52
Applied Modeling & Simula1on Seminar Series, August 6, 2014 NASA Ames Research Center Adap%ve Aeroelas%c Wing Shape Op%miza%on for HighLi; Configura%ons Mentor: Nhan T. Nguyen, PhD NASA Ames Intelligent Systems Division Gustavo E. C. Fujiwara M.S. Aerospace Engineering University of Illinois at UrbanaChampaign PhD Candidate Aeronau1cs and Astronau1cs University of Washington 2014 Summer Intern at NASA Ames Funded by NASA ARMD – Fixed Wing Project

Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

  • Upload
    lyhuong

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

Applied  Modeling  &  Simula1on  Seminar  Series,  August  6,  2014    NASA  Ames  Research  Center  

Adap%ve  Aeroelas%c  Wing  Shape  Op%miza%on  for  High-­‐Li;  Configura%ons  

 

Mentor:  Nhan  T.  Nguyen,  PhD  NASA  Ames    -­‐  Intelligent  Systems  Division  

Gustavo  E.  C.  Fujiwara    M.S.  Aerospace  Engineering  -­‐  University  of  Illinois  at  Urbana-­‐Champaign  PhD  Candidate  Aeronau1cs  and  Astronau1cs  -­‐  University  of  Washington  

2014  Summer  Intern  at  NASA  Ames  

Funded  by  NASA  ARMD  –  Fixed  Wing  Project  

Page 2: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

AGENDA  

2  

①    MOTIVATION  

②    INTRODUCTION  

③    FRAMEWORK  

④    METHOD  

⑤    RESULTS  

⑥    FUTURE  WORK  

⑦  AKNOWLEDGEMENTS  

Page 3: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

AGENDA  

3  

①    MOTIVATION  

②    INTRODUCTION  

③    FRAMEWORK  

④    METHOD  

⑤    RESULTS  

⑥    FUTURE  WORK  

⑦  AKNOWLEDGEMENTS  

Page 4: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

4  

•     Global  demands  for  more  sustainable  technologies    ð    more  energy-­‐efficient  airframes  

•     New  genera1on  aircra]  concepts  feature:  ✈    Be_er  engine  performance  (quieter,  cleaner)  ✈    Higher  aerodynamic  efficiency  ✈    Lighter  materials  (advanced  composites)  

         

 

①    MOTIVATION  

 THE  CHALLENGES  •     The  use  of  composite  materials  increase    airframe  flexibility  for  same  load  capacity  

•     More  flexible  structures    ð  can  change  aircra]  op1mal  shape  during  flight  

     ð    can  degrade  the  aerodynamic  efficiency      

•     Reduced  rigidity  can  also    ð  affect  flight  dynamic  characteris1cs    

     ð  reduce  structural  safety  margins  (flu_er,  etc)  

Page 5: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

•  Boeing  787  wing  at  0-­‐g  load  

5  

①    MOTIVATION  

Example  of  flexibility  of  current  composite  aircra]  

Photo  credits:  YK  ,  Kenneth  Low  (Airliners.net)  

Page 6: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

6  

①    MOTIVATION  

12-­‐]  wing  1p  deflec1on  à  ~12%  of  wing  semispan  

Example  of  flexibility  of  current  composite  aircra]  •  Boeing  787  wing  at  1-­‐g  load  

Photo  credits:  YK  ,  Kenneth  Low  (Airliners.net)  

Page 7: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

AGENDA  

7  

①    MOTIVATION  

③    FRAMEWORK  

④    METHOD  

⑤    RESULTS  

⑥    FUTURE  WORK  

⑦  AKNOWLEDGEMENTS  

②    INTRODUCTION  

Page 8: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

8  

•     A  current  research  effort  to  address  the  aerodynamic  efficiency/flight  control  issues  of  flexible  wings:  

ð  Variable  Camber  Con1nuous  Trailing-­‐Edge  Flap  (VCCTEF)  

②    INTRODUCTION  

VCCTEF  CONCEPT    IDEA    ð  Tailor   the   wing’s   spanwise  load  distribu1on  

ð  Aeroelas1cally  re-­‐adapt  it  back  t o   t he   op1ma l   s hape ,   a s  condi1ons  change  during  flight  

Courtesy  of  The  Boeing  Co.  

Page 9: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

 VCCTEF Anima1on  

Courtesy  of  Michael  A]osmis  and  David  Rodriguez

②    INTRODUCTION  

Page 10: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

 VCCTEF Anima1on  

②    INTRODUCTION  

CRUISE  Configura1on   HIGH-­‐LIFT  Configura1on  

Courtesy  of  Michael  A]osmis  and  David  Rodriguez

Page 11: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

•  Cruise  Configura1on  Model  

Computa%onal  Work  in  Drag  Reduc%on  Op%miza%on  ¥  -­‐  Sonia  Lebofsky,  Eric  Ting,  Nhan  Nguyen  (Vorview)  -­‐  Michael  A]osmis,  David  Rodriguez  (Cart3D)    

Experimental  Work  (Wind  Tunnel  Tests)  *  -­‐  University  of  Washington  (UW):  Prof.  Eli  Livne,  Nathan  Precup  -­‐  Boeing:  James  Umes,  Sr.,  Chester  Nelson  -­‐  Model  based  on  the  Generic  Transport  Model  (GTM)  –  B757  devised  -­‐  Designed  to  match  flexibility  of  about  10%  wing  1p  deflec1on      

11  

②    INTRODUCTION  

¥Lebofsky,  S.,  Ting,  E.,  Nguyen,  N.,  “Aeroelas1c  Modeling  and  Drag  Op1miza1on  of  Aircra]  Wing  with  Variable  Camber  Con1nuous  Trailing  Edge  Flap”,  AIAA  Avia1on  2014,  32nd  AIAA  Applied  Aerodynamics  Conference    

*Nguyen,  N.,   Precup,  N.,   Umes,   J.,   Nelson,   C.,   Lebofsky,   S.,   Ting,   E.,   Livne,   E.,   “Experimental   Inves1ga1on   of   a   Flexible  Wing  with   a   Variable   Camber  Con1nuous  Trailing  Edge  Flap  Design”,  AIAA  Avia1on  2014,  32nd  AIAA  Applied  Aerodynamics  Conference    

Courtesy  of  University  of  Washington

Page 12: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

•  High-­‐Li]  Configura1on  Model  

12  

②    INTRODUCTION  

Computa%onal  Op%miza%on  Framework  -­‐     Currently  under  development  at  NASA  Ames  -­‐     Michael  A]osmis,  David  Rodriguez  –  OVERFLOW  -­‐     Challenges:    Grid  deforma1on  tool  (surface/volume  meshes)  Computa1onal  cost  ro  run  RANS  solvers  

         Experimental  Work  (Wind  Tunnel  Tests)  -­‐ UW:  Prof.  Eli  Livne,  Nathan  Precup  -­‐   Currently  being  tested  -­‐   Includes  a  variable  camber  Krueger  (VCK)  Flap  -­‐   Single  element  slo_ed  inboard  flap  -­‐   3-­‐chordwise-­‐segment  VCCTEF  elsewhere    

Courtesy  of  University  of  Washington

Page 13: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

•  High-­‐Li]  Configura1on  Model  

13  

②    INTRODUCTION  

Courtesy  of  University  of  Washington

Page 14: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

•  Objec1ve  

14  

Develop  an  aeroelas1c  framework  ð  quick  turnaround  mul1disciplinary  op1miza1on  of  a  flexible   wing   with   variable   camber   con1nuous   trailing   edge   flap   (VCCTEF)   for   high-­‐li]  configura1ons  (takeoff  and  landing)  

②    INTRODUCTION  

§ Develop  a  low-­‐fidelity  3D  aerodynamic  code  capable  of  handling  stall  characteris1cs  (Cl,  Cm)  §  Couple  structural  code  to  calculate  sta1c  wing  deflec1on  §  Allow  fast  computa1on  for  op1miza1on  purposes    

•  Requirements  

• Poten1al  Modeling  Complica1ons  

Ø Flap  deflec1ons   increase  not  only   the   loads  but  also  the  nose-­‐down  pitching  moment  Ø    Nose-­‐down   moment   loads   tend   to   twist   the  wing   downwards,   thereby   decreasing   angle   of  a_ack  and  li]  (similar  to  control  reversal)  

Ø   Op1mizing  flexible  wings  for  high-­‐li]  can  be  counterintui1ve  

Page 15: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

AGENDA  

15  

①    MOTIVATION  

②    INTRODUCTION  

④    METHOD  

⑤    RESULTS  

⑥    FUTURE  WORK  

⑦  AKNOWLEDGEMENTS  

③    FRAMEWORK  

Page 16: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

16  

③    FRAMEWORK  Mul%disciplinary  Op%miza%on  Framework  Strategy:  •     Coupled  aerodynamics/structures    •     Sta1c  aeroelas1c  calcula1ons  •     Op1mizes  flap  deflec1on  schedule  for:  

Ø   CLmax,  or  Ø     (CL/CD)max  

OPTIMIZER  

GEOMETRY  GENERATOR  

AERODYNAMICS  (Nonlinear  3D  code)   STRUCTURES  

CONVERGENCE  ?  

CLmax  (CL/CD)max  

YES  

NO  

Page 17: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

TASK  1  

TASK  2  OPTIMIZER  

GEOMETRY  GENERATOR   AERODYNAMICS   STRUCTURES  

CONVERGENCE  ?  

CLmax  

(CL/CD)max  

YES  

NO  

17  

Low-­‐fidelity  aerodynamic  code  structure:    

AERODYNAMICS  2D  Viscous  Data  

MSES  

2D  RANS  

XFOIL  

Wind  Tunnel  

3D  Code   VLM  

Panel  Method  

Weissinger  

③      FRAMEWORK  

Page 18: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

AGENDA  

18  

①    MOTIVATION  

②    INTRODUCTION  

③    FRAMEWORK  

⑤    RESULTS  

⑥    FUTURE  WORK  

⑦  AKNOWLEDGEMENTS  

④    METHOD  

Page 19: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

19  

•  Baseline  Airfoil  example:  ‘bacj.dat’  (supercri1cal)  publicly  available  at  UIUC  –  Airfoil  Database  

④    METHOD  

2D  solver  to  obtain  sec%onal  viscous  data  (XFOIL)    

TASK  1  2D  Viscous  Data  

MSES  

2D  RANS  

Wind  Tunnel  

XFOIL  

Page 20: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x

z

VCCTEF

Supercritical Airfoil δ1 = 5°, δ2 = 5°, δ3 = 5°

δ1 =10°, δ2 =10°, δ3 =10°

δ1 =15°, δ2 =15°, δ3 =15°

δ1 =20°, δ2 =20°, δ3 =20°

•  Build  a  2D  Viscous  Aerodynamic  Data  Bank  

20  

α  =  -­‐5˚   α  =  -­‐4˚   α  =  -­‐3˚   ...  

Re  =  100k   Cl,  Cd,  Cm  

Re  =  200k   ...  

Re  =  300k   ...  

...   ...  

α  

Re  

④      METHOD  

Offline  Calcula1ons  -­‐  XFOIL  •  Re  =  100k  -­‐  1.1M    (UWAL  model,  chords)  •  AoA  =  -­‐5˚  –  25˚  (Cl,  Cd,  Cm)  

TASK  1  2D  Viscous  Data   XFOIL  

Page 21: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

21  

TASK  2  3D  Code   VLM  

Panel  Method  

Weissinger  

Vortex  La^ce  Method  code  chosen  •     AVL  –  Athena  Vortex  La�ce*      •     Publicly  available  (open  source)  •       Validated  

*Mark  Drela,  Harold  Youngreen  –  MIT  Based  on  the  classic  work  of  Lamar  (NASA  codes),  E.  Lan  and  L.  Miranda  (VORLAX)  

④      METHOD  

Page 22: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

22  

Nonlinear  Vortex  La^ce  Method  •     Lower  computa1onal  cost  and  lower  fidelity  compared  to  a  Navier-­‐Stokes  solver  •     Itera1vely  changes  wing’s  local  incidence/camber  to  match  Cl/Cm  from  2D  viscous  data  

④      METHOD   TASK  2   3D  Code   VLM  

Page 23: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

Decambering  Method  Inspira%on  •  XFOIL  –  Boundary  Layer  Thickness  Growth  

23  

α  =  4˚   α  =  0˚  

α  =  12˚  

α  =  18˚  

④      METHOD   TASK  2   3D  Code   VLM  

Page 24: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

24  2003  –  Funded  by  NASA  Langley  –  North  Carolina  State  University  *Mukherjee,  R.,  Gopalarathnam,  A.,  Kim.  S.,  “AN  ITERATIVE  DECAMBERING  APPROACH  FOR  POST-­‐STALL  PREDICTION  OF  WING  CHARACTERISTICS  USING  KNOWN  SECTION  DATA”,  AIAA  2003,  41st  AIAA  Aerospace  Sciences  Mee1ng  

④      METHOD   TASK  2   3D  Code   VLM  

DETAILS:  THE  DECAMBERING  APPROACH  

2)  Get    Cl,  Cm  and  downwash  angles  (ω)  along  span  

6)  Change  incidence  δ1  and  camber  δ2  in  each  sta1on  and  rerun    STOP  CRITERION  

                         |  Cl  (sec1on)  -­‐  Cl  2D  Visc  (αeff)    |  <  0.001                            |  Cm(sec1on)  -­‐  Cm  2D  Visc(αeff)  |  <  0.001  

3)  For  each  sta1on  (strip)  calculate  local  αeff  

4)  Calculate  gradients/sensi1vi1es  (Jacobian):  -­‐  ∂  Cl      in  each  sta1on  i  due  to  incidence  (δ1)  perturba1on  p  at  sta1on  j  -­‐  ∂  Cm    in  each  sta1on  i  due  to  incidence  (δ1)  perturba1on  p  at  sta1on  j  -­‐  ∂  Cl      in  each  sta1on  i  due  to  camber  (δ2)  perturba1on  p  at  sta1on  j  -­‐  ∂  Cm    in  each  sta1on  i  due  to  camber  (δ2)  perturba1on  p  at  sta1on  j  

1)  Input  Aircra]  Geometry  and  Run  AVL  (Linear  VLM  code)  

Incidence  

δ1  δ2  

Camber  

5)  Mul1variable  Newton-­‐Raphson  Itera1on  to  compute  δ1  and  δ2  ~  2π  

α  

Cl  

2D  viscous  data  

ΔCl        Residual  

α  effec1ve  

Linear  VLM  sec1on    

α  

Cm  

α  effec1ve  

ΔCm  Residual  

Page 25: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

25  *Mukherjee,  R.,  Gopalarathnam,  A.,  Kim.  S.,  “AN  ITERATIVE  DECAMBERING  APPROACH  FOR  POST-­‐STALL  PREDICTION  OF  WING  CHARACTERISTICS  USING  KNOWN  SECTION  DATA”,  AIAA  2003,  41st  AIAA  Aerospace  Sciences  Mee1ng  

④      METHOD   TASK  2   3D  Code   VLM  

DETAILS:  THE  DECAMBERING  APPROACH  

Jacobian  Matrix  (Gradients/Sensi1vi1es)  

Residuals  (ERROR)  

Incidence/  Camber  

Correc1ons  

Aircra;  Geometry  Input  

Run  VLM   Get  Cl,  Cm,  ω  along  span  

At  each  sta%on:  

Cl2D  VLM  (i)  =  Cl2D  visc  (αeff)  ?  Cm2D  VLM  (i)  =  Cm2D  visc  (αeff)  ?  

   

YES  

NO  Change  Incidence/Camber  

 

Mul%variable  Newton-­‐Raphson    

END  

START  

αeff    

~  2π  

α  

Cl  

α  effec1ve  

Linear  VLM  sec1on    

2D  viscous  data  

α  

Cm  

α  effec1ve  

Page 26: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

26  

For  Improved  Efficiency…    

•     All  decambering  variables  can  be  dealt  with  using  the  RHS  only  •     Avoid  matrix  inversion  every  itera1on  

[AIC][Γ] = [V∞.n+Vind⊥]

④      METHOD  

Incidence  

δ1  δ2  

Camber  

TASK  2   3D  Code   VLM  

Page 27: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

AGENDA  

27  

①    MOTIVATION  

②    INTRODUCTION  

③    FRAMEWORK  

④    METHOD  

⑥    FUTURE  WORK  

⑦  AKNOWLEDGEMENTS  

⑤    RESULTS  

Page 28: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

28  

⑤    RESULTS   TASK  1  2D  Viscous  Data   XFOIL  

Matlab  automated  tool  to  run  XFOIL  in  Batch  

Page 29: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

29  

TASK  1  2D  Viscous  Data   XFOIL  

Effect  of  Boundary  Layer  Transi1on  –  Ncri1cal  Method  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.05

0

0.05

x

z

VCCTEF

Supercritical Airfoil δ1 =5°, δ2 =5°, δ3 =5°,

-5 0 5 10 15 20

0.6

0.8

1

1.2

1.4

1.6

1.8

α [°]

Cl

0.6 0.8 1 1.2 1.4 1.6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Cl

Cd

-5 0 5 10 15 20 25-0.28

-0.26

-0.24

-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

α [°]

Cm

Re=0.662M - Ncrit=0.5

Re=0.662M - Ncrit=9

Re=0.662M - Ncrit=12

⑤    RESULTS  

Page 30: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

30  

⑤    RESULTS   TASK  2   3D  Code   VLM  

Matlab  automated  tool  to  run  AVL  

0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

α [deg]

CL

Wing-BodyWing-Body-Botton-Top-WallsWing-Body-All-Walls

Page 31: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

Streamwise  Cuts  Conversion  

31  2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6UWAL - VCCTEF Model

X [ft]

Y [ft

]

⑤    RESULTS   TASK  2   3D  Code   VLM  

Page 32: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

Half  Wing-­‐Body  Symmetry  Condi1on  

32  

     

⑤    RESULTS   TASK  2   3D  Code   VLM  

Page 33: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

Half  Wing-­‐Body  Symmetry  Condi1on  +  Top/Bo_om  Walls  Only  

33  

⑤    RESULTS   TASK  2   3D  Code   VLM  

Page 34: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

Half  Wing-­‐Body  Symmetry  Condi1on  +  All  Walls  

34  

⑤    RESULTS   TASK  2   3D  Code   VLM  

Page 35: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

α [deg]

CL

Wing-BodyWing-Body-Botton-Top-WallsWing-Body-All-Walls

35  

Agrees  with  UWAL  Rigid  Wing  Data  from  Nhan’s  Paper  (see  next  slide)  

CLα  =  4.33-­‐4.53  

CLα  =  4.47-­‐4.68  

CLα  =  4.64  –  4.83  

⑤    RESULTS  

LINEAR  AVL  TASK  2   3D  Code   VLM  

Page 36: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

36  

 

UWAL  RIGID    -­‐  Paper  CLα  =  4.49  

•  Reconstructed  data  for  a  rigid  wing  based  on  flexible  wing  tunnel  data  •  Data  corrected  for  wind  tunnel  walls  

⑤    RESULTS  

*Nguyen,  N.,  Precup,  N.,  Umes,  J.,  Nelson,  C.,  Lebofsky,  S.,  Ting,  E.,  Livne,  E.,  “Experimental  Inves1ga1on  of  a  Flexible  Wing  with  a  Variable  Camber  Con1nuous  Trailing  Edge  Flap  Design”,  AIAA  Avia1on  2014,  32nd  AIAA  Applied  Aerodynamics  Conference  

 

UWAL  RIGID    -­‐  Paper  CLα  =  4.31  

TASK  2   3D  Code   VLM  

Page 37: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

NON-­‐LINEAR  AVL  

37  

⑤    RESULTS  

•  Code  Modifica1ons  to  Include:  – Maximum  2D  Cl  and  Non-­‐lineari1es  in  li]  (near  stall)  

– Viscous  drag  (profile  +  skin  fric1on)  

TASK  2   3D  Code   VLM  

Page 38: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

Valida1on  with  Experimental  Data  

38  

⑤    RESULTS  

*Mukherjee,  R.,  Gopalarathnam,  A.,  Kim.  S.,  “AN  ITERATIVE  DECAMBERING  APPROACH  FOR  POST-­‐STALL  PREDICTION  OF  WING  CHARACTERISTICS  USING  KNOWN  SECTION  DATA”,  AIAA  2003,  41st  AIAA  Aerospace  Sciences  Mee1ng  

TASK  2   3D  Code   VLM  

Page 39: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

39  

Aircra;  Geometry  Input  

Run  VLM   Get  Cl,  Cm,  ω  along  span  

At  each  sta%on:  

Cl2D  VLM  (i)  =  Cl2D  visc  (αeff)  ?  Cm2D  VLM  (i)  =  Cm2D  visc  (αeff)  ?  

   

YES  

NO  Change  Incidence/Camber  

 

Mul%variable  Newton-­‐Raphson    

END  

START  

αeff    

⑤    RESULTS   TASK  2   3D  Code   VLM  

Valida1on  with  Experimental  Data  

Page 40: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

40  

-10 0 10 20 30 40 50 60-0.5

0

0.5

1

1.5

2

2.5

α [°]

CL

2D Viscous Data3D Exp. - AR=12 - λ=1.0AVL (3D linear)AVL-Modified (3D nonlinear)

⑤    RESULTS   TASK  2   3D  Code   VLM  

Valida1on  with  Experimental  Data  

Page 41: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

41  0 0.5 1 1.5 2 2.5-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

2y / b

Cm

Lin-α=0Nonlin-α=0Lin-α=5Nonlin-α=5Lin-α=10Nonlin-α=10Lin-α=15Nonlin-α=15Lin-α=19Nonlin-α=19Lin-α=27Nonlin-α=27

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

3

2y / b

Cl

Cl Max 2DLin-α=0Nonlin-α=0Lin-α=5Nonlin-α=5Lin-α=10Nonlin-α=10Lin-α=15Nonlin-α=15Lin-α=19Nonlin-α=19Lin-α=27Nonlin-α=27

⑤    RESULTS   TASK  2   3D  Code   VLM  

Page 42: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

42  

0 1 2 3 4 5 60

1

2

3

c.C

l

0 1 2 3 4 5 6

0

0.5

1

b/2

Cl

α =0α =2.5α =5α =7.5α =10α =12.5α =15α =17.5α =20

2D  viscous  sec1onal  stall  limit  

•     UWAL  Model  Geometry  with  NACA0012  sec1onal  data  •     The  developed  Nonlinear  Vortex  La�ce  code  results:  

•     CLα:  slope  agreement  with  the  linear  prediciton  for  the  finite  wing    •     Cl  x  span:  good  agreement  with  theory.  As  angle  of  a_ack  increases,  the  sta1ons  increase  local  li]  coefficient  un1l  they  reach  the  maximum  2D  Cl  from  the  viscous  data,  yielding  the  3D  stall  behavior  and  propaga1on  characteris1cs  of  the  CLxα  curve    

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

AoA [deg]

CL

NACA0012 - 2D Viscous Data - XFOILAVL - 3D linearAVL-Modified - 3D nonlinear

⑤    RESULTS   TASK  2   3D  Code   VLM  

Page 43: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

43  

•     Established  a  mul1disciplinary  op1miza1on  framework  strategy  

•     Developed  a  low-­‐fidelity  nonlinear  3D  aerodynamic  tool    Ø Using  known  sec1onal  data  Ø  Capable  of  capturing  CLmax  and  handling  stall  Ø Modified  an  exis1ng  Vortex  La�ce  Method  code  (AVL)  

•      Results   showed   successful   predic1on   of   3D   nonlinear  aerodynamic  characteris1cs,  while  maintaining   low  computa1onal  cost  

This  summer  so  far  …  

⑤    RESULTS  

Page 44: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

AGENDA  

44  

①    MOTIVATION  

②    INTRODUCTION  

③    FRAMEWORK  

④    METHOD  

⑤    RESULTS  

⑦  AKNOWLEDGEMENTS  

⑥    FUTURE  WORK  

Page 45: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

45  

⑥      FUTURE  WORK  

Program  the  structural  code    

FEM  

STRUCTURES  Galerkin  Method  

Page 46: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

46  

AERODYNAMICS  2D  Viscous  Data   2D  RANS  (OVERFLOW)  

XFOIL  

3D  Code  VLM  (AVL)  

Panel  (Panair)  

VLM  (Vorview)  

Modify  the  aerodynamic  tool    

⑥    FUTURE  WORK  

Page 47: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

47  

Integrate  aero/structural  code  with  the  op%mizer    

OPTIMIZER  

GEOMETRY  GENERATOR  

AERODYNAMICS  (Nonlinear  3D  code)   STRUCTURES  

⑥    FUTURE  WORK  

Page 48: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

48  

⑦      AKNOWLEDGEMENTS  

• NASA  ARM  –  Fixed  Wing  Project  • Adap1ve  Aeroelas1c  Shape  Control  (AASC)  under  Aerodynamic  Efficiency  sub-­‐project  

• Dr.  Ce1n  Kiris  • NASA  AMS  Division:  Michael  A]osmis,  David  Rodriguez,  others  

• Dr.  Nhan  Nguyen  • NASA  Intelligent  Systems  Division:  Ezra  Tal,  Sonia  Lebofsky,  Eric  Ting,  others  

• Dr.    Michael  Bragg,  Dr.  Eli  Livne  at  the  University  of  Washington      

THANK  YOU  

Page 49: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

 BACKUP  SLIDES  

49  

Page 50: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

Nonlinear  Weissinger  •  Swept  Wing  2D  and  3D  CFD  data  

50  

The  results  are  from  CFD  computed  at  a  Re  =  3.0  M  for  NACA  4415  airfoil    Wing:  AR  =  12,  Taper  =1  (constant-­‐chord  wing)  

Source:  Paul,  R.  C.,  Gopalarathnam,  A.,  "Itera1on  schemes  for  rapid  post-­‐stall  aerodynamic  predic1on  of  wings  using  a  decambering  approach",  INTERNATIONAL  JOURNAL  FOR  NUMERICAL  METHODS  IN  FLUIDS,  Int.  J.  Numer.  Meth.  Fluids  (2014),  Wiley  Online  Library  (wileyonlinelibrary.com).  DOI:  10.1002/fld.3931  

Page 51: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

CFD  Data  

51  Source:  Paul,  R.  C.,  Gopalarathnam,  A.,  "Itera1on  schemes  for  rapid  post-­‐stall  aerodynamic  predic1on  of  wings  using  a  decambering  approach",  INTERNATIONAL  JOURNAL  FOR  NUMERICAL  METHODS  IN  FLUIDS,  Int.  J.  Numer.  Meth.  Fluids  (2014),  Wiley  Online  Library  (wileyonlinelibrary.com).  DOI:  10.1002/fld.3931  

Page 52: Adaptive Aeroelastic Wing Shape Optimization for High … 06, 2014 · agenda 2 ①’’motivation( ②’’introduction( ③’’framework( ④’’method( ⑤((results( ⑥’’future(work(

52  Source:  “Itera1on  schemes  for  rapid  post-­‐stall  aerodynamic  predic1on  of  wings  using  a  decambering  approach”  -­‐  2014  -­‐  Interna1onal  Journal  for  Numerical  Methods  in  Fluids  -­‐  Wiley  Online  Library