of 70 /70
Adeel Husain PGY 3 Loma Linda University Dept of Orthopaedic Surgery Open Fractur es

Adeel Husain PGY 3 Loma Linda University Dept of Orthopaedic Surgery Open Fractures

Embed Size (px)

Text of Adeel Husain PGY 3 Loma Linda University Dept of Orthopaedic Surgery Open Fractures

  • Slide 1
  • Adeel Husain PGY 3 Loma Linda University Dept of Orthopaedic Surgery Open Fractures
  • Slide 2
  • Definition Break in the skin and underlying soft tissue leading directly into or communicating with the fracture and its hematoma
  • Slide 3
  • Last century, high mortality with open fractures of long bones Early amputation in order to prevent death WWI, mortality of open femur fractures > 70% 1939 Trueta closed treatment of war fractures Included open wound treatment and then enclosure of the extremity in a cast Greatest danger of infection lay in muscle, not bone Trueta J: "Closed" treatment of war fractures, Lacet 1939;1:1452-1455 History
  • Slide 4
  • 1943 PCN on the battlefield quickly reduced rate of wound sepsis Delayed closure of wounds Hampton: closure btwn 4 th and 7 th day Larger defects continued to be left open to heal by secondary intention Hampton OP Jr: Basic principles in management of open fractures; JAMA 1955; 159:417-419 History
  • Slide 5
  • Advances shifted the focus Preservation of life and limb preservation of function and prevention of complications However, amputation rates still exceed 50% in the most severe open tibial fractures assoc with vascular injury* Lange RH, Bach AW, Hansen ST et al: Open tibial fractures with associated vascular injuries: prognosis for limb salvage. J Trauma; 25(3):203- 208 History
  • Slide 6
  • Epidemiology 3% of all limb fractures 21.3 per 100,000 per year
  • Slide 7
  • Open fracture classification Allows comparison of results Provides guidelines on prognosis and treatment Fracture healing, infection and amputation rate correlate with the degree of soft tissue injury Gustilo upgraded to Gustilo and Anderson AO open fracture classification Host classification of open fractures
  • Slide 8
  • Gustilo and Anderson Classification Model is tibia, however applied to all types of open fractures Emphasis on wound size Crush injury assoc with small wounds Sharp injury assoc with large wounds Better to emphasize Degree of soft tissue injury Degree of contamination
  • Slide 9
  • Type 1 Open Fractures Inside-out injury Clean wound Minimal soft tissue damage No significant periosteal stripping
  • Slide 10
  • Type 2 Open Fractures Moderate soft tissue damage Outside-in Higher energy Some necrotic muscle Some periosteal stripping
  • Slide 11
  • Type 3a Open Fractures High energy Outside-in Extensive muscle devitalization Bone coverage with existing soft tissue
  • Slide 12
  • Type 3b Open Fractures High energy Outside in Extensive muscle devitalization Requires a flap for bone coverage and soft tissue closure Periosteal stripping
  • Slide 13
  • Type 3c Open Fractures High energy Increased risk of amputation and infection Any grade 3 with major vascular injury requiring repair
  • Slide 14
  • Why use this classification? Grades of soft tissue injury correlates with infection and fracture healing Grade123A3B3C Infection Rates 0-2%2-7%10-25%10-50%25-50% Fracture Healing (weeks) 21-2828-2830-35 Amputation Rate 50%
  • Slide 15
  • Gustilo and Anderson Bowen and Widmaier* 2005 Host classification predicts infection after open fracture Gustilo and Anderson classification and the number of comorbidities predict infection risk 174 patients with open fractures of long bones Sorted into three classes based on 14 immunocompromising factors Age>80, current nicotine use, DM, malignancy, pulmonary insufficiency, systemic immunodeficiency, etc Bowen TR, Widmaier JC. Host classification predicts infection after open fracture. Clin Orthop Relat Res. 2005;433:205-11.
  • Slide 16
  • What they found Patients with any compromising risk factor has increased risk of infection May benefit from additional therapies that decrease the risk of infection. Bowen TR, Widmaier JC. Host classification predicts infection after open fracture. Clin Orthop Relat Res. 2005;433:205-11. ClassCompromising factorsInfection rates A04% B1-215% C3 or more31%
  • Slide 17
  • Gustilo Classification: a simple and useful tool, but is it accurate? 1994 Brumback et al. 125 randomized open fractures 245 surgeons of various levels of training 12 cases of open tibia fractures, videos used Interobserver agreement poor Range 42-94% for each fracture Ortho attendings - 59% agreement Ortho Trauma Fellowship trained attendings - 66% agreement Brumback RJ, Jones AL (1994) Interobserver agreement in the classification of open fractures of the tibia. The results of a survey of two hundred and forty-five orthopaedic surgeons. J Bone and Joint Am; 76(8):11621166.
  • Slide 18
  • So. Fracture type should not be classified in the ER Most reliably done in the OR at the completion of primary wound care and debridement
  • Slide 19
  • Microbiology Most acute infections are caused by pathogens acquired in the hospital 1976 Gustilo and Anderson most infections in their study of 326 open fxs developed secondarily When left open for >2wks, wounds were prone to nocosomial contaminants such as Pseudomonas and other GN bacteria Currently most open fracture infections are caused by GNR and GP staph Gustilo RB, Anderson JT: Prevention of Infection in the Treatment of One Thousand and Twenty-five Open Fractures of Long Bones; JBJS, 58(4):453-458, June 1976
  • Slide 20
  • Nocosomial infection?!!!! Only 18% of infections were caused by the same organism initially isolated in the perioperative cultures* Carsenti-Etesse et al. 1999 92% of open fracture infections were caused by bacteria acquired while the patient was in the hospital** *Patzakis MJ, Wilkins J, Moore TM: Considerations in reducing the infection rate in open tibial fractures. Clin Orthop Relat Res. 1983 Sep;(178):36-41. *Patzakis MJ, Bains RS, Lee J, Shepherd L, Singer G, Ressler R, Harvey F, Holtom P: Prospective, randomized, double-blind study comparing single antibiotic therapy, ciprofloxacin, to combo antibiotic therapy in open fracture wounds. J Orthop Trauma. 2000 Nov;14(8):529-33. **Carsenti-Etesse H, Doyon F, Desplaces N, Gagey O, Tancrede C, Pradier C, Dunais B, Dellamonica P. Epidemiology of bacterial infection during management of open leg fractures. Eur J Clin Microbiol Infect Dis. 1999;18:315-23. Cover the wounds quickly
  • Slide 21
  • Common bacteria encountered with open fractures Blunt Trauma, Low Energy GSWStaph, Strept Farm WoundsClostridia Fresh WaterPseudomonas, Aeromonas Sea WaterAeromonas, Vibrios War Wounds, High Energy GSWGram Negative
  • Slide 22
  • What systemic antibiotic? 1 st Gen CephGentPCN Grade 1 Grade 2 +/- Grade 3 +/- Farm/War Wounds (Gustilo, et al; JBJS 72A 1990)
  • Slide 23
  • Antibiotic comparisons No difference btwn clindamycin and cefazolin* Patzakis et al. ** For type 1&2, cipro = cefamandole+gentamicin For type 3, cipro worse (31% vs 7.7% infection) Cipro and other fluoroquinolones inhibit osteoblast activity and fracture healing*** *Benson DR, Riggins RS, Lawrence RM, Hoeprich PD, Huston AC, Harrison JA. Treatment of open fractures: a prospective study. J Trauma. 1983;23:25-30. **Patzakis MJ, Bains RS, Lee J, Shepherd L, Singer G, Ressler R, Harvey F, Holtom P. Prospective, randomized, double-blind study comparing single-agent antibiotic therapy, ciprofloxacin, to combination antibiotic therapy in open fracture wounds. J Orthop Trauma. 2000;14:529-33. ***Holtom PD, Pavkovic SA, Bravos PD, Patzakis MJ, Shepherd LE, Frenkel B. Inhibitory effects of the quinolone antibiotics trovafloxacin, ciprofloxacin, and levofloxacin on osteoblastic cells in vitro. J Orthop Res. 2000;18:721-7. ***Huddleston PM, Steckelberg JM, Hanssen AD, Rouse MS, Bolander ME, Patel R. Ciprofloxacin inhibition of experimental fracture healing. J Bone Joint Surg Am. 2000;82:161-73.
  • Slide 24
  • When and for how long? Start abx as soon as possible* Less than 3 hours 4.7 % infection rate Greater than 3 hours 7.4% No difference btwn 1 and 5 days of post op abx treatment** Mass Gen recommended treatment:*** Cefazolin Q 8 until 24 hours after wound closed Gentamicin or levofloxacin added for type 3 *Patzakis MJ, Wilkins J. Factors influencing infection rate in open fracture wounds. Clin Orthop Relat Res. 1989;243:36-40. **Dellinger EP, Caplan ES, Weaver LD, Wertz MJ, Brumback R, Burgess A, Poka A, Benirschke SK, Lennard S, Lou MA. Duration of preventive antibiotic administration for open extremity fractures. Arch Surg. 1988;123:333-9. ***Okike K, Bhattacharyya T: Trends in the management of open fractures. A critical analysis. J Bone Joint Surg. 2006 Dec;88(12):2739-48.
  • Slide 25
  • Local antibiotic therapy High abx conc within the wound and low systemic conc Reduces risk of systemic side effect Vancomycin or aminoglycosides Heat stable Available in powder form Active against suspected pathogens Eckman JB Jr, Henry SL, Mangino PD, Seligson D. Wound and serum levels of tobramycin with the prophylactic use of tobramycin- impregnated polymethylmethacrylate beads in compound fractures. Clin Orthop Relat Res. 1988; 237:213-5.
  • Slide 26
  • Antibiotics - locally Prevents secondary contamination by nocosomial pathogens Useful adjunct to systemic abx Potential for abx impregnated bone graft, bone graft substitute, and abx coated IMN Ostermann PA, Seligson D, Henry SL: Local antibiotic therapy for severe open fractures. A review of 1085 consecutive cases; J Bone Joint Surg Br. 1995 Jan;77(1):93-7. AntibioticInfection Rate IV Abx12% IV Abx + local aminoglycoside impregnated PMMA beads 3.7%
  • Slide 27
  • Antibiotic Beads Pros Very high levels of antibiotics locally Dead space management Cons Requires removal Limited to heat stable antibiotics Increased drainage from wound
  • Slide 28
  • Goals of treatment 1. preserve life 2. preserve limb 3. preserve function Also. Prevent infection Fracture stabilization Soft tissue coverage
  • Slide 29
  • Stages of care for open fractures
  • Slide 30
  • Initial assessment & management ABCs Assess entire patient Careful PE, neurovasc Abx and tetanus Local irrigation 1-2 liters Sterile compressive dressings Realign fracture and splint Do not culture wound in the ED* 8% of bugs grown caused deep infection cultures were of no value and not to be done Recheck pulse, motor and sensation Lee J. Efficacy of cultures in the management of open fractures. Clin Orthop Relat Res. 1997;339:71-5.
  • Slide 31
  • Can I take pictures with my phone and send it to my senior? Documents characteristics accurately Prevents multiple examinations Decreases contamination* Communication via digital photography was more useful than verbal communication** 1.3-megapixel camera is comparable with higher resolution cameras when viewing color images on computer desktop*** *Tscherne H, Gotzen L, editors Fractures with soft tissue injuries. New York: Springer; 1984 **Tipmongkol V, Thepkamnoet H, Tangtrakulwanich B: Using Digital Wound Photography to Improve Communication among Orthopaedic Health Care Professionals in Orthopeadic Patients. The Thai Journal of Orthopaedic Surgery: 33 No.2: S16-20 AAOS 2010 Podium Present ***Andres BM. Response to letter to the editor re: A comparison of digital cameras -- features essential for the orthopaedic surgeon. Clin Orthop 2004; 428:309.
  • Slide 32
  • Primary surgery Objectives of initial surgical management Preservation of life and limb Wound debridement Definitive injury assessment Fracture stabilization Stages of open fracture management in the OR
  • Slide 33
  • Surgical emergency! 1898 Friedrich guinea pigs Take to the OR within 6-8 hours* 1973 Robson: bacteria multiply in contaminated wounds ** 10 5 organisms/gram of tissue is the infection threshold Reached at 5.17 hours 1995 Kindsfater et al: 47 G2/3 fxs at 4.8 months out. Less than 5 hrs 7% infection Greater than 5 hrs 38% infection However G3 fxs were treated later *Friedrich PL. Die aseptische Versorgung frischer Wundern. Arch Klin Chir. 1898;57:288-310. **Robson MC, Duke WF, Krizek TJ. Rapid bacterial screening in the treatment of civilian wounds. J Surg Res. 1973;14:426-30.
  • Slide 34
  • Or not?.... Calling the 6 hour rule into question 1993 Bednar and Parikh. No significant difference * 3.4% vs 9%; 82 open femoral/tibial fxs 2004 Ashford et al. No significant difference ** 11% vs 17%; pts from the austrailian outback 2004 Spencer et al.... No significant difference *** 10.1% vs 10.9%; 142 open long bone fxs from UK 2003 Pollack and the LEAP investigators. No correlation**** 315 open long bone fxs 2005 Skaggs et al.No significant difference ***** children with all types of open fractures; 554 open fractures *Bednar DA, Parikh J. Effect of time delay from injury to primary management on the incidence of deep infection after open fractures of the lower extremities caused by blunt trauma in adults. J Orthop Trauma. 1993;7:532-5. **Ashford RU, Mehta JA, Cripps R. Delayed presentation is no barrier to satisfactory outcome in the management of open tibial fractures. Injury. 2004;35:411-6. ***Spencer J, Smith A, Woods D. The effect of time delay on infection in open long-bone fractures: a 5-year prospective audit from a district general hospital. Ann R Coll Surg Engl. 2004;86:108-12. ****Pollack AN, Castillo RC, Jones AL, Bosse MJ, MacKenzie EJ, and the LEAP Study Group. Time to definitive treatment significantly influences incidence of infection after open high-energy lower-extremity trauma. Read at the Annual Meeting of the Orthopaedic Trauma Association; 2003 Oct 9-11; Salt Lake City, UT. *****Skaggs DL, Friend L, Alman B, Chambers HG, Schmitz M, Leake B, Kay RM, Flynn JM. The Effect of Surgical Delay on Acute Infection Following 554 Open Fractures in Children. JBJS-A 2005. 87:8-12 No significant difference before or after 6 hours!!!
  • Slide 35
  • Do we even need to do operative debridement? Orcutt et al... No significant difference, BUT* 50 type 1 &2 open fractures less infection in nonoperative group (3% vs 6%) Less delayed union in nonop group (10% vs 16%) Yang et al.0% infections ** 91 type 1 open fractures treated without I&D *Orcutt S, Kilgus D, Ziner D. The treatment of low-grade open fractures without operative debridement. Read at the Annual Meeting of the Orthopaedic Trauma Association; 1988 Oct 28; Dallas, TX. **Yang EC, Eisler J. Treatment of Isolated Type 1 Open Fractures: Is Emergent Operative Debridement Necessary? Clin Orthop Relat Res 2003. 410: 289-294. Do we even need to debride low grade open fractures?
  • Slide 36
  • However, after review of all literature.. Okike et al. states. Thorough operative debridement is the standard of care for all open fractures. Even if the benefits of formal I&D were insignificant for low grade fractures, operative debridement is still required for proper wound classification. Open fractures graded on the basis of superficial characteristics are often misclassified. Huge risk not to explore and debride! Okike K, Bhattacharyya T: Trends in the management of open fractures. A critical analysis. J Bone Joint Surg Am. 2006 Dec;88(12):2739-48.
  • Slide 37
  • URGENTLY debride, not EMERGENTLY Time to OR is probably less important than:* Adequacy of debridement Time to soft tissue coverage Timing depends on.** Is patient stable? Is the OR prepared? Is appropriate assistance available? Ortho trained scrub techs, assistant surgeons, xray techs, and other OR staff 2005 Skaggs et al:*** If after 10pm, keep until the morning! Or at least within 24 hours. Unless. neurovasc compromise horrible soft tissue contamination compartment syndrome *Okike K, Bhattacharyya T: Trends in the management of open fractures. A critical analysis. J Bone Joint Surg. 2006 Dec;88(12):2739-48. **Werner CM, Pierpont Y, Pollak AN: The urgency of surgical dbridement in the management of open fractures. J Am Acad Orthop Surg. 2008 Jul;16(7):369-75. ***Stewart DJ, Kay RM, Skaggs DL: Open Fractures in Children. Principles of Evaluation and Management. JBJS-A. 2005;87:2784-2798. Within 24 hours Within 6 hours
  • Slide 38
  • I&D in the OR Trauma scrub Soap and saline to remove gross debris Zone of injury Skin wound is the window through which the true wound communicates with the exterior Extend the traumatic wound Excise margins Resect muscle and skin to healthy tissue color, consistency, capacity to bleed and contractility Bone ends are exposed and debrided Irrigate Serial debridements? If needed, 2 nd or 3 rd debridement after 24- 48 hours should be planned
  • Slide 39
  • The Irrigation Amount No good data, copious is better Animal studies show improved removal of particulate matter and bacteria but effect plateaus Irrigation bags typically contain 3 L of fluid Anglen recommends:* 3L (one bag) for type 1 6L (two bags) for type 2 9L (three bags) for type 3 *Anglen JO. Wound Irrigation in Musculoskeletal Injury. JAAOS 2001. 9: 219-226.
  • Slide 40
  • How to deliver the irrigation? (what animal studies show) Bulb Syringe vs Pulsatile Lavage Pulsatile lavage Detrimental for early bone healing this is no longer present at 2 wks * More soft tissue destruction ** More effective in removing particulate matter and bacteria *** High or low pressure? Higher pressure Better bone cleaning Worse soft tissue cleaning Slows bone healing *Dirschl DR, Duff GP, Dahners LE, Edin M, Rahn BA, Miclau T. High Pressure Pulsatile Lavage Irrigation of Intraarticular Fractures: Effects on Fracture Healing. JOT 1998. 12(7): 460-463. **Boyd JI, Wongworawat MD. High-Pressure Pulsatile Lavage Causes Soft Tissue Damage. CORR 2004. 427: 13-17 ***Bhandari M, Schemitsch EH, Adili A, Lachowski RJ, Shaughnessy SG. High and Low Pressure Pulsatile Lavage of Contaminated Tibial Fractures: An in vitro Study of Bacterial Adherence and Bone Damage. JOT 1999. 13: 526-533.
  • Slide 41
  • Antibiotics in the irrigation? Antibiotics (bacitracin and/or neomycin) Mixed results, controversial Costly bacitracin alone around $500/washout ?? Causing resistance Wound healing problems? Few reported cases of anaphylaxis Anglen: No proven value in the care of open fracture woundssome risk, albeit small. No proven benefit! *Anglen JO. Wound Irrigation in Musculoskeletal Injury. JAAOS 2001. 9: 219-226.
  • Slide 42
  • Soaps in the irrigation? Surfactants (i.e. Soaps) Less bacteria adhesion Emulsify and remove debris No significant difference in infection or bone healing compared to bacitracin solution, but more wound healing problems in bacitracin group Anglen JO. Comparison of Soap and Antibiotic Solutions for Irrigation of Lower-Limb Open Fracture Wounds: A Prospective, Randomized Study. JBJS-A 2005. 87(7):1415-1422.
  • Slide 43
  • Level 4 evidence based recommendations 1 st washout, highly contaminated Soap solution Repeat washout of clean wounds Saline Infected wounds Soap, then antibiotic *Anglen JO. Wound Irrigation in Musculoskeletal Injury. JAAOS 2001. 9: 219-226.
  • Slide 44
  • Wound closure after contaminated fracture Timing and technique is controversial OPEN WOUND should be left OPEN! Prevents anaerobic conditions in wound: Clostridium Facilitates drainage Allows repeat debridement Zalavras CG, Patzakis MJ:Open fractures: evaluation and management. J Am Acad Orthop Surg. 2003 May-Jun;11(3):212-9. Dubunked!
  • Slide 45
  • To close or not to close? Recently, renewed interest in primary closure Collinge, OTA 2004 Moola, OTA 2005 Russell, OTA 2005 DeLong, J Trauma 2004/ Bosse, JAAOS 2002 Improved abx management Better stabilization Less morbidity Shorter hospital stay, lower cost NO increase in wound infection These wounds are at higher risk of clostridia perfringens if they do get infected. 1999 Delong et al: 119 open fxs No significant difference delayed/nonunion and infection rates btwn immediate and delayed closure Immediate closure is a viable option DeLong WG Jr, Born CT, Wei SY, Petrik ME, Ponzio R, Schwab CW: Aggressive treatment of 119 open fracture wounds. J Trauma. 1999 Jun;46(6):1049-54. infection rate7% Overall delayed/nonunion rate16% GradePercent of primary closures 188% 286% 3a75% 3b33% 3c0%
  • Slide 46
  • Contraindications to primary closure Inadequate debridement Gross contamination Farm related or freshwater immersion injuries Delay in treatment >12 hours Delay in giving abx Compromised host or tissue viability
  • Slide 47
  • When to cover the wound? ASAP after wound adequately debrided Only 18% of infections are caused by the same organism isolated in initial perioperative culture* Suggests hospital acquired etiology of infection Fix and Flap** For Type IIIB & IIIC open tibia fractures Early if not immediate flap coverage Patzakis MJ, Bains RS, Lee J, et al. Prospective, randomized, double-blind study comparing single-agent antibiotic therapy, ciprofloxacin, to combination antibiotic therapy in open fracture wounds. JOT 2000. 14: 529-533. **Gopal S, Majumder S, Batchelor A, Knight S, De Boer P, Smith RM. Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. JBJS-B 2000. 82(7): 959 966. Timing of flap placementInfection rate < 72 hours6% > 72 hours30%
  • Slide 48
  • Dressings Temporary closures rubber bands Wet to dry dressings Semi-permeable membranes Antibiotic bead pouch VAC
  • Slide 49
  • Vacuum assisted wound closure Recommended for temporary management Mechanically induced negative pressure in a closed system Removes fluid from extravascular space Reduced edema Improves microcirculation Enhances proliferation of reparative granulation tissue Open cell polyurethane foam dressing ensures an even distribution of negative pressure -Webb LX: New techniques in wound management: vacuum-assisted wound closure. J Am Acad Orthop Surg. 2002 Sep-Oct;10(5):303-11. -Dedmond BT, Kortesis B, Punger K, Simpson J, Argenta A, Kulp B, Morykwas M, Webb L. The use of Negative Pressure Wound Therapy in the Temporary Treatment of Soft Tissue Injuries associated with High Energy Open Tibial Shaft Fractures. JOT. 2007
  • Slide 50
  • Types of fracture stabilization Splint Good option if operative fixation not required Internal fixation Wound is clean and soft tissue coverage available External fixation Dirty wounds or extensive soft tissue injury
  • Slide 51
  • Fracture stabilization Gustilo type 1 injury can be treated the same way as a comparable closed fracture Most cases involve surgical fixation Outcome is similar to closed counterparts
  • Slide 52
  • Fracture stabilization Gustilo type 2&3 usually displaced and unstable dictate surgical fixation Restore length, alignment, rotation and provide stability ideal environment for soft tissue healing and reduces wound infection reduces dead space and hematoma volume Inflammatory response dampened Exudates and edema is reduced Tissue revascularization is encouraged
  • Slide 53
  • When to use plates? Open diaphyseal fractures of arm & forearm Open diaphyseal fractures lower extremity NOT recommended Open tibial shaft plating assoc high infection rate* Open periarticular fractures Treatment of choice in both upper and lower extremities Bach AW, Hansen ST Jr.: Plates versus external fixation in severe open tibial shaft fractures. A randomized trial. Clin Orthop Relat Res. 1989 Apr;(241):89-94.
  • Slide 54
  • When to use IM nails? Treatment of choice for most diaphyseal fractures of the lower extremity Inserted without disrupting the already injured soft tissue envelope Preserves the remaining extra osseous blood supply to cortical bone Malunion is uncommon
  • Slide 55
  • To ream or not to ream? Does reaming cause additional damage to the endosteal blood supply? Solid IM nails without reaming has a lower risk of infection that tubular nails with a large dead space* However reamed IM nails are biomechanically stronger and can reliably maintain fracture reduction if statically locked 2000 Finkemeier et al. reamed vs unreamed interlocked nails of open tibias NO statistical difference in outcome and risk of complication** *Melcher GA, Claudi B, Schlegel U, Perren SM, Printzen G, Munzinger J.Influence of type of medullary nail on the development of local infection. An experimental study of solid and slotted nails in rabbits;.J Bone Joint Surg Br. 1994 Nov;76(6):955-9. **Keating JF, O'Brien PJ, Blachut PA, Meek RN, Broekhuyse HM: Locking intramedullary nailing with and without reaming for open fractures of the tibial shaft. A prospective, randomized study. J Bone Joint Surg Am. 1997 Mar;79(3):334-41. **Finkemeier CG, Schmidt AH, Kyle RF, Templeman DC, Varecka TF: A prospective, randomized study of intramedullary nails inserted with and without reaming for the treatment of open and closed fractures of the tibial shaft. J Orthop Trauma. 2000 Mar-Apr;14(3):187-93.
  • Slide 56
  • When to use external fixation? Diaphyseal fractures not amenable to IM nails Ring fixators for periarticular fractures Temporary joint spanning ex fix is popular for knee, ankle, elbow and wrist If temporary, plan for conversion to IM nail within 3 weeks
  • Slide 57
  • Ex-fix: Weigh the pros and cons! Historically was definitive treatment Now, more commonly as temporary fixation Can be applied almost always and everywhere Severe soft tissue damage and contamination Advantages: Easy and quick Relatively stable fixation No further damage done Avoids hardware in the open wound Disadvantages: Pin track infections Malalignment Delayed union Poor patient compliance
  • Slide 58
  • Skin cover and soft tissue reconstruction Do these early! 1994 Osterman et al.* Retrospective 1085 fractures, 115 G2 and 239 G3 All treated with appropriate IV Abx and I&D No infection if wounds closed at 7.6 days Yes infection if wounds closed at 17.9 days *Ostermann PA, Seligson D, Henry SL: Local antibiotic therapy for severe open fractures: A review of 1085 consecutive cases. J Bone Joint Surg Br 1995;77:9397. Infection risk increases if wound open > 7 days
  • Slide 59
  • Reconstructive ladder: options for wound coverage Primary closure Secondary intention Skin graft Local flap Regional flap Distant flap Free flap Tissue expansion Type 1 open fx Type 3B open fx Type 2/3A open fx
  • Slide 60
  • Flap coverage for type 3b
  • Slide 61
  • Type 3c, a bad injury! Devastating damage to bone and soft tissue Major arterial injuries that require repair Poor functional outcome Consensus btwn ortho, vascular and plastics Salvage is technically possible in most cases However it is not always the correct choice esp type 3c tibia fractures
  • Slide 62
  • We can do both, salvage & amputate. Vascular surgery can revascularize with bypass graft Generally before fracture stabilization Plastics can provide soft tissue coverage However, in the tibia, the severity to soft tissue envelope and bone may result in infected nonunion If salvage. long course of repeated surgical procedures Painful and psychologically distressing Functional outcome may be poor and no better than amputation
  • Slide 63
  • How to decide, salvage or amputate? Important factors in decision making:* General condition of the patient (shock) Warm ischemia time (>6hours) Age (>30 years) Cut to crush ratio (blunt injuries has a large zone of crush) Howe HR Jr, Poole GV Jr, Hansen KJ, Clark T, Plonk GW, Koman LA, Pennell TC: Salvage of lower extremities following combined orthopedic and vascular trauma. A predictive salvage index. Am Surg. 1987 Apr;53(4):205-8.
  • Slide 64
  • Gunshot injuries Energy dissipated at impact = damage severity High velocity rifles and close range shotguns Worst, high energy of impact Huge secondary cavitation Secondary effects of shattered bone fragments Bullets lodged in joints should be removed avoid lead arthropathy and systemic lead poisoning
  • Slide 65
  • Low velocity GSW
  • Slide 66
  • Low velocity GSW open fractures Geisslar et al. * If neurovascular status normal, do local debridement NO formal I&D needed IV Abx Approach fx fixation as if closed Dickey et al.** No abx vs IV Ancef x 3d 67 low velocity GSW fxs Not requiring operative fixation No difference in infection rates *Geisslar ett al, J Ortho Trauma, 4;39-41,1990 **Dickey et al, J Ortho Trauma, 3;6-10,1989 Treat open fractures from low velocity GSW as closed fractures without Abx
  • Slide 67
  • Pitfalls and complications Infection delayed union, nonunion, malunion and loss of function Plan ahead to avoid delayed union and nonunion Predict nonunion in severe injuries with bone loss Bone grafting usually delayed 6 weeks when soft tissues have soundly healed Autogenous bone grafting is usual strategy Fibular transfer, free composite graft or distraction osteogenesis for complex defects Recombinant human BMP in open tibia fracture reduces risk of delayed union
  • Slide 68
  • Advances BMPs 40% decreased infection rate with BMP in type 3 open tibia fractures* Antibiotic Laden Bone Graft** Tobramycin-impregnated calcium sulfate pellets with demineralized bone matrix Animal study: successful in preventing infection *BESTT Study Group, Govender S, Csimma C, Genant H, Valentin-Opran A. Recombinant Human Bone Morphogenetic Protein-2 for Treatment of Open Tibial Fractures: A prospective, controlled, randomized study of four hundred and fifty patients. JBJS-A 2002. 84(12): 2123-2134. **Beardmore AA, Brooks DE, Wenke JC, Thomas DB. Effectiveness of local antibiotic delivery with an osteoinductive and osteoconductive bone-graft substitute. JBJS-A 2005. 87(1): 107-112.
  • Slide 69
  • Summary A = good evidence (level 1 studies) B = fair evidence (level 2/3 studies) C = poor quality evidence (level 4/5 studies) I = insufficient or conflicting evidence Okike K, Bhattacharyya T: Trends in the management of open fractures. A critical analysis. J Bone Joint Surg. 2006 Dec;88(12):2739-48.
  • Slide 70
  • Thank you