Adams Solver Guide

Embed Size (px)

Citation preview

  • 7/28/2019 Adams Solver Guide

    1/111

    VERSION 12.0

    PART NUMBER

    120BSOLTR-01

    Visit us at:www.adams.com

    Basic ADAMS/SolverTraining Guide

    http://www.adams.com/http://www.adams.com/
  • 7/28/2019 Adams Solver Guide

    2/111

    U.S. Government Restricted Rights: If the Software and Documentation are provided in connection with a

    government contract, then they are provided with RESTRICTED RIGHTS. Use, duplication or disclosure issubject to restrictions stated in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software

    clause at 252.227-7013. Mechanical Dynamics, Incorporated, 2300 Traverwood Drive, Ann Arbor, Michigan

    48105.

    The information in this document is furnished for informational use only, may be revised from time to time,

    and should not be construed as a commitment by Mechanical Dynamics, Incorporated. Mechanical

    Dynamics, Incorporated, assumes no responsibility or liability for any errors or inaccuracies that may

    appear in this document.

    This document contains proprietary and copyrighted information. Mechanical Dynamics, Incorporated

    permits licensees of ADAMSsoftware products to print out or copy this document or portions thereof

    solely for internal use in connection with the licensed software. No part of this document may be copied for

    any other purpose or distributed or translated into any other language without the prior written permission of

    Mechanical Dynamics, Incorporated.

    2002 by Mechanical Dynamics, Incorporated. All rights reserved. Printed in the United States of America.

    ADAMSis a registered United States trademark of Mechanical Dynamics, Incorporated.

    All other product names are trademarks of their respective companies.

  • 7/28/2019 Adams Solver Guide

    3/111

    3

    &RQWHQWV

    :HOFRPHWR%DVLF$'$066ROYHU7UDLQLQJ7

    About Mechanical Dynamics 8

    Content of Course 9

    Getting Help at Your Job Site 10

    9LUWXDO3URWRW\SLQJZLWK$'$0611

    Virtual Prototyping Process 12

    Basic ADAMS/Solver Course 13

    Four File Types in ADAMS/Solver 14

    ADAMS/Solver Dataset File 15

    ADAMS/Solver Command File 16

    ADAMS/Solver Analysis Files 17

    ADAMS/Solver Message File 18Simulating a Model in ADAMS/Solver 19

    Workshop 1Process Overview 20

    9LHZLQJ5HVXOWV25

    PostProcessing Interface Overview 26

    Animating 27

    Plotting 28

    Getting Help 29

    Workshop 2Viewing Results 30

    )DOOLQJ6WRQH41

    System-Level Design 42

    Coordinate Systems 43

    Part Coordinate System 44

    Coordinate System Marker 45

    Differences Between Parts and Graphics 46

    Parts, Graphics, and Markers 47

    Types of Parts in ADAMS 48Part Properties (Mass and Inertia) 49

    Graphic Properties 50

    Workshop 3Falling Mass 51

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    4/111

    4 Content

    &217(176

    2QH'2)3HQGXOXP57

    Constraints 58

    Use of Markers in Constraints 59

    Three-Point Orientation Method 61

    Degrees of Freedom (DOF) 62

    Workshop 4One DOF Pendulum 63

    /LQHDU6SULQJ'DPSHU,69

    Initial Condition Simulation 70

    Types of Simulations 71

    Simulation Hierarchy 72

    Forces in ADAMS 73

    Spring Dampers in ADAMS 74

    Magnitude of Spring Dampers 75

    Workshop 5Spring Damper I 76

    /LQHDU6SULQJ'DPSHU,,81

    Single-Component Forces: Action-Reaction 82

    Functions in ADAMS 83

    Measuring Displacement (Functions continued) 84

    Measuring Velocity (Functions continued) 85

    Workshop 6Spring Damper II 86

    %UDNH6\VWHP,91Applying Motion 92

    STEP Function 93

    REQUESTing Measurement Data 94

    Workshop 7Brake System I 95

    %UDNH6\VWHP,,105

    Multi-Component Forces 106

    Incorporating Test Data (Splines) 108

    AKISPL Function 109Workshop 8Brake System II 110

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    5/111

    Contents

    &217(176

    %UDNH6\VWHP,,,117

    Design Study: Quasi-static 118

    Workshop 9Brake System III 119

    6XVSHQVLRQ125

    Bushings 126

    Workshop 10Suspension 127

    %RXQFLQJ%DOO143

    Modeling Contact: IMPACT Function 144

    Workshop 11Bouncing Ball 146

    7DEOHV153

    Constraints Tables (Incomplete) 154

    Forces Tables (Incomplete) 155Constraint Tables (Complete) 156

    Forces Tables (Complete) 157

    Mass Moments of Inertia 158

    6DPSOH'DWDVHWV161

    .acf files 162

    ball.adm file 163

    brake.adm file 164

    susp1.adm file 165

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    6/111

    6 Content

    &217(176

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    7/1117

    :(/&20(72%$6,&$'$0662/9(575$,1,1

    ADAMS is a powerful modeling and simulating environment that lets you

    build, simulate, refine, and ultimately optimize any mechanical system, from

    automobiles and trains to VCRs and backhoes.

    Basic ADAMS/Solver training teaches you how to build, simulate, and refine

    a mechanical system using Mechanical Dynamics, Inc.s ADAMS/Solver and

    ADAMS/PostProcessor.

    :KDWVLQWKLVVHFWLRQ

    About Mechanical Dynamics, 8

    Content of Course, 9

    Getting Help at Your Job Site, 10

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    8/1118 Welcome to Basic ADAMS/Solver Training

    $ERXW0HFKDQLFDO'\QDPLFV

    )LQGDOLVWRI$'$06SURGXFWVDW

    http://www.adams.com/mdi/product/modules.htm

    /HDUQDERXWWKH$'$06&$'&$0&$(LQWHJUDWLRQDW

    http://www.adams.com/mdi/product/partner.htm

    )LQGDGGLWLRQDOWUDLQLQJDW

    http://support.adams.com/training/training.html

    Or your local support center

    http://-/?-http://www.adams.com/mdi/product/modules.htmhttp://www.adams.com/mdi/product/modules.htmhttp://www.adams.com/mdi/product/partner.htmhttp://www.adams.com/mdi/product/partner.htmhttp://support.adams.com/training/training.htmlhttp://support.adams.com/training/training.htmlhttp://-/?-http://support.adams.com/training/training.htmlhttp://www.adams.com/mdi/product/partner.htmhttp://www.adams.com/mdi/product/modules.htm
  • 7/28/2019 Adams Solver Guide

    9/111Welcome to Basic ADAMS/Solver Training 9

    &RQWHQWRI&RXUVH

    $IWHUWDNLQJWKLVFRXUVH\RXZLOOEHDEOHWR

    Build simple ADAMS models.

    Understand ADAMS product nomenclature and terminology.

    Understand basic modeling principles.

    Use the crawl-walk-run approach to virtual prototyping.

    Debug your models for the most common modeling challenges (for example,

    redundant constraints, zero masses, and so on).

    Use and be informed about all methods of ADAMS product support.

    Use the product documentation optimally.

    2UJDQL]DWLRQRIJXLGH

    This guide is organized into modules that get progressively more complex. Each module

    focuses on solving an engineering-based problem and covers mechanical system simulation

    (MSS) concepts that will help you use ADAMS most optimally. The earlier workshops provide

    you with more step-by-step procedures and guidance, while the later ones provide you with less

    Each module is divided into the following sections:

    1 Problem statement

    2 Concepts

    3 Workshop

    4 Module review

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    10/11110 Welcome to Basic ADAMS/Solver Training

    *HWWLQJ+HOSDW

  • 7/28/2019 Adams Solver Guide

    11/1111

    9,578$/352727

  • 7/28/2019 Adams Solver Guide

    12/11112 Virtual Prototyping with ADAMS

    9LUWXDO3URWRW\SLQJ3URFHVV

    Build

    Test

    Validate

    Refine

    Iterate

    Automate

    ...a model of your design usingBodies ForcesContacts Joints

    Motion generators

    ...your design usingMeasures AnimationsSimulations Plots

    ...your model byImporting test data

    Superimposing test data

    ...your model by addingFriction Forcing functionsFlexible partsControl systems

    ...your design throughvariations usingParametricsDesign variables

    Validate

    Refine

    Iterate

    Do resultscompare withmeasureddata?

    DESIGNPROBLEM

    Cut timeand costs

    Increasequality

    Increaseefficiency

    IMPROVEDPRODUCT

    ...your design usingDOEsOptimization

    ...your design process usingCustom menusMacrosCustom dialog boxes

    Optimize

    Automate

    No

    Yes

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    13/111Virtual Prototyping with ADAMS 13

    %DVLF$'$066ROYHU&RXUVH

    7KUHHVWHSVRIWKHYLUWXDOSURWRW\SLQJSURFHVVWKDWWKLVFRXUVHFRYHUV

    Build(design) a virtual prototype of a mechanical system using an ADAMS dataset

    file.

    Testyour mechanical system using ADAMS/Solver.

    Validate (review) the results of your output files using ADAMS/PostProcessor.

    Build

    Test

    Validate

    ...a model of your design usingBodies Forces

    Contacts JointsMotion generators

    ...your design usingMeasures AnimationsSimulations Plots

    ...your model by

    Importing test dataSuperimposing test data

    Validate

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    14/11114 Virtual Prototyping with ADAMS

    )RXU)LOH7\SHVLQ$'$066ROYHU

    'DWDVHWILOHDGPFRQWDLQVVWDWHPHQWVDQGIXQFWLRQV

    &RPPDQGILOHDFIFRQWDLQVFRPPDQGVDQGIXQFWLRQV

    $QDO\VLVILOHVUHTUHVJUDRXWFRQWDLQVLPXODWLRQRXWSXW

    0HVVDJHILOHPVJFRQWDLQVVWDWLVWLFVDERXWVLPXODWLRQRXWSXW

    ADAMS dataset

    .adm .req

    Analysis files

    .res

    .gra

    .out

    Command file

    .acf

    1 - Build (Input) 3 - Validate (Output)

    Message file

    .msg

    2 - Test (ADAMS/Solver)

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    15/111Virtual Prototyping with ADAMS 15

    $'$066ROYHU'DWDVHW)LOH

    'DWDVHWILOHDGPFRQWDLQVVWDWHPHQWVDQGIXQFWLRQV

    Statements define an element of a model, such as a part, constraint, or force.

    Functions are a numeric expression that define the magnitude of an element, such as

    force or motion.Sample .adm file

    FunctionStatement

    TITLE LINE

    !-------------------------------- SYSTEM UNITS --------------

    UNITS/FORCE = NEWTON, MASS = KILOGRAM, LENGTH = MILLIMETER,

    ,TIME = SECOND

    !

    PART/1, GROUND

    !

    MARKER/5, PART = 1, QP = 175, -225, 0

    !

    PART/2, MASS = 70.94, CM = 3, IP = 2.01E+006, 1.80E+005

    , 2.01E+006, MATERIAL = steel

    !

    MARKER/2, PART = 2, REULER = 37.87498365D, 90D, 0D

    !

    MARKER/3, PART = 2, QP = 175, -225, 0, REULER = 37.87498365D, 0D, 0D

    !

    GRAPHICS/1, CYLINDER, CM = 2, LENGTH = 570.08, RADIUS = 71.26

    !

    JOINT/1, REVOLUTE, I = 4, J = 1

    !

    REQUEST/1, DISPLACEMENT, I = 3, J = 5, RM = 5

    ACCGRAV/JGRAV = -9806.65

    OUTPUT/REQSAVE, GRSAVE

    RESULTS/

    !

    MOTION/1, ROTATIONAL, JOINT = 1, FUNCTION = 30.0d * time

    !

    END

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    16/11116 Virtual Prototyping with ADAMS

    $'$066ROYHU&RPPDQG)LOH

    &RPPDQGILOHDFIFRQWDLQVFRPPDQGVDQGIXQFWLRQV

    Commands are actions that you issue during an analysis to make changes to your

    model or analysis settings.

    You can enter commands interactivelyone at a timeor you can enter them from acommand file.

    Sample .acf file

    model_name.adm

    output_name

    SIMULATE/STATIC

    SIMULATE/DYNAMIC, END=3.0, STEPS=30DEACTIVATE/JOINT, ID=3

    SIMULATE/DYNAMIC, DURATION=2.0, STEPS=200

    STOP

    Command

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    17/111Virtual Prototyping with ADAMS 17

    $'$066ROYHU$QDO\VLV)LOHV

    $QDO\VLVILOHVUHTUHVJUDRXWSURYLGHVLPXODWLRQRXWSXW

    The output corresponds to these statements in your dataset: REQUEST, RESULT, GRAPHICS,

    and OUTPUT.

    5HTXHVWILOHUHTSURYLGHV

    Key system measurements:

    toe angle or displacement in a local markers coordinate system.

    Data for plotting in ADAMS/PostProcessor.

    5HVXOWVILOHUHVSURYLGHV

    Default calculations in Global Coordinate System:

    part displacements and constraint reaction forces

    Data for plotting in ADAMS/PostProcessor.

    *UDSKLFVILOHJUDSURYLGHV

    Data for animating in ADAMS/PostProcessor.

    2XWSXWILOHRXWSURYLGHV

    Tabular output of request data.

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    18/11118 Virtual Prototyping with ADAMS

    $'$066ROYHU0HVVDJH)LOH

    0HVVDJHILOHPVJFRQWDLQVUXQWLPHVWDWLVWLFVRQVLPXODWLRQRXWSXWLQFOXGLQJ

    Warning messages

    Error messages

    Excerpts from a .msg file

    ---- WARNING ----

    IP data specified for PART test.PAR5200 is not physically

    meaningful, since it does not satisfy the requirement

    that Iyy + Izz must be greater than or equal to Ixx.

    The moments of inertia about the Center of Mass are:

    Ixx = 500.80, Iyy = 115.29, Izz = 98.147

    ---- ERROR ----

    The simulation stopped at time = 7.82641E-02.

    ADAMS cannot solve the equations of motion.

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    19/111Virtual Prototyping with ADAMS 19

    6LPXODWLQJD0RGHOLQ$'$066ROYHU

    ,QWHUDFWLYHPRGH

    Non scripted: lets you enter commands one by one.

    Scripted: lets you enter commands from the command file (.acf).

    %DWFKPRGH

    Runs multiple jobs using a log file and one or more command files (.acf).

    ([DPSOHVRIUXQQLQJLQWHUDFWLYHVLPXODWLRQLQ$'$06RQ81,;DQG17

    UNIX shell (what you might type to simulate)

    NT DOS shell (what you might type to simulate)

    adams12 -c

    ru-standard

    interactive

    my_file.acf

    adams12

    ru-standard

    my_file.acf

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    20/11120 Virtual Prototyping with ADAMS

    3UREOHPVWDWHPHQW

    Simulate a dynamic model and review the associated output files.

    0RGHOGHVFULSWLRQ

    The model you will use in this workshop represents a quarter-front, short-long-arm (SLA) car

    suspension.

    :RUNVKRS3URFHVV2YHUYLHZ

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    21/111Virtual Prototyping with ADAMS 2

    6WDUWLQJ$'$066ROYHU

    7RVWDUW$'$066ROYHUIURP\RXU81,;ZRUNLQJGLUHFWRU\

    1 Open a UNIX shell and enter the commands to locate and change to your working

    directory.

    Use the ls command to review a list of files and directories.

    Use the cd command to change from one directory to another.

    For example, to change your location from the directory, bso_exercises, to mod_01_intro,

    enter the following:

    cd bso_exercises

    lscd mod_01_intro

    ls

    2 Once you have located your working directory, enter the command to start ADAMS, for

    example, adams12 -c.

    A text menu appears inside of your command shell window.

    At your site, your systems administrator determines the alias to start ADAMS/Solver.In class, ifadams12 -c does not launch ADAMS/Solver, see your class instructor for thecorrect command.

    3 Enter ru-standard (or use the shortcut ru-s) to run standard ADAMS/Solver.

    4 Enter interactive (or use the shortcut i)to run ADAMS/Solver in interactive mode.Skip to Step 1 in Simulating your model on page 23.

    :RUNVKRS3URFHVV2YHUYLHZ

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    22/11122 Virtual Prototyping with ADAMS

    7RVWDUW$'$066ROYHUIURP\RXU17ZRUNLQJGLUHFWRU\

    1 Do one of the following:

    From the Start menu, point to Programs, and then select Command Prompt.

    The Command Prompt window appears.

    From the Start menu, select Run and enter cmd.

    The Command Prompt window appears.

    2 Enter the commands to locate and change to your working directory.

    Use the dir command to display your list of files and directories.

    Use the cd command to change from one directory to another.

    For example, to change your location from the directory, bso_exercises, to mod_01_intro,

    enter the following:

    cd bso_exercises

    dir

    cd mod_01_intro

    dir

    3 Once you have changed to your working directory, enter the command to start ADAMS,for example, adams12.

    A text menu appears inside of your Command Prompt window.

    At your site, your systems administrator determines the alias to start ADAMS/Solver.In class, ifadams12 does not launch ADAMS/Solver, see your class instructor for thecorrect command.

    4 Enter ru-standard (or use the shortcut ru-s) to run standard ADAMS/Solver.

    :RUNVKRS3URFHVV2YHUYLHZ

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    23/111Virtual Prototyping with ADAMS 23

    6LPXODWLQJ\RXUPRGHO

    7RVLPXODWH\RXUPRGHO

    1 Enter the name of the ADAMS command file sla.acf.

    The command file gives ADAMS/Solver instructions on how to simulate your model, for

    example, it defines the run time and type of simulation.

    2 Enter exit to close the ADAMS menu.

    3 To list the files that are in your working directory, enter ls on UNIX or dir on NT.

    Your directory should contain more files than before you ran the simulation.

    81,;RSWLRQDOWDVNV

    Quickly set up and run a simulation entering all of the necessary commands on one

    line. For example, from a UNIX prompt, enter:

    adams12 -c ru-s i sla.acf exit

    17RSWLRQDOWDVNV

    Quickly set up and run a simulation entering all of the necessary commands on one

    line. For example, from a command prompt, enter:

    adams12 ru-s sla.acf

    :RUNVKRS3URFHVV2YHUYLHZ

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    24/11124 Virtual Prototyping with ADAMS

    0RGXOHUHYLHZ

    1 What are the three categories of syntax used in the ADAMS language?

    ________________________________________________________________________

    2 Which two out of the three are used in the .adm file?

    ________________________________________________________________________

    3 Which two out of the three are used in the .acf file?

    ________________________________________________________________________

    4 In this course, we are going to use ADAMS/Solver to process the results and ADAMS/

    PostProcessor to view the results. What are we going to use as a pre-processor?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    5 When you use ADAMS after this course, you will probably be using a pre-processor (that

    is, ADAMS/Pre, ADAMS/View, ADAMS/Car, and so on). Why, then, do you need to

    learn how to write .adm and .acf files on your own?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    :RUNVKRS3URFHVV2YHUYLHZ

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    25/11125

    9,(:,1*5(68/76

    In this module you will use ADAMS/PostProcessor to manipulate, review, and

    refine the results of the suspension model you simulated in the previous module

    :KDWVLQWKLVPRGXOH

    PostProcessing Interface Overview, 26

    Animating, 27

    Plotting, 28

    Getting Help, 29

    Workshop 2Viewing Results, 30

    Module review, 40

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    26/11126 Viewing Results

    3RVW3URFHVVLQJ,QWHUIDFH2YHUYLHZ

    $'$063RVW3URFHVVRUKDVWZRPRGHVGHSHQGLQJRQWKHDFWLYHYLHZSRUW

    Animation

    Plotting

    ([DPSOH

    The tools in the Main toolbar change if you load an animation or a plot into the viewport

    The elements shown above are common to both modes.

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    27/111Viewing Results 27

    $QLPDWLQJ

    Viewport

    Reset, Rev, Pause,Animation settings

    Slider barDashboard

    Treeview

    Property

    editor

    Main toolbar

    Fwd, Record

    categories

    Mode type

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    28/11128 Viewing Results

    3ORWWLQJ

    Viewport

    List of simulation results

    Types of List of requests/ Manage

    results to curves

    be displayed

    Treeview

    Property

    editor

    Main toolbar

    results

    Mode type

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    29/111Viewing Results 29

    *HWWLQJ+HOS

    5HIHUHQFLQJWKHRQOLQH$'$066ROYHUJXLGHV

    'RLQJJOREDOVHDUFKHVRQDQ\RQOLQH$'$06JXLGH

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    30/11130 Viewing Results

    3UREOHPVWDWHPHQW

    Use ADAMS/PostProcessor to manipulate, review, and refine the results of the suspension

    model you simulated in the previous module.

    0RGHOGHVFULSWLRQ

    This model represents a quarter-front, short-long-arm (SLA) car suspension.

    You can use the files you generated in Module 1, or use the ones in the directory,exercise_dir/mod_02_view_results.

    :RUNVKRS9LHZLQJ5HVXOWV

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    31/111Viewing Results 3

    6WDUWLQJ$'$063RVW3URFHVVRU

    7RVWDUW$'$063RVW3URFHVVRU

    1 Go to the directory where your analysis files are stored.

    If youre using the files you generated, the directory should be mod_01_intro.

    If youre using the files we provided for you, the directory should be

    mod_02_view_results.

    2 Open the ADAMS Selection menu.

    For UNIX, enter adams12 -c.

    For NT, enter adams12.

    The ADAMS Selection Menu appears.

    3 At the command line, enter appt.

    The ADAMS/PostProcessor Main window appears.

    $ERXWWKH$'$063RVW3URFHVVRUZLQGRZ

    ADAMS/PostProcessor has two modes: animation and plotting. It switches its modes

    automatically depending on the contents of the active viewport. For example, the tools in the

    Main toolbar change if you load an animation or a plot into the viewport.

    Figure 1 on page 31 shows a conceptual sketch of the ADAMS/PostProcessor window. The

    elements shown are common to both modes.

    Figure 1. ADAMS/PostProcessor Window

    :RUNVKRS9LHZLQJ5HVXOWV

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    32/11132 Viewing Results

    ,PSRUWLQJILOHV

    7RLPSRUW\RXUDQDO\VLVILOH

    1 From the File menu, point to Import, and then select AnalysisFiles.

    The File Import dialog box appears.

    2 Right-click the File Name text box, and then select Browse.

    The Select File dialog box appears.

    3 Select any one of the files that starts with sla_output.

    4 In the Select File dialog box, select OK.

    5 In the File Import dialog box, select OK.

    The graphics representing the initial conditions of your simulation appear in the viewport

    :RUNVKRS9LHZLQJ5HVXOWV

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    33/111Viewing Results 33

    9LHZLQJUHVXOWV

    7RYLHZDQDQLPDWLRQRIWKHUHVXOWV

    Adjust your view of the model on your screen using the tools above the viewport. The

    figure below highlights some of the tools that are available. Try experimenting withthe rotate, zoom, and translate tools.

    7RSOD\DQDQLPDWLRQRIWKHUHVXOWV

    Play an animation of your model using the tools that are located above the viewport

    and in the dashboard. Experiment with the play and pause tools.

    Select

    Dynamic Rotate

    Dynamic TranslateCenter

    View Zoom

    View Fit

    Front View

    Reset Animation

    Play Animation Backward

    Pause Animation

    Play Animation

    Record Animation

    :RUNVKRS9LHZLQJ5HVXOWV

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    34/11134 Viewing Results

    0RGLI\LQJWKHJUDSKLFVRI\RXUDQLPDWLRQ

    7RPRGLI\WKHJUDSKLFVVHWWLQJVRI\RXUDQLPDWLRQ

    Select the View tab in the dashboard.

    Your view options appear below the View button.

    Experiment with the options that are available.

    7RFKDQJHWKHFRORURIWKHZKHHO

    1 From the treeview, expand the model by clicking on the + sign.

    2 Select PART_5, which is the wheel.

    3 Below the treeview, in the property editor, select the arrow next to the Color text box.

    4 Select Coral for the color setting.

    7RHQODUJHWKHJUDSKLFVWKDWLOOXVWUDWHIRUFH

    1 From the Edit menu, select Preferences.

    The PPT Preferences dialog box appears.

    2 In the Force Scale text box, enter a value that is greater than 1, and then select Enter.

    3Experiment with changing the scale of the force graphics.

    7RPDNHPRUHJUDSKLFHQKDQFHPHQWV

    1 From the same PPT Preferences dialog box, select the Geometry tab, and check the Graphics

    Endcaps box.

    Selecting the box adds endcaps to cylinders.

    2 Change the view from shaded to wireframe.

    3 On the top tool bar, select Wireframe/shaded.

    Icon Visibility

    Wireframe/shaded

    :RUNVKRS9LHZLQJ5HVXOWV

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    35/111Viewing Results 35

    3ORWWLQJ

    7RSORWWKHWRHDQJOHYHUVXVWLPH

    1 Create a new page by clicking the Create a New Page tool above the viewport.

    You should now have two pages in your session.

    2 Change the viewport to plotting by right-clicking in the viewport, and choosing Load Plot

    from the pop-up menu.

    Notice how the dashboard changes from animation tools to plotting tools.

    3 Create a plot on this page by doing the following:

    From the Simulation list, select the only simulation in your session, sla_output.

    From the Request list, select REQUEST_2.

    From the Component list, select X.

    Below the Independent Axis: heading, make sure Time is selected.

    Select Add Curves.

    Create a New Page

    Delete a PagePrevious Page

    Next Page

    :RUNVKRS9LHZLQJ5HVXOWV

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    36/11136 Viewing Results

    Notice the dashboard settings in the following figure:

    :RUNVKRS9LHZLQJ5HVXOWV

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    37/111Viewing Results 37

    7RSORWWKH7RH$QJOHYV9HUWLFDO:KHHO3RVLWLRQQH[WWRDQDQLPDWLRQ

    1 Go back to page_1 in ADAMS/PostProcessor.

    2 Split the screen by right-clicking on the Page Layout tool above the viewport and choosing

    the Split Screen tool.

    3 Set the new viewport to Plotting by right-clicking in the viewport and choosing Load Plot

    from the pop-up menu.

    4 Plot Toe Angle vs. Vertical Wheel Position by doing the following:

    In the Simulation list, select the only simulation in your session, sla_output.

    In the Request list, select REQUEST_2.

    In the Component list, select X.

    Below the Independent Axis: heading, toggle Data.

    The Independent Axis Browser appears.

    In the Request list, select REQUEST_1.

    In the Component list, select Z.

    Select OK.

    Select Add Curves.

    Split Screen

    :RUNVKRS9LHZLQJ5HVXOWV

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    38/11138 Viewing Results

    7RXVHWKHGRFXPHQWDWLRQWRJHWSORWVWDWLVWLFV

    1 From the Help menu, select ADAMS/PostProcessor Guide.

    2 Search for the phrase plot statistics and see where it leads you.

    If you are unable to find the phrase ask the instructor for help.

    3 Use the plot statistics toolbar to find the maximum Toe Angle value.

    4 Once you find the maximum toe angle value, use it to answer Question 1 in Module

    review on page 40.

    7RDQLPDWHWKHPRGHOZKLOHYLHZLQJWKHSORW

    1 Left-click the viewport that contains your graphics so the dashboard changes to animation

    tools.2 Play an animation.

    7RPRGLI\WKHJUDSKLFVRIWKHSORW

    1 Modify the plot title by doing the following:

    In the treeview, expand page_1 by clicking the + sign.

    Select plot_2.

    Clear the selection ofAuto Title.

    In the Property Editor below, enter the title Toe Angle vs. Wheel Height.

    Select Enter.

    2 Label the vertical axis as Toe Angle (radians) by doing the following:

    In the treeview, expand the plot by clicking the + sign.

    select vaxis.

    In the Property Editor below, toggle Labels.

    Change the label from NO UNITS to Toe Angle (radians).

    3 Modify the legend text by doing the following:

    In the treeview, select curve_1.

    :RUNVKRS9LHZLQJ5HVXOWV

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    39/111Viewing Results 39

    In the Property Editor, change the Legend text box to sla_output.

    6DYLQJ

    7RVDYH\RXU$'$063RVW3URFHVVRUVHVVLRQ

    1 Save your session by doing the following:

    From the File menu, select Save As.

    Name your file in the File Name text box.

    Select OK.

    This saves the results from your entire session in one file.

    2 Exit ADAMS/PostProcessor by doing the following:

    From the File menu, select Exit.

    Select Exit, Dont Save.

    :RUNVKRS9LHZLQJ5HVXOWV

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    40/11140 Viewing Results

    0RGXOHUHYLHZ

    1 What was the maximum toe angle value?

    ________________________________________________________________________

    2 What is the difference between the two search tools (the ones with the binoculars)

    available in Adobe Acrobat Reader, which is the software we use to view the online

    users guides?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    3 To view an animation, which file type will you need to import?

    ________________________________________________________________________

    4 Both the results (.res) and the request (.req) file can be imported and used to plotinformation. What is the difference between the results (.res) and the request (.req) files?

    (You may need to refer back to Virtual Prototyping with ADAMS on page 11 for help on

    this.)

    ________________________________________________________________________

    ________________________________________________________________________

    _______________________________________________________________________

    :RUNVKRS9LHZLQJ5HVXOWV

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    41/1114

    )$//,1*6721(

    Find the displacement, velocity, and acceleration of a lumped mass after one

    second, when it falls under the influence of gravity, with zero initial velocity

    :KDWVLQWKLVPRGXOH

    System-Level Design, 42

    Coordinate Systems, 43

    Part Coordinate System, 44

    Coordinate System Marker, 45

    Differences Between Parts and Graphics, 46

    Parts, Graphics, and Markers, 47

    Types of Parts in ADAMS, 48

    Part Properties (Mass and Inertia), 49

    Graphic Properties, 50

    Workshop 3Falling Mass, 51

    Module review, 56

    g

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    42/11142 Falling Stone

    6\VWHP/HYHO'HVLJQ

    7KHFUDZOZDONUXQDSSURDFK

    Do not build the entire mechanism at once.

    As you add a new component, make sure that it works correctly.

    Check your model at regular intervals.

    $YRLGWKHQHHGIRUFRPSOH[GHEXJJLQJE\IROORZLQJWKHFUDZOZDONUXQDSSURDFK

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    43/111Falling Stone 43

    &RRUGLQDWH6\VWHPV

    'HILQLWLRQRIDFRRUGLQDWHV\VWHP&6

    A coordinate system is essentially a measuring stick to define kinematic and dynamic

    quantities.

    7\SHVRIFRRUGLQDWHV\VWHPV

    Global coordinate system (GCS):

    Rigidly attaches to the ground part.

    Defines the absolute point (0,0,0) of your model and provides a set of axes

    that is referenced when creating local coordinate systems.

    Local coordinate systems (LCS):

    Part coordinate systems (PCS)

    Markers

    Point O

    Point P

    zG

    RR Rxx Ryy Rzz+ +=

    xG

    yG

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    44/11144 Falling Stone

    3DUW&RRUGLQDWH6\VWHP

    'HILQLWLRQRISDUWFRRUGLQDWHV\VWHPV3&6

    Only one exists per part.

    Location and orientation is specified by providing its location and orientation with

    respect to the GCS.

    For the purpose of this class, and because most pre-processors do so, it is recommended that

    each parts PCS has the same location and orientation as the GCS.

    Global coordinate system

    Part coordinate systemPart 1 at location (10, 5.5, 0)

    ground body at location (0, 0, 0)

    10

    5.5

    xG

    yG

    zG

    xP1

    yP1

    zP1

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    45/111Falling Stone 45

    &RRUGLQDWH6\VWHP0DUNHU

    'HILQLWLRQRIDPDUNHU

    It attaches to a part and moves with the part.

    Several can exist per part.

    Its location and orientation can be specified by providing its location and orientation

    with respect to PCS.

    It is used wherever a unique location needs to be defined. For example:

    The location of a parts center of mass.

    The reference point for defining where graphical entities are anchored.

    It is used wherever a unique direction needs to be defined. For example:

    The axes about which part mass moments of inertia are specified.

    Directions for constraints.

    Directions for force application.

    All marker locations and orientations are expressed in PCS.

    Part coordinate systemMarker 1 on Part 1at location (-5, -1, 0)

    Part 1 at location (10, 5.5, 0)-5-1

    xG

    yG

    zG

    xP1

    yP1

    zP1

    Ground Body at location (0, 0, 0)

    xM1

    yM1

    zM1

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    46/111

  • 7/28/2019 Adams Solver Guide

    47/111Falling Stone 47

    3DUWV*UDSKLFVDQG0DUNHUV

    'HSHQGHQFLHVLQ$'$06

    To understand the relationship between parts, graphics, and markers in ADAMS, it is

    necessary to understand the dependencies shown next:

    MARKER/Corner Marker

    (CM)

    MARKER/Center Marker

    (CM)

    GRAPHIC/BLOCK

    MARKER/Center of Mass

    (CM)

    GRAPHIC/CYLINDER

    PART/

    CYLINDER

    BLOCK

    PART

    CM

    GRAPHIC CMs

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    48/11148 Falling Stone

    7\SHVRI3DUWVLQ$'$06

    5LJLGERGLHV

    )OH[LEOHERGLHVEH\RQGWKHVFRSHRIWKLVFRXUVH

    *URXQGSDUW

    Must exist in every model.

    Defines the GCS and the global origin and, therefore, remains stationary at all times.

    Acts as the inertial reference frame for calculating velocities and acceleration.

    Are movable parts.

    Possess mass and inertia properties.

    Cannot deform.

    Are movable parts.

    Possess mass and inertia properties.

    Can bend when forces are applied to them.

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    49/111Falling Stone 49

    3DUW3URSHUWLHV0DVVDQG,QHUWLD

    7KURXJKWKH3$57VWDWHPHQW\RXPXVW

    Provide the mass for a rigid body.

    Provide the inertia matrix for a rigid body.

    Assign mass to a marker that represents the parts center of mass (CM).

    Assign inertia to a marker about which the moments of inertia are defined (CM or

    IM).

    ([DPSOH

    PART/20, MASS = 63.71, CM = 2000, IP = 1.50E5, 1.68E6, 1.68E6

    MARKER/2000, PART = 20, QP = -75, 200, 0

    ADAMS willnot use the dimensions of the graphics to define the mass and inertia.

    No IM marker was defined in this example, therefore, the CMs orientation is

    referenced for inertia.

    Inertia can be calculated for some simple shapes using the Mass Moments of Inertia

    sheet in Tables on page 153.

    Many pre-processors leave the QG argument out of the statement (as seen above),

    which is the equivalent to it being all zeros.

    X

    Z

    YMARKER/2000

    (center of mass)

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    50/11150 Falling Stone

    *UDSKLF3URSHUWLHV

    7KURXJKWKH*5$3+,&VWDWHPHQW\RXPXVW

    Define the shape type (cylinder, circle, and so on).

    Provide the dimensions for the chosen shape.

    Assign graphic to a marker, which defines:

    which part the graphic will follow

    the location of the graphic

    the orientation of the graphic

    ([DPSOH&

  • 7/28/2019 Adams Solver Guide

    51/111Falling Stone 5

    3UREOHPVWDWHPHQW

    Find the displacement, velocity and acceleration of a lumped mass after one second, when it

    falls under the influence of gravity, with zero initial velocity.

    MASS

    g

    mass=1kg

    radius=50mm

    :RUNVKRS)DOOLQJ0DVV

    http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    52/11152 Falling Stone

    &UHDWLQJWKHPRGHOGDWDVHW

    7RFUHDWHWKHPRGHOGDWDVHWEDVHGRQWKHILJXUHJLYHQ

    1 Go to the/mod_03_falling_stone directory.

    2 Open a text editor to create a new file.

    UNIX: Use jot or vi.

    NT: Use Notepad or WordPad.

    3 Define the title by entering ! Falling Stone Model on the first line of the dataset.

    4 Define the units by entering UNITS/.

    To get help with the various statements, go to the ADAMS online documentation, andopen the guide, Using ADAMS/Solver.

    5 Define the acceleration due to gravity for the model by entering ACCGRAV/.

    6 Create the ground part by entering PART/.

    7 Create the stone part by entering PART/, and defining the mass, inertia, and location of

    center of mass.

    The inertia can be calculated using the Mass Moments of Inertia sheet in Tables on

    page 153.8 Define the location of the center of mass to be at the global origin by entering MARKER/.

    9 Create a circle graphic to represent the stone by entering GRAPHICS/.

    Use the CM marker for the part and the CM marker for the graphic.

    10 Generate a graphics (.gra) file for animating later by entering OUTPUT/GRSAV.

    11 Generate a results (.res) file for plotting later by entering RESULTS/.

    12Signify that this is the end of the dataset by entering END.

    13 Save the file as stone.adm in the mod_03_falling_stone directory.

    :RUNVKRS)DOOLQJ0DVV

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    53/111Falling Stone 53

    6LPXODWLQJWKHPRGHO

    In this section, you will create a command file (*.acf) to dynamically simulate the model for

    1 second with 100 output steps.

    7RVLPXODWHWKHPRGHO

    1 Open a text editor.

    2 Enter stone.admas the first line of the command file.

    This is the name of the .adm file you are going to simulate.

    3 Enter stone_output as the second line of the command file.

    This is the name that you want assigned to your output files.

    4 Enter SIMULATE/DYNAMICS, END=1, STEPS=100 as the third lineof your command file.

    To get help with the various commands, go to the ADAMS online documentation.

    5 Enter STOP to signify the end of the commands.

    6 Save the file as stone.acf.

    7 Run the simulation.

    Ensure that the file was simulated properly (no errors or unexpected warning messages).

    3ORWWLQJUHVXOWV

    7RSORWWKHUHVXOWV

    1 Open ADAMS/PostProcessor.

    2 Import the stone_output Solver analysis files (.req, .res, .gra).

    Because you did not generate a .req file, ADAMS/PostProcessor only imports the .res and

    .gra files.

    3 Animate the model to ensure the movement you expected.

    4 Create a new page.

    5 Right-click in the viewport and select Load Plot.

    6 Set Source to Result Sets.

    7 Choose the part whose results you want to plot.

    :RUNVKRS)DOOLQJ0DVV

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    54/11154 Falling Stone

    8 Above the Add Curves button, on the right side of the dashboard, toggle the Surf tool.

    Surf lets you view a selected result component without using the Add Curves button.

    9 Now, select different components from the Component section and see the plot refresh

    with each new selection.

    6ROYLQJIRUWKHSUREOHPVWDWHPHQW

    7RVROYHIRUWKHSUREOHPVWDWHPHQW

    1 Find the value of the stones displacement after 1 second. Use the plot tracking tool on the

    ADAMS/PostProcessor main toolbar.

    2 Determine if this result makes sense.

    If not, check for mistakes in your model and correct them.

    3 If the results do make sense, answer Question 1 in the Module review on page 56.

    4 Find the value of the stones velocity after 1 second.

    Use it to answer Question 2 in the Module review, 56.

    5 Find the value of stones acceleration after 1 second.

    Use it to answer Question 3 in the Module review, 56.

    6 Exit ADAMS/PostProcessor without saving the session.

    2SWLRQDOWDVNV

    7RFKDQJHWKHIDOOLQJVWRQHWRDSURMHFWLOH

    1 Edit the stone.adm file so that the part has an initial velocity of6 m/sec, at an angle of60o

    with respect to the horizontal.

    Use VX and VY parameters for the PART/statement.

    Plot Tracking

    :RUNVKRS)DOOLQJ0DVV

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    55/111Falling Stone 55

    2 Save the file as projectile.adm.

    3 Edit the stone.acf file, so that it will run the new file, projectile.adm.

    4 Save the file as projectile.acf.

    5 Simulate the model.

    6 Animate and plot to see the stones new displacement and velocity values.

    $'$06UHVXOWV

    Displacement after 1 sec = -4903.3 mm

    Velocity after 1 sec =-9806.6 mm/sec

    Acceleration after 1 sec = -9806.6 mm/sec2

    &ORVHGIRUPVROXWLRQ

    $QDO\WLFDOVROXWLRQ

    s = (at2) = 4903.325 mm

    v = at = 9806.65 mm/sec

    a= g = 9806.65 mm/sec2

    :KHUH

    s = Distance (mm)

    a = Acceleration (mm/sec2)

    t = Time (sec)

    v = Velocity (mm/sec)

    :RUNVKRS)DOOLQJ0DVV

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    56/11156 Falling Stone

    0RGXOHUHYLHZ

    1 What is the stones displacement after one second?

    ________________________________________________________________________

    2 What is the stones velocity after one second?

    ________________________________________________________________________

    3 What is the stones acceleration after one second?

    ________________________________________________________________________

    4 What do many pre-processors write for the QG argument in the PART/statement?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    5 The CM argument appears in both the PART/statement and certain GRAPHIC/

    statements. What is the difference in each case?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    6 Can the CM be the same marker in both the PART/statement and the GRAPHIC/

    statement?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    :RUNVKRS)DOOLQJ0DVV

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    57/11157

    21('2)3(1'8/80

    Find the initial force supported by the pin at A, for a bar that swings in a vertical

    plane about a pivot, given the initial angular displacement (o).

    qo=45o

    mass=1 kgradius=25 mmlength=250 mm

    g

    A

    :KDWVLQWKLVPRGXOH

    Constraints, 58

    Use of Markers in Constraints, 59

    Three-Point Orientation Method, 61

    Degrees of Freedom (DOF), 62

    Revolute Joint, DOF Removed by, 154

    Workshop 4One DOF Pendulum, 63

    Module review, 68

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    58/11158 2QH'2)3HQGXOXP

    &RQVWUDLQWV

    'HILQLWLRQRIDFRQVWUDLQW

    Restricts relative movement between parts.

    Represents idealized connection.

    Removes rotational and/or translational DOF from a system.

    ([DPSOH

    7UDQVODWLRQDOFRQVWUDLQWVRIWKHKLQJH

    5RWDWLRQDOFRQVWUDLQWVRIWKHKLQJH

    (about x-axis)

    (about y-axis)

    Therefore,

    Wall

    Door

    Wall

    Door

    Zw

    Xw

    Yw

    ZD

    XD

    YD

    XD XW 0=

    YD YW 0=

    ZD ZW 0=

    D W 0=

    D W 0=

    D and W are free

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    59/1112QH'2)3HQGXOXP 59

    8VHRI0DUNHUVLQ&RQVWUDLQWV

    &RQVWUDLQWHTXDWLRQVLQ$'$06

    Constraints are represented as algebraic equations in ADAMS/Solver.

    These equations describe the relationship between two markers.

    Joint parameters, referred to as I and J markers, define the location, orientation, and

    the connecting parts:

    First marker, I, is fixed to the first part.

    Second marker, J, is fixed to the second part.

    $QDWRP\RIDFRQVWUDLQWLQ$'$06

    JOINT/0120(hinge)

    PART/20(door)

    PART/01(wall)

    MAR/2001(I marker)

    MAR/0101(J marker)

    Model(example.adm)

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    60/11160 2QH'2)3HQGXOXP

    8VHRI0DUNHUVLQ&RQVWUDLQWV

    The I and J markers referenced in the joint (and therefore, the parts to which they

    belong), move with respect to each other as follows:

    The I and J markers overlap at time = 0.

    During simulation, the z-axes of both markers stay aligned.

    ([DPSOH5HYROXWH-RLQW,DQG-PDUNHUV

    JOINT/0120, REVOLUTE, I=0103, J=2003

    MAR/0103, PART=01, QP = 3,5,0

    MAR/2003, PART=20, QP = 3,5,0

    zi zj,

    y i yj

    x i

    xj

    zi zj,

    xi xj,

    yi yj,

    PART/01

    PART/20

    MAR/0103

    MAR/2003

    The Magical Cactus

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    61/1112QH'2)3HQGXOXP 6

    7KUHH3RLQW2ULHQWDWLRQ0HWKRG

    You can define a coordinate systems orientation using two methods:

    Rotation sequence method (Euler angles). See the guide, Using ADAMS/Solver for

    more details.

    Three-point method.

    'HILQHWKHRULHQWDWLRQRIDFRRUGLQDWHV\VWHPXVLQJWKHWKUHHSRLQWPHWKRG

    In the MARKER/statement, definethree points:

    QP - origin of the coordinate system

    ZP - coordinates of a point that you want the z-axis to point at

    XP - coordinates of a point that you want the x-axis to point at

    ([DPSOH0$5.(5

    MARKER/2003, PART=20, QP=3, 5, 0, ZP=9, 5, 0, XP=3, 10, 0

    Zm

    Xm

    Ym

    Yg

    ZgXg

    QP (3,5,0)

    XP (3,10,0)

    ZP (9,5,0)

    (0,0,0)

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    62/11162 2QH'2)3HQGXOXP

    'HJUHHVRI)UHHGRP'2)

    &RQVWUDLQWVDQG'2)

    Each DOF corresponds to at least one equation of motion.

    A freely floating rigid body in three-dimensional space is said to have six DOF.

    A constraint removes one or more DOF from a system, depending on its type.

    'HWHUPLQHWKHQXPEHURIV\VWHP'2)

    ADAMS/Solver will provide an estimated number of system DOF by using the

    Grueblers Count:

    ADAMS/Solver also provides the actual number of system DOF, as it checks to see

    whether:

    Appropriate parts are connected by each constraint.

    Correct directions are specified for each constraint.

    Correct type of DOF (translational versus rotational) are removed by each

    constraint.

    Redundant constraints exist in the system.

    Rigid body

    zx

    y

    System DOF = number of movable parts 6 DOF/ part( )

    # Constraints # DOF (Constraint)[ ]i type=

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    63/1112QH'2)3HQGXOXP 63

    3UREOHPVWDWHPHQW

    Find the initial force supported by the pin at A for a bar that swings in a vertical plane about a

    pivot, given the initial angular displacement, o.

    o=45o

    mass=1kgradius=25mm

    length=250mm

    g

    A

    :RUNVKRS2QH'2)3HQGXOXP

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    64/11164 2QH'2)3HQGXOXP

    &UHDWLQJWKHPRGHOGDWDVHW

    7RFUHDWHWKHPRGHOGDWDVHWEDVHGRQWKHILJXUHJLYHQ

    1 Change to the/mod_04_pendulum directory.

    2 Open a text editor:

    UNIX: Use jot or vi.

    NT: Use Microsoft Notepad or WordPad.

    3 Enter ! Pendulum Model as the first line of the dataset.

    This is the title.

    4 Define the units by entering UNITS/.

    5 Define the acceleration due to gravity by entering ACCGRAV/.

    6 Create the ground part by entering PART/.

    7 Create the pendulum part by entering PART/and setting the inertia properties.

    8 Define the location and orientation of the center of mass by entering MARKER/.

    Location is very important in this model because the pendulum is going to start at an

    angle.

    Orientation is also important because the inertia values (Ixx, Iyy, and Izz) are not allthe same for this part. In the last module, you created a sphere (where: Ixx = Iyy = Izz).

    A cylinder is not that simple. In addition, the orientation is dependent on the initial

    conditions of the part.

    To define the orientation, use the three-point method.

    9 Create a cylinder graphic to represent the pendulum by entering GRAPHICS/.

    10 Define the location and orientation of the center marker for the cylinder graphic by

    entering MARKER/.

    The orientation for this marker is dependent on the initial conditions for the cylinder.

    Again, use the three-point method.

    11 Generate a graphics (.gra) file for output by entering OUTPUT/GRSAV.

    12 Generate a results (.res) file for output by entering RESULTS/.

    :RUNVKRS2QH'2)3HQGXOXP

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    65/1112QH'2)3HQGXOXP 65

    13 Signify that this is the end of the dataset by entering END.

    14 Save the file as pendulum.adm in the mod_04_pendulum directory.

    7HVWLQJWKHPRGHO

    7RFUDZOZDONUXQWHVWWKHPRGHOVRIDU

    1 Create a command file (*.acf) to dynamically simulate the model for 1 second with

    50 output steps.

    2 Run the simulation.

    Ensure that the file was simulated properly (no errors or unexpected warning messages).

    3 View the animation to visually check for errors.

    At this point you have no constraints in the model, so the pendulum should just fall.

    But you can check your initial conditions and make sure they are acceptable.

    You may want to turn on the global triad in ADAMS/PostProcessor.

    Toggle the View button in the dashboard below your viewport.

    Check the Display Triad box.

    4 If anything in the results does not make sense, modify your .adm file.

    &RQVWUDLQLQJWKHSHQGXOXP

    7RFRQVWUDLQWKHSHQGXOXP

    1 Open a text editor to modify your .adm file.

    2 Create the appropriate joint between the pendulum and ground by entering JOINT/.

    3 Create the I marker for the constraint by entering MARKER/.

    4 Create the J marker for the constraint by entering MARKER/.

    5 Run the simulation and check your results.

    6 Plot the FX and FY components of force for the revolute joint.

    Use the values to answer Question 1 in the Module review on page 68.

    :RUNVKRS2QH'2)3HQGXOXP

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    66/11166 2QH'2)3HQGXOXP

    :RUNVKRS2QH'2)3HQGXOXP

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    67/1112QH'2)3HQGXOXP 67

    2SWLRQDOWDVNV

    7RDGGIRUFHJUDSKLFV

    Visualize the reaction forces in the joint by entering GRAPHICS/.

    7RYLHZWKHDQLPDWLRQDQGWKHSORWVDWWKHVDPHWLPH

    1 Right-click the Page Layout tool.

    2 Choose a layout that has enough viewports to view your plots and the animation.

    3 In the viewport where you would like to put your animation, right-click and select Load

    Animation.

    4 In the other ports, right-click and select Load Plot.

    5 Set up your plots (if they are not set up already).

    6 Animate the results.

    7 You may need to modify the scale of the force graphics in ADAMS/PostProcessor.

    From the Edit menu, select Preferences.

    In the PPT Preferences dialog box, in the upper left corner, toggle Animation.

    To modify the scale, from the upper right corner use the Force and Torque Scale text

    boxes.

    :RUNVKRS2QH'2)3HQGXOXP

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    68/11168 2QH'2)3HQGXOXP

    0RGXOHUHYLHZ

    1 What are the initial values of force in the global x and y directions?

    ________________________________________________________________________

    2 If a markers QP=10,14,2, and you want its z-axis to point in the global y direction, what

    could ZP equal?

    ________________________________________________________________________

    3 In the JOINT/statement, how do you indicate which two parts are being connected?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    :RUNVKRS2QH'2)3HQGXOXP

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    69/11169

    /,1($5635,1*'$03(5,

    Investigate the linear spring-damper system shown in the following figure, using

    different types of simulations in ADAMS.

    MASS

    kc

    g

    :KDWVLQWKLVPRGXOH

    Initial Condition Simulation, 70

    Types of Simulations, 71

    Simulation Hierarchy, 72

    Forces in ADAMS, 73

    Spring Dampers in ADAMS, 74

    Magnitude of Spring Dampers, 75

    Workshop 5Spring Damper I, 76

    Module review, 80

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    70/11170 /LQHDU6SULQJ'DPSHU,

    ,QLWLDO&RQGLWLRQ6LPXODWLRQ

    'HILQLWLRQRILQLWLDOFRQGLWLRQVVLPXODWLRQ

    Attempts to resolve any conflicts in the initial conditions specified for the entities in

    the model (for example, broken joints).

    Is also known as an assemble simulation.

    ,QLWLDOORFDWLRQDQGRULHQWDWLRQRISDUWV

    You specify the initial position and orientation for a part when you create it.

    For a part to be held fixed during the initial condition simulation, you can specify up

    to three positions ( ) and up to three orientations (psi, theta, phi).

    To do so, use the EXACTargument in thePART/statement

    Use initial positions sparingly. If you fix the initial positions of too many parts, theinitial conditions simulation can fail.

    ([DPSOH,QLWLDOFRQGLWLRQVFRPPDQG

    SIMULATE/INTIAL_CONDITIONS

    xG yG zG, ,

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    71/111/LQHDU6SULQJ'DPSHU, 7

    7\SHVRI6LPXODWLRQV

    6WDWLF

    '\QDPLF

    .LQHPDWLF

    System DOF > 0.

    System velocities and accelerations set to zero.

    Can fail if the static solution is a long way fromthe initial condition.

    ([DPSOHSIMULATE/STATIC

    System DOF > 0.

    Driven by a set of external forces and excitations.

    Nonlinear differential and algebraic equations

    (DAEs) are solved.

    ([DPSOHSIM/DYNAMIC, END=1, STEP=100

    System DOF = 0.

    Driven by constraints (motions).

    Only constraint (algebraic) equations are beingsolved.

    Calculate (measure) reaction forces in constraints.

    ([DPSOHSIM/KINEMATIC, END=1, STEP=100

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    72/11172 /LQHDU6SULQJ'DPSHU,

    6LPXODWLRQ+LHUDUFK\

    Often a linear simulation is preceded by a static equilibrium or dynamic simulation. We

    are not going to use linear simulations in the next workshop.

    Initial Condition Simulation

    Transient* Static*

    Kinematic* Dynamic*

    Nonlinear

    MotionStudy Equilibrium

    Nonlinear

    DOF = 0 DOF > 0

    * Automatically performs an assemble simulation

    Linear

    Eigensolution

    or State Matrices

    Linear

    Calculation(s)

    Initial Condition

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    73/111/LQHDU6SULQJ'DPSHU, 73

    )RUFHVLQ$'$06

    'HILQLWLRQRIIRUFHV

    Try to make parts move in certain ways.

    Do not perfectly connect parts together the way constraints do.

    Do not absolutely prescribe movement the way motion drivers do.

    Neither add nor remove DOF from a system.

    &KDUDFWHULVWLFVRIIRUFHV

    The characteristic: Defines:

    Bodies Which parts are affected

    Points of application Where the parts are affected

    Vector components How many vector components there are

    Direction/Orientation How the force is oriented

    Magnitude Whether the force is pre-defined or user-defined

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    74/11174 /LQHDU6SULQJ'DPSHU,

    6SULQJ'DPSHUVLQ$'$06

    'HILQLWLRQRIVSULQJGDPSHUV

    &KDUDFWHULVWLFVRIVSULQJGDPSHUV

    See also: Characteristics of a translational and rotational spring damper, page 155.

    They are pre-defined forces.

    They represent compliance:

    Between two bodies.

    Acting over a distance.

    Along or about one

    particular direction.

    The characteristic: Defines:

    Bodies Two (A, B)

    Points of application Two (I and J marker)

    Vector components One

    Orientation (only fortranslational)

    Acts along the line of sight between the I and J markers

    Positive force repels the two parts

    Negative force attracts the two parts

    MagnitudePre-defined equation based on stiffness and damping

    coefficients (linear)

    I marker

    J marker

    BA

    (+)

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    75/111/LQHDU6SULQJ'DPSHU, 75

    0DJQLWXGHRI6SULQJ'DPSHUV

    0DJQLWXGHEDVHGRQVWLIIQHVVDQGGDPSLQJFRHIILFLHQWV

    Linear spring-damping relationship can be written as:

    ForceSPDP = k(q - L0) c + F0

    where:

    q - Distance between the two locations that define the spring damper

    - Relative speed of the locations along the line-of-sight between them

    k - Spring stiffness coefficient (always > 0)

    c - Viscous damping coefficient (always > 0)

    F0 - Reference force of the spring (preload)

    L0 - Reference length (at preload, always > 0)

    Spring damper forces become ill-defined if endpoints become coincident because of

    undefined direction.

    ([DPSOH7UDQVODWLRQDO6SULQJ'DPSHU,DQG-PDUNHUV

    SPRINGDAMPER/0120, I=0107, J=2006, K=5, C=.1, L=400, TRANSLATION

    MAR/0107, PART=01, QP=0,100,0

    MAR/2006, PART=20, QP=0,500,0

    q

    q

    Fk= k(q-L0) +

    Fk

    kL0+F0

    F0

    L0

    r

    -k

    free length

    c

    Fc

    Fc = c(dq/dt)

    dq/dt

    Linear Spring Linear Damper

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    76/11176 /LQHDU6SULQJ'DPSHU,

    3UREOHPVWDWHPHQW

    Investigate the linear spring-damper system shown in the following figure, using different types

    of simulations in ADAMS.

    MASS

    k=5.0 N/mmc=0.05N-sec/mm

    Lo=400mm g

    m=187.224kg

    :RUNVKRS6SULQJ'DPSHU,

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    77/111/LQHDU6SULQJ'DPSHU, 77

    &UHDWLQJWKHPRGHOGDWDVHW

    7RFUHDWHWKHPRGHOGDWDVHWEDVHGRQWKHILJXUHJLYHQ

    1 Change to the /mod_05_springdamper_1 directory.

    2 Open a text editor.

    UNIX: Use jot or vi.

    NT: Use Microsoft Notepad or WordPad.

    3 Enter ! SpringDamper Model as the first line of the dataset.

    This is the title.

    4 Enter UNITS/to define the units.

    5 Enter ACCGRAV/to define the acceleration due to gravity for the model.

    6 Create the ground part by entering PART/.

    7 Create the mass part by entering PART/.

    Because you are going to constrain the mass with a translational joint, you dont needinertia properties.

    8 Define the location of the center of mass by entering MARKER/.

    9 Enter GRAPHICS/to create a circle graphic representing the mass.

    10 Define the location and orientation of the center marker for the circle graphic by entering

    MARKER/.

    Orientation is very important for this graphic.

    11 Enter JOINT/to constrain the mass to move only in the Global-Y direction using a

    translational joint.

    12 Create the I marker for the translational joint by entering MARKER/.

    The orientation of the I and J markers are what define the orientation of the joint.

    13 Answer Question 1 in the Module review on page 80.

    14 Create the J marker for the translational joint by entering MARKER/.

    15 Enter OUTPUT/GRSAV to generate a graphics (.gra) file for output.

    :RUNVKRS6SULQJ'DPSHU,

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    78/11178 /LQHDU6SULQJ'DPSHU,

    16 Enter RESULTS/to generate a results (.res) file for output.

    17 Signify that this is the end of the dataset by entering END.

    18 Save the file as spring_1.adm in the mod_05_springdamper_1 directory.

    7HVWLQJWKHPRGHO

    7RFUDZOZDONUXQWHVWWKHPRGHOVRIDU

    1 Create a command file (spring_1dyn.acf) to dynamically simulate the model for 2 seconds

    with 50 output steps.

    2 Simulate the model.

    Ensure that the file was simulated properly (no errors or unexpected warning messages).

    3 Play the animation to visually check for errors.

    Because you have only the translational joint in the model, the mass should just fall.

    4 If needed, modify your .adm file.

    +DQJLQJWKHPDVV

    7RKDQJWKHPDVVIURPDVSULQJDQGGDPSHULQSDUDOOHO

    1 Open a text editor to modify your .adm file.

    2 Create a spring between the mass and ground by entering SPRINGDAMPER/.

    3 Create the I marker for the spring by entering MARKER/.

    If the I marker is going to be on the mass, then you could just use the center of mass marker

    4 Create the J marker for the spring by entering MARKER/.

    The J marker should be located 400 mm above the I marker.5 Save the file.

    6 Run a dynamic simulation.

    7 View the animation of the model.

    Does the animation make sense?

    :RUNVKRS6SULQJ'DPSHU,

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    79/111/LQHDU6SULQJ'DPSHU, 79

    8 Plot the Magnitude of Force in the SpringDamper vs. the Position of the Mass Part.

    9 Answer Question 2 in the Module review on page 80.

    )LQGLQJWKHVSULQJGDPSHUIRUFH

    7RILQGWKHVSULQJGDPSHUIRUFHDWVWDWLFHTXLOLEULXP

    1 Run an equilibrium simulation.

    2 Create a new command file (spring_1static.acf) to find the static equilibrium.

    3 Open ADAMS/PostProcessor.

    4 Using the Result Sets as the source, plot the spring dampers force magnitude (FMAG).

    The results of an equilibrium simulation, may be just one data point; therefore, if you usethe Plot Tracking tool, it is easier to find the value of the single point.

    5 Use the values to answer Question 3 in the Module review on page 80.

    :RUNVKRS6SULQJ'DPSHU,

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    80/11180 /LQHDU6SULQJ'DPSHU,

    2SWLRQDOWDVNV

    1 Use the GRAPHICS/command to add a graphic to visualize the spring (coils, and so on).

    2 Use the GRAPHICS/command to add graphics to see the reaction forces on the I and J

    markers of the spring.

    3 When you animate the results, you may need to modify the scale of the force graphics in

    ADAMS/PostProcessor.

    From the Edit menu, select Preferences.

    In the upper left corner of the PPT Preferences dialog box, select Animation.

    To modify the scale, use the Force and Torque Scale text boxes in the upper right

    corner.

    0RGXOHUHYLHZ

    1 Which axis of theI and J markers defines the axis of translation for the translational joint?

    ________________________________________________________________________

    2 What is the approximate slope of the Spring Force versus Mass Position plot? Does this

    value make sense?

    ________________________________________________________________________

    ________________________________________________________________________________________________________________________________________________

    3 What is the value of spring damper force at static equilibrium?

    ________________________________________________________________________

    :RUNVKRS6SULQJ'DPSHU,

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    81/1118

    /,1($5635,1*'$03(5,,

    Replace the linear spring damper created in the previous module with a single-

    component force that enables you to provide an equation that describes the force

    magnitude, allowing for more flexibility.

    MASS

    F=-k*(q-Lo)-c*q.

    g

    :KDWVLQWKLVPRGXOH

    Single-Component Forces: Action-Reaction, 82

    Functions in ADAMS, 83

    Measuring Displacement (Functions continued), 84

    Measuring Velocity (Functions continued), 85

    Workshop 6Spring Damper II, 86

    Module review, 89

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    82/11182 /LQHDU6SULQJ'DPSHU,,

    6LQJOH&RPSRQHQW)RUFHV$FWLRQ5HDFWLRQ

    &KDUDFWHULVWLFVRIDQDFWLRQUHDFWLRQVLQJOHFRPSRQHQWIRUFH6)25&(

    They are user-defined forces.

    They represent forces:

    Between two bodies.

    Acting over a distance.

    Along or about one

    particular direction.

    See also: Characteristics of an action-reaction S-force, page 155

    ADAMS applies action and reaction forces to the I and J markers that are created.

    The characteristic: Defines:

    Bodies Two (A, B)

    Points of application Two (I and J markers)

    Vector components One

    Orientation Acts along the line of sight (between the I and J

    markers)

    Positive force repels the two parts

    Negative force attracts the two parts

    Magnitude User-defined

    Sforce

    I marker

    (+)

    BA

    J marker

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    83/111/LQHDU6SULQJ'DPSHU,, 83

    )XQFWLRQVLQ$'$06

    'HILQLWLRQRIIXQFWLRQVLQ$'$06

    You use functions to define magnitudes of input vectors used in motions and applied

    forces.

    Every function evaluates to a single value at each particular point in time.

    Motions can only be a function of time:

    M = f(time)

    Applied forces can be a function of just about any measurement in your model

    F = f(displacement, velocity, reaction force in a joint, ...)

    ([DPSOH6)25&(UHSUHVHQWLQJDGUDJIRUFH

    SFORCE/2080, I=2010, J=8013, TRANSLATIONAL

    , FUNCTION = 0.5*0.0032*(VX(2010, 8013, 8013)**2)*1.4*19.3

    The equation for drag force looks like:

    Fdrag1

    2--- Vx( )

    2C

    DA

    =

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    84/11184 /LQHDU6SULQJ'DPSHU,,

    0HDVXULQJ'LVSODFHPHQW)XQFWLRQVFRQWLQXHG

    'LVSODFHPHQWIXQFWLRQV

    Translational displacement returns scalar portions of vector components

    (measurements are taken to a marker (I) from another (J), resolved in Rs CS), as

    shown in the example below.

    Rotational displacement returns angles associated with a particular rotation sequence.

    6\QWD[IRUWUDQVODWLRQDOGLVSODFHPHQWIXQFWLRQV

    DM(I,J)

    DX, DY, DZ(I,J,R)

    ([DPSOH

    DY(I,J,R)

    R

    yR x

    R

    DX(I,J,R)

    DM(I,J)I J

    (-)(+)

    y y

    x x

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    85/111/LQHDU6SULQJ'DPSHU,, 85

    0HDVXULQJ9HORFLW\)XQFWLRQVFRQWLQXHG

    'HILQLWLRQRIYHORFLW\IXQFWLRQV

    Returns scalar portions of velocity vector components (translational or rotational).

    6\QWD[IRUWUDQVODWLRQDOYHORFLW\IXQFWLRQV

    VM(I,J)

    VR(I,J)

    VX, VY, VZ(I,J,R,L)

    The velocity function, VR, is used to define velocity along the line of sight, which is

    commonly used in spring dampers.

    If the markers are separating: VR > 0.

    If the markers are approaching: VR < 0.

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    86/11186 /LQHDU6SULQJ'DPSHU,,

    3UREOHPVWDWHPHQW

    Replace the linear spring damper created in the previous module with a single-component force

    that enables you to provide an equation that describes the force magnitude, allowing for more

    flexibility.

    MASS

    F=-k*(q-Lo)-c*qg.

    :RUNVKRS6SULQJ'DPSHU,,

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    87/111/LQHDU6SULQJ'DPSHU,, 87

    *HWWLQJVWDUWHG

    7RJHWVWDUWHG

    1 Copy the .adm and .acf files from that last module to the directory,

    /mod_06_springdamper_2.

    If you did not finish the last module workshop, you can use the files that are provided in the

    completed directory in mod_05_springdamper_1. You should copy those to the

    mod_06_springdamper_2 directory.

    UNIX: Make sure the current directory is /mod_05_springdamper_1

    directory and use the cp command.

    cp *.adm *.acf. ./mod_06_springdamper_2

    This UNIX command copies (cp) all files that end with .adm and .acf to a particular directory(mod_06_springdamper_2).

    NT: Use the mouse and the exploring capabilities to move files.

    2 Change to the /mod_06_springdamper_2 directory.

    (GLWLQJWKHPRGHOGDWDVHW

    7RHGLWWKHPRGHOGDWDVHWEDVHGRQWKHILJXUHJLYHQ

    1 Open your .adm file in a text editor.

    2 Enter ! SPRINGDAMPER/to comment out the SPRINGDAMPER/ statement lines that you

    created during the first module.

    3 Add a single-component force that will behave exactly as the spring did, by entering

    SFORCE/:

    Use the same I and J markers you used with the SPRINGDAMPER/.

    The function syntax should be:

    where q = DM( _ , _ ) and qdot = VR( _ , _ )

    For help with the DM and VR functions, look them up in the guide, Using ADAMS/

    Solverin the Functions section.

    4 Save the file as spring_2.adm in the mod_06_springdamper_2 directory.

    k q Lo

    ( ) cq

    :RUNVKRS6SULQJ'DPSHU,,

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    88/11188 /LQHDU6SULQJ'DPSHU,,

    7HVWLQJWKHPRGHO

    7RFUDZOZDONUXQWHVWWKHPRGHOVRIDU

    1 Edit the command file, spring_1dyn.acf to dynamically simulate the new model

    spring_2.adm.

    2 Simulate the model.

    Ensure that the file was simulated properly (no errors or unexpected warning messages).

    3 Play the animation to visually check for errors.

    4 If needed, modify your .adm file.

    )LQGLQJWKHVSULQJGDPSHUIRUFH

    7RILQGWKHVSULQJGDPSHUIRUFHDWVWDWLFHTXLOLEULXP

    1 Edit the command file, spring_1static.acf, to find the static equilibrium of the model

    spring_2.adm.

    2 Run an equilibrium simulation.

    3 Open ADAMS/PostProcessor.

    4

    Using the result sets as the source, plot the SFORCEs force magnitude (FMAG).5 Use the values to answer Question 1 in the Module review on page 89.

    2SWLRQDOWDVNV

    7RXQGHUVWDQGWKHIUHHGRPRIXVLQJXVHUGHILQHGIRUFHVPDNHWKHVSULQJGDPSHUQRQOLQHDU

    Change the single-component force so that its function describes a nonlinear force.

    For example, add an exponential to the deformation portion of the force:

    F k q Lo

    ( )2

    cq

    =

    :RUNVKRS6SULQJ'DPSHU,,

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    89/111/LQHDU6SULQJ'DPSHU,, 89

    0RGXOHUHYLHZ

    1 Does the force magnitude at static equilibrium equal the value that was derived in the

    previous module?

    ________________________________________________________________________

    2 What is the benefit of using an SFORCE/instead of a SPRINGDAMPER/?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    3 What is the drawback of using an SFORCE/instead of a SPRINGDAMPER/?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    :RUNVKRS6SULQJ'DPSHU,,

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    90/11190 /LQHDU6SULQJ'DPSHU,,

    :RUNVKRS6SULQJ'DPSHU,,

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    91/1119

    %5$.(6

  • 7/28/2019 Adams Solver Guide

    92/11192 Brake System

    $SSO\LQJ0RWLRQ

    $'$06SURYLGHVWZRW\SHVRIPRWLRQV

    Joint motion

    Point motion (marker based)

    -RLQWPRWLRQ

    There are two types:

    Translational: applied to translational or cylindrical joints (removes 1 DOF)

    Rotational: applied to revolute or cylindrical joints (removes 1 DOF).

    You define the joint to which motion is applied.

    ADAMS uses the joints I and J markers and a single DOF.

    You define motion magnitude as a:

    Displacement function of time

    Velocity function of time

    Acceleration function of time

    ([DPSOH-RLQW'LVSODFHPHQW-RLQW0RWLRQJOINT/2010, REVOLUTE, I=2011, J=1011

    MOTION/2010, JOINT=2010, DISPLACEMENT, FUNCTION=80D*sin(360D*time)

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    93/111Brake System I 93

    67(3)XQFWLRQ

    'HILQLWLRQRID67(3IXQFWLRQ

    In ADAMS, the STEP function approximates an ideal mathematical step function

    (but without the discontinuities).

    Avoid discontinuous functions because they lead to solution convergence difficulties.

    The STEP function steps quantities, such as motions or forces, up and down, or on

    and off.

    A STEP function is used when a value needs to be changed from one constant toanother.

    6\QWD[IRU67(3IXQFWLRQ

    STEP (q, q1, f1, q2, f2)

    where:

    q - Independent variable

    q1 - Initial value for q

    f1 - Initial value for f

    q2 - Final value for q

    f2 - Final value for f

    ([DPSOH

    STEP (time,1,5,3,10)

    Time

    q1 < q2

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    94/11194 Brake System

    5(48(67LQJ0HDVXUHPHQW'DWD

    'HILQLWLRQRID5(48(67

    Indicates a set of data you want written to the request (.req) file.

    7KHUHDUHWZRW\SHVRI5(48(67V

    Pre-defined

    Displacements

    Reaction forces

    And so on

    User-defined

    User-written functions

    User-written subroutines

    :K\XVH5(48(67VLQVWHDGRI5(68/7V"

    Results (.res) files do not allow you to write your own functions to be evaluated

    during the simulation.

    Results (.res) files are often very large. A large amount of CPU time can be spentgenerating the data in these files, when you may only be concerned with certain

    measurements.

    ([DPSOH3UHGHILQHG5(48(67

    REQUEST/01, DISPLACEMENT, I=0201, J=0103

    , COMMENT=CRANK CENTER OF MASS DISPLACEMENT

    Requesting the displacement ofMAR/0201 with respect to MAR/0103.

    When you import the .req file into ADAMS/PostProcessor, it offers you all

    translational and rotational components (x,y,z,mag) of displacement.

    You will also see the COMMENT in ADAMS/PostProcessor if you include one.

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    95/111Brake System I 95

    3UREOHPVWDWHPHQW

    Constrain the given brake system, and approximate the effort (force) required to fully engage

    the brake.

    0RGHOGHVFULSWLRQ

    The given model is a simplified model of a brake system that currently has three parts

    and the associated graphics defined.

    In addition, there is a single-component force (SFORCE) already defined that

    describes a linear force between the cylinder and ground. The SFORCE represents the

    tension in the brake cable.

    You are going to add constraints to the brake system.

    *HWWLQJVWDUWHG

    7RJHWVWDUWHG

    1 Change to the /mod_07_brake_1 directory.

    2 Simulate the given model.

    Use the given files, brake.adm and brake.acf.

    Pedal

    Cylinder

    Connecting RodCable Tension

    :RUNVKRS%UDNH6\VWHP,

    http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    96/11196 Brake System

    3 View the animation in ADAMS/PostProcessor.

    You should see the connecting rod and pedal fall due to gravity.

    The cylinder will swing around some but it should not fall off of the screen because it is

    attached to the SFORCE that is described in the Model Description on page 95.

    *HWWLQJWRNQRZWKHPRGHO

    (Pedal)

    PART/10

    PART/30

    (Connecting Rod)

    PART/20

    (Cable Tension)SFORCE/3001

    (0,0,0)

    (-225,-150,0)(-175,-150,0)

    (-125,-150,0)

    (25,-300,0)

    (100,-500,0)

    (16.33,-200,0)

    (Cylinder)

    :RUNVKRS%UDNH6\VWHP,

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    97/111Brake System I 97

    &RQVWUDLQLQJWKHPRGHO

    7RFRQVWUDLQWKHPRGHO

    1 Open the brake.adm file in a text editor.

    Adding constraints to the model will involve JOINT/ and MARKER/ statements. Also,

    dont forget that the orientation and the location of the I and J markers define the

    location and orientation of the joints.

    2 Constrain the pedal to the ground.

    Save the brake.adm file.

    Simulate the model.

    Animate the output to ensure this joint is placed correctly.

    3 Constrain the connection rod to the pedal.

    Save, simulate, and animate again.

    4 Constrain the cylinder part to the connection rod.

    Save, simulate, and animate again.

    5

    Constrain the cylinder part to the ground.Save, simulate, and animate again.

    When you animate the constrained model, it will not have much movement due to gravity.

    Next, you drive the model with a motion.

    :RUNVKRS%UDNH6\VWHP,

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    98/11198 Brake System

    &KHFNLQJIRUPRYHPHQW

    7RFKHFNIRUWKHDSSURSULDWHDPRXQWRIF\OLQGHUPRYHPHQW

    1 Use the MOTION/statement to apply a motion to the joint that is between the pedal and the

    ground) to move the cylinder at least 30 mm.

    To get 30 mm of cylinder movement, you must rotate the pedal about 9o.

    For the motion function, use the following equation to represent displacement with

    respect to time: STEP(time,0,0,0.1,-9D). Depending on the positive direction in your

    model, the last argument -9D may need to be positive in your model.

    2 Simulate the model.

    3 View the animation to check if the brake system is moving properly.

    :RUNVKRS%UDNH6\VWHP,

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    99/111Brake System I 99

    5HTXHVWLQJWKHPRYHPHQW

    7RUHTXHVWWKHPRYHPHQWRIWKHF\OLQGHUDQGWKHWRUTXHLQWKHPRWLRQ

    1 Request the displacement of the cylinder by entering REQUEST/. Use the I and J markers of

    the translational joint between the cylinder and the ground.

    2 Request the torque (force) in the motion by entering REQUEST/.

    3 Add the REQSAV argument to the OUTPUT/statement that is near the top of the .adm file.

    4 Simulate the model.

    5 Use requests as your source in ADAMS/PostProcessor and plot the displacement through

    which the cylinder goes.

    :RUNVKRS%UDNH6\VWHP,

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    100/111100 Brake System

    6 Use your other request and plot the torque applied to the model by the motion.

    $SSUR[LPDWLQJWKHIRUFH

    7RDSSUR[LPDWHWKHPD[LPXPIRUFHWKDWQHHGVWREHDSSOLHGWRWKHSHGDO

    Approximate the moment arm.

    Later, in the next module, you will apply a force to the pedal at a location that is

    directly in between markers 1081 and 1082.

    :RUNVKRS%UDNH6\VWHP,

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    101/111Brake System I 10

    To approximate the needed force magnitude, you can divide the torque plot by the

    length of the moment arm. First, however, you must calculate the length of the

    moment arm.

    7 Answer Questions 1 and 2 in the Module review on page 103.

    8 Scale the curve:

    From the View menu, point to Toolbars, and then select Curve Edit Toolbar.

    From the toolbar that appears, select the Scale tool.

    Type the reciprocal of the moment arm value in the text box to the right of the Curve

    Edit toolbar.

    Select Enter.

    Left-click the curve you want to scale.

    A new curve appears.

    You may want to delete the original curve to clean up the view and improve the scale

    Answer Question 3 in the Module review on page 103.

    (Pedal)PART/10

    MAR/1081

    MAR/1082

    (Connecting Rod)

    PART/20

    Location?

    :RUNVKRS%UDNH6\VWHP,

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    102/111102 Brake System

    2SWLRQDOWDVNV

    7RUHPRYHUHGXQGDQWFRQVWUDLQWV

    1 By using the .msg file, check to see how many redundant constraints exist in your model.

    How many redundant constraints would you need to remove, in order to not have any?

    2 Remove the redundant constraints created by two of the joints.

    Replace the revolute joint between the pedal and the connecting rod with a spherical

    joint.

    Replace the translational joint between the cylinder and the ground with a cylindrical

    joint.

    3 Simulate the model and check for redundancies in the .msg file.

    :RUNVKRS%UDNH6\VWHP,

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/28/2019 Adams Solver Guide

    103/111Brake System I 103

    0RGXOHUHYLHZ

    1 What are the coordinates of the location exactly in between markers 1081 and 1082?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    2 What is length of the moment arm?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    3 Using the torque measurement, what is the equivalent steady-state force that could be

    applied to the pedal?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    4 Does a motion remove DOF?

    ________________________________________________________________________

    ________________________________________________________________________

    ________________________________________________________________________

    5 If you were simulating a complex model and assuming you could get the same

    information, would it be quicker to just ask for a request (.req) file or justask for a results(.res) file?