ �------ ζ+=

    ∇ζ 8 ∇ �Q8 ∂8∂ζ-------∂ζ∂�------∇ζ�+=

    ∇ζ V⋅ ∇ � V⋅ ∂V∂ζ-------∂ζ∂�------ ∇ζ �⋅+=

    d d�⁄ ζ

    dd�----- d

    d�----- ζ V ∇ζ

    � ∂�∂ �------ ζ– V ∇ζ⋅–

    ∂ζ∂�------

    ∂∂ζ------+⋅+=

    ζ

  • Adiabatic formulation of models

    18 Meteorological Training Course Lecture Series

    ECMWF, 2002

    (70)

    where is the vertical velocity in the system.

    From(69) and(70) we have

    (71)

    Using(67). We can write the horizontal pressure forces as

    (72)

    where is the geopotential. The hydrostatic equation becomes

    (73)

    The horizontal equation of motion (neglecting friction) becomes

    (74)

    To derive the continuity equation, from(71) we have

    (75)

    Thus

    (76)

    Using(66) and(67) and substituting in the continuity equation

    we have

    i.e.

    dd�----- ∂∂ �----- ζ V ∇ζ ζ̇

    ∂∂ζ------+⋅+=

    ζ̇ dζ d�⁄= ζ

    ζ̇ ∂ζ∂�------ �∂�∂ �------ ζ– V ∇ζ �⋅( )–=

    1ρ---∇ �R�– 1ρ---∇ζ�–

    1ρ---∂�

    ∂�------∇ζ �+1ρ---∇ζ�– ∇ζΦ–= =

    Φ � �=∂�∂ζ------ ρ∂Φ∂ζ

    -------–=

    d�d�-------- 1ρ---∇ζ�– ∇ζΦ– � k V×–=

    � ∂�∂ �------ ζ � ∇ζ � ζ̇

    ∂�∂ζ------+⋅+=

    ∂ �∂�-------

    ∂ �∂ζ-------∂ζ

    ∂�------∂ζ∂�------

    ∂∂ζ------ ∂�

    ∂ �------ ζ∂V∂ζ------- ∇ζ� V ∇∂�∂ζ------⋅ ζ̇

    ∂∂ζ------ ∂�

    ∂ζ------

    ∂�∂ζ------∂ζ̇

    ∂ζ------+ + +⋅+= =

    ∂ζ∂�------

    dd�----- ∂�∂ζ------

    ∂V∂ζ------- ∇ζ�⋅+ ∂ζ̇∂ζ------+=

    dd�----- ρln( ) ∇ � ∂ �∂�-------+⋅+ 0=

    dd�----- ρln( ) ∇ζ V ∂V∂ζ-------

    ∂ζ∂�------ ∇ζ�

    ∂ζ∂�------

    dd�----- ∂�∂ζ------

    ∂V∂ζ------- ∇ζ�⋅+ ∂ζ̇∂ζ------+ +⋅–⋅+

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 19

    (77)

    or

    (78)

    Alternatively, by expanding(77) and using the hydrostatic equation, we can obtain

    (79)

    Theaboveequationsfor ageneralizedverticalcoordinatemaynow beusedto examinealternativecoordinatesys-

    tems.

    4.1 Pressure coordinate

    and so that the equation of motion(74) becomes

    (80)

    and the hydrostatic equation is

    (81)

    The first term in the continuity equation(77) vanishes, so that

    (82)

    where is the vertical velocity. Integrating (80) from where , to an arbitrary

    level, , yields

    (83)

    At the surface we assume no normal flux so that

    (84)

    In the pressure system, the geostrophic approximation gives

    (85)

    dd�----- ρ∂�∂ζ------ ∇ζ V

    ∂ζ̇∂ζ------+⋅+ln 0=

    dd�----- ∂�∂ζ------ ∇ζ V

    ∂ζ̇∂ζ------+⋅+ln 0=

    ∂∂ζ------ ∂�

    ∂ �------ ∇ζ V∂�∂ζ------

    ∂∂ζ------ ζ̇∂�∂ζ------ +⋅+ 0=

    ζ �=∇ζ� ∇�4� 0= = ∂� ∂�⁄ 1=

    d�d�-------- ∇� Φ– � k V×–=

    ∂Φ∂�-------

    1ρ---–=

    ∇�S� ∂ω∂�-------+⋅ 0=

    ω d� d�⁄ � ˙= = � 0= ω 0=�

    ω ∇� V⋅ �d0

    �∫=

    ωsd� sd�--------- ∂� s∂ �--------- Vs ∇� s⋅+ ∇� V �d⋅( )

    0

    �UT∫–= = =

    � k V× ∇� Φ–=

  • Adiabatic formulation of models

    20 Meteorological Training Course Lecture Series

    ECMWF, 2002

    This relatesthe horizontalvelocity to the geopotentialgradientand,sincethereis no longera dependenceon

    density, the same gradient implies the same wind at any height.

    4.2 Sigma coordinates

    Thelowerboundarycondition(82) is noteasyto applyin practice.To circumventthisproblem,Phillipssuggested

    the use of as the vertical coordinate. The hydrostatic equation becomes

    (86)

    and the equation of motion becomes

    (87)

    The continuity becomes

    Expanding the first term and rearranging we have

    (88)

    The boundary conditions are at and 1, so that integrating(86) from to 1 gives

    (89)

    i.e. the surface pressuretendency is given by the massdivergence integrated over the entire atmosphere.

    Integrating(86) from to an arbitrary level gives our equation for , viz

    (90)

    Althoughthelower boundaryconditionin thesigmacoordinatesystemis easierto applythanin pressurecoordi-

    nates,thesystemdoeshave a drawbackin thetermsfor thehorizontalpressureforce.In pressurecoordinatesthe

    pressureforceis simply thegradientof geopotentialwhereasin sigmacoordinatesit is thedifferenceof two terms

    which are large in magnitude when compared with the result, i.e.

    (91)

    In designinga differenceschemefor theabove,caremustbetakenin selectinga schemethatminimizestheerror

    in thedifferencebetweentheterms.Evenso,wherethegradientin orography is steep,it is almostimpossibleto

    devise a consistent scheme that is free from appreciable error.

    σ �V� *⁄=

    � * ρ∂Φ∂σ-------–=

    ∂V∂ �------- V ∇V σ̇

    ∂V∂σ-------+⋅+ ∇σΦ–

    � � *---------∇� *– � k V×–=

    d � *ln( )d�-------------------- ∇σ V ∂σ̇∂σ------+⋅+ 0=

    ∂� *∂ �--------- ∇ � * �( )⋅–

    ∂ � σ̇( )∂σ

    ----------------= =

    σ̇ 0= σ 0= σ 0=

    ∂� *∂ �--------- ∇ � * �( ) σd⋅

    0

    1

    ∫–=

    σ 0= σ̇

    � * σ̇– σ∂� *∂ �--------- ∇ � * �( ) σd⋅0

    σ

    ∫+=

    ∇Φ– � � *---------∇� *–

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 21

    Over steeporography, thesigmalevelsslopeappreciablyeven in thestratosphere(seeFig. 3 ) andtheproblems

    with thehorizontalpressureforceremain.It seems,therefore,thataschemewhichcombinestheadvantageof sig-

    macoordinatesnearthesurfaceandpressurecoordinatein thestratospheremayproveadvantageous.Suchschemes

    exist and are known as hybrid coordinates.

    -coordinates

    -coordinates

    -coordinates

    Figure 3Illustration of the three vertical coordinate systems.

    4.3 Hybrid coordinates

    Therearevariouswaysof defininga coordinatesystemthathasthepropertiesof sigmacoordinatesin the lower

    atmosphere and pressure in the stratosphere.Arakawa and Lamb (1977) use the definition

    (92)

    where

    σ

    ηW �XWY� I–( )π

    -----------------------=

  • Adiabatic formulation of models

    22 Meteorological Training Course Lecture Series

    ECMWF, 2002

    (93)

    where is an interfacialpressure(e.g.nearthe tropopause)and is thepressureat the top of themodel.In

    fact, setting gives the standard -system.In this hybrid systemthe boundaryconditionsare

    applied at .

    SimmonsandBurridge(1981)showed that an alternative way of defininghybrid coordinateswasto definethe

    half-levels by the relation

    (94)

    where is a constantpressure.This form of coordinateallows a direct control over the flattening of the

    coordinatesurfacesasthepressuredecreases.Notethatwe candefinesigmacoordinatesor hybrid coordinatesas

    in (89) in the same manner as(91), so that for sigma coordinates

    (95)

    An alternative form of hybrid coordinates equivalent to the Arakawa–Lamb system is

    (96)

    Thereasonfor definingthehalf-levels in thisway is dueto theappearanceof termsinvolving in

    theequationswhich,whendiscretized,become (see,for example,thecontinuityequa-

    tion (78)).

    4.4 Isentropic coordinates

    In coordinates(isentropic),for dry adiabaticmotions,potentialtemperature is conserved,sothattheenergy

    equation becomes and the isentropic surfaces become material surfaces.

    From(74), the horizontal pressure force is

    Using where , we have

    i.e.

    Hence, using equation of state, we have

    (97)

    π� I � T for � T � � I≤ ≤–� * � I for � I � � *≤ ≤–

    =

    � I � T� I � T 0= = ση 1±=

    �XW 1 2⁄+ 8ZW 1 2⁄+ � 0 J�W 1 2⁄+ � *+=� 0

    �FW 1 2⁄+ σW 1 2⁄+ � *=

    �XW 1 2⁄+ � I 1 2⁄+ ηW 1 2⁄+ηI 1 2⁄+----------------- for η W 1 2⁄+ ηI 1 2⁄+≤=

    �XW 1 2⁄+ � I 1 2⁄+ η W 1 2⁄+ ηI 1 2⁄+–( ) � * � I 1 2⁄+–( )1 ηI 1 2⁄+–( )-------------------------------------------------------------------------------+=

    �FW 1 2⁄+ ∂� ∂η⁄∆�XW �FW 1 2⁄+ �XW 1 2⁄––=

    Θ ΘdΘ d�⁄ 0=

    1 ρ⁄( )– ∇Θ� ∇ΘΦ–Θ Π⁄ Π �V� 0⁄( )κ=

    ∇Θ Θln( ) 0 ∇Θ ln( ) κ∇Θ �ln( )–= =

    1�----∇Θ�–

    �� ---------∇Θ =

    1ρ---∇Θ�– ∇Θ � =

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 23

    Thehorizontalpressureforcecanthusbewrittenas or where is called

    the Montgomery stream function. The hydrostatic equation(73) can be written .

    Again, using the definition for above we have

    Differentiating w.r.t. gives

    Substituting for in the hydrostatic equation, using the equation of state and rearranging, we obtain

    (98)

    or alternatively

    For the continuity equation it is convenient to use one of the forms(78) or (79) with replacing

    The boundary conditions are, at the top and at the earth’s surface .

    The isentropiccoordinateshows (aswith the pressurecoordinate)the advantageof a simplerpressuregradient

    force,but alsothedisadvantageat thesurfacewhich is intersectedby -surfaces.It is possibleto introduceyet

    anotherhybrid schemeusing -coordinatesnearthesurfaceand -coordinatesaway from thesurface.However,

    how to join or overlapthesesystemsis not asstraightforwardasin thesigma–pressuretypeof hybrid coordinate.

    For further details seeBleck (1978) and references therein.

    5. VERTICAL DISCRETIZATION

    Eventhoughcomputerpowerhasincreasedenormouslyin thelast10to 15yearstheverticalresolutionin primitive

    equationmodelsis quitelow, 10 to 20 levelsin theverticalbeingtypical andtheselevelsaregenerallyirregularly

    spacedto takeaccountof thestrongvariationof atmosphericquantitiesin thevertical.For example,highresolution

    neartheearth'ssurfaceis requiredwith many formulationsto representthetransitionbetweentheturbulenceregion

    close to the surface and the free atmosphere.

    However, thereareanumberof problemsarisingfrom thechoiceof verticalcoordinatesystemandthedistribution

    of discretemodellevelsin thevertical.Firstly, theinevitablepresenceof anartificial upperboundarycaneventually

    contaminateforecasts.Theconclusionof several theoreticalstudiesis thathaving themodeltop at zeropressure

    is, in somerespects,asa resultof inevitablefinite-differenceerrors,equivalentto having themodeltop at some

    smallfinite non-zeropressure.On theotherhand,it hasbeenpointedout thattheinfluenceof loweringtheupper

    boundaryis not damagingto thestructureof theplanetarywavesin thetroposphere,if it is placedno lower than

    themiddlestratosphereandif themodelhasseverallayersin thestratospherewheredampingeffectscanattenuate

    waves reflected from the top.

    ∇Θ � Φ+( )– ∇ΘC– C � Φ+=∂� ∂Θ⁄ ρ ∂Φ ∂Θ⁄( )–=

    Θ

    Θln κ �� 0------ln–ln=

    Θ

    1Θ----

    1

    ----∂

    ∂Θ------- ��0�-----------

    ∂�∂Θ-------–=

    ∂� ∂Θ⁄∂

    ∂Θ------- � Φ+( ) � Θ------------=

    ∂C

    ∂Θ--------- Π=

    Θ ζ

    Θ̇ 0= Θ̇ ∂Θ ∂ �⁄ V* ∇Θ*⋅+=

    Θσ Θ

  • Adiabatic formulation of models

    24 Meteorological Training Course Lecture Series

    ECMWF, 2002

    Experimentally(Mechosoet al., 1984),it hasbeenshown that the impactof theupperboundaryon forecastsis

    considerableat theuppermostmodellevelsin all cases,andthatloweringtheupperboundaryto thelower strato-

    spherecanaffect significantlymiddle andlower troposphericforecastsin somecases.The comparisonbetween

    integrations with 16 and 19-level models described below supports these results.

    The detrimentaleffects of using terrain-following coordinateshave beenthe subjectof study for many years.

    Small-scaleerrorsandcomputationalnoisewherethecoordinatesurfacesaresteepor rapidlychangingin thehor-

    izontalaregeneratedasa resultof thediscreteapproximationsmadefor thetermsin thepartialdifferentialequa-

    tions.Theparticularproblemof thepressuregradientforceis well known. Thehorizontalpressuregradientforce

    (see equation(91)) in a -coordinate model is given by

    andnearsteeporography the nearcancellationof the two termsin this expressionis a potentialsourceof large

    spatial truncation errors.

    Theseerrorscanbedecreasedto someextentby formulatingcarefullythedifferencingapproximationsfor thehy-

    drostaticequationandpressuregradientforce,but cannotbetotally eliminatedaslongasaterrain-following coor-

    dinateis used.Thereis alsosomeconcernabouttheaccuraterepresentationof theadvectionof quantitiessuchas

    moisturenearsignificantirregularitiesin thecoordinatesurface,andtherearealsoproblemsin the treatmentof

    horizontaldiffusionterms.Overall,theundesirableeffectscanbepartlyremovedby usingahybrid coordinatesys-

    temwhichchangessmoothlyfrom aterrain-following specificationnearthelowerboundary, to ahorizontalor iso-

    baricdefinition in theuppertroposphereandstratosphere.An alternative methodhasalsobeendeveloped,using

    quasi-horizonalcoordinatesandrepresentingmountainsassteps,althoughthishasnotbeentestedexhaustively in

    practiceasyet.A full discussionof thenumericalproblemsassociatedwith terrainfollowing coordinatesystems

    is given inMesinger and Janic (1984) andSimmons and Burridge (1981).

    In comparisonwith theschemeusedfor horizontaldiscretization,theverticaldiscretizationschemein usein the

    majorityof large-scalemodelsof theatmospherecanbedescribedasrudimentarybased,asthey generallyare,on

    simplefinite differencesthatprovide second-orderaccuracy, at best,with the irregularity of the level spacingre-

    ducing the local accuracy to first order.

    Very few attemptshave beenmadeto employ theuseof analyticalfunctionsthatarecontinuouslydifferentiable

    anddefinedglobally; thetwo reallypotentiallyusefulapproaches—byFrancis(1972)usingLaguerrepolynomials

    andby MachenhauerandDaley (1972)who usedLegendrefunctions—have not led to practicalschemesfor nu-

    mericalmodelsof theatmosphere.Theuseof Laguerrepolynomialsleadsto severestability criteria,whereasthe

    use of Legendre polynomials gives rise to computational problems at the upper boundary.

    In contrastto theglobal functionalapproachesof FrancisandMachenhaurandDaley, theuseof local functional

    approachesbasedon Galerkinimplementationsof finite elementshasbeenfairly successful.A successfulfinite

    elementformulationfor the vertical discretizationin -coordinateprimitive equationmodelswasdescribedby

    StaniforthandDaley (1977),anda 36-hourforecastfrom realdatawaspresentedto demonstratetheviability of

    the method.

    Theremainderof thissectionis devotedto adescriptionof averticalfinite differencingschemefor a -coordinate

    model.

    5.1 Vertical differencing schemes for baroclinic primitive equation models

    In this subsectionI shall discussthemethodologyunderlyingthedesignof many verticaldifferencingschemes.

    σ

    ∇Φ– � � *---------∇� *–

    σ

    σ

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 25

    The approach is based on the imposition of some important conservation laws.

    The equations introduced inSection 1 may be rewritten as

    (99)

    (100)

    (101)

    (102)

    with

    (103)

    For completeness we again state the upper and lower "no flux" boundary conditions

    (104)

    For ourdiscussionweshallrequiremassandenergy conservation.In particular, wewantthework doneby pressure

    forces to be balanced by the changes in the total potential energy arising from (the -term).

    The integrated continuity equation is

    (105)

    The divergence term in(105) integrates to zero over the globe, which means that the total mass is conserved.

    A "kinetic energy" equation can be derived from the momentum equations in the form

    (106)

    ∂� s∂ �--------- ∇σ � sv( )

    ∂∂σ------ � sσ̇( )+⋅+ 0 continuity of mass=

    ∂v∂ �------ [ k v× σ̇

    ∂v∂σ------ ∇σ Φ

    &+( ) � ∇σ � sln( )+ ++ + 0 momentum=

    ∂∂ �----- � s � ( ) ∇σ � sv � ( )

    ∂∂σ------ � sσ � ˙( ) � ωσ-------------–+⋅+ 0 thermodynamics=

    ∂Φ∂ σln( )----------------- � hydrostatic equation–=

    [ � 1� ϕcos----------------∂ �∂λ------

    ∂∂ϕ------ � ϕcos( )–

    +=

    & 12--- � 2 � 2+( ) 1

    2--- v v⋅( )= =

    ω � sσ̇ σ ∂� s∂ �--------- v ∇σ� s⋅+ +=

    � sσ̇( )σ 0= 0=� sσ̇( )σ 1= 0=

    � ω( ) σ⁄ ω

    ∂� s∂ �--------- ∇σ � sv σd

    0

    1

    ∫⋅–=

    � sv ∂v∂ �------ � sσ̇v∂v∂σ------ � sv∇σ & � sv ∇σΦ � ∇σ � sln+( )⋅+ +⋅+⋅

    or

    0=

    � s∂&

    ∂ �------- � sσ̇∂&

    ∂σ------- � sv∇σ & � sv ∇σΦ � ∇σ � sln+( )⋅+ ++ 0=

  • Adiabatic formulation of models

    26 Meteorological Training Course Lecture Series

    ECMWF, 2002

    Using the continuity equation,(99) and(106) may be rewritten as

    (107)

    In orderto constructthetotalenergy equationweneedto expressthepressuregradienttermsin analternativeform.

    Using the continuity and hydrostatic equations we have

    (108)

    Combining(107) and(108) we have

    Now

    Addition of thekineticenergy equationandtheflux form of thethermodynamicequation(equation(101)) andin-

    tegration from to 1 gives

    (109)

    Equation(109)is anexpressionof theenergy conservationlaw for the -system(99) to (103). Thehorizontaldi-

    vergencetern in (109) integratesto zeroover thewholeglobe,which meansthat the total energy, potentialplus

    kinetic, is conserved.

    ∂∂ �----- � s

    &( ) ∇σ � sv&( ) ∂∂σ------ � sσ̇

    &( ) � sv ∇σΦ � ∇σ � sln+( )⋅+ +⋅+ 0=

    � sv ∇σΦ⋅ ∇σ � svΦ( ) Φ ∇σ � sv⋅( )+⋅=∇σ � svΦ( ) Φ ∂� s∂ �---------

    ∂∂σ------ � sσ̇( )+

    +⋅=

    ∇σ � svΦ( ) ∂∂σ------ Φ σ∂� s∂ �--------- � sσ̇+

    ∂Φ∂σ------- σ

    ∂� s∂ �--------- � sσ̇+ –+⋅=

    ∂ � s&( )∂ �------------------ ∇σ � sv

    &( ) ∂∂σ

    ------ � sσ&̇( ) ∇σ � svΦ( ) ∂∂σ------ Φ σ∂� s∂ �--------- � sσ̇+

    +⋅+ +⋅+

    ∂Φ∂ �------- σ

    ∂� s∂ �--------- � sσ̇+ – � � sv ∇σ � sln⋅+ 0=

    ∂Φ∂ �------- σ

    ∂� s∂ �--------- � sσ̇+ – � � sv ∇σ � sln⋅+

    σ

    --------- σ∂� s∂ �--------- � sσ̇+ � v ∇σ� s⋅+

    � ωσ

    -------------= =

    σ 0=

    ∂∂ �----- � sΦs � s

    & � +( ) σd0

    1

    ∫+

    ∇σ � sv & � Φ+ +( ) σd0

    1

    ∫⋅+ 0=

    σ

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 27

    Figure 4Vertical disposition of variables

    Thedispositionof variablesandthegrid structurein thevertical for the -coordinatemodelwe shallbeusingis

    illustratedin Figs.4 and5 . Theprimaryvariables, and , arekeptat thefull levelsandtheverticalvelocity

    and the geopotential are kept at half levels. The variable grid spacing is defined by

    (110)

    σv σ̇

    ∆σ W∆σW σW 1 2⁄+ σW 1 2⁄––=

  • Adiabatic formulation of models

    28 Meteorological Training Course Lecture Series

    ECMWF, 2002

    Figure 5Vertical distribution of levels for the 16-level (top) and 19-level (bottom) models.

    (i) The equation of continuity. The continuity equation is taken in the form

    (111)

    Multiplying (111) by and summing (integration) from gives

    (112)

    For we have

    (113)

    ∂� s∂ �--------- ∇σ � svW( )

    ∆ � sσ̇( )W∆σ W---------------------+⋅+ 0=

    ∆σ W * 1 … \, ,=

    σW 1 2⁄+ ∂� s∂ �--------- ∇σ � sv W( )∆σW]� sσ̇ W 1 2⁄++⋅[ ]W 1=

    ^∑+ 0=

    � sσ̇1 2⁄ 0=( )\ D=

    ∂� s∂ �--------- ∇σ � svW( )∆σW⋅W 1=

    ^∑– ∇σ � svW( )∆σ W3 1=

    @∑⋅–= =

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 29

    Equation(113) is a finite differenceanalogueof (105), which obviously conservesthe total (global)massof the

    model atmosphere.

    (ii) Energy conservation. The finite difference momentum equation is

    (114)

    where with .

    The finite difference kinetic energy equation is

    and this may be rewritten as

    (115)

    Using the finite difference continuity equation we may rewrite equation(115) in the flux form

    (116)

    where .

    In order to derive the analogue of the identity(108) we need a hydrostatic equation; we use

    (117)

    For the finite difference model we have

    ∂vW∂ �-------- [ k v

    12---

    σ̇ W 1 2⁄+ v W 1+ vW–( ) σ̇ W 1 2⁄– vW vW 1––( )+∇σσW---------------------------------------------------------------------------------------------------

    +×+

    ∇σ ΦW & W+{ } � W ∇σ � sln+ + 0=ΦW αW ΦW 1 2⁄+ βW ΦW 1 2⁄–+= αW βW+ 1=

    � svW ∂vW∂ �--------12--- � sv W σ̇W 1 2⁄+ vW 1+ vW–( ) σ̇W 1 2⁄– v W vW 1––( )+∆σW---------------------------------------------------------------------------------------------------

    ⋅+⋅

    � svW ∇σ& W_� svW ∇σΦW`� ∇σ � sln+{ }⋅+⋅+ 0=

    � s∂& W∂ �----------

    12---� sσ̇W 1 2⁄+ v W 1+ vW⋅ � sσ̇W 1 2⁄–– vW vW 1–⋅

    ∆σW------------------------------------------------------------------------------------------------ 1

    2---vW v W ∆ � sσ̇( ) W∆σW---------------------⋅–+

    � sv W ∇σ & W]� svW ∇σΦ W`� ∇σ � sln+{ }⋅+⋅+ 0=

    ∂∂ �----- � s

    & W( ) ∇σ � sv W & W( ) ∆σ � sσ̇v2

    σ

    2-------------------

    W� sv W ∇σΦW`� ∇σ � sln+{ }⋅+ +⋅+ 0=

    )

    v2σ

    W 1 2⁄+ v W 1+ v W (geometric mean)⋅=

    )

    ∆σΦ∆ σln-------------

    W � –=

  • Adiabatic formulation of models

    30 Meteorological Training Course Lecture Series

    ECMWF, 2002

    (118)

    Note:

    If we requiretotal energy conservationthentheform of thelasttermin (118)is a constrainton our choicefor the

    term, , in the thermodynamic equation.

    The thermodynamic equation for our model is

    (119)

    If the term is chosen to maintain energy conservation we have

    (120)

    The term can be interpreted as a definition of for the model.

    From(120)wenotethatwestill haveadegreeof freedomremaining,namelythechoiceof and , subjectto

    . Theseweightscanbe chosenin sucha way that no spuriousangularmomentumis generatedby

    pressure forces,Simmons and Burridge (1981).

    REFERENCES

    Books and collections.

    Dutton, J.A., 1986:The ceaseless wind: An introduction to the theory of the atmospheric motion. Paperbackedi-

    � svW ∇σΦW⋅ ∇σ � svW ΦW( ) Φ W ∇σ � svW( )⋅–⋅=∇σ � svW ΦW( ) ΦW ∂� s∂ �---------

    ∆σ � sσ̇( )W∆σW------------------------+

    +⋅=

    ∇σ � svW ΦW( ) Φ W∆σW----------∆σ σ∂� s∂ �--------- � sσ̇+ W+⋅=

    ∇σ � svW ΦW( )∆σ Φ σ

    ∂� s∂ �--------- � sσ̇+

    W

    ∆σ W--------------------------------------------------------+⋅=∆σΦ( )W∆σW------------------ βW σ

    ∂� s∂ �--------- � sσ̇+ W 1 2⁄+ αW σ

    ∂� s∂ �--------- � sσ̇+ W 1 2⁄–+–

    ΦWa8$W 1 2⁄+ 8$W 1 2⁄––( ) αW ΦW 1 2⁄+ βW Φ W 1 2⁄–+( ) 8$W 1 2⁄+ 8$W 1 2⁄––( )=ΦW 1 2⁄+ 8$W 1 2⁄+ ΦW 1 2⁄– 8$W 1 2⁄––( ) Φ W 1 2⁄+ Φ W 1 2⁄––( ) β Wb8$W 1 2⁄+ αWc8$W 1 2⁄–+( )–=

    ω κ ω σ⁄

    � s∂ W∂ �---------- � svW ∇σ W_� s12---

    σ̇ W 1 2⁄+ W 1+ W–( ) σ̇ W 1 2⁄– W W 1––( )+∆σ W--------------------------------------------------------------------------------------------------------

    κ ωσ

    ------------ W–+⋅+ 0=

    ω

    κ ωσ

    ------------ W

    1 �-------� ω

    σ-------------

    W=

    1�-------

    ∆Φ( )W∆σ W---------------- βW σ

    ∂� s∂ �--------- � sσ̇+ W 1 2⁄+ αW σ

    ∂� s∂ �--------- � sσ̇+ W 1 2⁄–+

    – � W vW ∇� s⋅+=

    1�------- � W

    ∆ σln∆σ

    ------------- W β W σ

    ∂� s∂ �--------- � sσ̇+ W 1 2⁄+ α W σ

    ∂� s∂ �--------- � sσ̇+ W 1 2⁄–+

    � Wd� svW ∇ �ln s⋅+=

    ∆ σln ∆σ⁄( ) W 1 σW⁄αW β W

    αW βW+ 1=

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 31

    tion.

    ECMWF Seminar 1983:Numerical methods for weather prediction. Vol. 1 and Vol. 2.

    Holton, J.R., 1979:An introduction to dynamic meteorology. Second edition.

    Chang, J., (Editor), 1977:General circulation models of the atmosphere. Methods in Computational Physics 17.

    Haltiner, G.J. and R.T. Williams, 1980:Numerical prediction and dynamic meteorology. Second Edition.

    Journal papers.

    Arakawa, A., 1966:Computationaldesignfor long-term numericalintegrationof the equationsof fluid motion:

    two-dimensional incompressible flow. Part 1.J. Comp. Phys. 1, p119.

    Arakawa, A. andV.R.Lamb,1977:Computationaldesignandthebasicdynamicalprocessesof theUCLA general

    circulation Model. Methods in Computational Physics 17. p173.

    Arakawa, A. andV.R. Lamb,1981:A potentialenstrophy andenergy conservingschemefor the shallow water

    equations.Mon. Wea. Rev., 109. p18.

    Arakawa, A., 1984a:Theuseof integralconstraintsin designingfinite-differenceschemesfor thetwo-dimensional

    advection equation. ECMWF Seminar 1983 Numerical Methods for Weather Prediction. Vol. 1. p159.

    Arakawa, A., 1984b:Vertical differencingof filtered models.ECMWF Seminar1983 NumericalMethodsfor

    Weather Prediction. Vol. 1. p183.

    Arakawa, A., 1984c:Verticaldifferencingof theprimitiveequations.ECMWFSeminar1983NumericalMethods

    for Weather Prediction. Vol. 1. p207.

    Bell, R.S.andA. Dickinson,1987:TheMeteorologicalOffice operationalnumericalweatherpredictionsystem.

    Meteorological Office Sci. Pap. 41 London HMSO.

    Bleck, R.,1978:Ontheuseof hybrid verticalcoordinatesin numericalweatherpredictionmodels.Mon. Wea. Rev.,

    106. p1233.

    Bourke, W., 1974:A multi-level spectralmodel1: Formulationandhemisphericintegrations.Mon. Wea. Rev., 102.

    p687.

    Bourke, W., B. McAvaney, K. Puri andR. Thurling, 1977:Global Modelling of AtmosphericFlow by Spectral

    Methods. Methods in Computational Physics 17. p267.

    Corby, G.A., A. GilchristandP.R.Rowntree,1977:UnitedKingdomMeteorologicalOfficefive-level generalcir-

    culation model. Methods in Computational Physics 17. p67.

    Courtier, P. andJ-F. Geleyn, 1988:A globalnumericalweatherpredictionmodelwith variableresolution:Appli-

    cation to the shallow-water equations.Quart. J. Roy. Met. Soc., 114. p1321.

    Daley, R.,C.Girard,J.Hendersonand1.Simmonds,1976:Shorttermforecastingwith amulti-level spectralprim-

    itive equation model. Atmosphere 14. p98.

    Davies, H.C., 1976:A lateralboundaryformulationfor multi-level predictionmodels.Quart. J. Roy. Met. Soc.,

    102. p405.

    Davies, H.C.,1984:Techniquesfor limitedareamodelling.ECMWFSeminar1983NumericalMethodsfor Weath-

    er Prediction. Vol. 2. p213.

    Dey, C.H., 1978: Noise suppression in a primitive equation prediction model.Mon. Wea. Rev., 106. p159.

  • Adiabatic formulation of models

    32 Meteorological Training Course Lecture Series

    ECMWF, 2002

    Eliasen, E., B. MachenhauerandE. Ramussen,1970:On a numericalmethodfor theintegrationof thehydrody-

    namicalequationswith a spectralrepresentationof thehorizontalfields.Rep.No. 2 Institut for TeoretiskMeteor-

    ologi, Univ. of Copenhagen.

    Francis, P.E.,1972:Thepossibleuseof Laguerrepolynomialsfor representingtheverticalstructureof numerical

    models of the atmosphere.Quart. J. Roy. Met. Soc., 98. p662.

    Francis, P.E.,1975:Theuseof a multipoint filter asa dissipative mechanismin a numericalmodelof thegeneral

    circulation of the atmosphere.Quart. J. Roy. Met. Soc., 101. p567.

    Gadd, A.L, 1978a:A split-explicit integrationschemefor numericalweatherprediction.Quart. J. Roy. Met. Soc.,

    104, p569.

    Gadd, A.J., 1978b:A numericaladvectionschemewith small phasespeederrors.Quart. J. Roy. Met. Soc., 104.

    p583.

    Gadd, A.J., 1980: Two refinements of the split explicit integration scheme.Quart. J. Roy. Met. Soc., 106. p215.

    Hoskins, B.J.andA.J.Simmons,1975:A multi-layerspectralmodelandthesemi-implicit method.Quart. J. Roy.

    Met. Soc., 101. p637.

    Janic, Z. andF. Mesinger, 1984:Finite-differencemethodsfor theshallow waterequationson varioushorizontal

    grids. ECMWF Seminar 1983 Numerical Methods for Weather Prediction. Vol. 1. p29.

    Jarraud, M. andA.J. Simmons,1984:The spectraltechnique.ECMWF Seminar1983NumericalMethodsfor

    WeatherPrediction.Vol. 2. pl. K911berg, P.W. andJ.K. Gibson.1977:Multi- level limited-areaforecastsusing

    boundary zone relaxation. WGNE Progress Rep. No. 15, p48.

    Kasahara, A., 1974:Variousvertical coordinatesystemsusedfor NumericalWeatherPrediction.Mon.Wea.Rev.,

    102, p509.

    Kasahara, A., 1977:Computationalaspectsof numericalmodelsfor weatherpredictionandclimatesimulation.

    Methods in Computational Physics 17. pl.

    Kirkwood, E. andJ.Demme,1977:Someeffectsof theupperboundaryconditionandverticalresolutiononmod-

    elling forced stationary planetary waves.Mon. Wea. Rev., 105. p133.

    Kurihara, Y., 1965:Numericalintegrationof theprimitiveequationsonasphericalgrid. Mon. Wea. Rev., 93,p399.

    Lilly , D.K., 1964:Numericalsolutionsfor theshape-preservingtwo-dimensionalthermalconvectionelement.J.

    Atmos. Sci., 21. p83.

    Machenhauer, B., 1979:Thespectralmethod.In: NumericalMethodsusedin AtmosphericModels.GARPPublli-

    cation Series No. 17, Vol. II.

    Machenhauer, B. andR.Daley, 1972:A bamclinicprimitiveequationmodelwith spectralrepresentationin three-di-

    mensions. Rep. No. 4. Institut for Teoretisk Meteorologi, Univ. of Copenhagen.

    Mechoso, C.R.,M.J. Suarez,K. Yamazaki,A. Kitoh andA. Arakawa,1984:Effectsof thestratosphereon tropo-

    sphericforecasts.In: Reportof theseminaron progressin numericalmodellingandtheunderstandingof predict-

    ability as a result of the global weather experiment. WMO GARP Special Report No. 43.

    Mesinger, F. andA. Arakawa, 1976:Numericalmethodsusedin atmosphericmodels.GARPPublicationSeries

    No. 17, Vol. I.

    Mesinger, F. 1981:Horizontaladvectionschemesof astaggeredgrid- anenstrophy andenergy conservingmodel.

    Mon.Wea.Rev., 109. p467.

  • Adiabatic formulation of models

    Meteorological Training Course Lecture Series

    ECMWF, 2002 33

    Mesinger, F. andZ. Janic,1984:Finite-differenceschemesfor thepressure-gradientforceandfor thehydrostatic

    equation. ECMWF Seminar 1983 Numerical methods for weather prediction. Vol. I. p103.

    Orszag, S.A.,1970:Transformmethodfor thecalculationof vectorcoupledsums:applicationto thespectralform

    of the vorticity equation.J. Atmos. Sci. 27. p890.

    Phillips, N.A., 1957:A coordinatesystemhaving somespecialadvantagesfor numericalforecasting.J. Meteor.

    14. p184.

    Phillips, N.A., 1959:Numericalintegrationof theprimitiveequationsonthehemisphere.Mon. Wea. Rev., 87.p333.

    Phillips, N.A., 1973:Principlesof large-scalenumericalweatherprediction.Article in: DynamicMeteorology:Ed-

    itor P. Morel: p3.

    Ritchie, H., 1988:Applicationof thesemi-Lagrangianmethodto aspectralmodelof theshallow-waterequations.

    Mon. Wea. Rev.,116. p1587.

    Sadourny, R., 1975:Thedynamicsof finite-differencemodelsof theshallow-waterequations.J. Atmos. Sci. 32.

    p680.

    Schmidt, F., 1977: Variable fine mesh spectral global models.Beit. Phys. Atmos. 50. p211.

    Simmons, A.J. andD.M. Burridge,1981:An energy andangular-momentumconservingverticalfinite-difference

    scheme and hybrid vertical coordinates.Mon. Wea. Rev., 109. p758.

    Simmons, A.J. and R Snuffing, 1981: An energy and angular-momentumconservingvertical finite-difference

    scheme, hybrid coordinates and medium-range weather prediction. ECMWF Tech. Rep. No. 28.

    Simmons, A.J. andD. Dent,1989:TheECMWF multi-taskingweatherpredictionmodel.To appearin Computer

    Physics Reports.

    Simmons, A.J.,D.M. Burridge,M. Jarraud,C. GirardandW. Wergen,1988:TheECMWFmedium-rangepredic-

    tion models.Developmentof thenumericalformulationsandtheimpactof increasedresolution.Meteorol. Atmos.

    Phys. 40. p28.

    Staniforth, A. andR.W. Daley, 1977:A finite-elementformulationfor theverticaldiscretizationof sigmacoordi-

    nate primitive equation models.Mon. Wea. Rev., 105. p1108.

    Staniforth, A. andH.L. Mitchell, 1977:A semi-implicit finite-elementbarotropicmodel.Mon.Wea.Rev., 105.p154.

    Staniforth, A., 1987:Review: Formulatingefficientfinite-elementcodesfor flows in regulardomains.Int. J. Num.

    Meth. Fluids 7. p l.

    Washington, W.M. andD.L. Williamson,1977:A descriptionof theNCAR GlobalCirculationModels.Methods

    in Computational Physics 17. pl 11.

    Williamson, D.L. 1976:Linearstability of finite-differenceapproximationson a uniform latitude-longitudegrid

    with Fourier filtering.Mon. Wea. Rev., 104. p31.