26
1 Adaptive Digital Slope Compensation for Peak Current Mode Control Peter Ide, Frank Schafmeister, Tobias Grote IBM Power and Cooling Technology Symposium

Adaptive Digital Slope Compensation-V2 handout - IBM · 1 Adaptive Digital Slope Compensation for Peak Current Mode Control Peter Ide, Frank Schafmeister, Tobias Grote IBM Power and

  • Upload
    vokien

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

1

Adaptive Digital Slope Compensation for Peak Current Mode Control

Peter Ide, Frank Schafmeister, Tobias Grote

IBM Power and Cooling Technology Symposium

2

Digital Control at DES CD-BU

2005 2006 2007 2008 2009 2010

HCS08

Per

form

ance

Year

Freescale

Texas Instruments

F2806

F2808

Fu

ll D

igit

alS

emi-

Dig

ital

32-bit

100 MHz

100-LQFP

32-bit

60 MHz

64-TQFP

16-bit

16 MIPS

28-QFN

44-TQFP

8-bit

8 MHz

32-LQFP

32-bit

100 MHz

100-LQFP

8-bit

16 MHz

32-LQFP

44-TQFP

8-bit

16 MHz

8-SOIC

20-QFN

700 kHz

24-QSOP

Co

st, S

ize

Co

mm

./L

og

ic

MicrochipdsPIC33F

Analog

Devices

ATmega

ATtiny

ADP1043

16-bit

40 MHz

28-SOIC

44-TQFP

Atmel

PIC24F

Piccolo

F28027

Piccolo

F2803x

32-bit

60 MHz

CLA, CAN

64-TQFP

New Concepts Focus

Full Digital Control

Development ongoing

3

Digital Control at DES CD-BU

2005 2006 2007 2008 2009 2010

HCS08

Per

form

ance

Year

Freescale

Texas Instruments

F2806

F2808

Fu

ll D

igit

alS

emi-

Dig

ital

32-bit

100 MHz

100-LQFP

32-bit

60 MHz

64-TQFP

16-bit

16 MIPS

28-QFN

44-TQFP

8-bit

8 MHz

32-LQFP

32-bit

100 MHz

100-LQFP

8-bit

16 MHz

32-LQFP

44-TQFP

8-bit

16 MHz

8-SOIC

20-QFN

700 kHz

24-QSOP

Co

st, S

ize

Co

mm

./L

og

ic

MicrochipdsPIC33F

Analog

Devices

ATmega

ATtiny

ADP1043

16-bit

40 MHz

28-SOIC

44-TQFP

Atmel

PIC24F

Piccolo

F28027

Piccolo

F2803x

32-bit

60 MHz

CLA, CAN

64-TQFP

New Concepts Focus

Full Digital Control(DC/DC)

GUI-Configurable Full Digital Controller

4

Digital Control at DES CD-BU

Processors withOn-Chip Comparators

2005 2006 2007 2008 2009 2010

HCS08

Per

form

ance

Year

Freescale

Texas Instruments

F2806

F2808

Fu

ll D

igit

alS

emi-

Dig

ital

32-bit

100 MHz

100-LQFP

32-bit

60 MHz

64-TQFP

16-bit

16 MIPS

28-QFN

44-TQFP

8-bit

8 MHz

32-LQFP

32-bit

100 MHz

100-LQFP

8-bit

16 MHz

32-LQFP

44-TQFP

8-bit

16 MHz

8-SOIC

20-QFN

700 kHz

24-QSOP

Co

st, S

ize

Co

mm

./L

og

ic

MicrochipdsPIC33F

Analog

Devices

ATmega

ATtiny

ADP1043

16-bit

40 MHz

28-SOIC

44-TQFP

Atmel

PIC24F

Piccolo

F28027

Piccolo

F2803x

32-bit

60 MHz

CLA, CAN

64-TQFP

Processors withOn-Chip Comparators

Semi Digital Control(PFC)

Digital Peak Current Control

���� Today’s Topic

5

Overview

• Motivation

• Review of Peak Current Control with Slope Compensation

• Digital Slope Compensation

• Simulation Results

• Practical Implementation & Measurement Results

• Conclusion

6

Motivation

Advantages of

Peak Current Control & Digital Control

� high control dynamics

� inherent cycle by cycle currentlimiting

� good current balancing of parallel converters

� flexibility and programmability

� feasible for adaptive and nonlinear control algorithms

� decreased number of componentsand PCB space

Idea: Combine these two control techniques

���� Realizable with µController containing on-chip comparators

Challenge: Peak current control needs slope compensationto avoid subharmonic oscillation at D > 0.5

7

Overview

• Motivation

• Review of Peak Current Control with Slope Compensation

• Digital Slope Compensation

• Simulation Results

• Practical Implementation & Measurement Results

• Conclusion

8

t

i

m1

iL

iL_min

i*

DTs

Ts

-m2

(1-D)Ts

Peak Current Mode Control

Boost converter example

clock

R

SQ

EA

Vref

voutvin

iL comparator

L

C

D

i*

D

D

m

m

−=

11

2

(steady state)

9

Peak Current Mode Control

Disturbed inductor current (without slope compensation)

0

1

2i

m

mi

n

n ∆⋅

−=∆Disturbance after n cycles:

t

i

m1

steady statei*

-m2

i0

i1

i2

disturbed

( )5.021 <> DmmCondition for stable operation:

10

Peak Current Mode Control

Disturbed inductor current (with slope compensation)

0

1

2i

mm

mmi

n

sc

sc

n ∆⋅

+

−−=∆

Disturbance after n cycles: Required compensation:

( )122

1mmmsc −>

����

t

i

steady state

i*

i0

i1

i2

disturbed

m1 -m2

-msccompensation ramp

11

Overview

• Motivation

• Review of Peak Current Control with Slope Compensation

• Digital Slope Compensation

• Simulation Results

• Practical Implementation & Measurement Results

• Conclusion

12

Digital Slope Compensation

t

i

m1

iL_min

icmp

i*-msc

in in+1

-m2

comparator threshold

DTs

Idea: Use iL_min and i* to compute the comparatorthreshold level including slope compensation

sncmp DTmii ⋅+= 1

ssccmp DTmii ⋅−=*

sc

n

sccmpmm

iimii

+

−−=

1

*

*

13

LV

LV

m

mk scsc

sc⋅

⋅==

11

Digital Slope Compensation

Usage of a compensation factor:

1m

mk

sc

sc =

( )nsc

sc

cmp ikik

i ++

=*

1

1Threshold level:

What is the proper value for ksc?

Buck-Boost

Boost

Buck

optimum ksc(for dead beat)

minimal required ksc(for stable operation)

outin

inout

VV

VV

− 5.0

in

inout

V

VV −5.0

( )

in

inout

V

VV −5.0

outin

out

VV

V

in

inout

V

VV −

in

out

V

V

���� No knowledge of inductance required!

14

Overview

• Motivation

• Review of Peak Current Control with Slope Compensation

• Digital Slope Compensation

• Simulation Results

• Practical Implementation & Measurement Results

• Conclusion

15

Simulation Result (1)

0

5

10

15

i /

A

5 10 15 20 25 30 35 400

5

10

15

t / µs

i /

A

a)

b)

i* iswitch

iL

icmp

i* iswitch i*- ramp i

L

Comparison with equivalent conventional slope compensation

(steady state)

Conventional

analog slope compensation

Digital slope compensation

16

Simulation Result (2)

0

5

10

15

i / A

10 30 50 70 90 1100

5

10

15

t / µs

i / A

i* iswitch i*- ramp i

L

i* iswitch

iL

icmp

a)

b)

Comparison with equivalent conventional slope compensation

(disturbed inductor current)

Conventional

analog slope compensation

Digital slope compensation

17

Simulation Result (3)

0

5

10

15

20

i / A

i*

iswitch

i*- ramp

iL

5 10 15 20 25 30 35 40 45 500

5

10

15

20

t / µs

i /

A

i*

iswitch

icmp

iL

0

a)

b)

Comparison with equivalent conventional slope compensation

(disturbed inductor current & optimum kSC value)

Conventional

analog slope compensation

Digital slope compensation

18

Overview

• Motivation

• Review of Peak Current Control with Slope Compensation

• Digital Slope Compensation

• Simulation Results

• Practical Implementation & Measurement Results

• Conclusion

19

Practical Implementation

+_vout

vref

voltage controller

i L_min

PWM

compensation factor

ksc

microcontroller

i *A/D

digital slope compensation

i L A/D

verr

D/A

ADC trigger

i L

gate

drive

i cmp

Use PWM unit to turn on at

each new cycle and to trigger current sampling.

Use input and output voltage to apply adaptive

compensation factor.

This Block is optional –to gain Dead Beat only

This Block contains a very simple Formula –Current Control is

achieved with lowest

computational Effort

���� No DSP core required!

20

Practical Implementation

• Controlled boost converter

• Current measurement

in switch path

+_

vref

voltage controller

i L_min

PWM

adaptive slope compensation

factor

microcontroller

i *

A/D

A/D

digital slope compensation

A/D

verr

D/A

ADC trigger

ksc

i cmp

voutvin

L

C

D

current transformer

21

Practical Implementation

Problem: reverse recovery current spike

1. Impedes instantaneouscurrent sampling

���� Delay current sampling

2. Can force faulty trigger

of the comparator���� Implement leading

edge blanking

~iswitch(1A/div)

current spike

~iswitch(1A/div)

sampling instance

sample delay

turn-on instance

~iswitch(2.5 A/div)

turn-off due to reverse recovery current spike

threshold (icmp)

22

Measurement Results

Steady state

~Iswitch (2,5 A/div)

Duty cycle: > 0,8

Vout = 370V (100 V/div)

23

Measurement Results

Reference step response

24

Overview

• Motivation

• Review of Peak Current Control with Slope Compensation

• Digital Slope Compensation

• Simulation Results

• Practical Implementation & Measurement Results

• Conclusion

25

Conclusion

• Microcontroller with on-chip comparators make digital peak currentmode control feasible with little effort

• Slope compensation can be realized with digital algorithms���� No knowledge of inductance required

• Adaptive algorithms features adjustable dynamic performance

• Problems due to reverse recovery current spike can be handled withsimple measures

26

Thanks for your attention!