63
I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 1 Part 3: Iterative identification in closed loop and controller redesign Adaptive Control

Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

Embed Size (px)

Citation preview

Page 1: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 31

Part 3: Iterative identification in closed loop and controller redesign

Adaptive Control

Page 2: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 32

Outline

• Why identification in closed loop is important ?• Why models identified in closed loop can be better for

control design ?• Some experimental results• Brief review of robustness concepts• Algorithms for identification in closed loop• Properties of the estimated models•Validation of models identified in closed loop• Iterative identification in closed loop and controller re-design• An “adaptive control” interpretation• CLID – a toolbox for identification in closed loop

Page 3: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 33

Plant Identification in Closed Loop

There are systems where open loop operationis not suitable ( instability, drift, .. )

A controller may already exist ( ex . : PID )

Iterative identification and controller redesign

May provide better « design » models

Re-tuning of the controllera) to improve achieved performancesb) controller maintenance

Why ?

Cannot be dissociated from thecontroller and robustness issues

Page 4: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 34

Φm

axismotor

d.c.motor

Positiontransducer

axisposition

Φref

load

Controlleru(t)

y(t)

DAC

R-S-Tcontroller

ADC+

+

Identification in Closed Loop

The flexible transmission

Page 5: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 35

What is the good model (for control design) ?

« closed loop identified » model« open loop identified » model

fs = 20Hz 0% load

Page 6: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 36

output

control

real system

controller design using theopen loop identified model

output

control

real system

computed polecl. loop syst. pole

Benefits of identification in closed loop (1)

The pattern of identified closed loop poles is different fromthe pattern of computed closed loop poles

Page 7: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 37

real system

output

control

controller computed using theclosed loop identified model

output

control

real system

computed polecl. loop syst. pole

Benefits of identification in closed loop (2)

The computed and the identified closed loop poles are very close

Page 8: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 38

Notations

K G

v(t) p(t)y

v(t)r u

-

)q(A)q(Bq)q(G 1

1d1

−−− =

)q(S)q(R)q(K 1

11

−− =

Sensitivity functions :

KG11)z(S 1

yp +=−

KG1K)z(S 1

up +−=−

KG1KG)z(S 1

yr +=−

KG1G)z(S 1

yv +=−

)z(R)z(Bz)z(S)z(A)z(P 11d111 −−−−−− +=

; ; ;

Closed loop poles :

True closed loop system :(K,G), P, SxyNominal simulated(estimated) closed loop : xyS,P),G,K(

Page 9: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 39

-1

ΔΦ1

Δ1

ΔΜ

1

crossoverfrequency

Re H

Im H

G

|HOL|=1ω CR

1

ω CR2

ω CR3

Robustness Margins

z = ejω

> 29°ΔM 0.5 ΔG 2 ; ΔΦ≥ ≥⇒

ΔM 0.5 (-6dB), Δτ > Ts≥

ΔM = 1+HOL(z-1) min = Syp(z-1) max-1 = Syp

-1( ) ∞( )

Δτ = mini ΔΦi

ωCRi

Modulus Margin:

Delay Margin:

Critical frequency region for control

Typical values:

The inverse is not necessarily true!

Page 10: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 310

Templates for the Sensitivity Functions

Output SensitivityFunction

Input SensitivityFunction

Syp max= - MΔSyp dB

0.5fs0

delay marginnominal

perform.

( G ’ = G + δWa )

Sup dB

actuator effort

size of the tolerated additive uncertainty Wa

00.5f s

Sup-1

Critical frequency region for control

Page 11: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 311

Identification in Closed Loop

Open loopinterpetation

- take advantage of the « improved » input spectrum- are insensitive to noise in closed loop operation

Objective : development of algorithms which:

ω

dB

Syp

= - MΔSyp max

0q-dBA

w

ASPru

yu +

+

ARP

+

+Syp

-Sup

noise

q-dBA

w

Plant++

1/S

R

+

-

u y

ru

+

+

Page 12: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 312

CLOE Algorithms

Objective of the Identification in Closed Loop

(identification for control)

Find the « plant model » which minimizes the discrepancy between the « real » closed loop system and the « simulated »closed loop system.

noise

Controller Plant

Controller Model

r u y

û y

+-

++

ParametricAdaptationAlgorithm

Simulated System

Closed Loop Output Error

Page 13: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 313

Closed Loop Output Error Identification Algorithms(CLOE)

K

P.A.A.

G

uru

u y

y

CLε

+

+

+

K

G

Excitation added to controller output

K G

G

ru

uy

y+

+

+−

P.A.A.

CLε

K

+

+p

Excitation added to reference signal

Same algorithm but different properties of the estimated model!

rSRy

SRu +−= r

SRy

SRu +−= ˆˆ ury

SRu +−=

urySRu +−= ˆˆ

Page 14: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 314

R/S

ru u y

û y

R/S

q-d B/A

p

εCL+

+

+ ++

-

-

-q-d B/A

Closed Loop Output Error Algorithms (CLOE)

The closed loop system (for p = 0):

)()()(*)()(*)1( 11 tdtuqBtyqAty Tψθ=−+−=+ −−

[ ]nBn

T bbaaA

,...,,... 11=θ[ ])(),..(),1(),..()( BA

T ndtudtuntytyt −−−+−−−=ψ

urtySRtu +−= )()(

Excitationadded to theplant input

Page 15: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 315

CLOE

Adjustable predictor (closed loop)

urtySRtu +−= )(ˆ)(ˆ

[ ])(ˆ),..(ˆ),1(ˆ),..(ˆ)( BAT ndtudtuntytyt −−−+−−−=φ

[ ])(ˆ),...(ˆ),(ˆ),...(ˆ)(ˆ11 tbtbtatat

BA nnT =θ

)()1(ˆ)1(ˆ ttty T φθ +=+

Predicted output :

a posteriori)()(ˆ)(ˆ),(*ˆ)(ˆ),(*ˆ)1(ˆ 110 ttdtuqtBtyqtAty T φθ=−+−=+ −− a priori

Closed loop prediction (output) error

)1(ˆ)1()()1(ˆ)1()1(

)1(ˆ)1()()(ˆ)1()1( 00

+−+=+−+=+

+−+=−+=+

tytytttyt

tytytttytT

CL

T

CL

φθε

φθε a priori

a posteriori

Page 16: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 316

The Parameter Adaptation Algorithm

2)(0;1)(0;)()()()()()1()1()()1()(ˆ)1(ˆ

)1(ˆ)1()()(ˆ)1()1(

2121

11

0

00

<≤≤<ΦΦ+=+

+Φ++=+

+−+=−+=+

−− ttttttFttFtttFtt

tytytttyt

T

CL

TCL

λλλλεθθ

φθε

)()( tt φ=Φ

CLOE

⎥⎥⎥⎥

⎢⎢⎢⎢

ΦΦ+

ΦΦ−=+

)()()()()(

)()()()()()(

1)1(

2

11 ttFttt

tFtttFtFt

tFT

T

λλλ

Updating F(t):

Page 17: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 317

)()( tt φ=Φ

)()(ˆ)()(ˆˆ)()(ˆ)()( 1111

1

1−−−−−

+==Φ qRqBqqSqAPtqPqSt dφ

RtqBqStqAtqPttqP

qSt d ),(ˆ),(ˆ),(ˆ)(),(ˆ

)()( 111

1

1−−−−

+==Φ φ

CLOE Algorithms

CLOE

F-CLOE

AF-CLOE

[ ])(ˆ),..(ˆ),1(ˆ),..(ˆ)( BAT ndtudtuntytyt −−−+−−−=φ

Remarks :• F-CLOE needs an « estimated model » for filtering. This can be an «open loop model»or a model identified with CLOE or AF-CLOE• For AF-CLOE « inital estimation » for filtering can be 0ˆ,1ˆ == BA

Page 18: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 318

CLOE Properties

Case 1: The plant model is in the model set(i.e. the estimated model has the good order)

Asymptotic unbiased estimates in the presence of noisesubject to a (mild) sufficient passivity condition

2// λ−PS

2//ˆ λ−PPnone (local)

•CLOE:

•F-CLOE:•AF-CLOE:

2)(max 2 <≤ λλ tt

Strictly positive real transfer fct.

• The controller is constant• An external excitation is applied• Measurement noise independent w.r.t. the external excitation

Page 19: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 319

Case 2: The plant model is not in the model set(ex.: the estimated model has a lower order)

See the next slides

CLOE Properties

Basic idea for analysis of identification algorithms (Ljung) :Convert time domain minimization criterion in frequency domain criterion using Parseval th. and Fourrier transforms

Page 20: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 320

ωωφωφ

ωωφωφθπ

πθ

π

πθ

dSGGS

dSSS

prypyp

pypryvyv

u

u

)]()(ˆˆ[minarg

)]()(ˆ[minargˆ

222

22*

+−=

+−=

Properties of the Estimated Model (1)

Excitation added to controller output

- will minimize the 2 norm between the true sensitivityfunction and the sensitivity function of the closed loopestimator when r(t) is a white noise (PRBS)

G

-The noise does not affect the asymptotic estimation

-Plant -model error heavily weighted by the sensitivity functions

Page 21: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 321

ωωφωφ

ωωφωφθπ

πθ

π

πθ

dSGGS

dSSS

prupyp

pyprypyp

)]()(ˆˆ[minarg

)]()(ˆ[minargˆ

222

22*

+−=

+−=

Excitation added to reference signal

Properties of the Estimated Model (2)

- will minimize the 2 norm between the true sensitivityfunction and the sensitivity function of the closed loopestimator when r(t) is a white noise (PRBS)

G

-The noise does not affect the asymptotic estimation

-Plant -model error heavily weighted by the sensitivity functions

Page 22: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 322

Excitation added to reference signal

Properties of the Estimated Model (3)

yryrypyp SSSS ˆˆ −=−One has:

Therefore one has also :

ωωφωφ

ωωφωφθπ

πθ

π

πθ

dSSS

dSSS

pyprypyp

pypryryr

)]()(ˆ[minarg

)]()(ˆ[minargˆ

22

22*

+−=

+−=

The differences with respect to the output sensitivity function and the complimentary sensitivity function are minimized

Page 23: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 323

- The quality of the identified model is enhanced in the criticalfrequency regions for control (compare with open loop id.)

OLOE

-Identification in closed loop can be used for model reduction. The approximation will be good in the critical frequencyregions for control.

Identification in closed loop - Some remarks

ωωφωφθπ

πθdSGGS prypyp )]()(ˆˆ[minargˆ 222

* +−= ∫−

ωωφωφθπ

πθdGG pr )]()(ˆ[minargˆ 2* +−= ∫

CLOE

Page 24: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 324

T 1/S

R

q-dBA

p

Plant

R

1/S q-dBA

Model

++

+

+

+

-

-

- ε CLr

u y

u y

+q-dB

A

1/S R

R1/S

T

εCL+

-

q-dBA

+

+

+

-

-+

+

Plant p

+

+

ruu y

yu

r

u = -RS y + TS r u = -RS y + TS r u = -RS y+ru u = -RS y +ru

Excitation added to controller output

Excitation added to reference signal

Closed Loop Output Error Identification Algorithms(CLOE)

R-S-T Controller

Page 25: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 325

[ ]

[ ]yvyv

yryr

SSST

RBSASB

BRASBS

ST

SSRT

RBSARB

BRASBR

RT

RBSATB

BRASBT

ˆˆˆ

ˆ

ˆˆˆ

ˆˆˆ

ˆ

−=⎥⎦

⎤⎢⎣

⎡+

−+

=

−=⎥⎦

⎤⎢⎣

⎡+

−+

=+

−+

ωωφωφ

ωωφωφθ

π

πθ

π

πθ

dSSTSS

dSRTSS

pypryvyv

pypryryr

)]()(ˆ[minarg

)]()(ˆ[minargˆ

22

2

22

2*

+−=

+−=

RTST

== Excitation added to the plant input (controller output)

Use of the prefilter T (R-S-T controller )

Difference between closed loop transfer functions (excitation through T)

Properties of the estimated model:

Excitation added to the controller input (measure)

r T 1/S

R

q-dBA

p

Plant

R

1/S q-dBA

Model

++

+

+

+

-

-

- εCL

u y

u y

Page 26: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 326

R/S

ru u y

y

R/S

B/A

εCL

CA

e

+

-

1/S

++

-+

+

û+

+

-

-B

q-1H*

q-1A*

Identification in Closed Loop of ARMAX Models

Extended Closed Loop Output ErrorX-CLOE

nPnHHqHRBSASCH ≅+=−−= − *;1;**** 1

)1()(*)()(*)()(*)1( 11 +++−+−=+ −− teteCdtuqBtyqAty

)(*1)( 111 −−− += qCqqC

CCBBAA === ˆ;ˆ;ˆ

Optimal predictorfor the closed loopwhen :

Page 27: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 327

X-CLOE – the algorithm

urtySRtu +−= )(ˆ)(ˆ

[ ])1(),.(),(ˆ),.(ˆ),1(ˆ),.(ˆ)( +−−−−+−−−= HCLfCLfBA

T nttndtudtuntytyt εεφ

[ ])(ˆ),...(ˆ),(ˆ),...(ˆ),(ˆ),...(ˆ)(ˆ111 ththtbtbtatat

HBA nnn

T

e =θ

)()(ˆ)1(ˆ ttty e

T

e φθ=+°Predicted output :

a priori

Closed loop prediction (output) error

)1(ˆ)1()()(ˆ)1()1( 00 +−+=−+=+ tytytttyt e

T

eCL φθε a priori

)(1)( tS

t CLCLf εε =

Page 28: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 328

The Parameter Adaptation Algorithm

2)(0;1)(0;)()()()()()1()1()()1()(ˆ)1(ˆ

)1(ˆ)1()()(ˆ)1()1(

212

1

1

1

0

00

<≤≤<ΦΦ+=++Φ++=+

+−+=−+=+

−− ttttttFttFtttFtt

tytytttyt

T

CL

e

T

eCL

λλλλεθθ

φθε

)()( tt eφ=Φ

X-CLOE – the algorithm

Page 29: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 329

X-CLOE Properties

Case 1: The plant model is in the model set

Deterministic case:• Global convergence does not require any S.P.R. condition(works allways)

Stochastic case (noise)• Asymptotic unbiased estimates• Convergence condition: 1/C – λ/2= S.P.R

(like in open loop for ELS and OEEPM)

Case 2: The plant model is not in the model set

• Slightly less good « approximation » properties than CLOE• Provides better results than « open loop » identification alg.

Page 30: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 330

Validation of Models Identified in Closed Loop

Controller dependent validation !

1) Statistical Model Validation

2) Pole Closeness Validation

4) Time Domain Validation

3) Sensitivity Functions Closeness Validation

Page 31: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 331

Identification in Closed Loop

Statistical Model Validation

UncorrelationTestR/S

ru u y

û y

R/S

Plant

εCL

+

+

+

-

-

-B/A

1;17.2)( ≥≤ iN

iRN

normalizedcrosscorelations

number of data

1N2.17

N

97%

136.0)(256 ≤→= iRNN15.0)( ≤iRNpratical value :

Controller dependent validation !

Page 32: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 332

« Uncorrelation » Test

: centered sequence of residual closed loop prediction errorsOne computes:

max1,...,2,1,0;)(ˆ)(1)( iiityt

NiR

N

t CL =−= ∑=ε

max2/1

1

2

1

2

,...,2,1,0;)(1)(ˆ1

)()( iit

Nty

N

iRiRNN

t CL

N

t

=

⎥⎦⎤

⎢⎣⎡

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛

=∑∑==ε

),max(max dnni BA +=;

Remark: 1)0( ≠RN

Theoretical values: RN(i) =0; i = 1, 2…imax

• Finite number of data • Residual structural errors ( orders, nonlinearities, noise)• Objective: to obtain « good » simple models

Real situation:

Validation criterion (N = number of data):

1;17.2)( ≥≤ iN

iRN max,...,1;15.0)( iiiRN =≤or:

{ })(tCLε

Page 33: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 333

Controller Plant

Controller

r u ynoise

û y

+

-

++

EstimatedModel

Identification in Closed Loop

Pole Closeness Validation

true

If the estimated model is good, the poles of the « true » loop and of the « simulated » loop should be close

simulated

•The poles of the « simulated » system can be computed

•The poles of the « true » system should be estimated

Page 34: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 334

Identification in Closed Loop

Sensitivity Function Closeness Validation

If the estimated model is good, the sensitivity functions of the« true » loop and of the « simulated » loop should be close

Controller Plant

Controller

r u ynoise

û y

+

-

++

EstimatedModel

true

simulated

•The sensitivity fct. of the « simulated » system can be computed

•The sensitivity fct. of the « true » system should be estimated

Page 35: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 335

Closed loop poles/Sensitivity functions Estimation

+

-

1S

R

+-

P.A.A.

u y

q-dBP

PLANT

q-dBA

Estimated model of the

« closed loop »

- use of open loop identification algorithms - same signals as those used for the identification of theplant model in closed loop operation

- attention to the selection of the order !

Rem:

Page 36: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 336

How to asses the poles/sensitivity fct. closeness ?

Poles:• Patterns of the poles map• Closeness of and

computed polecl. loop syst. pole (estimated)

P/1 P/1

Sensitivity functions:• Closeness of and

xyS xyS

Τhe closeness of two transfer functions can be measured by the« Vinnicombe distance » (ν gap) (min = 0, max = 1)(will be discussed later)

XX

: Closed loop transfer function computed with the estimated plant model

: Estimated closed loop transfer function

Page 37: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 337

)()()( GnGnGwnoii pz −=

Unstable zeros Unstable poles

)(Gwno = number of encirclements of the origin (winding number)(+ : counter clock wise , - : clock wise)

0)()()()1( 2211

*

2 1=−−++ GnGnGnGGwno Ppp ii

One can compares transfer functions satisfying :

G* = complex conjugate of G )( 21GnP = number of poles on the unit circle

Normalized distance between two transfer functions(Vinnicombe distance or ν−gap)

),( 21 GG

{w}

wno(G)>0 wno(G)<0

The winding number:

Page 38: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 338

1),(0 21 <≤ GGνδ

One assumes that {w} is satisfied.

[ ] ( ) ( ) 2/122

2/121

2121

)(1)(1

)()()(),(

ωω

ωωωω

jGjG

jGjGjGjG

++

−=Ψ

Normalized difference :

[ ] [ ]∞

Ψ=Ψ= )(),( )(),( ),( 21max2121 ωωωωδω

ν jGjGjGjGGGsf

Normalized distance (Vinnicombe distance or ν-gap) :

πω to0for =

If {w} is not satisfied : 1),( 21 =GGνδ

Normalized distance between two transfer functions(Vinnicombe distance or ν−gap)

),( 21 GG

See Landau, Zito “Digital Control Systems… or “Commande des systèmes”

Page 39: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 339

Identification in Closed Loop

- not enough accuracy in many cases- difficult interpretation of the results in some cases

Rem.:

Time Domain ValidationComparison of « achieved » and « simulated » performancein the time domain

Controller Plant

Controller

r u ynoise

û y

+

-

++

EstimatedModel

AchievedPerformance(true system)

Design system(simulation)

Page 40: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 340

OPEN LOOP IDENTIFICATION

OPEN LOOPMODEL VALIDATION

OPEN LOOP BASEDCONTROLLER

PLANT IDENTIFICATIONIN CLOSED LOOP

(OLBC)

IDENTIFICATION OFTHE CLOSED LOOP

COMPARATIVECLOSED LOOP VALIDATION

BEST PLANT MODEL

CLOSED LOOP BASEDCONTROLLER

(CLBC)

Methodologyof Plant ModelIdentification

in Closed Loop

Page 41: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 341

CLOE with external excitationadded to the controller input

equivalent toCLIE with external excitation

added to the plant input

CLIE with external excitationadded to the controller input

CLOE with external excitationadded to the controller outputyvyv SS ˆmin −

upup SS ˆmin −

ypyp SS ˆmin −

yryr SS ˆmin −

or

Closed loop identification schemeIdentificationcriterion

Selection of closed loop identification schemes

Page 42: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 342

T 1/S

R

q-dBA

w

Plant

R

1/S q-dBA

Model

++

+

+

+

-

-

- ε CLr

u y

u y

Use R=0, S=T=1 and you get the open loop identification algorithms

An interesting connection CL/OL

Open loop identification algorithms are particular cases of closed loop identification algorithms

CLOE (OL)OEX-CLOE X(OL)OE

Page 43: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 343

Iterative Identification in Closed Loop and Controller Re-Design

Repeat 1, 2, 1, 2, 1, 2,…εCL

εCL

Step 1 : Identification in Closed Loop-Keep controller constant-Identify a new model such that

Step 2 : Controller Re – Design- Compute a new controller such that

p1/S

RPlant

R

1/S

Model

++

+

+

+

-

-

- εCL

r u y

u y

T q-d B/A

q-d B/A

Page 44: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 344

Indirect Adaptive Control – A Basic Scheme

AdjustableController

Plant+

-

SUPERVISION

Performancespecifications

ControllerDesign

Plant Model

Estimation

Adaptation loop

Page 45: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 345

time

Parameter Estimation+

Controller Computationt t+1

time

Fixed (or time varying)Controller computed at( t)

+Parameter Estimation

t t+N

Controllercomputedat (t +N)

Iterative Identification and Controller Redesign versus (Indirect) Adaptive Control

N = 1 : Adaptive Control

The iterative procedure introduces a time scale separation between identification / control design

N = SmallAdaptive ControlN = LargeIterative Identification in C.L.And Controller Re-design

Plant Identification in C.L. +Controller Re-design

∞⇒N

Page 46: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 346

Remarks

• Identification in closed loop combined with controller redesignis a special form of adaptive control

• Use a time scale separation

• Use an external excitation signal

• Controller kept constant during plant model estimation

• Estimation not affected by disturbances

• At supervision level a validation of the model is done

Page 47: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 347

Concluding Remarks

- Methods are available for efficient identification in closed loop- CLOE algorithms provide unbiased parameter estimates- CLOE provides “control oriented “reduced order” models(precision enhanced in the critical frequency regions for control)

-The knowledge of the controller is necessary (for CLOE and FOL)-In many cases the models identified in closed loop allow toimprove the closed loop performance-For controller re-tuning, opening the loop is no more necessary-Sequential use of identification in closed loop and controllerre-design for tuning on line the controller (adaptive control)

- A MATLAB Toolbox is available (CLID- see website))-A stand alone software is available (WinPIM/Adaptech)

Page 48: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 348

A.A.P.

+

+

+

AB/

SR/

ur

1ˆ/ˆ AB

)1( 1−−qSR

'u 'y

11 −− qy′yu

CLε

Appendix

How to identify in closed loop systems with known parts ?

Replace the measured outputby its variations

Attention :• the controller in the predictor has to be modified• one identifies the plant model without the fixed part

A.A.P.

+

+

+

AB/

SR/

ur

11 −−q AB ˆ/1

SqR )1( 1−−

'u 'y

CLε

yu

integrator differentiator

Replace the input to the predictorby its variations

Page 49: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 349

A.A.P.

+

+

+

AB/

SR/

ur

11 −−q AB ˆ/1

SqR )1( 1−−

'u 'y

CLε

yu

Page 50: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 350

CLIDTM

(Matlab) Toolbox for Closed Loop Identification

To be downloaded from the web site:http//:landau-bookic.lag.ensieg.inpg.fr

• files(.p and.m)• examples (type :democlid)• help.htm files (condensed manual)

Page 51: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 351

>> help clid

CLOSED LOOP IDENTIFICATION MODULEby :ADAPTECH4 rue du Tour de l'Eau, 38400 Saint Martin d'Heres, [email protected] by Adaptech, 1997-1999

List of functions

cloe - Closed Loop Output Error Identification

fcloe - Filtered Closed Loop Output Error Identification

afcloe - Adaptive Filtered Closed Loop Output Error Identification

xcloe - Extended Closed Output Error Identification

clvalid - Validation of Models Identified in Closed Loop using also Vinnicombe gap

clie - Closed Loop Input Error Identification

CLID Toolbox

Page 52: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 352

>> help cloe

CLOE is used to identify a discrete time model of a plant operating in closed-loop with an RST controller based on the CLOE method.

[B,A]=cloe(y,r,na,nb,d,R,S,T,Fin,lam1,lam0)

y and r are the column vectors containing respectively the output and the excitation signal.

na, nb are the order of the polynomials A,B and d is the pure time delay

R, S and T are the column vectors containing the parameters of a twodegree of freedom controller. S*u(t)=-R*y(t)+T*r(t)Remark: when the excitation signal is added to the measured output (i.e. the controller is in feedforward with unit feedback) we have T=R and when the excitation signal is added to the control input (i.e. the controlleris in feedback) we have T=S.

Fin is the initial gain F0=Fin*(na+nb)*eye(na+nb) (Fin=1000 by default)

lam1 and lam0 make different adaptation algoritms as follows:

lam1=1;lam0=1 :decreasing gain (default algorithm)0.95<lam1<1;lam0=1 :decreasing gain with fixed forgetting factor0.95<lam1,lam0<1 :decreasing gain with variable forgetting factor

See also FCLOE, AFCLOE, XCLOE and CLVALID.Copyright by Adaptech, 1997-1999

Page 53: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 353

>> help cloe

lam1=1;lam0=1 : decreasing gain (default algorithm)0.95<lam1<1; lam0=1 : decreasing gain with fixed forgetting factor 0.95<lam1,lam0<1 : decreasing gain with variable forgetting factor

[B,A]=cloe(y,r,na,nb,d,R,S,T,Fin,lam1,lam0)

Measuredoutput

Excitation

Modelorders

ControllerPolynomials

Initial adaption gain(Fin=1000 by default)

1λ 0λ

ModelPolynomials(identified)

{•Excitation superposed to the reference: Need to specify R, S and T

• Excitation superposed to the controller output (i.e. plant input): Need to take T=S

S 1/S

R

ruu yPlant

+

-1/S

R

ruu yPlant

+

+-

CLOE – closed loop output error identification function

Page 54: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 354

[lossf,gap,Pcal,Piden,yhat]=clvalid(B,A,R,S,T,y,r,pcl)

lossf :

gap : Vinnicombe gap metric between identified and computed closed loop transfer function

Pcal : Computed closed loop poles by given model and controller

Piden : Identified closed loop poles from [y r] data

yhat : Closed loop estimated output

>> help clvalid

[ ]2

1)(ˆ)(1

∑ −N

tytyN

pcl = 1 : performs pole closeness validation (poles map display)pcl =0; default

ModelPolynomials(identified)

ControllerPolynomials

{ {

CLVALID – closed loop model validation function

)/( PBT

Display also the normalized cross corelationsPlots : cross correlations, autocorrelations (validation of the closed loop identified model),identified and computed closed loop transfer function, identified and computed poles

)ˆ,( yr

Page 55: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 355

DEMOCLID –demo function>> democlid

Load excitation( r ) (PRBS), output data (y) controller and values for Fin (=1000), lam1(= 1), lam0(= 0)

211

211211

9.06.11)(

0 ; 5.0)( ; 7.05.11)(−−−

−−−−−−

++=

=+=+−=

qqqC

dqqqBqqqA

Plant modelfor data generation

)()()()()()( 111 teqCtuqBqtyqA d −−−− +=

Data are generated in closed loop with a RST controllerThe external excitation is superposed to the reference

T 1/S

R

r u yPlant+

-

11.0)(

3717.06283.01)(

5204.02763.18659.0)(

1

211

211

=

−−=

+−=

−−−

−−−

qT

qqqS

qqqRControllerfor data generation

(simubf4.mat)(r,y,u)

(simubf_rst.mat)

Page 56: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 356

100 200 300 400 500 600 700 800 900 1000

-1

-0.5

0

0.5

1

Output

100 200 300 400 500 600 700 800 900 1000

-0.2

0

0.2

Input

100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

Excitation

Output (y)

Plant input(u)

Externalexcitation

(r)

File SIMUBF

Excitation superposed to the reference

Page 57: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 357

>> [B,A]=cloe(y,r,na,nb,d,R,S,T,Fin,lam1,lam0)

B =

0 0.9527 0.4900

A =

1.0000 -1.4808 0.6716

>> [B,A]=afcloe(y,r,na,nb,d,R,S,T,Fin,lam1,lam0)

B =

0 0.9684 0.4722

A =

1.0000 -1.4844 0.6821

CLOE

AF-CLOE

Identification results

Page 58: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 358

Model of the plant identified in closed loop with AF-CLOE

Statistical Validation of the model identified in closed loop

1;0678.01024

17.217.2)( ≥==≤ iN

iRNIs OK.

Page 59: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 359

Stochactic validation of the identified model of the closed loopIs OK. Can be used for poles closeness validation and ν-gap validation

Poles closeness validation and ν-gap validation

Poles mapo identifed poles of the true CL systemx computed poles of the simulated CL systemIs OK

ν−gap = 0.0105 (min = 0, max =1)

Page 60: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 360

1a 2a 1b 2b

0.08430.03230.5080.9750.6034-1.3991OL type

identification (RLS.)

0.02370.03120.37750.96680.6822-1.49X-CLOE

0.00850.031750.51520.95910.6704-1.4692F-CLOE

0.02840.031810.48620.95920.6674-1.476CLOE

0.00920.031760.52760.9910.6699-1.4689AF-CLOE

0.510.7-1.5NominalModel

NormalizedIntercorrelations

(validation bound 0.068) |RN(max)|.

CLError

VarainceR(0)

Méthod

File SIMUBF – comparison of identified models

Closed Loop Statistical Validation

Best results

Open loop type identification(between u and y ignoring the controller)

Page 61: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 361

Books:I.D. Landau,G.Zito, “Digital Control Systems – design, identification and

implementation” (chapter 9), Springer, London, 2005

I.D. Landau, R. Lozano, M.M'Saad "Adaptive Control", Springer, London 1997

I.D.Landau “Commande de Systèmes - conception, identification et mise en oeuvre” Hermès, Paris, Juin 2002 (Chapter 9)

I.D.Landau, A. Besançon (Editors) "Identification des Systèmes", Traité des Nouvelles Technologies, Hermès, Paris,2001

Web site:http://landau-bookic.lag.ensieg.inpg.fr

« Slides » for chapters and tutorial can be downloadedFree routines (matlab, scilab) can be downloaded (including CLID)

« Personal » References

Page 62: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 362

« Personal » ReferencesPapers:

Landau I.D., Karimi A., (1997) : « Recursive algorithms for identification in closed -loop – a unified approach and evaluation », Automatica, vol. 33, no. 8, pp. 1499-1523.

Landau I.D., Karimi A., (1997) : « An output error recursive algorithm for unbiased estimation in closed loop » Automatica, vol. 33, no. 5, pp. 933-938.

Karimi A., Landau I.D.(1998): ”Comparison of the closed-loop identification methods in terms of the bias distribution" Systems and Control Letters, 34, 159-167, 1998

Landau I.D., Karimi A. (1999): « A recursive algorithm for ARMAX model identification in closed loop », IEEE Trans. On AC. Vol 44, no 4, pp 840-843

Landau I.D., (2001) : « Identification in closed loop : a powerful design tool (better models, simpler controllers) », Control Engineering Practice, vol. 9, no.1, pp.51- 65.

J.Langer,I.D.Landau (1996): “Improvement of robust digital control by identification in the closed loop. Application to a 360° flexible arm” CEP, vol 4,no 12, pp. 1637-1646,

I.D.Landau, A. Karimi (1999): "A recursive algorithm for ARMAX model identification in closed loop" IEEE Trans. on Automatic Control 44, 840-843,

I.D. Landau, A.Karimi, (2002) :« A unified approach to closed-loop plant identificationand direct controller reduction », European J. of Control, vol.8, no.6

Page 63: Adaptive Control - GIPSA-lab, laboratoire de recherche ...ioandore.landau/adaptivecontrol/... · I.D. Landau, A. Karimi : « A course on Adaptive Control »- 3 3 Plant Identification

I.D. Landau, A. Karimi : « A course on Adaptive Control »- 363

Important References

L. Ljung(2002), System Identification, Prentice Hall, N.J.2nd ed. 2002

M. Gevers(1993) “Towards a joint design of identification and control”(ECC 93), in (H. Trentelman,J. Willems eds) “Essays on Control: perspectives in the theory and its application”, Birkhauser, Boston, pp 111-152

M.Gevers (2004) “Identification for control. Achievements and open problems”. Proc. 7th IFAC Symp. on Dynamics and control of process systems(DYCOPS 2004), Cambridge, Mass. USA, July

(contains an extensive list of references for the interaction between identification and control)

P.M. Van den Hof, P. Shrama(1995) “Identification and control – closed-loop issues”, Automatica 31(12), 1751-1770