685
 

AD Validation Guide Vol1 2015 En

Embed Size (px)

Citation preview

Page 1: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 1/682

 

Page 2: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 2/682

Page 3: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 3/682

 

Advance Design

Validation Guide Part 1

Version: 2015

Tests passed on: 16 April 2014

Number of tests: 519

Page 4: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 4/682

Page 5: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 5/682

 

INTRODUCTION

Before being officially released, each version of GRAITEC software, including

 Advance Design, undergoes a series of validation tests. This validation is performed in

 parallel and in addition to manual testing and beta testing, in order to obtain the

"operational version" status. This document contains a description of the automatictests, highlighting the theoretical background and the results we have obtained using

the current software release.

Usually, a test is made of a reference (independent from the specific software version

tested), a transformation (a calculation or a data processing scenario), a result (given

by the specific software version tested) and a difference usually measured in

 percentage as a drift from a set of reference values. Depending on the cases, the

used reference is either a theoretical calculation done manually, a sample taken from

the technical literature, or the result of a previous version considered as good by

experience.

Starting with version 2012, Graitec Advance has made significant steps forward in term ofquality management by extending the scope and automating the testing process.

While in previous versions, the tests were always about the calculation results which

were compared to a reference set, starting with version 2012, tests have been

extended to user interface behavior, import/export procedures, etc.

The next major improvement is the capacity to pass the tests automatically. These

current tests have obviously been passed on the “operational version”, but they are

actually passed on a daily basis during the development process, which helps improve

the daily quality by solving potential issues, immediately after they have been

introduced in the code.

In the field of structural analysis and design, software users must keep in mind that theresults highly depend on the modeling (especially when dealing with finite elements)

and on the settings of the numerous assumptions and options available in the

software. A software package cannot replace engineers experience and analysis.

Despite all our efforts in term of quality management, we cannot guaranty the correct

behavior and the validity of the results issued by Advance Design in any situation.

With this validation guide, we are providing a set of concrete test cases showing the

behavior of Advance Design in various areas and various conditions. The tests cover

a wide field of expertise: modeling, climatic load generation according to Eurocode 1,

combinations management, meshing, finite element calculation, reinforced concrete

design according to Eurocode 2, steel member design according to Eurocode 3, steel

connection design according to Eurocode 3, timber member design according toEurocode 5, seismic analysis according to Eurocode 8, report generation, import /

export procedures and user interface behavior.

We hope that this guide will highly contribute to the knowledge and the confidence you

are placing in Advance Design. 

Manuel LIEDOT 

Chief Product Office

Page 6: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 6/682

Page 7: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 7/682

  ADVANCE VALIDATION GUIDE

7

Table of Contents

1  FINITE ELEMENT METHOD ................................................................................................. 17 

1.1  Cantilever rectangular plate (01-0001SSLSB_FEM) ....................................................................................18 

1.2  System of two bars with three hinges (01-0002SSLLB_FEM) ......................................................................21 

1.3  Thin lozenge-shaped plate fixed on one side (alpha = 15 °) (01-0008SDLSB_FEM) ...................................24 

1.4  Thin circular ring fixed in two points (01-0006SDLLB_FEM) ........................................................................27 

1.5  Thin lozenge-shaped plate fixed on one side (alpha = 30 °) (01-0009SDLSB_FEM) ...................................31 

1.6  Thin lozenge-shaped plate fixed on one side (alpha = 0 °) (01-0007SDLSB_FEM) .....................................34 

1.7  Vibration mode of a thin piping elbow in plane (case 2) (01-0012SDLLB_FEM) ..........................................37 

1.8  Double fixed beam (01-0016SDLLB_FEM) .................................................................................................. 40 

1.9  Vibration mode of a thin piping elbow in plane (case 3) (01-0013SDLLB_FEM) ..........................................44 

1.10  Short beam on simple supports (on the neutral axis) (01-0017SDLLB_FEM).............................................47 

1.11  Rectangular thin plate simply supported on its perimeter (01-0020SDLSB_FEM)......................................51 

1.12  Cantilever beam in Eulerian buckling (01-0021SFLLB_FEM).....................................................................55 

1.13  Vibration mode of a thin piping elbow in plane (case 1) (01-0011SDLLB_FEM).........................................57 

1.14  Double fixed beam with a spring at mid span (01-0015SSLLB_FEM) ........................................................60 

1.15  Thin square plate fixed on one side (01-0019SDLSB_FEM).......................................................................63 

1.16  Thin lozenge-shaped plate fixed on one side (alpha = 45 °) (01-0010SDLSB_FEM) .................................67 

1.17  Thin circular ring hanged on an elastic element (01-0014SDLLB_FEM) ....................................................70 

1.18  Short beam on simple supports (eccentric) (01-0018SDLLB_FEM) ...........................................................74 

1.19  Slender beam on two fixed supports (01-0024SSLLB_FEM)......................................................................78 

1.20  Slender beam on three supports (01-0025SSLLB_FEM)............................................................................83 

1.21  Fixed thin arc in out of plane bending (01-0028SSLLB_FEM) ....................................................................87 

1.22  Double hinged thin arc in planar bending (01-0029SSLLB_FEM)...............................................................89 

1.23  Bending effects of a symmetrical portal frame (01-0023SDLLB_FEM).......................................................92 

1.24  Fixed thin arc in planar bending (01-0027SSLLB_FEM).............................................................................95 

1.25  Beam on elastic soil, free ends (01-0032SSLLB_FEM)..............................................................................98 

1.26  EDF Pylon (01-0033SFLLA_FEM)............................................................................................................ 101 

1.27  Truss with hinged bars under a punctual load (01-0031SSLLB_FEM) .....................................................105 

1.28   Annular thin plate fixed on a hub (repetitive circular structure) (01-0022SDLSB_FEM)............................108 

1.29  Bimetallic: Fixed beams connected to a stiff element (01-0026SSLLB_FEM) ..........................................110 

1.30  Portal frame with lateral connections (01-0030SSLLB_FEM) ...................................................................113 

1.31  Caisson beam in torsion (01-0037SSLSB_FEM) ...................................................................................... 116 

1.32  Thin cylinder under a uniform radial pressure (01-0038SSLSB_FEM) .....................................................119 

1.33  Beam on two supports considering the shear force (01-0041SSLLB_FEM) .............................................121 

1.34  Thin cylinder under a uniform axial load (01-0042SSLSB_FEM)..............................................................124 

Page 8: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 8/682

 ADVANCE VALIDATION GUIDE

1.35  Simply supported square plate (01-0036SSLSB_FEM)............................................................................ 127 

1.36  Stiffen membrane (01-0040SSLSB_FEM)................................................................................................ 130 

1.37  Torus with uniform internal pressure (01-0045SSLSB_FEM)................................................................... 133 

1.38  Spherical shell under internal pressure (01-0046SSLSB_FEM)............................................................... 136 

1.39  Thin cylinder under its self weight (01-0044SSLSB_MEF)....................................................................... 139 

1.40  Beam on elastic soil, hinged ends (01-0034SSLLB_FEM)....................................................................... 141 

1.41  Square plate under planar stresses (01-0039SSLSB_FEM) .................................................................... 145 

1.42  Thin cylinder under a hydrostatic pressure (01-0043SSLSB_FEM) ......................................................... 148 

1.43  Spherical dome under a uniform external pressure (01-0050SSLSB_FEM) ............................................ 151 

1.44  Simply supported square plate under a uniform load (01-0051SSLSB_FEM).......................................... 154 

1.45  Simply supported rectangular plate loaded with punctual force and moments (01-0054SSLSB_FEM)....156 

1.46  Shear plate perpendicular to the medium surface (01-0055SSLSB_FEM)............................................... 158 

1.47  Spherical shell with holes (01-0049SSLSB_FEM).................................................................................... 160 1.48  Simply supported rectangular plate under a uniform load (01-0053SSLSB_FEM)................................... 163 

1.49   A plate (0.01333 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0058SSLSB_FEM) .......... 165 

1.50   A plate (0.02 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0059SSLSB_FEM) .... 167 

1.51   A plate (0.01 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0057SSLSB_FEM) .... 169 

1.52  Pinch cylindrical shell (01-0048SSLSB_FEM).......................................................................................... 171 

1.53  Simply supported rectangular plate under a uniform load (01-0052SSLSB_FEM)................................... 173 

1.54  Triangulated system with hinged bars (01-0056SSLLB_FEM) ................................................................. 175 

1.55   A plate (0.01 m thick), fixed on its perimeter, loaded with a punctual force (01-0062SSLSB_FEM)......... 178 1.56   A plate (0.01333 m thick), fixed on its perimeter, loaded with a punctual force (01-0063SSLSB_FEM)...181 

1.57   A plate (0.1 m thick), fixed on its perimeter, loaded with a punctual force (01-0066SSLSB_FEM)........... 183 

1.58  Vibration mode of a thin piping elbow in space (case 1) (01-0067SDLLB_FEM) ..................................... 185 

1.59   A plate (0.1 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0061SSLSB_FEM) ...... 188 

1.60   A plate (0.05 m thick), fixed on its perimeter, loaded with a punctual force (01-0065SSLSB_FEM)......... 190 

1.61  Reactions on supports and bending moments on a 2D portal frame (Rafters) (01-0077SSLPB_FEM)....192 

1.62  Reactions on supports and bending moments on a 2D portal frame (Columns) (01-0078SSLPB_FEM)............ 194 

1.63  Vibration mode of a thin piping elbow in space (case 3) (01-0069SDLLB_FEM) ..................................... 196 1.64   A plate (0.05 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0060SSLSB_FEM) .... 199 

1.65   A plate (0.02 m thick), fixed on its perimeter, loaded with a punctual force (01-0064SSLSB_FEM)......... 201 

1.66  Vibration mode of a thin piping elbow in space (case 2) (01-0068SDLLB_FEM) ..................................... 203 

1.67  Slender beam of variable rectangular section (fixed-fixed) (01-0086SDLLB_FEM).................................. 206 

1.68  Plane portal frame with hinged supports (01-0089SSLLB_FEM) ............................................................. 209 

1.69   A 3D bar structure with elastic support (01-0094SSLLB_FEM)................................................................ 211 

1.70  Fixed/free slender beam with centered mass (01-0095SDLLB_FEM)...................................................... 218 

1.71  Slender beam of variable rectangular section with fixed-free ends (ß=5) (01-0085SDLLB_FEM)............ 223 

1.72  Cantilever beam in Eulerian buckling with thermal load (01-0092HFLLB_FEM) ...................................... 228 

Page 9: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 9/682

  ADVANCE VALIDATION GUIDE

9

1.73  Simple supported beam in free vibration (01-0098SDLLB_FEM) .............................................................230 

1.74  Membrane with hot point (01-0099HSLSB_FEM)..................................................................................... 233 

1.75  Double cross with hinged ends (01-0097SDLLB_FEM)............................................................................236 

1.76  Short beam on two hinged supports (01-0084SSLLB_FEM) ....................................................................240 

1.77  Double fixed beam in Eulerian buckling with a thermal load (01-0091HFLLB_FEM)................................242 

1.78  Fixed/free slender beam with eccentric mass or inertia (01-0096SDLLB_FEM).......................................244 

1.79  Beam on 3 supports with T/C (k = -10000 N/m) (01-0102SSNLB_FEM) ..................................................248 

1.80  Linear system of truss beams (01-0103SSLLB_FEM)..............................................................................251 

1.81  Linear element in combined bending/tension - without compressed reinforcements - Partially tensionedsection (02-0158SSLLB_B91) .............................................................................................................................. 254 

1.82  Linear element in simple bending - without compressed reinforcement (02-0162SSLLB_B91)................260 

1.83  Beam on 3 supports with T/C (k -> infinite) (01-0101SSNLB_FEM) .........................................................264 

1.84  Study of a mast subjected to an earthquake (02-0112SMLLB_P92) ........................................................267 

1.85  Design of a concrete floor with an opening (03-0208SSLLG_BAEL91)....................................................272 

1.86  Design of a 2D portal frame (03-0207SSLLG_CM66)............................................................................... 280 

1.87  Beam on 3 supports with T/C (k = 0) (01-0100SSNLB_FEM)...................................................................288 

1.88  Non linear system of truss beams (01-0104SSNLB_FEM).......................................................................291 

1.89  Design of a Steel Structure according to CM66 (03-0206SSLLG_CM66).................................................295 

1.90  Slender beam with variable section (fixed-free) (01-0004SDLLB_FEM)...................................................304 

1.91  Tied (sub-tensioned) beam (01-0005SSLLB_FEM).................................................................................. 307 

1.92  Circular plate under uniform load (01-0003SSLSB_FEM) ........................................................................312 

1.93  Verifying the displacement results on linear elements for vertical seism (TTAD #11756) .........................315 

1.94  Verifying constraints for triangular mesh on planar elements (TTAD #11447)..........................................315 

1.95  Verifying forces results on concrete linear elements (TTAD #11647) .......................................................315 

1.96  Verifying diagrams after changing the view from standard (top, left,...) to user view (TTAD #11854).......315 

1.97  Verifying forces for triangular meshing on planar element (TTAD #11723) ..............................................315 

1.98  Verifying stresses in beam with "extend into wall" property (TTAD #11680) .............................................317 

1.99  Generating planar efforts before and after selecting a saved view (TTAD #11849)..................................317 

1.100  Verifying results on punctual supports (TTAD #11489)........................................................................... 317 

1.101  Verifying the level mass center (TTAD #11573, TTAD #12315) .............................................................317 

1.102  Verifying diagrams for Mf Torsors on divided walls (TTAD #11557) .......................................................317 

1.103  Verifying Sxx results on beams (TTAD #11599) ..................................................................................... 318 

1.104  Generating results for Torsors NZ/Group (TTAD #11633) ......................................................................318 

1.105  Verifying nonlinear analysis results for frames with semi-rigid joints and rigid joints (TTAD #11495) .....318 

1.106  Generating a report with torsors per level (TTAD #11421) .....................................................................318 

1.107  Verifying tension/compression supports on nonlinear analysis (TTAD #11518) .....................................318 

1.108  Verifying tension/compression supports on nonlinear analysis (TTAD #11518) .....................................319 

1.109  Verifying the display of the forces results on planar supports (TTAD #11728)........................................319 

1.110  Verifying results of a steel beam subjected to dynamic temporal loadings (TTAD #14586)....................320 

Page 10: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 10/682

 ADVANCE VALIDATION GUIDE

10 

1.111  Verifying the main axes results on a planar element (TTAD #11725)..................................................... 324 

1.112  Verifying torsors on a single story coupled walls subjected to horizontal forces..................................... 324 

1.113  Calculating torsors using different mesh sizes for a concrete wall subjected to a horizontal force (TTAD #13175).324 

1.114  Verifying the internal forces results for a simple supported steel beam.................................................. 324 

1.115  Verifying forces on a linear elastic support which is defined in a user workplane (TTAD #11929) ......... 325 

2  CAD, RENDERING AND VISUALIZATION ........................................................................ 327 

2.1  Verifying hide/show elements command (TTAD #11753) .......................................................................... 328 

2.2  Verifying the dimensions and position of annotations on selection when new analysis is made.(TTAD #12807)....... 328 

2.3  Verifying the saved view of elements with annotations. (TTAD #13033)................................................... 328 

2.4  Verifying the visualisation of supports with rotational or moving DoFs.(TTAD #13891) ............................. 328 

2.5  Verifying the annotations of a wind generated load. (TTAD #13190) ......................................................... 328 

2.6  System stability during section cut results verification (TTAD #11752) ...................................................... 329 

2.7  Generating combinations (TTAD #11721).................................................................................................. 329 

2.8  Verifying the grid text position (TTAD #11704)........................................................................................... 329 

2.9  Verifying descriptive actors after creating analysis (TTAD #11589) ........................................................... 329 

2.10  Verifying the coordinates system symbol (TTAD #11611)........................................................................ 329 

2.11  Creating a circle (TTAD #11525) .............................................................................................................. 330 

2.12  Creating a camera (TTAD #11526) .......................................................................................................... 330 

2.13  Verifying the representation of elements with HEA cross section (TTAD #11328) ................................... 330 

2.14  Verifying the snap points behavior during modeling (TTAD #11458)........................................................ 330 

2.15  Verifying the local axes of a section cut (TTAD #11681).......................................................................... 330 

2.16  Verifying the descriptive model display after post processing results in analysis mode (TTAD #11475).. 331 

2.17  Modeling using the tracking snap mode (TTAD #10979).......................................................................... 331 

2.18  Verifying holes in horizontal planar elements after changing the level height (TTAD #11490) ................. 331 

2.19  Verifying the display of elements with compound cross sections (TTAD #11486).................................... 331 

2.20  Moving a linear element along with the support (TTAD #12110) .............................................................. 331 

2.21  Turning on/off the "ghost" rendering mode (TTAD #11999)...................................................................... 332 

2.22  Verifying the "ghost" display after changing the display colors (TTAD #12064) ....................................... 332 

2.23  Verifying the grid text position (TTAD #11657)......................................................................................... 332 

2.24  Verifying the "ghost display on selection" function for saved views (TTAD #12054) ................................ 332 

2.25  Verifying the steel connections modeling (TTAD #11698)........................................................................ 332 

2.26  Verifying the fixed load scale function (TTAD #12183)..... ........................................................................ 332 

2.27  Verifying the saved view of elements by cross-section. (TTAD #13197) ................................................ 333 

2.28  Verifying the annotations dimensions when new analysis is made.(TTAD #14825) ................................. 333 

2.29  Verifying the default view.(TTAD #13248) ................................................................................................ 333 

2.30  Verifying the dividing of planar elements which contain openings (TTAD #12229) .................................. 333 

2.31  Verifying the program behavior when trying to create lintel (TTAD #12062) ............................................ 333 2.32  Verifying the program behavior when launching the analysis on a model with overlapped loads (TTAD #11837).... 333 

Page 11: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 11/682

  ADVANCE VALIDATION GUIDE

11

2.33  Verifying the display of punctual loads after changing the load case number (TTAD #11958) .................334 

2.34  Verifying the display of a beam with haunches (TTAD #12299)...............................................................334 

2.35  Creating base plate connections for non-vertical columns (TTAD #12170) ..............................................334 

2.36  Verifying drawing of joints in y-z plan (TTAD #12453) ..............................................................................334 

2.37  Verifying rotation for steel beam with joint (TTAD #12592).......................................................................334 

2.38  Verifying annotation on selection (TTAD #12700)..................................................................................... 334 

3  CLIMATIC GENERATOR .................................................................................................... 335 

3.1  EC1: Generating snow loads on 2 closed building with gutters. (TTAD #12808)........................................336 

3.2  EC1: wind load generation on a high building with horizontal roof using UK annex (DEV2013#4.1) (TTAD #12608) .336 

3.3  EC1: Generating snow loads on a 4 slopes shed with gutters (TTAD #12528) ..........................................336 

3.4  EC1: Generating snow loads on a single slope with lateral parapets (TTAD #12606)................................336 

3.5  EC1: Generating snow loads on a 4 slopes shed with gutters (TTAD #12528) ..........................................336 

3.6  EC1: generating wind loads on a square based lattice structure with compound profiles and automaticcalculation of "n" (NF EN 1991-1-4/NA) (TTAD #12744) ...................................................................................... 337 

3.7  EC1: Generating snow loads on a 4 slopes with gutters building. (TTAD #12719).....................................337 

3.8  EC1: Generating snow loads on two side by side buildings with gutters (TTAD #12806)...........................337 

3.9  EC1: Generating snow loads on a 4 slopes with gutters building (TTAD #12716)......................................337 

3.10  EC1: Generating snow loads on 2 closed building with gutters. (TTAD #12841)......................................337 

3.11  EC1: Generating wind loads on a square based structure according to UK standards (BS EN 1991-1-4:2005) (TTAD #12608)........................................................................................................................................ 338 

3.12  EC1: Generating snow loads on a 2 slope building with gutters and parapets. (TTAD #12878)...............338 

3.13  EC1: Generating snow loads on 2 closed building with gutters. (TTAD #12835)......................................338 

3.14  EC1: generating snow loads on a 3 slopes 3D portal frame with parapets (NF EN 1991-1-3/NA) (TTAD #11111)...338  

3.15  EC1: generating wind loads on a 2 slopes 3D portal frame (NF EN 1991-1-4/NA) (VT : 3.3 - Wind - Example C)....338 

3.16  EC1: generating wind loads on a 2 slopes 3D portal frame (NF EN 1991-1-4/NA) (VT : 3.1 - Wind - Example A) ....339 

3.17  EC1: wind loads on a triangular based lattice structure with compound profiles and user defined "n" (NFEN 1991-1-4/NA) (TTAD #12276) ........................................................................................................................ 339 

3.18  EC1: generating wind loads on a 3D portal frame with one slope roof (NF EN 1991-1-4/NA) (VT : 3.2 -Wind - Example B)................................................................................................................................................ 339 

3.19  EC1: generating wind loads on a triangular based lattice structure with compound profiles and automatic

calculation of "n" (NF EN 1991-1-4/NA) (TTAD #12276) ...................................................................................... 339 3.20  EC1: generating snow loads on a 2 slopes 3D portal frame (NF EN 1991-1-3/NA) (VT : 3.4 - Snow - Example A) ..339 

3.21  EC1: Verifying the wind loads generated on a building with protruding roof (TTAD #12071, #12278)......340 

3.22  EC1: Verifying the geometry of wind loads on an irregular shed. (TTAD #12233) ....................................340 

3.23  EC1: Generating snow loads on a 4 slopes shed with parapets. (TTAD #14578).....................................340 

3.24  EC1: Generating 2D snow loads on a 2 slope portal with one lateral parapet. (TTAD #14530)................340 

3.25  EC1: Generating wind loads on a 2 almost horizontal slope building. (TTAD #13663) .............................340 

3.26  EC1: Generating 2D wind loads on a 2 slope portal. (TTAD #14531).......................................................341 

3.27  EC1: Generating wind loads on a 4 slopes shed with parapets. (TTAD #14179)......................................341 3.28  EC1: Generating snow loads on 2 side by side single roof compounds with different height (TTAD 13158).............. 341 

Page 12: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 12/682

 ADVANCE VALIDATION GUIDE

12 

3.29  EC1: Generating snow loads on 2 side by side single roof compounds with different height (TTAD 13159)...............341 

3.30  EC1: snow load generation on double compound with gutters and parapets on all sides.(TTAD #13717) .................341 

3.31  EC1: snow load generation on building with 2 slopes > 60 degrees according to Czech national annex. (TTAD#14235) ................................................................................................................................................................. 342 

3.32  EC1: Generating snow loads on 2 side by side single roof compounds (TTAD #13286).......................... 342 

3.33  EC1: Generating wind loads on a 2 slope building with parapets. (TTAD #13669) .................................. 342 

3.34  EC1: Generating wind loads on a 2 slope building with increased height. (TTAD #13759) ...................... 342 

3.35  EC1: Generating snow loads on a 2 slope building with custom pressure values. (TTAD #14004).......... 342 

3.36  EC1: wind load generation on portal with CsCd set to auto according to Romanian national annex. (TTAD #13930w)343 

3.37  EC1: snow load generation on a 3 compound building according to Romanian national annex. (TTAD #13930s)...343 

3.38  EC1: Generating snow loads on a 2 slope building with gutters and lateral parapets. (TTAD #14005).... 343 

3.39  EC1: Generating snow loads on a 2 slope building with parapets. (TTAD #13671) ................................. 343 

3.40  EC1: snow load generation on compound with a double-roof volume close to a single-roof volume (TTAD #13559)343 

3.41  EC1: wind load generation on multibay canopies (TTAD #11668) ........................................................... 344 

3.42  EC1: wind load generation on portal with CsCd set to auto (TTAD #12823) ............................................ 344 

3.43  EC1: generating wind loads on a 35m high structure according to Eurocodes 1 - French standard withCsCd min set to 0.7 and Delta to 0.15. (TTAD #11196) ....................................................................................... 344 

3.44  EC1: generating wind loads on a canopy according to Eurocodes 1 - French standard. (TTAD #13855) 344 

3.45  EC1: Generating wind loads on a single-roof volume compound with parapets. (TTAD #13672) ............ 344 

3.46  EC1: Generating snow loads on a shed with parapets. (TTAD #12494) .................................................. 345 

3.47  EC1: Generating snow loads on a shed with gutters building. (TTAD #13856) ........................................ 345 

3.48  EC1: generating snow loads on a 3 slopes 3D portal frame.(TTAD #13169) ........................................... 345 3.49  EC1: Generating snow loads on 2 side by side single roof compounds with parapets (TTAD #13992) ...345 

3.50  EC1: generating Cf and Cp,net wind loads on an isolated roof with double slope (DEV2013#4.3) .......... 345 

3.51  EC1: wind load generation on a high building with double slope roof using different parameters defined perdirections (DEV2013#4.2) .................................................................................................................................... 346 

3.52  EC1: generating Cf and Cp,net wind loads on an multibay canopy roof (DEV2013#4.3) ......................... 346 

3.53  EC1: generating Cf and Cp,net wind loads on an isolated roof with one slope (DEV2013#4.3) ............... 346 

3.54  EC1: wind load generation on a high building with a horizontal roof using different CsCd values for eachdirection (DEV2013#4.4) ...................................................................................................................................... 346 

3.55  EC1: generating wind loads on a 2 slopes 3D portal frame using the Romanian national annex (TTAD #11687).... 347 3.56  EC1: generating snow loads on a 2 slopes 3D portal frame using the Romanian national annex (TTAD #11569)... 347 

3.57  EC1: generating wind loads on a 2 slopes 3D portal frame (TTAD #11531) ............................................ 347 

3.58  EC1: generating snow loads on a 2 slopes 3D portal frame using the Romanian national annex (TTAD #11570)... 347 

3.59  EC1: generating wind loads on a 2 slopes 3D portal frame (TTAD #11699) ........................................... 348 

3.60  Generating the description of climatic loads report according to EC1 Romanian standards (TTAD #11688)348 

3.61  EC1: generating snow loads on a 2 slopes 3D portal frame with roof thickness greater than the parapetheight (TTAD #11943).......................................................................................................................................... 348 

3.62  EC1: verifying the snow loads generated on a monopitch frame (TTAD #11302) .................................... 348 

3.63  EC1: generating wind loads on a 2 slopes 3D portal frame with 2 fully opened windwalls (TTAD #11937) ................349 

Page 13: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 13/682

  ADVANCE VALIDATION GUIDE

13

3.64  EC1: generating snow loads on two close roofs with different heights according to Czech standards (CSNEN 1991-1-3) (DEV2012 #3.18) ........................................................................................................................... 349 

3.65  EC1: generating wind loads on double slope 3D portal frame according to Czech standards (CSN EN1991-1-4) (DEV2012 #3.18) ................................................................................................................................. 349 

3.66  EC1: generating snow loads on a 3D portal frame with a roof which has a small span (< 5m) and a parapet

(TTAD #11735)..................................................................................................................................................... 349 3.67  EC1: generating snow loads on a 2 slopes 3D portal frame with gutter (TTAD #11113) ..........................350 

3.68  EC1: generating snow loads on a 3D portal frame with horizontal roof and gutter (TTAD #11113) ..........350 

3.69  EC1: generating snow loads on duopitch multispan roofs according to German standards (DIN EN 1991-1-3/NA) (DEV2012 #3.13)........................................................................................................................................ 350 

3.70  EC1: generating wind loads on a 55m high structure according to German standards (DIN EN 1991-1-4/NA) (DEV2012 #3.12)........................................................................................................................................ 350 

3.71  EC1: generating snow loads on two side by side roofs with different heights, according to Germanstandards (DIN EN 1991-1-3/NA) (DEV2012 #3.13) ............................................................................................ 351 

3.72  EC1: snow on a 3D portal frame with horizontal roof and parapet with height reduction (TTAD #11191).351 

3.73  EC1: generating snow loads on monopitch multispan roofs according to German standards (DIN EN 1991-1-3/NA) (DEV2012 #3.13)..................................................................................................................................... 351 

3.74  EC1: generating wind loads on an isolated roof with two slopes (TTAD #11695) .....................................351 

3.75  EC1: generating wind loads on double slope 3D portal frame with a fully opened face (DEV2012 #1.6) .352 

3.76  EC1: generating wind loads on duopitch multispan roofs with pitch < 5 degrees (TTAD #11852) ............352 

3.77  EC1 NF: generating wind loads on a 3D portal frame with 2 slopes roof (TTAD #11932) ........................352 

3.78  EC1: wind load generation on simple 3D portal frame with 4 slopes roof (TTAD #11604)........................352 

3.79  EC1: Generating 2D wind and snow loads on a 2 opposite slopes portal with Z down axis. (TTAD #15094)............ 353 

3.80  EC1: Generating wind loads on a 3 compound building. (TTAD #13190).................................................353 3.81  EC1: Generating 2D wind loads on a double slope roof with an opening. (TTAD #15328) .......................353 

3.82  EC1: Generating wind loads on a double slope with 5 degrees. (TTAD #15307) .....................................353 

3.83  EC1: Generating wind loads on a 2 horizontal slopes building one higher that the other. (TTAD #13320).... ...........353 

3.84  EC1: Generating snow loads on a custom multiple slope building. (TTAD #14285) .................................354 

3.85  EC1: Generating 2D wind loads on a 2 slope isolated roof. (TTAD #14985) ............................................354 

3.86  EC1: Generating 2D wind and snow loads on a 4 slope shed next to a higher one slope compound. (TTAD #15047).354 

3.87  EC1: Generating 2D snow loads on a one horizontal slope portal. (TTAD #14975) .................................354 

3.88 

EC1: Generating 2D wind loads on a multiple roof portal. (TTAD #15140)...............................................354 

3.89  EC1: wind load generation on a signboard ............................................................................................... 355 

3.90  EC1: wind load generation on a building with multispan roofs ..................................................................355 

3.91  EC1: wind load generation on a high building with horizontal roof ............................................................355 

3.92  EC1: wind load generation on a simple 3D portal frame with 2 slopes roof (TTAD #11602).....................355 

3.93  EC1: wind load generation on a simple 3D structure with horizontal roof .................................................355 

4  COMBINATIONS ................................................................................................................. 357 

4.1  Generating combinations (TTAD #11673) .................................................................................................. 358 

4.2  Generating load combinations with unfavorable and favorable/unfavorable predominant action (TTAD #11357) ..........358 4.3  Defining concomitance rules for two case families (TTAD #11355)............................................................358 

Page 14: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 14/682

 ADVANCE VALIDATION GUIDE

14 

4.4  Generating combinations for NEWEC8.cbn (TTAD #11431)...................................................................... 358 

4.5  Generating the concomitance matrix after adding a new dead load case (TTAD #11361)......................... 358 

4.6  Generating load combinations after changing the load case number (TTAD #11359) ............................... 359 

4.7  Performing the combinations concomitance standard test no.7 (DEV2012 #1.7) ...................................... 359 

4.8  Performing the combinations concomitance standard test no.8 (DEV2012 #1.7) ...................................... 359 

4.9  Performing the combinations concomitance standard test no.2 (DEV2012 #1.7) ...................................... 360 

4.10  Performing the combinations concomitance standard test no.1 (DEV2010#1.7)...................................... 360 

4.11  Performing the combinations concomitance standard test no. 5 (DEV2012 #1.7).................................... 360 

4.12  Performing the combinations concomitance standard test no.6 (DEV2012 #1.7)..................................... 361 

4.13  Performing the combinations concomitance standard test no.4 (DEV2012 #1.7).................................... 361 

4.14  Performing the combinations concomitance standard test no.9 (DEV2012 #1.7)..................................... 361 

4.15  Performing the combinations concomitance standard test no.10 (DEV2012 #1.7)................................... 362 

4.16  Generating a set of combinations with different Q "Base" types (TTAD #11806) ..................................... 362 4.17  Performing the combinations concomitance standard test no.3 (DEV2012 #1.7)..................................... 363 

4.18  Generating a set of combinations with Q group of loads (TTAD #11960)................................................. 363 

4.19  Generating the concomitance matrix after switching back the effect for live load (TTAD #11806) ........... 363 

4.20  Generating a set of combinations with seismic group of loads (TTAD #11889)........................................ 363 

4.21  Verifying combinations for CZ localization (TTAD #12542) ...................................................................... 363 

5  CONCRETE DESIGN.......................................................................................................... 365 

5.1  EC2: Verifying the transverse reinforcement area for a beam subjected to linear loads ............................ 366 

5.2  EC2: Verifying the longitudinal reinforcement area of a beam under a linear load - bilinear stress-strain diagram.......... 366 

5.3  Modifying the "Design experts" properties for concrete linear elements (TTAD #12498)........................... 366 

5.4  EC2: Verifying the longitudinal reinforcement area of a beam under a linear load - horizontal level behavior law.... .......... 366 

5.5  EC2: Verifying the longitudinal reinforcement area of a beam under a linear load - inclined stress strain behavior law... 366 

5.6  EC2: Verifying the longitudinal reinforcement area for a beam subjected to point loads............................ 367 

5.7  EC2: Verifying the longitudinal reinforcement area of a beam under a linear load ..................................... 367 

5.8  EC2: Verifying the minimum reinforcement area for a simply supported beam.......................................... 367 

5.9  EC2 Test 2: Verifying a rectangular concrete beam subjected to a uniformly distributed load, withoutcompressed reinforcement - Bilinear stress-strain diagram ................................................................................. 368 

5.10  EC2 Test 4 I: Verifying a rectangular concrete beam subjected to Pivot A efforts – Inclined stress-strain diagram.... .... 376 

5.11  EC2 Test 6: Verifying a T concrete section, without compressed reinforcement- Bilinear stress-strain diagram........... 383 

5.12  EC2 Test 5: Verifying a T concrete section, without compressed reinforcement - Bilinear stress-strain diagram.......... 387 

5.13  EC2 Test 8: Verifying a rectangular concrete beam without compressed reinforcement – Inclined stress-strain diagram392 

5.14  EC2 Test 9: Verifying a rectangular concrete beam with compressed reinforcement – Inclined stress-strain diagram.. 400 

5.15  EC2 Test 3: Verifying a rectangular concrete beam subjected to uniformly distributed load, withcompressed reinforcement- Bilinear stress-strain diagram .................................................................................. 411 

5.16  EC2 Test 7: Verifying a T concrete section, without compressed reinforcement- Bilinear stress-strain diagram........... 422 

5.17  EC2 Test 12: Verifying a rectangular concrete beam subjected to uniformly distributed load, withoutcompressed reinforcement- Bilinear stress-strain diagram (Class XD3) .............................................................. 426 

Page 15: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 15/682

  ADVANCE VALIDATION GUIDE

15

5.18  EC2 Test 13: Verifying a rectangular concrete beam subjected to a uniformly distributed load, withoutcompressed reinforcement - Bilinear stress-strain diagram (Class XD1)..............................................................432 

5.19  EC2 Test 16: Verifying a T concrete section, without compressed reinforcement- Bilinear stress-strain diagram.... ......438 

5.20  EC2 Test 17: Verifying a rectangular concrete beam subjected to a uniformly distributed load, withoutcompressed reinforcement - Inclined stress-strain diagram (Class XD1) .............................................................444 

5.21  EC2 Test 20: Verifying the crack openings for a rectangular concrete beam subjected to a uniformlydistributed load, without compressed reinforcement - Bilinear stress-strain diagram (Class XD1) .......................450 

5.22  EC2 Test 23: Verifying the shear resistance for a rectangular concrete - Bilinear stress-strain diagram (Class XC1) ....457 

5.23  EC2 Test 10: Verifying a T concrete section, without compressed reinforcement - Inclined stress-strain diagram........463 

5.24  EC2 Test 15: Verifying a T concrete section, without compressed reinforcement- Bilinear stress-strain diagram.... ......468 

5.25  EC2 Test 19: Verifying the crack openings for a rectangular concrete beam subjected to a uniformlydistributed load, without compressed reinforcement - Bilinear stress-strain diagram (Class XD1) .......................475 

5.26  EC2 Test 11: Verifying a rectangular concrete beam subjected to a uniformly distributed load, withoutcompressed reinforcement- Bilinear stress-strain diagram (Class XD1)...............................................................482 

5.27  EC2 Test 14: Verifying a rectangular concrete beam subjected to a uniformly distributed load, withcompressed reinforcement- Bilinear stress-strain diagram (Class XD1)...............................................................489 

5.28  EC2 Test 18: Verifying a rectangular concrete beam subjected to a uniformly distributed load, withcompressed reinforcement - Bilinear stress-strain diagram (Class XD1)..............................................................495 

5.29  EC2 Test 26: Verifying the shear resistance for a rectangular concrete beam with vertical transversalreinforcement - Bilinear stress-strain diagram (Class XC1)..................................................................................500 

5.30  EC2 Test 27: Verifying the shear resistance for a rectangular concrete beam with vertical transversalreinforcement - Bilinear stress-strain diagram (Class XC1)..................................................................................504 

5.31  EC2 Test29: Verifying the shear resistance for a T concrete beam with inclined transversal reinforcement -Inclined stress-strain diagram (Class XC1)........................................................................................................... 509 

5.32  EC2 Test30: Verifying the shear resistance for a T concrete beam with inclined transversal reinforcement -

Bilinear stress-strain diagram (Class XC1) ........................................................................................................... 513 

5.33  EC2 Test 25: Verifying the shear resistance for a rectangular concrete beam with inclined transversalreinforcement - Bilinear stress-strain diagram (Class XC1)..................................................................................517 

5.34  EC2 Test 46 I: Verifying a square concrete beam subjected to a normal force of traction - Inclined stress-strain diagram (Class X0) ..................................................................................................................................... 521 

5.35  EC2 Test 1: Verifying a rectangular cross section beam made from concrete C25/30 to resist simplebending - Bilinear stress-strain diagram ............................................................................................................... 524 

5.36  EC2 Test33: Verifying a square concrete column subjected to compression by nominal rigidity method-Bilinear stress-strain diagram (Class XC1) ........................................................................................................... 529 

5.37  EC2 Test34: Verifying a rectangular concrete column subjected to compression on the top – Method

based on nominal stiffness - Bilinear stress-strain diagram (Class XC1)..............................................................536 5.38  EC2 Test32: Verifying a square concrete column subjected to compression and rotation moment to the top – Method based on nominal curvature- Bilinear stress-strain diagram (Class XC1).............................................544 

5.39  EC2 Test 24: Verifying the shear resistance for a rectangular concrete beam with vertical transversalreinforcement - Bilinear stress-strain diagram (Class XC1)..................................................................................553 

5.40  EC2 Test28: Verifying the shear resistance for a T concrete beam with inclined transversal reinforcement -Bilinear stress-strain diagram (Class X0).............................................................................................................. 557 

5.41  EC2 Test31: Verifying a square concrete column subjected to compression and rotation moment to the top- Bilinear stress-strain diagram (Class XC1)......................................................................................................... 561 

5.42  EC2 Test 37: Verifying a square concrete column using the simplified method – Professional rules -Bilinear stress-strain diagram (Class XC1) ........................................................................................................... 575 

5.43  EC2 Test 38: Verifying a rectangular concrete column using the simplified method – Professional rules -Bilinear stress-strain diagram (Class XC1) ........................................................................................................... 579 

Page 16: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 16/682

 ADVANCE VALIDATION GUIDE

16 

5.44  EC2 Test 41: Verifying a square concrete column subjected to a significant compression force and smallrotation moment to the top - Bilinear stress-strain diagram (Class XC1).............................................................. 582 

5.45  EC2 Test 42: Verifying a square concrete column subjected to a significant rotation moment and smallcompression force to the top with Nominal Curvature Method - Bilinear stress-strain diagram (Class XC1) ....... 595 

5.46  EC2 Test36: Verifying a rectangular concrete column using the method based on nominal curvature-

Bilinear stress-strain diagram (Class XC1)........................................................................................................... 605 5.47  EC2 Test 40: Verifying a square concrete column subjected to a small compression force and significantrotation moment to the top - Bilinear stress-strain diagram (Class XC1).............................................................. 612 

5.48  EC2 Test 45: Verifying a rectangular concrete beam supporting a balcony - Bilinear stress-strain diagram(Class XC1).......................................................................................................................................................... 620 

5.49  EC2 Test 46 II: Verifying a square concrete beam subjected to a normal force of traction - Bilinear stress-strain diagram (Class X0)..................................................................................................................................... 628 

5.50  EC2 Test 44: Verifying a rectangular concrete beam subjected to eccentric loading - Bilinear stress-straindiagram (Class X0)............................................................................................................................................... 631 

5.51  EC2 Test35: Verifying a rectangular concrete column subjected to compression to top – Based on nominalrigidity method - Bilinear stress-strain diagram (Class XC1) ................................................................................ 637 

5.52  EC2 Test 39: Verifying a circular concrete column using the simplified method – Professional rules -Bilinear stress-strain diagram (Class XC1)........................................................................................................... 648 

5.53  EC2 Test 43: Verifying a square concrete column subjected to a small rotation moment and significantcompression force to the top with Nominal Curvature Method - Bilinear stress-strain diagram (Class XC1) ....... 652 

5.54  Verifying the capacity design results according to Eurocode EC2 and EC8 French standards. (DEV2013 #8.3)......... 662 

5.55  EC2 Test 47: Verifying a rectangular concrete beam subjected to tension load - Bilinear stress-straindiagram (Class XD2)............................................................................................................................................ 663 

5.56  EC2 Test 4 II: Verifying a rectangular concrete beam subjected to Pivot B efforts – Inclined stress-strain diagram....... 670 

5.57  Testing the punching verification and punching reinforcement results on loaded analysis model (TTAD #14332).... .... 675 

5.58  Verifying the peak smoothing influence over mesh, the punching verification and punching reinforcementresults when Z down axis is selected. (TTAD #14963)......................................................................................... 675 

5.59  EC2: column design with “Nominal Stiffness method” square section (TTAD #11625) ............................ 675 

5.60  Verifying the longitudinal reinforcement for a horizontal concrete bar with rectangular cross section...... 675 

5.61  Verifying the minimum transverse reinforcement area results for articulated beams (TTAD #11342) ...... 676 

5.62  Verifying the minimum transverse reinforcement area results for an articulated beam (TTAD #11342)... 676 

5.63  EC2 : calculation of a square column in traction (TTAD #11892) ............................................................. 676 

5.64  Verifying Aty and Atz for a fixed concrete beam (TTAD #11812) ............................................................. 677 

5.65  Verifying the reinforced concrete results on a structure with 375 load cases combinations (TTAD #11683).................... 677 

5.66  Verifying the longitudinal reinforcement for linear elements (TTAD #11636)............................................ 677 

5.67  Verifying the longitudinal reinforcement bars for a filled circular column (TTAD #11678)......................... 677 

5.68  Verifying concrete results for planar elements (TTAD #11583) ................................................................ 678 

5.69  Verifying the reinforced concrete results on a fixed beam (TTAD #11836) .............................................. 678 

5.70  Verifying the longitudinal reinforcement for a fixed linear element (TTAD #11700).................................. 678 

5.71  Verifying concrete results for linear elements (TTAD #11556) ................................................................. 678 

5.72  Verifying the reinforcement of concrete columns (TTAD #11635) ............................................................ 679 

5.73  EC2 Test 47 I: Verifying a rectangular concrete beam subjected to a tension distributed load - Bilinear

stress-strain diagram (Class XD2)........................................................................................................................ 680 

Page 17: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 17/682

 

1 Finite element method

Page 18: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 18/682

 ADVANCE VALIDATION GUIDE

18 

1.1 Cantilever rectangular plate (01-0001SSLSB_FEM)

Test ID: 2433

Test status: Passed 

1.1.1 Description

Verifies the vertical displacement on the free extremity of a cantilever rectangular plate fixed on one side. The plate is1 m long, subjected to a uniform planar load.

1.1.2 Background

1.1.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 01/89.

■  Analysis type: linear static.

■  Element type: planar.

Cantilever rectangular plate Scale =1/4

01-0001SSLSB_FEM

Units

S.I. 

Geometry

■  Thickness: e = 0.005 m,

■  Length: l = 1 m,

■  Width: b = 0.1 m.

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Page 19: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 19/682

  ADVANCE VALIDATION GUIDE

19

Boundary conditions

■  Outer: Fixed at end x = 0,

■  Inner: None.

Loadings

■  External: Uniform load p = -1700 Pa on the upper surface,■  Internal: None.

1.1.2.2 Displacement of the model in the linear elastic range

Reference solution

The reference displacement is calculated for the unsupported end located at x = 1m.

u =bl

4p

8EIz  =

0.1 x 14 x 1700

8 x 2.1 x 1011

 x0.1 x 0.005

3

12 

= -9.71 cm

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  1100 nodes,

■  990 surface quadrangles.

Deformed shape

Deformed cantilever rectangular plate Scale =1/4

01-0001SSLSB_FEM

Page 20: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 20/682

 ADVANCE VALIDATION GUIDE

20 

1.1.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DZ Vertical displacement on the free extremity [cm] -9.71

1.1.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement on the free extremity [cm] -9.58696 cm 1.27%

Page 21: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 21/682

  ADVANCE VALIDATION GUIDE

21

1.2 System of two bars with three hinges (01-0002SSLLB_FEM)

Test ID: 2434

Test status: Passed 

1.2.1 Description

On a system of two bars (AC and BC) with three hinges, a punctual load in applied in point C. The verticaldisplacement in point C and the tensile stress on the bars are verified.

1.2.2 Background

1.2.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 09/89;

■  Analysis type: linear static;

■  Element type: linear.

System of two bars with three hinges Scale =1/330002SSLLB_FEM

4 .5  0 0  m 

      3      0       °   3      

0      °      

 4.  5 0 0

  m

 A A   BB

CC

FF

X

Y

Z X

Y

Z

 

Units

I. S.

Geometry

■  Bars angle relative to horizontal:  = 30°,

■  Bars length: l = 4.5 m,

■  Bar section: A = 3 x 10-4

 m2.

Materials properties 

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa.

Page 22: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 22/682

 ADVANCE VALIDATION GUIDE

22 

Boundary conditions

■  Outer: Hinged in A and B,

■  Inner: Hinge on C

Loading

■  External: Punctual load in C: F = -21 x 103 N.

■  Internal: None.

1.2.2.2 Displacement of the model in C

Reference solution

uc = -3 x 10-3

 m

Finite elements modeling

■  Linear element: beam, imposed mesh,

■  21 nodes,

■  20 linear elements.

Displacement shape

System of two bars with three hinges Scale =1/33

Displacement in C 0002SSLLB_FEM

Page 23: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 23/682

  ADVANCE VALIDATION GUIDE

23

1.2.2.3 Bars stresses

Reference solutions

 AC bar = 70 MPa

BC bar = 70 MPa

Finite elements modeling

■  Linear element: beam, imposed mesh,

■  21 nodes,

■  20 linear elements.

1.2.2.4 Shape of the stress diagram

System of two bars with three hinges Scale =1/34

Bars stresses 0002SSLLB_FEM

1.2.2.5 Theoretical results

Solver Result name Result description Reference value

CM2 DZ Vertical displacement in point C [cm] -0.30

CM2 Sxx Tensile stress on AC bar [MPa] 70

CM2 Sxx Tensile stress on BC bar [MPa] 70

1.2.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement in point C [cm] -0.299954 cm 0.02%

Sxx Tensile stress on AC bar [MPa] 69.9998 MPa 0.00%

Sxx Tensile stress on BC bar [MPa] 69.9998 MPa 0.00%

Page 24: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 24/682

 ADVANCE VALIDATION GUIDE

24 

1.3 Thin lozenge-shaped plate fixed on one side (alpha = 15 °) (01-0008SDLSB_FEM)

Test ID: 2440

Test status: Passed 

1.3.1 Description

Verifies the eigen modes frequencies for a 10 mm thick lozenge-shaped plate fixed on one side, subjected to its ownweight only.

1.3.2 Background

1.3.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLS 02/89;

■  Analysis type: modal analysis;

■  Element type: planar.

Thin lozenge-shaped plate fixed on one side Scale =1/1001-0008SDLSB_FEM

Units

I. S.

Geometry

■  Thickness: t = 0.01 m,

■  Side: a = 1 m,

■   = 15°

■  Points coordinates:

►   A ( 0 ; 0 ; 0 )

►  B ( a ; 0 ; 0 )

►  C ( 0.259a ; 0.966a ; 0 )►  D ( 1.259a ; 0.966a ; 0 )

Page 25: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 25/682

  ADVANCE VALIDATION GUIDE

25

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer: AB side fixed,

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

1.3.2.2 Eigen modes frequencies function by angle

Reference solution

M. V. Barton formula for a lozenge of side "a" leads to the frequencies:

f  j = 2a2

1i

)1(12

Et2

2

  where i = 1,2, or i

2 = g().

 

  3.601 

  8.872 M. V. Barton noted the sensitivity of the result relative to the mode and the  angle. He acknowledged that the i values were determined with a limited development of an insufficient order, which led to consider a reference valuethat is based on an experimental result, verified by an average of seven software that use the finite elementscalculation method.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  961 nodes,

■  900 surface quadrangles.

Eigen mode shapes

Page 26: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 26/682

 ADVANCE VALIDATION GUIDE

26 

1.3.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode 1 frequency [Hz] 8.999

CM2 Eigen mode Eigen mode 2 frequency [Hz] 22.1714

1.3.3 Calculated results

Result name Result description Value Error

Eigen mode 1 frequency [Hz] 8.95 Hz -0.54%

Eigen mode 2 frequency [Hz] 21.69 Hz -2.17%

Page 27: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 27/682

  ADVANCE VALIDATION GUIDE

27

1.4 Thin circular ring fixed in two points (01-0006SDLLB_FEM)

Test ID: 2438

Test status: Passed 

1.4.1 Description

Verifies the first eigen modes frequencies for a thin circular ring fixed in two points, subjected to its own weight only.

1.4.2 Background

1.4.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 12/89;

■  Analysis type: modal analysis, plane problem;

■  Element type: linear.

Thin circular ring fixed in two points Scale =1/2

01-0006SDLLB_FEM

Units 

I. S.

Geometry

■  Average radius of curvature: OA = OB = R = 0.1 m,

■  Angular spacing between points A and B: 120° ;

■  Rectangular straight section:

►  Thickness: h = 0.005 m,

►  Width: b = 0.010 m,

►  Section: A = 5 x 10-5

 m2,

►  Flexure moment of inertia relative to the vertical axis: I = 1.042 x 10-10

 m4,

■  Point coordinates:

►  O (0 ;0),

►   A (-0.05 3 ; -0.05),

►  B (0.05 3 ; -0.05).

Page 28: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 28/682

 ADVANCE VALIDATION GUIDE

28 

Materials properties

■  Longitudinal elastic modulus: E = 7.2 x 1010

 Pa

■  Poisson's ratio:  = 0.3,

■  Density:  = 2700 kg/m3.

Boundary conditions

■  Outer: Fixed at A and B,

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

1.4.2.2 Eigen mode frequencies

Reference solutions

The deformation of the fixed ring is calculated from the deformations of the free-free thin ring

■  Symmetrical mode:

►  u’i = i cos(i)

►  v’i = sin (i)

►  ’i =1-i

2

R  sin (i)

■  Antisymmetrical mode:

►  u’i = i sin(i)

►  v’i = -cos (i)

►  ’i =1-i

2

R  cos (i)

From Green’s method results:

f  j =2

1 j 

2R

12

E

  with a support angle of 120°.

i 1 2 3 4

Symmetrical mode 4.8497 14.7614 23.6157

 Antisymmetrical mode 1.9832 9.3204 11.8490 21.5545

Finite elements modeling

■  Linear element: beam, without meshing,

■  32 nodes,

■  32 linear elements.

Page 29: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 29/682

  ADVANCE VALIDATION GUIDE

29

Eigen mode shapes

Page 30: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 30/682

 ADVANCE VALIDATION GUIDE

30 

1.4.2.3 Theoretic results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode 1 frequency - 1 antisymmetric 1 [Hz] 235.3

CM2 Eigen mode Eigen mode 2 frequency - 2 symmetric 1 [Hz] 575.3

CM2 Eigen mode Eigen mode 3 frequency - 3 antisymmetric 2 [Hz] 1105.7

CM2 Eigen mode Eigen mode 4 frequency - 4 antisymmetric 3 [Hz] 1405.6

CM2 Eigen mode Eigen mode 5 frequency - 5 symmetric 2 [Hz] 1751.1

CM2 Eigen mode Eigen mode 6 frequency - 6 antisymmetric 4 [Hz] 2557

CM2 Eigen mode Eigen mode 7 frequency - 7 symmetric 3 [Hz] 2801.5

1.4.3 Calculated results

Result name Result description Value Error

Eigen mode 1 frequency - 1 antisymmetric 1 [Hz] 236.32 Hz 0.43%

Eigen mode 2 frequency - 2 symmetric 1 [Hz] 578.52 Hz 0.56%

Eigen mode 3 frequency - 3 antisymmetric 2 [Hz] 1112.54 Hz 0.62%

Eigen mode 4 frequency - 4 antisymmetric 3 [Hz] 1414.22 Hz 0.61%

Eigen mode 5 frequency - 5 symmetric 2 [Hz] 1760 Hz 0.51%

Eigen mode 6 frequency - 6 antisymmetric 4 [Hz] 2569.97 Hz 0.51%

Eigen mode 7 frequency - 7 symmetric 3 [Hz] 2777.43 Hz -0.86%

Page 31: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 31/682

  ADVANCE VALIDATION GUIDE

31

1.5 Thin lozenge-shaped plate fixed on one side (alpha = 30 °) (01-0009SDLSB_FEM)

Test ID: 2441

Test status: Passed 

1.5.1 Description

Verifies the eigen modes frequencies for a 10 mm thick lozenge-shaped plate fixed on one side, subjected to its ownweight only.

1.5.2 Background

1.5.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLS 02/89;

■  Analysis type: modal analysis;

■  Element type: planar.

Thin lozenge-shaped plate fixed on one side Scale =1/1001-0009SDLSB_FEM

Units

I. S.

Geometry

■  Thickness: t = 0.01 m,

■  Side: a = 1 m,

■   = 30°

■  Points coordinates:

►   A ( 0 ; 0 ; 0 )

►  B ( a ; 0 ; 0 )

►  C ( 0.5a ;32

 a ; 0 )

►  D ( 1.5a ;32

 a ; 0 )

Page 32: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 32/682

 ADVANCE VALIDATION GUIDE

32 

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer: AB side fixed,

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

1.5.2.2 Eigen mode frequencies relative to the angle

Reference solution

M. V. Barton formula for a lozenge of side "a" leads to the frequencies:

f  j = 2a2

1i

)1(12

Et2

2

  where i = 1,2, or i

2 = g().

  3.961

  10.19

M. V. Barton noted the sensitivity of the result relative to the mode and the  angle. He acknowledged that the i values were determined with a limited development of an insufficient order, which led to consider a reference valuethat is based on an experimental result, verified by an average of seven software that use the finite elementscalculation method.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  961 nodes,

■  900 surface quadrangles.

Eigen mode shapes

Page 33: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 33/682

  ADVANCE VALIDATION GUIDE

33

1.5.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode 1 frequency [Hz] 9.8987

CM2 Eigen mode Eigen mode 2 frequency [Hz] 25.4651

1.5.3 Calculated results

Result name Result description Value Error

Eigen mode 1 frequency [Hz] 9.82 Hz -0.80%

Eigen mode 2 frequency [Hz] 23.44 Hz -7.95%

Page 34: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 34/682

 ADVANCE VALIDATION GUIDE

34 

1.6 Thin lozenge-shaped plate fixed on one side (alpha = 0 °) (01-0007SDLSB_FEM)

Test ID: 2439

Test status: Passed 

1.6.1 Description

Verifies the eigen modes frequencies for a 10 mm thick lozenge-shaped plate fixed on one side, subjected to its ownweight only.

1.6.2 Background

1.6.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLS 02/89;

■  Analysis type: modal analysis;

■  Element type: planar.

Thin lozenge-shaped plate fixed on one side Scale =1/1001-0007SDLSB_FEM

Units

I. S.

Geometry

■  Thickness: t = 0.01 m,

■  Side: a = 1 m,

■   = 0°

■  Points coordinates:

►   A ( 0 ; 0 ; 0 )

►  B ( a ; 0 ; 0 )

►  C ( 0 ; a ; 0 )

►  D ( a ; a ; 0 )

Page 35: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 35/682

  ADVANCE VALIDATION GUIDE

35

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer: AB side fixed,

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

1.6.2.2 Eigen mode frequencies relative to the angle

Reference solution

M. V. Barton formula for a side "a" lozenge, leads to the frequencies:

f  j = 2a2

1i

)1(12

Et2

2

  where i = 1,2, and i

2 = g().

 

  3.492

  8.525

M.V. Barton noted the sensitivity of the result relative to the mode and the  angle. He acknowledged that the i values were determined with a limited development of an insufficient order, which led to consider a reference valuethat is based on an experimental result, verified by an average of seven software that use the finite elementscalculation method.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  61 nodes,

■  900 surface quadrangles.

Eigen mode shapes

Page 36: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 36/682

 ADVANCE VALIDATION GUIDE

36 

1.6.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode 1 frequency [Hz] 8.7266

CM2 Eigen mode Eigen mode 2 frequency [Hz] 21.3042

1.6.3 Calculated results

Result name Result description Value Error

Eigen mode 1 frequency [Hz] 8.67 Hz -0.65%

Eigen mode 2 frequency [Hz] 21.21 Hz -0.44%

Page 37: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 37/682

  ADVANCE VALIDATION GUIDE

37

1.7 Vibration mode of a thin piping elbow in plane (case 2) (01-0012SDLLB_FEM)

Test ID: 2444

Test status: Passed 

1.7.1 Description

Verifies the vibration modes of a thin piping elbow (1 m radius) extended by two straight elements of length L,subjected to its self weight only.

1.7.2 Background

1.7.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 14/89;

■  Analysis type: modal analysis (plane problem);

■  Element type: linear.

Vibration mode of a thin piping elbow Scale = 1/11Case 2 01-0012SDLLB_FEM

Units

I. S.

Geometry

■  Average radius of curvature: OA = R = 1 m,

■  L = 0.6 m,

■  Straight circular hollow section:

■  Outer diameter de = 0.020 m,

■  Inner diameter di = 0.016 m,

■  Section: A = 1.131 x 10-4

 m2,

■  Flexure moment of inertia relative to the y-axis: Iy = 4.637 x 10

-9

 m

4

,■  Flexure moment of inertia relative to z-axis: Iz = 4.637 x 10

-9 m

4,

■  Polar inertia: Ip = 9.274 x 10-9

 m4.

Page 38: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 38/682

 ADVANCE VALIDATION GUIDE

38 

■  Points coordinates (in m):

►  O ( 0 ; 0 ; 0 )

►   A ( 0 ; R ; 0 )

►  B ( R ; 0 ; 0 )

►  C ( -L ; R ; 0 )

►  D ( R ; -L ; 0 )

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer:

►  Fixed at points C and D

►   At A: translation restraint along y and z,

►   At B: translation restraint along x and z,

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

1.7.2.2 Eigen mode frequencies

Reference solution

The Rayleigh method applied to a thin curved beam is used to determine parameters such as:

■  in plane bending:

f  j =2

2i

R2  

  A

EIz

  where i = 1,2,

Finite elements modeling

■  Linear element: beam,

■  23 nodes,

■  22 linear elements.

Eigen mode shapes

Page 39: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 39/682

  ADVANCE VALIDATION GUIDE

39

1.7.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode frequency in plane 1 [Hz] 94

CM2 Eigen mode Eigen mode frequency in plane 2 [Hz] 180

1.7.3 Calculated results

Result name Result description Value Error

Eigen mode frequency in plane 1 [Hz] 94.62 Hz 0.66%

Eigen mode frequency in plane 2 [Hz] 184.68 Hz 2.60%

Page 40: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 40/682

 ADVANCE VALIDATION GUIDE

40 

1.8 Double fixed beam (01-0016SDLLB_FEM)

Test ID: 2448

Test status: Passed 

1.8.1 Description

Verifies the eigen modes frequencies and the vertical displacement on the middle of a beam consisting of eightelements of length "l", having identical characteristics. A punctual load of -50000 N is applied.

1.8.2 Background

1.8.2.1 Model description

■  Reference: internal GRAITEC test (beams theory);

■  Analysis type: static linear, modal analysis;

■  Element type: linear.

Units

I. S.

Geometry

■  Length: l = 16 m,

■  Axial section: S=0.06 m2 

■  Inertia I = 0.0001 m4 

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 N/m2,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7850 kg/m3 

Boundary conditions

■  Outer: Fixed at both ends x = 0 and x = 8 m,

■  Inner: None.

Loading

■  External: Punctual load P = -50000 N at x = 4m,

■  Internal: None.

Page 41: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 41/682

  ADVANCE VALIDATION GUIDE

41

1.8.2.2 Displacement of the model in the linear elastic range

Reference solution

The reference vertical displacement v5, is calculated at the middle of the beam at x = 2 m.

m05079.00001.0111.2192

1650000

192

33

5

 

E EI 

Pl v   

Finite elements modeling

■  Linear element: beam, imposed mesh,

■  9 nodes,

■  8 elements.

Deformed shape

Double fixed beam

Deformed

1.8.2.3 Eigen mode frequencies of the model in the linear elastic range

Reference solution

Knowing that the first four eigen mode frequencies of a double fixed beam are given by the following formula:

S

I E 

Lf  nn

.

.

..2 2

2

   

    where for the first 4 eigen modes frequencies

Hz26.228=f 8.199

Hz15.871=f 9.120

Hz8.095=f 67.61

Hz2.937=f 37.22

424

3

2

3

222

121

  

  

  

  

 

Finite elements modeling

■  Linear element: beam, imposed mesh,

■  9 nodes,

■  8 elements.

Page 42: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 42/682

 ADVANCE VALIDATION GUIDE

42 

Modal deformations

Double fixed beam

Mode 1

Double fixed beam

Mode 2

Double fixed beam

Mode 3

Double fixed beam

Mode 4

Page 43: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 43/682

  ADVANCE VALIDATION GUIDE

43

1.8.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 Dz Vertical displacement on the middle of the beam [m] -0.05079

CM2 Eigen mode Eigen mode 1 frequency [Hz] 2.937

CM2 Eigen mode Eigen mode 2 frequency [Hz] 8.095

CM2 Eigen mode Eigen mode 3 frequency [Hz] 15.870

CM2 Eigen mode Eigen mode 4 frequency [Hz] 26.228

1.8.3 Calculated results

Result name Result description Value Error

Dz Vertical displacement on the middle of the beam [m] -0.0507937 m -0.01%

Eigen mode 1 frequency [Hz] 2.94 Hz 0.10%

Eigen mode 2 frequency [Hz] 8.09 Hz -0.06%

Eigen mode 3 frequency [Hz] 15.79 Hz -0.50%

Eigen mode 4 frequency [Hz] 25.76 Hz -1.78%

Page 44: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 44/682

 ADVANCE VALIDATION GUIDE

44 

1.9 Vibration mode of a thin piping elbow in plane (case 3) (01-0013SDLLB_FEM)

Test ID: 2445

Test status: Passed 

1.9.1 Description

Verifies the vibration modes of a thin piping elbow (1 m radius) extended by two straight elements of length L,subjected to its self weight only.

1.9.2 Background

1.9.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 14/89;

■  Analysis type: modal analysis (plane problem);

■  Element type: linear.

Vibration mode of a thin piping elbow Scale = 1/12Case 3 01-0013SDLLB_FEM

Units

I. S.

Page 45: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 45/682

  ADVANCE VALIDATION GUIDE

45

Geometry

■  Average radius of curvature: OA = R = 1 m,

■  Straight circular hollow section:

■  Outer diameter: de = 0.020 m,

■  Inner diameter: di = 0.016 m,

■  Section: A = 1.131 x 10-4 m2,

■  Flexure moment of inertia relative to the y-axis: Iy = 4.637 x 10-9

 m4,

■  Flexure moment of inertia relative to z-axis: Iz = 4.637 x 10-9

 m4,

■  Polar inertia: Ip = 9.274 x 10-9

 m4.

■  Points coordinates (in m):

►  O ( 0 ; 0 ; 0 )

►   A ( 0 ; R ; 0 )

►  B ( R ; 0 ; 0 )

►  C ( -L ; R ; 0 )

►  D ( R ; -L ; 0 )

Materials properties■  Longitudinal elastic modulus: E = 2.1 x 10

11 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer:

►  Fixed at points C and Ds,

►   At A: translation restraint along y and z,

►   At B: translation restraint along x and z,

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

1.9.2.2 Eigen mode frequencies

Reference solution

The Rayleigh method applied to a thin curved beam is used to determine parameters such as:

■  in plane bending:

f  j =2

2

i

R2  

 

 A

EIz

  where i = 1,2,

Finite elements modeling

■  Linear element: beam,

■  41 nodes,

■  40 linear elements.

Page 46: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 46/682

 ADVANCE VALIDATION GUIDE

46 

Eigen mode shapes

1.9.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode frequency in plane 1 [Hz] 25.300

CM2 Eigen mode Eigen mode frequency in plane 2 [Hz] 27.000

1.9.3 Calculated results

Result name Result description Value Error

Eigen mode frequency in plane 1 [Hz] 24.96 Hz -1.34%

Eigen mode frequency in plane 2 [Hz] 26.71 Hz -1.07%

Page 47: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 47/682

  ADVANCE VALIDATION GUIDE

47

1.10 Short beam on simple supports (on the neutral axis) (01-0017SDLLB_FEM)

Test ID: 2449

Test status: Passed 

1.10.1 Description

Verifies the first eigen mode frequencies of a short beam on simple supports (the supports are located on the neutralaxis), subjected to its own weight only.

1.10.2 Background

■  Reference: Structure Calculation Software Validation Guide, test SDLL 01/89;

■  Analysis type: modal analysis (plane problem);

■  Element type: linear.

Short beam on simple supports on the neutral axis Scale = 1/6

01-0017SDLLB_FEM

Units

I. S.

Geometry

■  Height: h = 0.2 m,

■  Length: l = 1 m,

■  Width: b = 0.1 m,

■  Section: A = 2 x 10-2

 m4,

■  Flexure moment of inertia relative to z-axis: Iz = 6.667 x 10-5

 m4.

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,■  Density:  = 7800 kg/m

3.

Page 48: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 48/682

 ADVANCE VALIDATION GUIDE

48 

Boundary conditions

■  Outer:

►  Hinged at A (null horizontal and vertical displacements),

►  Simple support in B.

■  Inner: None.

Loading

■  External: None.

■  Internal: None.

1.10.2.1 Eigen modes frequencies

Reference solution

The bending beams equation gives, when superimposing, the effects of simple bending, shear force deformationsand rotation inertia, Timoshenko formula.

The reference eigen modes frequencies are determined by a numerical simulation of this equation, independent ofany software.

The eigen frequencies in tension-compression are given by:

f i =

l2

i    

E  where i =

2

)1i2(    

Finite elements modeling  

■  Linear element: S beam, imposed mesh,

■  10 nodes,

■  9 linear elements.

Page 49: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 49/682

  ADVANCE VALIDATION GUIDE

49

Eigen mode shapes

Page 50: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 50/682

 ADVANCE VALIDATION GUIDE

50 

1.10.2.2 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode 1 frequency [Hz] 431.555

CM2 Eigen mode Eigen mode 2 frequency [Hz] 1265.924

CM2 Eigen mode Eigen mode 3 frequency [Hz] 1498.295

CM2 Eigen mode Eigen mode 4 frequency [Hz] 2870.661

CM2 Eigen mode Eigen mode 5 frequency [Hz] 3797.773

CM2 Eigen mode Eigen mode 6 frequency [Hz] 4377.837

1.10.3 Calculated results

Result name Result description Value Error

Eigen mode 1 frequency [Hz] 437.12 Hz 1.29%

Eigen mode 2 frequency [Hz] 1264.32 Hz -0.13%

Eigen mode 3 frequency [Hz] 1537.16 Hz 2.59%

Eigen mode 4 frequency [Hz] 2911.46 Hz 1.42%

Eigen mode 5 frequency [Hz] 3754.54 Hz -1.14%

Eigen mode 6 frequency [Hz] 4281.23 Hz -2.21%

Page 51: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 51/682

  ADVANCE VALIDATION GUIDE

51

1.11 Rectangular thin plate simply supported on its perimeter (01-0020SDLSB_FEM)

Test ID: 2452

Test status: Passed 

1.11.1 Description

Verifies the first eigen mode frequencies of a thin rectangular plate simply supported on its perimeter.

1.11.2 Background

1.11.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLS 03/89;

■  Analysis type: modal analysis;

■  Element type: planar.

Rectangular thin plate simply supported on its perimeter Scale = 1/8

01-0020SDLSB_FEM

Units

I. S.

Geometry

■  Length: a = 1.5 m,

■  Width: b = 1 m,

■  Thickness: t = 0.01 m,

■  Points coordinates in m:

►   A (0 ;0 ;0)

►  B (0 ;1.5 ;0)

►  C (1 ;1.5 ;0)

►  D (1 ;0 ;0)

Page 52: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 52/682

 ADVANCE VALIDATION GUIDE

52 

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer:

►  Simple support on all sides,

►  For the modeling: hinged at A, B and D.

■  Inner: None.

Loading

■  External: None.

■  Internal: None.

1.11.2.2 Eigen modes frequencies

Reference solution

M. V. Barton formula for a rectangular plate with supports on all four sides, leads to:

f ij =2

 [ (

a

i)2 + (

b

 j)2]

)1(12

Et2

2

 

where:

i = number of half-length of wave along y ( dimension a)

 j = number of half-length of wave along x ( dimension b)

Finite elements modeling

■  Planar element: shell,■  496 nodes,

■  450 planar elements.

Page 53: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 53/682

  ADVANCE VALIDATION GUIDE

53

Eigen mode shapes

Page 54: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 54/682

 ADVANCE VALIDATION GUIDE

54 

1.11.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 1; j = 1. [Hz] 35.63

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 2; j = 1. [Hz] 68.51

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 1; j = 2. [Hz] 109.62

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 3; j = 1. [Hz] 123.32

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 2; j = 2. [Hz] 142.51

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 3; j = 2. [Hz] 197.32

1.11.3 Calculated results

Result name Result description Value Error

Eigen mode "i" - "j" frequency, for i = 1; j = 1 (Mode 1) [Hz] 35.58 Hz -0.14%

Eigen mode "i" - "j" frequency, for i = 2; j = 1 (Mode 2) [Hz] 68.29 Hz -0.32%

Eigen mode "i" - "j" frequency, for i = 1; j = 2 (Mode 3) [Hz] 109.98 Hz 0.33%

Eigen mode "i" - "j" frequency, for i = 3; j = 1 (Mode 4) [Hz] 123.02 Hz -0.24%

Eigen mode "i" - "j" frequency, for i = 2; j = 2 (Mode 5) [Hz] 141.98 Hz -0.37%

Eigen mode "i" - "j" frequency, for i = 3; j = 2 (Mode 6) [Hz] 195.55 Hz -0.90%

Page 55: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 55/682

  ADVANCE VALIDATION GUIDE

55

1.12 Cantilever beam in Eulerian buckling (01-0021SFLLB_FEM)

Test ID: 2453

Test status: Passed 

1.12.1 Description

Verifies the critical load result on node 5 of a cantilever beam in Eulerian buckling. A punctual load of -100000 isapplied.

1.12.2 Background

1.12.2.1 Model description

■  Reference: internal GRAITEC test (Euler theory);

■  Analysis type: Eulerian buckling;

■  Element type: linear.

Units

I. S.

Geometry

■  L = 10 m

■  S=0.01 m2 

■  I = 0.0002 m4 

Materials properties

■  Longitudinal elastic modulus: E = 2.0 x 1010

 N/m2,

■  Poisson's ratio:  = 0.1.

Boundary conditions

■  Outer: Fixed at end x = 0,

■  Inner: None.

Loading

■  External: Punctual load P = -100000 N at x = L,

■  Internal: None.

Page 56: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 56/682

 ADVANCE VALIDATION GUIDE

56 

1.12.2.2 Critical load on node 5

Reference solution

The reference critical load established by Euler is:

98696.0100000

98696N98696

L4

EIP

2

2

critique

 

 

Finite elements modeling

■  Planar element: beam, imposed mesh,

■  5 nodes,

■  4 elements.

Deformed shape

1.12.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Fx Critical load on node 5. [N] -98696

1.12.3 Calculated results

Result name Result description Value Error

Fx Critical load on node 5 (mode 1) [N] -100000 N -1.32%

Page 57: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 57/682

  ADVANCE VALIDATION GUIDE

57

1.13 Vibration mode of a thin piping elbow in plane (case 1) (01-0011SDLLB_FEM)

Test ID: 2443

Test status: Passed 

1.13.1 Description

Verifies the vibration modes of a thin piping elbow (1 m radius) with fixed ends and subjected to its self weight only.

1.13.2 Background

1.13.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 14/89;

■  Analysis type: modal analysis (plane problem);

■  Element type: linear.

Vibration mode of a thin piping elbow in plane Scale = 1/7

Case 1 01-0011SDLLB_FEM

Units

I. S.

Geometry

■  Average radius of curvature: OA = R = 1 m,

■  Straight circular hollow section:

■  Outer diameter: de = 0.020 m,

■  Inner diameter: di = 0.016 m,

■  Section: A = 1.131 x 10-4

 m2,

■  Flexure moment of inertia relative to the y-axis: Iy = 4.637 x 10-9

 m4,

■  Flexure moment of inertia relative to z-axis: Iz = 4.637 x 10-9

 m4,

■  Polar inertia: Ip = 9.274 x 10-9

 m4.

■  Points coordinates (in m):

►  O ( 0 ; 0 ; 0 )

►   A ( 0 ; R ; 0 )

►  B ( R ; 0 ; 0 )

Page 58: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 58/682

 ADVANCE VALIDATION GUIDE

58 

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer: Fixed at points A and B ,

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

1.13.2.2 Eigen mode frequencies

Reference solution

The Rayleigh method applied to a thin curved beam is used to determine parameters such as:

■  in plane bending:

f  j =2

2

i

R2  

 

 A

EIz

  where i = 1,2,

Finite elements modeling

■  Linear element: beam,

■  11 nodes,

■  10 linear elements.

Eigen mode shapes

Page 59: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 59/682

  ADVANCE VALIDATION GUIDE

59

1.13.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode frequency in plane 1 [Hz] 119

CM2 Eigen mode Eigen mode frequency in plane 2 [Hz] 227

1.13.3 Calculated results

Result name Result description Value Error

Eigen mode frequency in plane 1 [Hz] 120.09 Hz 0.92%

Eigen mode frequency in plane 2 [Hz] 227.1 Hz 0.04%

Page 60: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 60/682

 ADVANCE VALIDATION GUIDE

60 

1.14 Double fixed beam with a spring at mid span (01-0015SSLLB_FEM)

Test ID: 2447

Test status: Passed 

1.14.1 Description

Verifies the vertical displacement on the middle of a beam consisting of four elements of length "l", having identicalcharacteristics. A punctual load of -10000 N is applied.

1.14.2 Background

1.14.2.1 Model description

■  Reference: internal GRAITEC test;

■  Analysis type: linear static;

■  Element type: linear.

Units

I. S.

Geometry

■  = 1 m

■  S = 0.01 m2 

■  I = 0.0001 m4 

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer:

■  Fixed at ends x = 0 and x = 4 m,

■  Elastic support with k = EI/ rigidity

■  Inner: None.

Loading

■  External: Punctual load P = -10000 N at x = 2m,

■  Internal: None.

Page 61: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 61/682

  ADVANCE VALIDATION GUIDE

61

1.14.2.2 Displacement of the model in the linear elastic range

Reference solution

The reference vertical displacement v3, is calculated at the middle of the beam at x = 2 m.

Rigidity matrix of a plane beam:

EI EI EI EI 

EI EI EI EI 

EI EI EI EI 

EI EI EI EI 

460

260

6120

6120

00l

ES00

ES

260

460

6120

6120

00ES

-00ES

K

22

2323

22

2323

e  

Given the symmetry / X and load of the structure, it is unnecessary to consider the degrees of freedom associatedwith normal work (u2, u3, u4).

The same symmetry allows the deduction of:

■  v2 = v4 

■  2 = -4 

■  3 = 0

6

5

4

3

2

1

0

0

0

0

0

4626

612612

2680

26

6120

24612

2680

26

6120

124612

2680

26

6120

24612

2646

612612

5

5

1

1

5

5

4

4

3

3

2

2

1

1

22

22

22

22

22

22

22

22

22

22

 

  

 

EI 

  

  

  

  

  

33

333

333

333

33

 

Page 62: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 62/682

 ADVANCE VALIDATION GUIDE

62 

The elementary rigidity matrix of the spring in its local axis system, )(

)(

11

11

6

3

5U 

U EI k 

, must be expressed in

the global axis system by means of the rotation matrix (90° rotation):

6

6

6

3

3

3

5

000000

010010

000000

000000

010010

000000

  

  

u

u

EI K 

 

  344332 4

3 0

826v v 

         

  3443323320

24612v v v v   

    

  y)unnecessar (usually026826

244423222   vvvv          

 

(3)  

m1011905.03

 612124612 03

2

3

34243332223

 

  

 

EI l 

P v 

EI 

P v v v  

      

Finite elements modeling

■  Linear element: beam, imposed mesh,

■  6 nodes,

■  4 linear elements + 1 spring,

Deformed shape

Double fixed beam with a spring at mid span

Deformed

Note: the displacement is expressed here in m

1.14.2.3 Theoretical resultsSolver Result name Result description Reference value

CM2 Dz Vertical displacement on the middle of the beam [mm] -0.11905

1.14.3 Calculated results

Result name Result description Value Error

Dz Vertical displacement on the middle of the beam [mm] -0.119048 mm 0.00%

Page 63: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 63/682

  ADVANCE VALIDATION GUIDE

63

1.15 Thin square plate fixed on one side (01-0019SDLSB_FEM)

Test ID: 2451

Test status: Passed 

1.15.1 Description

Verifies the first eigen modes frequencies of a thin square plate fixed on one side.

1.15.2 Background

1.15.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLS 01/89;

■  Analysis type: modal analysis;

■  Element type: planar.

Thin square plate fixed on one side Scale = 1/6

01-0019SDLSB_FEM

Units

I. S.

Geometry

■  Side: a = 1 m,

■  Thickness: t = 1 m,

■  Points coordinates in m:

►   A (0 ;0 ;0)

►  B (1 ;0 ;0)

►  C (1 ;1 ;0)

►  D (0 ;1 ;0)

Page 64: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 64/682

 ADVANCE VALIDATION GUIDE

64 

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer: Edge AD fixed.

■  Inner: None.

Loading

■  External: None.

■  Internal: None.

1.15.2.2 Eigen modes frequencies

Reference solution

M. V. Barton formula for a square plate with side "a", leads to:

f  j =2a2

1

  i

)1(12

Et2

2

  where i = 1,2, . . .

i 1 2 3 4 5 6

i  3.492 8.525 21.43 27.33 31.11 54.44

Finite elements modeling

■  Planar element: shell,

■  959 nodes,

■  900 planar elements.

Page 65: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 65/682

  ADVANCE VALIDATION GUIDE

65

Eigen mode shapes

Thin square plate fixed on one side

Mode 1

Thin square plate fixed on one side

Mode 2

Thin square plate fixed on one side

Mode 3

Page 66: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 66/682

 ADVANCE VALIDATION GUIDE

66 

1.15.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode 1 frequency [Hz] 8.7266

CM2 Eigen mode Eigen mode 2 frequency [Hz] 21.3042

CM2 Eigen mode Eigen mode 3 frequency [Hz] 53.5542

CM2 Eigen mode Eigen mode 4 frequency [Hz] 68.2984

CM2 Eigen mode Eigen mode 5 frequency [Hz] 77.7448

CM2 Eigen mode Eigen mode 6 frequency [Hz] 136.0471

1.15.3 Calculated results

Result name Result description Value Error

Eigen mode 1 frequency [Hz] 8.67 Hz -0.65%

Eigen mode 2 frequency [Hz] 21.22 Hz -0.40%

Eigen mode 3 frequency [Hz] 53.13 Hz -0.79%

Eigen mode 4 frequency [Hz] 67.74 Hz -0.82%

Eigen mode 5 frequency [Hz] 77.15 Hz -0.77%

Eigen mode 6 frequency [Hz] 134.65 Hz -1.03%

Page 67: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 67/682

  ADVANCE VALIDATION GUIDE

67

1.16 Thin lozenge-shaped plate fixed on one side (alpha = 45 °) (01-0010SDLSB_FEM)

Test ID: 2442

Test status: Passed 

1.16.1 Description

Verifies the eigen modes frequencies for a 10 mm thick lozenge-shaped plate fixed on one side, subjected to its ownweight only.

1.16.2 Background

1.16.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLS 02/89;

■  Analysis type: modal analysis;

■  Element type: planar.

Thin lozenge-shaped plate fixed on one side Scale =1/1001-0010SDLSB_FEM

Units

I. S.

Page 68: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 68/682

 ADVANCE VALIDATION GUIDE

68 

Geometry

■  Thickness: t = 0.01 m,

■  Side: a = 1 m,

■   = 45°

■  Points coordinates:

►   A ( 0 ; 0 ; 0 )

►  B ( a ; 0 ; 0 )

►  C (2

2a ;

2

2 a ; 0 )

►  D (2

22 a ;

2

2a ; 0 )

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3

.

Boundary conditions

■  Outer: AB side fixed,

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

1.16.2.2 Eigen mode frequencies relative to the angle

Reference solution

M. V. Barton formula for a lozenge of side "a" leads to the frequencies:

f  j = 2a2

1i

)1(12

Et2

2

  where i = 1,2, or i

2 = g().

  4.4502

  10.56

M. V. Barton noted the sensitivity of the result relative to the mode and the  angle. He acknowledged that the i values were determined with a limited development of an insufficient order, which led to consider a reference valuethat is based on an experimental result, verified by an average of seven software that use the finite elements

calculation method.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  961 nodes,

■  900 surface quadrangles.

Page 69: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 69/682

  ADVANCE VALIDATION GUIDE

69

Eigen mode shapes

1.16.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode 1 frequency [Hz] 11.1212CM2 Eigen mode Eigen mode 2 frequency [Hz] 26.3897

1.16.3 Calculated results

Result name Result description Value Error

Eigen mode 1 frequency [Hz] 11.28 Hz 1.43%

Eigen mode 2 frequency [Hz] 28.08 Hz 6.41%

Page 70: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 70/682

 ADVANCE VALIDATION GUIDE

70 

1.17 Thin circular ring hanged on an elastic element (01-0014SDLLB_FEM)

Test ID: 2446

Test status: Passed 

1.17.1 Description

Verifies the first eigen modes frequencies of a circular ring hanged on an elastic element, subjected to its self weightonly.

1.17.2 Background

1.17.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 13/89;

■  Analysis type: modal analysis, plane problem;

■  Element type: linear.

Thin circular ring hang from an elastic element Scale = 1/101-0014SDLLB_FEM

Units

I. S.

Page 71: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 71/682

  ADVANCE VALIDATION GUIDE

71

Geometry

■  Average radius of curvature: OB = R = 0.1 m,

■  Length of elastic element: AB = 0.0275 m ;

■  Straight rectangular section:

►  Ring

Thickness: h = 0.005 m,

Width: b = 0.010 m,

Section: A = 5 x 10-5

 m2,

Flexure moment of relative to the vertical axis: I = 1.042 x 10-10

 m4,

►  Elastic element

Thickness: h = 0.003 m,

Width: b = 0.010 m,

Section: A = 3 x 10-5

 m2,

Flexure moment of inertia relative to the vertical axis: I = 2.25 x 10-11

 m4,

■  Points coordinates:►  O ( 0 ; 0 ),

►   A ( 0 ; -0.0725 ),

►  B ( 0 ; -0.1 ).

Materials properties

■  Longitudinal elastic modulus: E = 7.2 x 1010

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 2700 kg/m3.

Boundary conditions

■  Outer: Fixed in A,■  Inner: None.

Loading

■  External: None,

■  Internal: None.

1.17.2.2 Eigen mode frequencies

Reference solutions

The reference solution was established from experimental results of a mass manufactured aluminum ring.

Finite elements modeling■  Linear element: beam,

■  43 nodes,

■  43 linear elements.

Page 72: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 72/682

 ADVANCE VALIDATION GUIDE

72 

Eigen mode shapes

Page 73: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 73/682

  ADVANCE VALIDATION GUIDE

73

1.17.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode 1 Asymmetrical frequency [Hz] 28.80

CM2 Eigen mode Eigen mode 2 Symmetrical frequency [Hz] 189.30

CM2 Eigen mode Eigen mode 3 Asymmetrical frequency [Hz] 268.80

CM2 Eigen mode Eigen mode 4 Asymmetrical frequency [Hz] 641.00

CM2 Eigen mode Eigen mode 5 Symmetrical frequency [Hz] 682.00

CM2 Eigen mode Eigen mode 6 Asymmetrical frequency [Hz] 1063.00

1.17.3 Calculated results

Result name Result description Value Error

Eigen mode 1 Asymmetrical frequency [Hz] 28.81 Hz 0.03%

Eigen mode 2 Symmetrical frequency [Hz] 189.69 Hz 0.21%

Eigen mode 3 Asymmetrical frequency [Hz] 269.38 Hz 0.22%

Eigen mode 4 Asymmetrical frequency [Hz] 642.15 Hz 0.18%

Eigen mode 5 Symmetrical frequency [Hz] 683.9 Hz 0.28%

Eigen mode 6 Asymmetrical frequency [Hz] 1065.73 Hz 0.26%

Page 74: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 74/682

 ADVANCE VALIDATION GUIDE

74 

1.18 Short beam on simple supports (eccentric) (01-0018SDLLB_FEM)

Test ID: 2450

Test status: Passed 

1.18.1 Description

Verifies the first eigen mode frequencies of a short beam on simple supports (the supports are eccentric relative tothe neutral axis).

1.18.2 Background

1.18.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 01/89;

■  Analysis type: modal analysis, (plane problem);

■  Element type: linear.

Short beam on simple supports (eccentric) Scale = 1/501-0018SDLLB_FEM

Units

I. S.

Geometry

■  Height: h = 0.2m,

■  Length: l = 1 m,

■  Width: b = 0.1 m,

■  Section: A = 2 x 10-2

 m4,

■  Flexure moment of inertia relative to z-axis: Iz = 6.667 x 10-5

 m4.

Page 75: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 75/682

  ADVANCE VALIDATION GUIDE

75

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer:

►  Hinged at A (null horizontal and vertical displacements),

►  Simple support at B.

■  Inner: None.

Loading

■  External: None.

■  Internal: None.

1.18.2.2 Eigen modes frequencies

Reference solution

The problem has no analytical solution, the solution is determined by averaging several software: Timoshenko modelwith shear force deformation effects and rotation inertia. The bending modes and the traction-compression arecoupled.

Finite elements modeling

■  Linear element: S beam, imposed mesh,

■  10 nodes,

■  9 linear elements.

Eigen modes shape

Short beam on simple supports (eccentric)

Mode 1

Page 76: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 76/682

 ADVANCE VALIDATION GUIDE

76 

Short beam on simple supports (eccentric)

Mode 2

Short beam on simple supports (eccentric)

Mode 3

Short beam on simple supports (eccentric)

Mode 4

Page 77: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 77/682

  ADVANCE VALIDATION GUIDE

77

Short beam on simple supports (eccentric)

Mode 5

1.18.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode 1 frequency [Hz] 392.8

CM2 Eigen mode Eigen mode 2 frequency [Hz] 902.2

CM2 Eigen mode Eigen mode 3 frequency [Hz] 1591.9

CM2 Eigen mode Eigen mode 4 frequency [Hz] 2629.2

CM2 Eigen mode Eigen mode 5 frequency [Hz] 3126.2

1.18.3 Calculated results

Result name Result description Value Error

Eigen mode 1 frequency [Hz] 393.7 Hz 0.23%

Eigen mode 2 frequency [Hz] 945.35 Hz 4.78%

Eigen mode 3 frequency [Hz] 1595.94 Hz 0.25%

Eigen mode 4 frequency [Hz] 2526.22 Hz -3.92%

Eigen mode 5 frequency [Hz] 3118.91 Hz -0.23%

Page 78: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 78/682

 ADVANCE VALIDATION GUIDE

78 

1.19 Slender beam on two fixed supports (01-0024SSLLB_FEM)

Test ID: 2456

Test status: Passed 

1.19.1 Description

 A straight slender beam with fixed ends is loaded with a uniform load, several punctual loads and a torque. The shearforce, bending moment, vertical displacement and horizontal reaction are verified.

1.19.2 Background

1.19.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 01/89;

■  Analysis type: linear static;

■  Element type: linear.

Slender beam on two fixed supports Scale = 1/401-0024SSLLB_FEM

Units

I. S.

Geometry

■  Length: L = 1 m,

■  Beam inertia: I = 1.7 x 10-8

 m4.

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa.

Page 79: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 79/682

  ADVANCE VALIDATION GUIDE

79

Boundary conditions

■  Outer: Fixed at A and B,

■  Inner: None.

Loading

■  External:

►  Uniformly distributed load from A to B: py = p = -24000 N/m,

►  Punctual load at D: Fx = F1 = 30000 N,

►  Torque at D: Cz = C = -3000 Nm,

►  Punctual load at E: Fx = F2 = 10000 N,

►  Punctual load at E: Fy = F = -20000 N.

■  Internal: None.

1.19.2.2 Shear force at G

Reference solution

 Analytical solution:

■  Shear force at G: VG 

VG = 0.216F – 1.26L

Finite elements modeling

■  Linear element: beam,

■  5 nodes,

■  4 linear elements.

Results shape

Slender beam on two fixed supports Scale = 1/5

Shear force

Page 80: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 80/682

 ADVANCE VALIDATION GUIDE

80 

1.19.2.3 Bending moment in G

Reference solution

 Analytical solution:

■  Bending moment at G: MG 

MG =pL2

24  - 0.045LF – 0.3C

Finite elements modeling

■  Linear element: beam,

■  5 nodes,

■  4 linear elements.

Results shape

Slender beam on two fixed supports Scale = 1/5

Bending moment

1.19.2.4 Vertical displacement at G

Reference solution

 Analytical solution:

■  Vertical displacement at G: vG 

vG =pl

4

384EI  +

0.003375FL3

EI  +

0.015CL2

EI 

Finite elements modeling

■  Linear element: beam,

■  5 nodes,

■  4 linear elements.

Page 81: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 81/682

  ADVANCE VALIDATION GUIDE

81

Results shape

Slender beam on two fixed supports Scale = 1/4

Deformed

1.19.2.5 Horizontal reaction at A

Reference solution

 Analytical solution:

■  Horizontal reaction at A: H A 

H A = -0.7F1 –0.3F2 

Finite elements modeling

■  Linear element: beam,

■  5 nodes,

■  4 linear elements.

Page 82: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 82/682

 ADVANCE VALIDATION GUIDE

82 

1.19.2.6 Theoretical results

Solver Result name Result description Reference value

CM2 Fz Shear force in point G. [N] -540

CM2 My Bending moment in point G. [Nm] -2800

CM2 Dz Vertical displacement in point G. [cm] -4.90CM2 Fx Horizontal reaction in point A. [N] 24000

1.19.3 Calculated results

Result name Result description Value Error

Fz Shear force in point G [N] -540 N 0.00%

My Bending moment in point G [Nm] -2800 N*m 0.00%

DZ Vertical displacement in point G [cm] -4.90485 cm -0.10%

Fx Horizontal reaction in point A [N] 24000 N 0.00%

Page 83: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 83/682

  ADVANCE VALIDATION GUIDE

83

1.20 Slender beam on three supports (01-0025SSLLB_FEM)

Test ID: 2457

Test status: Passed 

1.20.1 Description

 A straight slender beam on three supports is loaded with two punctual loads. The bending moment, verticaldisplacement and reaction on the center are verified.

1.20.2 Background

1.20.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 03/89;

■  Analysis type: static (plane problem);

■  Element type: linear.

Slender beam on three supports Scale = 1/4901-0025SSLLB_FEM

Units

I. S.

Geometry

■  Length: L = 3 m,

■  Beam inertia: I = 6.3 x 10-4

 m4.

Page 84: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 84/682

 ADVANCE VALIDATION GUIDE

84 

Materials properties

Longitudinal elastic modulus: E = 2.1 x 1011

 Pa.

Boundary conditions

■  Outer:

►  Hinged at A,►  Elastic support at B (Ky = 2.1 x 10

6 N/m),

►  Simple support at C.

■  Inner: None.

Loading  

■  External: 2 punctual loads F = Fy = -42000N.

■  Internal: None.

1.20.2.2 Bending moment at B

Reference solution

The resolution of the hyperstatic system of the slender beam leads to:

k =Ky3L

EI6 

■  Bending moment at B: MB 

MB = ±2

)k8(

F)k26(

 

Finite elements modeling

■  Linear element: beam,

■  5 nodes,

■  4 linear elements.

Results shape

Slender beam on three supports Scale = 1/49

Bending moment

Page 85: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 85/682

  ADVANCE VALIDATION GUIDE

85

1.20.2.3 Reaction in B

Reference solution

■  Compression force in the spring: VB 

VB =-11F

8 + k

 

Finite elements modeling

■  Linear element: beam,

■  5 nodes,

■  4 linear elements.

1.20.2.4 Vertical displacement at B

Reference solution

■  Deflection at the spring location: vB 

vB =

11F

Ky(8 + k) 

Finite elements modeling

■  Linear element: beam,

■  5 nodes,

■  4 linear elements.

Results shape

Slender beam on three supports

Deformed

Page 86: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 86/682

 ADVANCE VALIDATION GUIDE

86 

1.20.2.5 Theoretical results

Solver Result name Result description Reference value

CM2 My Bending moment in point B. [Nm] -63000

CM2 DZ Vertical displacement in point B. [cm] -1.00

CM2 Fz Reaction in point B. [N] -21000

1.20.3 Calculated results

Result name Result description Value Error

My Bending moment in point B [Nm] -63000 N*m 0.00%

DZ Vertical displacement in point B [cm] -1 cm 0.00%

Fz Reaction in point B [N] -21000 N 0.00%

Page 87: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 87/682

  ADVANCE VALIDATION GUIDE

87

1.21 Fixed thin arc in out of plane bending (01-0028SSLLB_FEM)

Test ID: 2460

Test status: Passed 

1.21.1 Description

 An arc of a circle fixed at one end is loaded with a punctual force at its free end, perpendicular to the plane. The outof plane displacement, torsion moment and bending moment are verified.

1.21.2 Background

1.21.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 07/89;

■  Analysis type: static linear;

■  Element type: linear.

Fixed thin arc in out of plane bending Scale = 1/6

01-0028SSLLB_FEM

Units

I. S.

Geometry

■  Medium radius: R = 1 m ,

■  Circular hollow section:

►  de = 0.02 m,

►  di = 0.016 m,

►   A = 1.131 x 10-4

 m2,

►  Ix = 4.637 x 10-9

 m4.

Materials properties

■  Longitudinal elastic modulus: E = 2 x 1011 Pa,

■  Poisson's ratio:  = 0.3.

Page 88: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 88/682

 ADVANCE VALIDATION GUIDE

88 

Boundary conditions

■  Outer: Fixed at A.

■  Inner: None.

Loading

■  External: Punctual force in B perpendicular on the plane: Fz = F = 100 N.■  Internal: None.

1.21.2.2 Displacements at B

Reference solution

Displacement out of plane at point B:

uB =FR

3

EIx  [

4

  +EIx KT

 (34

  - 2)]

where KT is the torsional rigidity for a circular section (torsion constant is 2Ix).

KT = 2GIx =EIx 

1 +

    uB =FR

3

EIx  [

4

  + (1 + ) (3

4

  - 2)]

Finite elements modeling

■  Linear element: beam,

■  46 nodes,

■  45 linear elements.

1.21.2.3 Moments at = 15°

Reference solution

■  Torsion moment: Mx’ = Mt = FR(1 - sin)

■  Bending moment: Mz’ = Mf  = -FRcos 

Finite elements modeling

■  Linear element: beam,

■  46 nodes,

■  45 linear elements.

1.21.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 D Displacement out of plane in point B [m] 0.13462

CM2 Mx Torsion moment in  = 15° [Nm] 74.1180

CM2 Mz Bending moment in  = 15° [Nm] -96.5925

1.21.3 Calculated results

Result name Result description Value Error

D Displacement out of plane in point B [m] 0.135156 m 0.40%

Mx Torsion moment in Theta = 15° [Nm] 74.103 N*m -0.02%

Mz Bending moment in Theta = 15° [Nm] 96.5925 N*m 0.00%

Page 89: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 89/682

  ADVANCE VALIDATION GUIDE

89

1.22 Double hinged thin arc in planar bending (01-0029SSLLB_FEM)

Test ID: 2461

Test status: Passed 

1.22.1 Description

Verifies the rotation about Z-axis, the vertical displacement and the horizontal displacement on several points of adouble hinged thin arc in planar bending.

1.22.2 Background

1.22.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 08/89;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

Double hinged thin arc in planar bending Scale = 1/8

01-0029SSLLB_FEM

Units

I. S.

Geometry

■  Medium radius: R = 1 m ,

■  Circular hollow section:

►  de = 0.02 m,

►  di = 0.016 m,

►   A = 1.131 x 10-4

 m2,

►  Ix = 4.637 x 10-9

 m4.

Page 90: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 90/682

 ADVANCE VALIDATION GUIDE

90 

Materials properties

■  Longitudinal elastic modulus: E = 2 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer:►  Hinge at A,

►   At B: allowed rotation along z, vertical displacement restrained along y.

■  Inner: None.

Loading  

■  External: Punctual load at C: Fy = F = - 100 N.

■  Internal: None.

1.22.2.2 Displacements at A, B and C

Reference solution

■  Rotation about z-axis

 A = - B = (2  - 1)

FR22EI

 

■  Displacement;

Vertical at C: vC =8

 FREA

  + (34

  - 2)FR

3

2EI 

Horizontal at B: uB =FR2EA

  -FR

3

2EI 

Finite elements modeling

■  Linear element: beam,

■  37 nodes,■  36 linear elements.

Page 91: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 91/682

  ADVANCE VALIDATION GUIDE

91

Displacements shape

Fixed thin arc in planar bending Scale = 1/11

Deformed

1.22.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 RY Rotation about Z-axis in point A [rad] 0.030774

CM2 RY Rotation about Z-axis in point B [rad] -0.030774

CM2 DZ Vertical displacement in point C [cm] -1.9206

CM2 DX Horizontal displacement in point B [cm] 5.3912

1.22.3 Calculated results

Result name Result description Value Error

RY Rotation about Z-axis in point A [rad] 0.0307785 Rad 0.01%

RY Rotation about Z-axis in point B [rad] -0.0307785 Rad -0.01%

DZ Vertical displacement in point C [cm] -1.92019 cm 0.02%

DX Horizontal displacement in point B [cm] 5.386 cm -0.10%

Page 92: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 92/682

 ADVANCE VALIDATION GUIDE

92 

1.23 Bending effects of a symmetrical portal frame (01-0023SDLLB_FEM)

Test ID: 2455

Test status: Passed 

1.23.1 Description

Verifies the first eigen mode frequencies of a symmetrical portal frame with fixed supports.

1.23.2 Background

1.23.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 01/89;

■  Analysis type: modal analysis;

■  Element type: linear.

Bending effects of a symmetrical portal frame Scale = 1/5

01-0023SDLLB_FEM

Units

I. S.

Geometry

■  Straight rectangular sections for beams and columns:

■  Thickness: h = 0.0048 m,

■  Width: b = 0.029 m,

■  Section: A = 1.392 x 10-4

 m2,

■  Flexure moment of inertia relative to z-axis: Iz = 2.673 x 10-10

 m4,

■  Points coordinates in m:

 A B C D E F

x -0.30 0.30 -0.30 0.30 -0.30 0.30y 0 0 0.36 0.36 0.81 0.81

Page 93: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 93/682

  ADVANCE VALIDATION GUIDE

93

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer: Fixed at A and B,

■  Inner: None.

Loading

■  External: None.

■  Internal: None.

1.23.2.2 Eigen modes frequencies

Reference solution

Dynamic radius method (slender beams theory).

Finite elements modeling

■  Linear element: beam,

■  60 nodes,

■  60 linear elements.

Deformed shape

Bending effects of a symmetrical portal frame Scale = 1/7

Mode 13

Page 94: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 94/682

 ADVANCE VALIDATION GUIDE

94 

1.23.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode 1 antisymmetric frequency [Hz] 8.8

CM2 Eigen mode Eigen mode 2 antisymmetric frequency [Hz] 29.4

CM2 Eigen mode Eigen mode 3 symmetric frequency [Hz] 43.8CM2 Eigen mode Eigen mode 4 symmetric frequency [Hz] 56.3

CM2 Eigen mode Eigen mode 5 antisymmetric frequency [Hz] 96.2

CM2 Eigen mode Eigen mode 6 symmetric frequency [Hz] 102.6

CM2 Eigen mode Eigen mode 7 antisymmetric frequency [Hz] 147.1

CM2 Eigen mode Eigen mode 8 symmetric frequency [Hz] 174.8

CM2 Eigen mode Eigen mode 9 antisymmetric frequency [Hz] 178.8

CM2 Eigen mode Eigen mode 10 antisymmetric frequency [Hz] 206

CM2 Eigen mode Eigen mode 11 symmetric frequency [Hz] 266.4

CM2 Eigen mode Eigen mode 12 antisymmetric frequency [Hz] 320

CM2 Eigen mode Eigen mode 13 symmetric frequency [Hz] 335

1.23.3 Calculated results

Result name Result description Value Error

Eigen mode 1 antisymmetric frequency [Hz] 8.78 Hz -0.23%

Eigen mode 2 antisymmetric frequency [Hz] 29.43 Hz 0.10%

Eigen mode 3 symmetric frequency [Hz] 43.85 Hz 0.11%

Eigen mode 4 symmetric frequency [Hz] 56.3 Hz 0.00%

Eigen mode 5 antisymmetric frequency [Hz] 96.05 Hz -0.16%

Eigen mode 6 symmetric frequency [Hz] 102.7 Hz 0.10%Eigen mode 7 antisymmetric frequency [Hz] 147.08 Hz -0.01%

Eigen mode 8 symmetric frequency [Hz] 174.96 Hz 0.09%

Eigen mode 9 antisymmetric frequency [Hz] 178.92 Hz 0.07%

Eigen mode 10 antisymmetric frequency [Hz] 206.23 Hz 0.11%

Eigen mode 11 symmetric frequency [Hz] 266.62 Hz 0.08%

Eigen mode 12 antisymmetric frequency [Hz] 319.95 Hz -0.02%

Eigen mode 13 symmetric frequency [Hz] 334.96 Hz -0.01%

Page 95: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 95/682

  ADVANCE VALIDATION GUIDE

95

1.24 Fixed thin arc in planar bending (01-0027SSLLB_FEM)

Test ID: 2459

Test status: Passed 

1.24.1 Description

 Arc of a circle fixed at one end, subjected to two punctual loads and a torque at its free end. The horizontaldisplacement, vertical displacement and rotation about Z-axis are verified.

1.24.2 Background

1.24.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 06/89;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

Fixed thin arc in planar bending Scale = 1/24

01-0027SSLLB_FEM

Units

I. S.

Geometry

■  Medium radius: R = 3 m ,

■  Circular hollow section:

►  de = 0.02 m,

►  di = 0.016 m,

►   A = 1.131 x 10-4

 m2,

►  Ix = 4.637 x 10-9

 m4.

Page 96: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 96/682

 ADVANCE VALIDATION GUIDE

96 

Materials properties

Longitudinal elastic modulus: E = 2 x 1011

 Pa.

Boundary conditions

■  Outer: Fixed in A.

■  Inner: None.

Loading

■  External:

 At B:

►  punctual load F1 = Fx = 10 N,

►  punctual load F2 = Fy = 5 N,

►  bending moment about Oz, Mz = 8 Nm.

■  Internal: None.

1.24.2.2 Displacements at B

Reference solution

 At point B:

■  displacement parallel to Ox: u =R

2

4EI [F1R + 2F2R + 4Mz]

■  displacement parallel to Oy: v =R

2

4EI [2F1R + (3 - 8)F2R + 2( - 2)Mz]

■  rotation around Oz:  =R

4EI [4F1R + 2( - 2)F2R + 2Mz]

Finite elements modeling

■  Linear element: beam,

■  31 nodes,■  30 linear elements.

Page 97: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 97/682

  ADVANCE VALIDATION GUIDE

97

Results shape

Fixed thin arc in planar bending Scale = 1/19

Deformed

1.24.2.3 Theoretical resultsSolver Result name Result description Reference value

CM2 DX Horizontal displacement in point B [m] 0.3791

CM2 DZ Vertical displacement in point B [m] 0.2417

CM2 RY Rotation about Z-axis in point B [rad] -0.1654

1.24.3 Calculated results

Result name Result description Value Error

DX Horizontal displacement in point B [m] 0.378914 m -0.05%

DZ Vertical displacement in point B [m] 0.241738 m 0.02%

RY Rotation about Z-axis in point B [rad] -0.165362 Rad 0.02%

Page 98: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 98/682

 ADVANCE VALIDATION GUIDE

98 

1.25 Beam on elastic soil, free ends (01-0032SSLLB_FEM)

Test ID: 2464

Test status: Passed 

1.25.1 Description

 A beam under 3 punctual loads lays on a soil of constant linear stiffness. The bending moment, vertical displacementand rotation about z-axis on several points of the beam are verified.

1.25.2 Background

1.25.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 15/89;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

Beam on elastic soil, free ends Scale = 1/21

01-0032SSLLB_FEM

Units

I. S.

Geometry

■  L = ( 10 )/2,

■  I = 10-4

 m4.

Materials properties

Longitudinal elastic modulus: E = 2.1 x 1011

 Pa.

Page 99: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 99/682

  ADVANCE VALIDATION GUIDE

99

Boundary conditions

■  Outer:

►  Free A and B extremities,

►  Constant linear stiffness of soil ky = K = 840000 N/m2.

■  Inner: None.

Loading

■  External: Punctual load at A, C and B: Fy = F = - 10000 N.

■  Internal: None.

1.25.2.2 Bending moment and displacement at C

Reference solution

 =4

K/(4EI)

 = L/2

 = sh (2) + sin (2)

■  Bending moment:

MC = (F/(4))(ch(2) - cos (2) – 8sh()sin())/ 

■  Vertical displacement:

vC = - (F/(2K))( ch(2) + cos (2) + 8ch()cos() + 2)/ 

Finite elements modeling

■  Linear element: beam,

■  72 nodes,

■  71 linear elements.

Bending moment diagram

Beam on elastic soil, free ends Scale = 1/20

Bending moment

Page 100: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 100/682

 ADVANCE VALIDATION GUIDE

100 

1.25.2.3 Displacements at A

Reference solution

■  Vertical displacement:

v A = (2F/K)( ch()cos() + ch(2) + cos(2))/ 

■  Rotation about z-axis A = (-2F2

/K)( sh()cos() - sin()ch() + sh(2) - sin(2))/ 

Finite elements modeling

■  Linear element: beam,

■  72 nodes,

■  71 linear elements

1.25.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 My Bending moment in point C [Nm] 5759

CM2 Dz Vertical displacement in point C [m] -0.006844CM2 Dz Vertical displacement in point A [m] -0.007854

CM2 RY Rotation  about z-axis in point A [rad] -0.000706

1.25.3 Calculated results

Result name Result description Value Error

My Bending moment in point C [Nm] 5779.54 N*m 0.36%

Dz Vertical displacement in point C [m] -0.00684369 m 0.00%

Dz Vertical displacement in point A [m] -0.00786073 m -0.09%

RY Rotation Theta about z-axis in point A [rad] -0.000707427 Rad -0.20%

Page 101: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 101/682

  ADVANCE VALIDATION GUIDE

101

1.26 EDF Pylon (01-0033SFLLA_FEM)

Test ID: 2465

Test status: Passed 

1.26.1 Description

Verifies the displacement at the top of an EDF Pylon and the dominating buckling results. Three punctual loadscorresponding to wind loads are applied on the main arms, on the upper arm and on the lower horizontal frames ofthe pylon.

1.26.2 Background

1.26.2.1 Model description

■  Reference: Internal GRAITEC test;

■  Analysis type: static linear, Eulerian buckling;

■  Element type: linear

Units

I. S.

Geometry

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer:

►  Hinged support,

►  For the modeling, a fixed restraint and 4 beams were added at the pylon supports level.

■  Inner: None.

Page 102: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 102/682

 ADVANCE VALIDATION GUIDE

102 

Loading

■  External:

Punctual loads corresponding to a wind load.

►  FX = 165550 N, FY = - 1240 N, FZ = - 58720 N on the mainarms,

►  FX = 50250 N, FY = - 1080 N, FZ = - 12780 N on the upper arm,►  FX = 11760 N, FY = 0 N, FZ = 0 N on the lower horizontal frames

■  Internal: None.

1.26.2.2 Displacement of the model in the linear elastic range

Reference solution

Page 103: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 103/682

  ADVANCE VALIDATION GUIDE

103

Software ANSYS 5.3 NE/NASTRAN 7.0

Max deflection (m) 0.714 0.714

 dominating mode 2.77 2.77

Finite elements modeling

■  Linear element: beam, imposed mesh,

■  402 nodes,

■  1034 elements.

Deformed shape

Page 104: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 104/682

 ADVANCE VALIDATION GUIDE

104 

Buckling modal deformation (dominating mode)

1.26.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 D Displacement at the top of the pylon [m] 0.714

CM2 Dominating buckling - critical , mode 4 [Hz] 2.77

1.26.3 Calculated results

Result name Result description Value Error

D Displacement at the top of the pylon [m] 0.71254 m -0.20%

Dominating buckling - critical Lambda - mode 4 [Hz] 2.83 Hz 2.17%

Page 105: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 105/682

  ADVANCE VALIDATION GUIDE

105

1.27 Truss with hinged bars under a punctual load (01-0031SSLLB_FEM)

Test ID: 2463

Test status: Passed 

1.27.1 Description

Verifies the horizontal and the vertical displacement in several points of a truss with hinged bars, subjected to apunctual load.

1.27.2 Background

■  Reference: Structure Calculation Software Validation Guide, test SSLL 11/89;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

1.27.2.1 Model description

Truss with hinged bars under a punctual load Scale = 1/1001-0031SSLLB_FEM

Units

I. S.

Geometry

Elements Length (m) Area (m2)

 AC 0.5 2 2 x 10-4

 

CB 0.5 2 2 x 10-4

 

CD 2.5 1 x 10-4

 

BD 2 1 x 10-4

 

Page 106: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 106/682

 ADVANCE VALIDATION GUIDE

106 

Materials properties

Longitudinal elastic modulus: E = 1.962 x 1011

 Pa.

Boundary conditions

■  Outer: Hinge at A and B,

■  Inner: None.

Loading

■  External: Punctual force at D: Fy = F = - 9.81 x 103 N.

■  Internal: None.

1.27.2.2 Displacements at C and D

Reference solution

Displacement method.

Finite elements modeling

■  Linear element: beam,■  4 nodes,

■  4 linear elements.

Displacements shape

Truss with hinged bars under a punctual load Scale = 1/9Deformed

Page 107: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 107/682

  ADVANCE VALIDATION GUIDE

107

1.27.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DX Horizontal displacement in point C [mm] 0.26517

CM2 DX Horizontal displacement in point D [mm] 3.47902

CM2 DZ Vertical displacement in point C [mm] 0.08839

CM2 DZ Vertical displacement in point D [mm] -5.60084

1.27.3 Calculated results

Result name Result description Value Error

DX Horizontal displacement in point C [mm] 0.264693 mm -0.18%

DX Horizontal displacement in point D [mm] 3.47531 mm -0.11%

DZ Vertical displacement in point C [mm] 0.0881705 mm -0.25%

DZ Vertical displacement in point D [mm] -5.595 mm 0.10%

Page 108: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 108/682

 ADVANCE VALIDATION GUIDE

108 

1.28 Annular thin plate fixed on a hub (repetitive circular structure) (01-0022SDLSB_FEM)

Test ID: 2454

Test status: Passed 

1.28.1 Description

Verifies the eigen mode frequencies of a thin annular plate fixed on a hub.

1.28.2 Background

1.28.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLS 04/89;

■  Analysis type: modal analysis;

■  Element type: planar element.

 Annular thin plate fixed on a hub (repetitive circular structure) Scale = 1/3

01-0022SDLSB_FEM

Units

I. S.

Geometry

■  Inner radius: Ri = 0.1 m,

■  Outer radius: Re = 0.2 m,

■  Thickness: t = 0.001 m.

Material properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer: Fixed on a hub at any point r = Ri.

■  Inner: None.

Page 109: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 109/682

  ADVANCE VALIDATION GUIDE

109

Loading

■  External: None.

■  Internal: None.

1.28.2.2 Eigen modes frequencies

Reference solution

The solution of determining the frequency based on Bessel functions leads to the following formula:

f ij =1

 2Re2  ij

Et2

12(1-2) 

where:

i = the number of nodal diameters

 j = the number of nodal circles

and ij2 such as:

 j \ i 0 1 2 3

0 13.0 13.3 14.7 18.51 85.1 86.7 91.7 100

Finite elements modeling

■  Planar element: plate,

■  360 nodes,

■  288 planar elements.

1.28.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 0; j = 0. [Hz] 79.26

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 0; j = 1. [Hz] 518.85

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 1; j = 0. [Hz] 81.09

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 1; j = 1. [Hz] 528.61

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 2; j = 0. [Hz] 89.63

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 2; j = 1. [Hz] 559.09

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 3; j = 0. [Hz] 112.79

CM2 Eigen mode Eigen mode “i" - “j” frequency, for i = 3; j = 1. [Hz] 609.70

1.28.3 Calculated results

Result name Result description Value ErrorEigen mode "i" - "j" frequency, for i = 0; j = 0 (Mode 1) [Hz] 79.05 Hz -0.26%

Eigen mode "i" - "j" frequency, for i = 0; j = 1 (Mode 18) [Hz] 521.84 Hz 0.58%

Eigen mode "i" - "j" frequency, for i = 1; j = 0 (Mode 2) [Hz] 80.52 Hz -0.70%

Eigen mode "i" - "j" frequency, for i = 1; j = 1 (Mode 20) [Hz] 529.49 Hz 0.17%

Eigen mode "i" - "j" frequency, for i = 2; j = 0 (Mode 4) [Hz] 88.43 Hz -1.34%

Eigen mode “i" - “j” frequency, for i = 2; j = 1 (Mode 22) [Hz] 552.43 Hz -1.19%

Eigen mode "i" - "j" frequency, for i = 3; j = 0 (Mode 7) [Hz] 110.27 Hz -2.23%

Eigen mode "i" - "j" frequency, for i = 3; j = 1 (Mode 25) [Hz] 593.83 Hz -2.60%

Page 110: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 110/682

 ADVANCE VALIDATION GUIDE

110 

1.29 Bimetallic: Fixed beams connected to a stiff element (01-0026SSLLB_FEM)

Test ID: 2458

Test status: Passed 

1.29.1 Description

Two beams fixed at one end and rigidly connected to an undeformable beam is loaded with a punctual load. Thedeflection, vertical reaction and bending moment are verified in several points.

1.29.2 Background

1.29.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 05/89;

■  Analysis type: linear static;

■  Element type: linear.

Fixed beams connected to a stiff element Scale = 1/10

01-0026SSLLB_FEM

Units

I. S.

Geometry

■  Lengths:

►  L = 2 m,

►  l = 0.2 m,

■  Beams inertia moment: I = (4/3) x 10-8

 m4,

■  The beam sections are squared, of side: 2 x 10-2

 m.

Materials properties

■  Longitudinal elastic modulus: E = 2 x 1011

 Pa.

Page 111: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 111/682

  ADVANCE VALIDATION GUIDE

111

Boundary conditions

■  Outer: Fixed in A and C,

■  Inner: The tangents to the deflection of beams AB and CD at B and D remain horizontal;practically, we restraint translations along x and z at nodes B and D.

Loading

■  External: In D: punctual load F = Fy = -1000N.

■  Internal: None.

1.29.2.2 Deflection at B and D

Reference solution

The theory of slender beams bending (Euler-Bernouilli formula) leads to a deflection at B and D:

The resolution of the hyperstatic system of the slender beam leads to:

vB = vD =FL

3

24EI 

Finite elements modeling

■  Linear element: beam,

■  4 nodes,

■  3 linear elements.

Results shape

Fixed beams connected to a stiff element Scale = 1/10

Deformed

1.29.2.3 Vertical reaction at A and C

Reference solution

 Analytical solution.

Finite elements modeling

■  Linear element: beam,

■  4 nodes,

■  3 linear elements.

Page 112: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 112/682

 ADVANCE VALIDATION GUIDE

112 

1.29.2.4 Bending moment at A and C

Reference solution

 Analytical solution.

Finite elements modeling

■  Linear element: beam,

■  4 nodes,

■  3 linear elements

1.29.2.5 Theoretical results

Solver Result name Result description Reference value

CM2 D Deflection in point B [m] 0.125

CM2 D Deflection in point D [m] 0.125

CM2 Fz Vertical reaction in point A [N] -500

CM2 Fz Vertical reaction in point C [N] -500

CM2 My Bending moment in point A [Nm] 500CM2 My Bending moment in point C [Nm] 500

1.29.3 Calculated results

Result name Result description Value Error

D Deflection in point B [m] 0.125376 m 0.30%

D Deflection in point D [m] 0.125376 m 0.30%

Fz Vertical reaction in point A [N] -500 N 0.00%

Fz Vertical reaction in point C [N] -500 N 0.00%

My Bending moment in point A [Nm] 500.083 N*m 0.02%

My Bending moment in point C [Nm] 500.083 N*m 0.02%

Page 113: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 113/682

  ADVANCE VALIDATION GUIDE

113

1.30 Portal frame with lateral connections (01-0030SSLLB_FEM)

Test ID: 2462

Test status: Passed 

1.30.1 Description

Verifies the rotation about z-axis and the bending moment on a portal frame with lateral connections.

1.30.2 Background

1.30.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 10/89;

■  Analysis type: static linear;

■  Element type: linear.

Portal frame with lateral connections Scale = 1/21

01-0030SSLLB_FEM

Units

I. S.

Page 114: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 114/682

 ADVANCE VALIDATION GUIDE

114 

Geometry

Beam Length Moment of inertia

 AB l AB = 4 mI AB =

643

  x 10-8

 m4 

 AC l AC = 1 mI AC =

112

  x 10-8

 m4 

 AD l AD = 1 mI AD =

112

  x 10-8

 m4 

 AE l AE = 2 mI AE =

43  x 10

-8 m

■  G is in the middle of DA.

■  The beams have square sections:

►   A AB = 16 x 10-4

 m

►   A AD = 1 x 10-4

 m

►   A AC = 1 x 10-4

 m

►   A AE = 4 x 10-4

 m

Materials properties

Longitudinal elastic modulus: E = 2 x 1011

 Pa,

Boundary conditions

■  Outer:

►  Fixed at B, D and E,

►  Hinge at C,

■  Inner: None.

Loading

■  External:

►  Punctual force at G: Fy = F = - 105

 N,►  Distributed load on beam AD: p = - 10

3 N/m.

■  Internal: None.

1.30.2.2 Displacements at A

Reference solution

Rotation at A about z-axis:

We say: k An =EI An

l An  where n = B, C, D or E

K = k AB + k AD + k AE +34 k AC 

r  An =k An

C1 =Fl AD

8 -

pl AB2

12 

 =C1

4K 

Finite elements modeling

■  Linear element: beam,

■  6 nodes,

■  5 linear elements.

Page 115: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 115/682

  ADVANCE VALIDATION GUIDE

115

Displacements shape

Portal frame with lateral connections

Deformed

1.30.2.3 Moments in A

Reference solution

■  M AB =pl AB

2

12  + r  AB x C1 

■  M AD = -Fl AD

8  + r  AD x C1 

■  M AE = r  AE x C1 

■  M AC = r  AC x C1 

Finite elements modeling

■  Linear element: beam,

■  6 nodes,

■  5 linear elements

1.30.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 RY Rotation  about z-axis in point A [rad] -0.227118

CM2 My Bending moment in point A (M AB) [Nm] 11023.72

CM2 My Bending moment in point A (M AC) [Nm] 113.559

CM2 My Bending moment in point A (M AD) [Nm] 12348.588

CM2 My Bending moment in point A (M AE) [Nm] 1211.2994

1.30.3 Calculated results

Result name Result description Value Error

RY Rotation Theta about z-axis in point A [rad] -0.227401 Rad -0.12%

My Bending moment in point A (Moment AB) [Nm] 11021 N*m -0.02%

My Bending moment in point A (Moment AC) [Nm] 113.704 N*m 0.13%

My Bending moment in point A (Moment AD) [Nm] 12347.5 N*m -0.01%

My Bending moment in point A (Moment AE) [Nm] 1212.77 N*m 0.12%

Page 116: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 116/682

 ADVANCE VALIDATION GUIDE

116 

1.31 Caisson beam in torsion (01-0037SSLSB_FEM)

Test ID: 2468

Test status: Passed 

1.31.1 Description

 A torsion moment is applied on the free end of a caisson beam fixed on one end. For both ends, the displacement,the rotation about Z-axis and the stress are verified.

1.31.2 Background

1.31.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 05/89;

■  Analysis type: static linear;

■  Element type: planar.

Caisson beam in torsion Scale = 1/4

01-0037SSLSB_FEM

Units

I. S.

Geometry

■  Length; L = 1m,

■  Square section of side: b = 0.1 m,

■  Thickness = 0.005 m.

Materials properties 

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Page 117: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 117/682

  ADVANCE VALIDATION GUIDE

117

Boundary conditions

■  Outer: Beam fixed at end x = 0;

■  Inner: None.

Loading

■  External: Torsion moment M = 10N.m applied to the free end (for modeling, 4 forces of 50 N).■  Internal: None.

1.31.2.2 Displacement and stress at two points

Reference solution

The reference solution is determined by averaging the results of several calculation software with implemented finiteelements method.

Points coordinates:

■  A (0,0.05,0.5)

■  B (-0.05,0,0.8)

Note: point O is the origin of the coordinate system (x,y,z).

Finite elements modeling

■  Planar element: shell,

■  90 nodes,

■  88 planar elements.

Deformed shape

Caisson beam in torsion Scale = 1/4

Deformed

Page 118: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 118/682

 ADVANCE VALIDATION GUIDE

118 

1.31.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 D Displacement in point A [m] -0.617 x 10-6

 

CM2 D Displacement in point B [m] -0.987 x 10-6

 

CM2 RY Rotation about Z-axis in point A [rad] 0.123 x 10-4

 

CM2 RY Rotation about Z-axis in point B [rad] 0.197 x 10-4 

CM2 sxy_mid xy stress in point A [MPa] -0.11

CM2 sxy_mid xy stress in point B [MPa] -0.11

1.31.3 Calculated results

Result name Result description Value Error

D Displacement in point A [µm] 0.615909 µm -0.18%

D Displacement in point B [µm] 0.986806 µm -0.02%

RY Rotation about Z-axis in point A [rad] -1.23211e-005 Rad -0.17%RY Rotation about Z-axis in point B [rad] -1.97172e-005 Rad -0.09%

sxy_mid Sigma xy stress in point A [MPa] -0.100037 MPa -0.04%

sxy_mid Sigma xy stress in point B [MPa] -0.100212 MPa -0.21%

Page 119: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 119/682

  ADVANCE VALIDATION GUIDE

119

1.32 Thin cylinder under a uniform radial pressure (01-0038SSLSB_FEM)

Test ID: 2469

Test status: Passed 

1.32.1 Description

Verifies the stress, the radial deformation and the longitudinal deformation of a cylinder loaded with a uniform internalpressure.

1.32.2 Background

1.32.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 06/89;

■  Analysis type: static elastic;

■  Element type: planar.

Thin cylinder under a uniform radial pressure Scale = 1/18

01-0038SSLSB_FEM

Units

I. S.

Geometry

■  Length: L = 4 m,

■  Radius: R = 1 m,

■  Thickness: h = 0.02 m.

Materials properties 

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Page 120: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 120/682

 ADVANCE VALIDATION GUIDE

120 

Boundary conditions

■  Outer:

►  Free conditions

►  For the modeling, only ¼ of the cylinder is considered andthe symmetry conditions are applied. On the other side, we restrained the displacements at a fewnodes in order to make the model stable.

■  Inner: None.

Loading

■  External: Uniform internal pressure: p = 10000 Pa,

■  Internal: None.

1.32.2.2 Stresses in all points

Reference solution

Stresses in the planar elements coordinate system (x axis is parallel with the length of the cylinder):

■  xx = 0

■  yy = pRh

 

Finite elements modeling

■  Planar element: shell,

■  209 nodes,

■  180 planar elements.

1.32.2.3 Cylinder deformation in all points

■  Radial deformation:

R =pR2Eh

 

■  Longitudinal deformation:

L =-pRL

Eh 

1.32.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 syy_mid yy stress in all points [Pa] 500000.000000

CM2 Dz L radial deformation of the cylinder in all points [µm] 2.380000

CM2 DY L longitudinal deformation of the cylinder in all points [µm] -2.860000

1.32.3 Calculated results

Resultname

Result description Value Error

syy_mid Sigma yy stress in all points [Pa] 499521 Pa -0.10%

Dz Delta R radial deformation of the cylinder in all points [µm] 2.39213 µm 0.51%

DY Delta L longitudinal deformation of the cylinder in all points [µm] -2.85445 µm 0.19%

Page 121: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 121/682

  ADVANCE VALIDATION GUIDE

121

1.33 Beam on two supports considering the shear force (01-0041SSLLB_FEM)

Test ID: 2472

Test status: Passed 

1.33.1 Description

Verifies the vertical displacement on a 300 cm long beam, consisting of an I shaped profile of a total height of 20.04cm, a 0.96 cm thick web and 20.04 cm wide / 1.46 cm thick flanges.

1.33.2 Background

1.33.2.1 Model description

■  Reference: Internal GRAITEC test;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

Units

I. S.

Geometry

l = 300 cm

h = 20.04 cmb= 20.04 cm

tw = 1.46 cm

tf = 0.96 cm

Sx= 74.95 cm2 

Iz = 5462 cm4 

Sy = 16.43 cm2 

Materials properties

■  Longitudinal elastic modulus: E = 2285938 daN/cm2,

■  Transverse elastic modulus G = 879207 daN/cm2 

■  Poisson's ratio:  = 0.3.

Page 122: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 122/682

 ADVANCE VALIDATION GUIDE

122 

Boundary conditions

■  Outer:

►  Simple support on node 11,

►  For the modeling, put an hinge at node 1 (instead of a simple support).

■  Inner: None.

Loading

■  External: Vertical punctual load P = -20246 daN at node 6,

■  Internal: None.

1.33.2.2 Vertical displacement of the model in the linear elastic range

Reference solution

The reference displacement is calculated in the middle of the beam, at node 6.

cm017.1105.0912.043.16

3.012

22859384

30020246

5462228593848

30020246

448

33

6  

 x x

 x

 x x

 x

GS 

 Pl 

 EI 

 Pl v

 shear 

 y

 flexion

 z 

 

Finite elements modeling

■  Planar element: S beam, imposed mesh,

■  11 nodes,

■  10 linear elements.

Deformed shape

Page 123: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 123/682

  ADVANCE VALIDATION GUIDE

123

1.33.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DZ Vertical displacement at node 6 [cm] -1.017

1.33.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement at node 6 [cm] -1.01722 cm -0.02%

Page 124: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 124/682

 ADVANCE VALIDATION GUIDE

124 

1.34 Thin cylinder under a uniform axial load (01-0042SSLSB_FEM)

Test ID: 2473

Test status: Passed 

1.34.1 Description

Verifies the stress, the longitudinal deformation and the radial deformation of a cylinder under a uniform axial load.

1.34.2 Background

1.34.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 07/89;

■  Analysis type: static elastic;

■  Element type: planar.

Thin cylinder under a uniform axial load Scale = 1/19

01-0042SSLSB_FEM

Units

I. S.

Geometry

■  Thickness: h = 0.02 m,

■  Length: L = 4 m,

■  Radius: R = 1 m.

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Page 125: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 125/682

  ADVANCE VALIDATION GUIDE

125

Boundary conditions

■  Outer:

►  Null axial displacement at the left end: vz = 0,

►  For the modeling, only a ¼ of the cylinder is considered.

■  Inner: None.

Loading

■  External: Uniform axial load q = 10000 N/m

■  Inner: None.

1.34.2.2 Stress in all points

Reference solution

x axis of the local coordinate system of planar elements is parallel to the cylinders axis.

xx =qh 

yy = 0

Finite elements modeling

■  Planar element: shell, imposed mesh,

■  697 nodes,

■  640 surface quadrangles.

1.34.2.3 Cylinder deformation at the free end

Reference solution

■  L longitudinal deformation of the cylinder:

L = qLEh 

■  R radial deformation of the cylinder:

R =-qREh

 

Finite elements modeling

■  Planar element: shell, imposed mesh,

■  697 nodes,

■  640 surface quadrangles.

Page 126: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 126/682

 ADVANCE VALIDATION GUIDE

126 

Deformation shape

Thin cylinder under a uniform axial load Scale = 1/22

Deformation shape

1.34.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 sxx_mid xx stress at all points [Pa] 5 x 105 

CM2 syy_mid yy stress at all points [Pa] 0

CM2 DY L longitudinal deformation at the free end [m] 9.52 x 10-6

 

CM2 Dz R radial deformation at the free end [m] -7.14 x 10

-7

 

1.34.3 Calculated results

Result name Result description Value Error

sxx_mid Sigma xx stress at all points [Pa] 500000 Pa 0.00%

syy_mid Sigma yy stress at all points [Pa] 1.05305e-009 Pa 0.00%

DY Delta L longitudinal deformation at the free end [mm] -0.00952381 mm -0.04%

Dz Delta R radial deformation at the free end [mm] 0.000710887 mm -0.44%

Page 127: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 127/682

  ADVANCE VALIDATION GUIDE

127

1.35 Simply supported square plate (01-0036SSLSB_FEM)

Test ID: 2467

Test status: Passed 

1.35.1 Description

Verifies the vertical displacement in the center of a simply supported square plate.

1.35.2 Background

1.35.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 02/89;

■  Analysis type: static linear;

■  Element type: planar.

Simply supported square plate Scale = 1/9

01-0036SSLSB_FEM

Units

I. S.

Geometry

■  Side = 1 m,

■  Thickness h = 0.01m.

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7950 kg/m3.

Page 128: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 128/682

 ADVANCE VALIDATION GUIDE

128 

Boundary conditions

■  Outer:

►  Simple support on the plate perimeter,

►  For the modeling, we add a fixed support at B.

■  Inner: None.

Loading

■  External: Self weight (gravity = 9.81 m/s2).

■  Internal: None.

1.35.2.2 Vertical displacement at O

Reference solution

 According to Love- Kirchhoff hypothesis, the displacement w at a point (x,y):

w(x,y) =  wmnsinmxsinny

where wmn =

192g(1 - 2)

mn(m2 + n2)6Eh2 

Finite elements modeling

■  Planar element: shell,

■  441 nodes,

■  400 planar elements.

Deformed shape

Simply supported square plate Scale = 1/6

Deformed

Page 129: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 129/682

  ADVANCE VALIDATION GUIDE

129

1.35.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Dz Vertical displacement in point O [m] -0.158

1.35.3 Calculated results

Result name Result description Value Error

Dz Vertical displacement in point O [µm] -0.164901 µm -4.37%

Page 130: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 130/682

 ADVANCE VALIDATION GUIDE

130 

1.36 Stiffen membrane (01-0040SSLSB_FEM)

Test ID: 2471

Test status: Passed 

1.36.1 Description

Verifies the horizontal displacement and the stress on a plate (8 x 12 cm) fixed in the middle on 3 supports with apunctual load at its free node.

1.36.2 Background

1.36.2.1 Model description

■  Reference: Klaus-Jürgen Bathe - Finite Element Procedures in Engineering Analysis, Example 5.13;

■  Analysis type: static linear;

■  Element type: planar (membrane).

1;1,       

Units

I. S.

Geometry

■  Thickness: e = 0.1 cm,

■  Length: l = 8 cm,

■  Width: B = 12 cm.

Materials properties

■  Longitudinal elastic modulus: E = 30 x 106 N/cm

2,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer: Fixed on 3 sides,

■  Inner: None.

Loading

■  External: Uniform load Fx = F = 6000 N at A,

■  Internal: None.

Page 131: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 131/682

  ADVANCE VALIDATION GUIDE

131

1.36.2.2 Results of the model in the linear elastic range

Reference solution

Point B is the origin of the coordinate system used for the results positions.

 

  

  

 

MPa96.17 N/cm1796;1

MPa98.8 N/cm898;0

0;1

for181

MPa55.11 N/cm1155;1

MPa77.5 N/cm577;0

0;1

for

MPa49.38 N/cm3849;1

MPa24.19 N/cm1924;0

0;1

for121

3410.97510.367410.2

6000

21

1

1

2

3

2

xy1

2

xy1

xy1

1

2

yy1

2

yy1

yy1

11

2

xx1

2

xx1

xx1

21

4

66

222

  

  

  

  

 

  

  

  

  

  

  

  

  

 

  

b

u E 

a

u E 

cm

a

 ES 

ba

eabE 

 F 

 K 

 F u

 A xy

 xx yy

 A xx

 A

 

Finite elements modeling

■  Planar element: membrane, imposed mesh,

■  6 nodes,

■  2 quadrangle planar elements and 1 bar.

Deformed shape

Page 132: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 132/682

 ADVANCE VALIDATION GUIDE

132 

1.36.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DX Horizontal displacement Element 1 in A [cm] 9.340000

CM2 sxx_mid xx stress Element 1 in y = 0 cm [MPa] 38.490000

CM2 sxx_mid xx stress Element 1 in y = 6 cm [MPa] 0

CM2 syy_mid yy stress Element 1 in y = 0 cm [MPa] 11.550000

CM2 syy_mid yy stress Element 1 in y = 6 cm [MPa] 0

CM2 sxy_mid xy stress Element 1 in x = 0 cm [MPa] 0

CM2 sxy_mid xy stress Element 1 in x = 4 cm [MPa] -8.980000

CM2 sxy_mid xy stress Element 1 in x = 8 cm [MPa] -17.960000

1.36.3 Calculated results

Result name Result description Value Error

DX Horizontal displacement Element 1 in A [µm] 9.33999 µm 0.00%

sxx_mid Sigma xx stress Element 1 in y = 0 cm [MPa] 38.489 MPa 0.00%

sxx_mid Sigma xx stress Element 1 in y = 6 cm [MPa] 3.63798e-015 MPa 0.00%

syy_mid Sigma yy stress Element 1 in y = 0 cm [MPa] 11.5467 MPa -0.03%

syy_mid Sigma yy stress Element 1 in y = 6 cm [MPa] -9.09495e-016 MPa 0.00%

sxy_mid Sigma xy stress Element 1 in x = 0 cm [MPa] -2.96059e-015 MPa 0.00%

sxy_mid Sigma xy stress Element 1 in x = 4 cm [MPa] -8.98076 MPa -0.01%

sxy_mid Sigma xy stress Element 1 in x = 8 cm [MPa] -17.9615 MPa -0.01%

Page 133: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 133/682

  ADVANCE VALIDATION GUIDE

133

1.37 Torus with uniform internal pressure (01-0045SSLSB_FEM)

Test ID: 2476

Test status: Passed 

1.37.1 Description

Verifies the stress and the radial deformation of a torus with uniform internal pressure.

1.37.2 Background

1.37.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 10/89;

■  Analysis type: static, linear elastic;

■  Element type: planar.

Torus with uniform internal pressure

01-0045SSLSB_FEM

Units

I. S.

Geometry

■  Thickness: h = 0.02 m,

■  Transverse section radius: b = 1 m,

■  Average radius of curvature: a = 2 m.

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011 Pa,

■  Poisson's ratio:  = 0.3.

Page 134: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 134/682

 ADVANCE VALIDATION GUIDE

134 

Boundary conditions

■  Outer: For the modeling, only1/8 of the cylinder is considered, so the symmetry conditions are

imposed to end nodes.

■  Inner: None.

Loading

■  External: Uniform internal pressure p = 10000 Pa

■  Internal: None.

1.37.2.2 Stresses

Reference solution

(See stresses description on the first scheme of the overview)

If a – b  r  a + b

11 =pb2h

 r + a

r  

22 =pb2h 

Finite elements modeling

■  Planar element: shell, imposed mesh,

■  361 nodes,

■  324 surface quadrangles.

1.37.2.3 Cylinder deformation

Reference solution

■  R radial deformation of the torus:

R = pb2Eh

 (r - (r + a))

Finite elements modeling

■  Planar element: shell, imposed mesh,

■  361 nodes,

■  324 surface quadrangles.

Page 135: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 135/682

  ADVANCE VALIDATION GUIDE

135

1.37.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 syy_mid 11 stresses for r = a - b [Pa] 7.5 x 105 

CM2 syy_mid 11 stresses for r = a + b [Pa] 4.17 x 105 

CM2 sxx_mid 22 stress for all r [Pa] 2.50 x 105

 CM2 Dz L radial deformations of the torus for r = a - b [m] 1.19 x 10

-7 

CM2 Dz L radial deformations of the torus for r = a + b [m] 1.79 x 10-6

 

1.37.3 Calculated results

Result name Result description Value Error

syy_mid Sigma 11 stresses for r = a - b [Pa] 742770 Pa -0.96%

syy_mid Sigma 11 stresses for r = a + b [Pa] 415404 Pa -0.38%

sxx_mid Sigma 22 stress for all r [Pa] 250331 Pa 0.13%

Dz Delta L radial deformations of the torus for r = a - b [mm] -0.000117352 mm 1.38%

Dz Delta L radial deformations of the torus for r = a + b [mm] 0.00180274 mm 0.71%

Page 136: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 136/682

 ADVANCE VALIDATION GUIDE

136 

1.38 Spherical shell under internal pressure (01-0046SSLSB_FEM)

Test ID: 2477

Test status: Passed 

1.38.1 Description

 A spherical shell is subjected to a uniform internal pressure. The stress and the radial deformation are verified.

1.38.2 Background

1.38.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 14/89;

■  Analysis type: static, linear elastic;

■  Element type: planar.

Spherical shell under internal pressure

01-0046SSLSB_FEM

Units

I. S.

Geometry

■  Thickness: h = 0.02 m,

■  Radius: R2 = 1 m,

■   = 90° (hemisphere).

Page 137: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 137/682

  ADVANCE VALIDATION GUIDE

137

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer:Simple support (null displacement along vertical displacement) on the shell perimeter.

For modeling, we consider only half of the hemisphere, so we impose symmetry conditions (DOF restrainsplaced in the vertical plane xy in translation along z and in rotation along x and y). In addition, the node at thetop of the shell is restrained in translation along x to assure the stability of the structure during calculation).

■  Inner: None.

Loading

■  External: Uniform internal pressure p = 10000 Pa

■  Internal: None.

1.38.2.2 Stresses

Reference solution

(See stresses description on the first scheme of the overview)

If 0°    90°

11 = 22  =pR2

2

2h 

Finite elements modeling

■  Planar element: shell, imposed mesh,

■  343 nodes,

■  324 planar elements.

1.38.2.3 Cylinder deformation

Reference solution

■  R radial deformation of the calotte:

R =pR22 (1 - ) sin  

2Eh 

Finite elements modeling

■  Planar element: shell, imposed mesh,

■  343 nodes,

■  324 planar elements.

Page 138: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 138/682

 ADVANCE VALIDATION GUIDE

138 

Deformed shape

Spherical shell under internal pressure Scale = 1/11

Deformed

1.38.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 sxx_mid 11 stress for all  [Pa] 2.50 x 105 

CM2 syy_mid

22 stress for all  [Pa]2.50 x 10

CM2 Dz R radial deformations for  = 90° [m] 8.33 x 10-7

 

1.38.3 Calculated results

Result name Result description Value Error

sxx_mid Sigma 11 stress for all Theta [Pa] 250202 Pa 0.08%

syy_mid Sigma 22 stress for all Theta [Pa] 249907 Pa -0.04%

Dz Delta R radial deformations for Theta = 90° [mm] 0.000832794 mm -0.02%

Page 139: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 139/682

  ADVANCE VALIDATION GUIDE

139

1.39 Thin cylinder under its self weight (01-0044SSLSB_MEF)

Test ID: 2475

Test status: Passed 

1.39.1 Description

Verifies the stress, the longitudinal deformation and the radial deformation of a thin cylinder subjected to its selfweight only.

1.39.2 Background

1.39.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 09/89;

■  Analysis type: static, linear elastic;

■  Element type: planar.

 A cylinder of R radius and L length subject of self weight only.

Thin cylinder under its self weight Scale = 1/24

01-0044SSLSB_FEM

Units

I. S.

Geometry

■  Thickness: h = 0.02 m,

■  Length: L = 4 m,

■  Radius: R = 1 m.

Materials properties 

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7.85 x 104

N/m3.

Page 140: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 140/682

 ADVANCE VALIDATION GUIDE

140 

Boundary conditions

■  Outer:

►  Null axial displacement at z = 0,

►  For the modeling, we consider only a quarter of the cylinder, so we impose the symmetryconditions on the nodes that are parallel with the cylinder’s axis.

■  Inner: None.

Loading

■  External: Cylinder self weight,

■  Internal: None.

1.39.2.2 Stresses

Reference solution

x axis of the local coordinate system of planar elements is parallel to the cylinders axis.

xx = z

yy = 0

Finite elements modeling

■  Planar element: shell, imposed mesh,

■  697 nodes,

■  640 surface quadrangles.

1.39.2.3 Cylinder deformation

Reference solution

■  L longitudinal deformation of the cylinder:

L =z

2

2E 

■  R radial deformation of the cylinder:

R =-Rz

1.39.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 sxx_mid xx stress for z = L [Pa] -314000.000000

CM2 DY L longitudinal deformation for z = L [mm] 0.002990

CM2 Dz R radial deformation for z = L[mm] -0.000440

* To obtain this result, you must generate a calculation note “Planar elements stresses by load case in neutral fiber"with results on center.

1.39.3 Calculated results

Result name Result description Value Error

sxx_mid Sigma xx stress for z = L [Pa] -309143 Pa 1.55%

DY Delta L longitudinal deformation for z = L [mm] 0.00298922 mm -0.03%

Dz Delta R radial deformation for z = L [mm] -0.000443587 mm -0.82%

Page 141: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 141/682

  ADVANCE VALIDATION GUIDE

141

1.40 Beam on elastic soil, hinged ends (01-0034SSLLB_FEM)

Test ID: 2466

Test status: Passed 

1.40.1 Description

 A beam under a punctual load, a distributed load and two torques lays on a soil of constant linear stiffness. Therotation around z-axis, the vertical reaction, the vertical displacement and the bending moment are verified in severalpoints.

1.40.2 Background

1.40.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 16/89;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

Beam on elastic soil, hinged ends Scale = 1/2701-0034SSLLB_FEM

Units

I. S.

Geometry

■  L = ( 10 )/2,

■  I = 10-4

 m4.

Page 142: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 142/682

 ADVANCE VALIDATION GUIDE

142 

Materials properties

Longitudinal elastic modulus: E = 2.1 x 1011

 Pa.

Boundary conditions

■  Outer:

►  Free A and B ends,►  Soil with a constant linear stiffness ky = K = 840000 N/m2.

■  Inner: None.

Loading

■  External:

►  Punctual force at D: Fy = F = - 10000 N,

►  Uniformly distributed force from A to B: f y = p = - 5000 N/m,

►  Torque at A: Cz = -C = -15000 Nm,

►  Torque at B: Cz = C = 15000 Nm.

■  Internal: None.

1.40.2.2 Displacement and support reaction at A

Reference solution

 =4

K/(4EI)

 = L/2

 = ch(2) + cos(2)

■  Vertical support reaction:

V A = -p(sh(2) + sin(2)) - 2Fch()cos() + 22C(sh(2) - sin(2)) x

1

 2 

■  Rotation about z-axis:

 A = p(sh(2) – sin(2)) + 2Fsh()sin() - 22C(sh(2) + sin(2)) x

1

 (K/) 

Finite elements modeling

■  Linear element: beam,

■  50 nodes,

■  49 linear elements.

Page 143: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 143/682

  ADVANCE VALIDATION GUIDE

143

Deformed shape

Beam on elastic soil, hinged ends Scale = 1/20

Deformed

1.40.2.3 Displacement and bending moment at D

Reference solution

■  Vertical displacement:

vD = 2p( - 2ch()cos()) + F(sh(2) – sin(2)) - 82Csh()sin() x

1

 2K 

■  Bending moment:

MD = 4psh()sin() + F(sh(2) + sin(2)) - 82Cch()cos() x

1

 42 

Finite elements modeling

■  Linear element: beam,

■  50 nodes,

■  49 linear elements.

Page 144: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 144/682

 ADVANCE VALIDATION GUIDE

144 

Bending moment diagram

Beam on elastic soil, hinged ends Scale = 1/20

Bending moment

1.40.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 RY Rotation around z-axis in point A [rad] 0.003045

CM2 Fz Vertical reaction in point A [N] -11674

CM2 Dz Vertical displacement in point D [cm] -0.423326

CM2 My Bending moment in point D [Nm] -33840

1.40.3 Calculated results

Result name Result description Value Error

RY Rotation around z-axis in point A [rad] 0.00304333 Rad -0.05%

Fz Vertical reaction in point A [N] -11709 N -0.30%

Dz Vertical displacement in point D [cm] -0.423297 cm 0.01%

My Bending moment in point D [Nm] -33835.9 N*m 0.01%

Page 145: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 145/682

  ADVANCE VALIDATION GUIDE

145

1.41 Square plate under planar stresses (01-0039SSLSB_FEM)

Test ID: 2470

Test status: Passed 

1.41.1 Description

Verifies the vertical displacement and the stresses on a square plate of 2 x 2 m, fixed on 3 sides with a uniformsurface load on its surface.

1.41.2 Background

1.41.2.1 Model description

■  Reference: Internal GRAITEC test;

■  Analysis type: static linear;

■  Element type: planar (membrane).

Square plate under planar stresses Scale = 1/19

Modeling

1;1,       

Units

I. S.

Geometry

■  Thickness: e = 1 m,

■  4 square elements of side h = 1 m.

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Page 146: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 146/682

 ADVANCE VALIDATION GUIDE

146 

Boundary conditions

■  Outer: Fixed on 3 sides,

■  Inner: None.

Loading

■  External: Uniform load p = -1. 108 N/ml on the upper surface,

■  Internal: None.

1.41.2.2 Displacement of the model in the linear elastic range

Reference solution

The reference displacements are calculated on nodes 7 and 9.

v9 =-6ph(3 + )(1 - 2

)

E(8(3 - )2 - (3 + )

2)  = -0.1809 x 10

-3 m,

v7 =4(3 - )

3 +   v9 = -0.592 x 10-3

 m,

For element 1.4:

(For the stresses calculated above, the abscissa point (x = 0; y = 0) corresponds to node 8.)

yy =E

1 - 2 (v9 - v7)

2h (1 + ) for

xx = yy  for

xy =E

1 +  (v9 + v7) + (v9 - v7)

4h (1 + ) for

Finite elements modeling

■  Planar element: membrane, imposed mesh,

■  9 nodes,

■  4 surface quadrangles.

 = -1 ; xx = 0

 = 0 ; xx = -14.23 MPa

 = 1 ; xx = -28.46 MPa

 = -1 ;  = 0 ; xy = -47.82 MPa

 = 0 ;  = 0 ; xy = -31.21 MPa

= 1 ;  = 0 ; xy = -14.61 MPa

 = -1 ; yy = 0

 = 0 ; yy = -47.44 MPa

 = 1 ; yy = -94.88 MPa

Page 147: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 147/682

  ADVANCE VALIDATION GUIDE

147

Deformed shape

1.41.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DZ Vertical displacement on node 7 [mm] -0.592

CM2 DZ Vertical displacement on node 5 [mm] -0.1809

CM2 sxx_mid xx stresses on Element 1.4 in x = 0 m [MPa] 0

CM2 sxx_mid xx stresses on Element 1.4 in x = 0.5 m [MPa] -14.23

CM2 sxx_mid xx stresses on Element 1.4 in x = 1 m [MPa] -28.46

CM2 syy_mid yy stresses on Element 1.4 in x = 0 m [MPa] 0

CM2 syy_mid yy stresses on Element 1.4 in x = 0.5 m [MPa] -47.44

CM2 syy_mid yy stresses on Element 1.4 in x = 1 m [MPa] -94.88

CM2 sxy_mid xy stresses on Element 1.4 in y = 0 m [MPa] -14.66

CM2 sxy_mid xy stresses on Element 1.4 in y = 1 m [MPa] -47.82

1.41.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement on node 7 [mm] -0.59203 mm -0.01%DZ Vertical displacement on node 5 [mm] -0.180898 mm 0.00%

sxx_mid Sigma xx stresses on Element 1.4 in x = 0 m [MPa] 7.45058e-015 MPa 0.00%

sxx_mid Sigma xx stresses on Element 1.4 in x = 0.5 m [MPa] -14.2315 MPa -0.01%

sxx_mid Sigma xx stresses on Element 1.4 in x = 1 m [MPa] -28.463 MPa -0.01%

syy_mid Sigma yy stresses on Element 1.4 in x = 0 m [MPa] 1.49012e-014 MPa 0.00%

syy_mid Sigma yy stresses on Element 1.4 in x = 0.5 m [MPa] -47.4383 MPa 0.00%

syy_mid Sigma yy stresses on Element 1.4 in x = 1 m [MPa] -94.8767 MPa 0.00%

sxy_mid Sigma xy stresses on Element 1.4 in y = 0 m [MPa] -14.611 MPa 0.33%

sxy_mid Sigma xy stresses on Element 1.4 in y = 1 m [MPa] -47.8178 MPa 0.00%

Page 148: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 148/682

 ADVANCE VALIDATION GUIDE

148 

1.42 Thin cylinder under a hydrostatic pressure (01-0043SSLSB_FEM)

Test ID: 2474

Test status: Passed 

1.42.1 Description

Verifies the stress, the longitudinal deformation and the radial deformation of a thin cylinder under a hydrostaticpressure.

1.42.2 Background

1.42.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 08/89;

■  Analysis type: static, linear elastic;

■  Element type: planar.

Thin cylinder under a hydrostatic pressure Scale = 1/25

01-0043SSLSB_FEM

Units

I. S.

Geometry

■  Thickness: h = 0.02 m,

■  Length: L = 4 m,

■  Radius: R = 1 m.

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Page 149: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 149/682

  ADVANCE VALIDATION GUIDE

149

Boundary conditions

■  Outer: For the modeling, we consider only a quarter of the cylinder, so we impose thesymmetry conditions on the nodes that are parallel with the cylinder’s axis.

■  Inner: None.

Loading

■  External: Radial internal pressure varies linearly with the "p" height, p = p0 zL ,

■  Internal: None.

1.42.2.2 Stresses

Reference solution

x axis of the local coordinate system of planar elements is parallel to the cylinders axis.

xx = 0

yy =p0Rz

Lh 

Finite elements modeling

■  Planar element: shell, imposed mesh,

■  209 nodes,

■  180 surface quadrangles.

1.42.2.3 Cylinder deformation

Reference solution

■  L longitudinal deformation of the cylinder:

L =

-p0Rz2

2ELh  

■  L radial deformation of the cylinder:

R =p0R2zELh

 

Finite elements modeling

■  Planar element: shell, imposed mesh,

■  209 nodes,

■  180 surface quadrangles.

Page 150: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 150/682

 ADVANCE VALIDATION GUIDE

150 

Deformation shape

Thin cylinder under a hydrostatic pressure

Deformed

1.42.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 syy_mid yy stress in z = L/2 [Pa] 500000.000000

CM2 DY L longitudinal deformation of the cylinder at the inferiorextremity [mm]

-0.002860

CM2 Dz L radial deformation of the cylinder in z = L/2 [mm] 0.002380

1.42.3 Calculated results

Result name Result description Value Error

syy_mid Sigma yy stress in z = L/2 [Pa] 504489 Pa 0.90%

DY Delta L longitudinal deformation of the cylinder at the inferiorextremity [mm]

-0.00285442 mm 0.20%

Dz Delta L radial deformation of the cylinder in z = L/2 [mm] 0.00238372 mm 0.16%

Page 151: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 151/682

  ADVANCE VALIDATION GUIDE

151

1.43 Spherical dome under a uniform external pressure (01-0050SSLSB_FEM)

Test ID: 2480

Test status: Passed 

1.43.1 Description

 A spherical dome of radius (a) is subjected to a uniform external pressure. The horizontal displacement and theexternal meridian stresses are verified.

1.43.2 Background

1.43.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 22/89;

■  Analysis type: static, linear elastic;

■  Element type: planar.

Spherical dome under a uniform external pressure

01-0050SSLSB_FEM

Units

I. S.

Page 152: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 152/682

 ADVANCE VALIDATION GUIDE

152 

Geometry

■  Radius: a = 2.54 m,

■  Thickness: h = 0.0127 m,

■  Angle:  = 75°.

Materials properties

■  Longitudinal elastic modulus: E = 6.897 x 1010

 Pa,

■  Poisson's ratio:  = 0.2.

Boundary conditions

■  Outer: Fixed on the dome perimeter,

■  Inner: None.

Loading

■  External: Uniform pressure p = 0.6897 x 106 Pa,

■  Internal: None.

1.43.2.2 Horizontal displacement and exterior meridian stress

Reference solution

The reference solution is determined by averaging the results of several calculation software with implemented finiteelements method. 2% uncertainty about the reference solution.

Finite elements modeling

■  Planar element: shell, imposed mesh,

■  401 nodes,

■  400 planar elements.

Deformed shape

Page 153: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 153/682

  ADVANCE VALIDATION GUIDE

153

1.43.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DX Horizontal displacements in  = 15° 1.73 x 10-3

 

CM2 DX Horizontal displacements in  = 45° -1.02 x 10-3

 

CM2 syy_mid yy external meridian stresses in  = 15° -74

CM2 sxx_mid XX external meridian stresses in  = 45° -68

1.43.3 Calculated results

Result name Result description Value Error

DX Horizontal displacements in Psi = 15° [mm] 1.73064 mm 0.04%

DX Horizontal displacements in Psi = 45° [mm] -1.01367 mm 0.62%

syy_mid Sigma yy external meridian stresses in Psi = 15° [MPa] -72.2609 MPa 2.35%

sxx_mid Sigma XX external meridian stresses in Psi = 45° [MPa] -68.9909 MPa -1.46%

Page 154: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 154/682

 ADVANCE VALIDATION GUIDE

154 

1.44 Simply supported square plate under a uniform load (01-0051SSLSB_FEM)

Test ID: 2481

Test status: Passed 

1.44.1 Description

 A square plate simply supported is subjected to a uniform load. The vertical displacement and the bending momentsat the plate center are verified.

1.44.2 Background

1.44.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 24/89;

■  Analysis type: static, linear elastic;

■  Element type: planar.

Simply supported square plate under a uniform load Scale = 1/9

01-0051SSLSB_FEM

Units

I. S.

Geometry

■  Side: a =b = 1 m,

■  Thickness: h = 0.01 m,

Materials properties

■  Longitudinal elastic modulus: E = 1.0 x 107 Pa,

■  Poisson's ratio:  = 0.3.

Page 155: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 155/682

  ADVANCE VALIDATION GUIDE

155

Boundary conditions

■  Outer: Simple support on the plate perimeter (null displacement along z-axis),

■  Inner: None

Loading

■  External: Normal pressure of plate p = pZ = -1.0 Pa,

■  Internal: None.

1.44.2.2 Vertical displacement and bending moment at the center of the plate

Reference solution

Love-Kirchhoff thin plates theory.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  361 nodes,

■  324 planar elements.

1.44.2.3 Theoretical result

Solver Result name Result description Reference value

CM2 DZ Vertical displacement at plate center [m] -4.43 x 10-3

 

CM2 Mxx MX bending moment at plate center [Nm] 0.0479

CM2 Myy MY bending moment at plate center [Nm] 0.0479

1.44.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement at plate center [m] -0.00435847 m 1.61%

Mxx Mx bending moment at plate center [Nm] 0.0471381 N*m -1.59%

Myy My bending moment at plate center [Nm] 0.0471381 N*m -1.59%

Page 156: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 156/682

 ADVANCE VALIDATION GUIDE

156 

1.45 Simply supported rectangular plate loaded with punctual force and moments (01-0054SSLSB_FEM)

Test ID: 2484

Test status: Passed 

1.45.1 Description

 A rectangular plate simply supported is subjected to a punctual force and moments. The vertical displacement isverified.

1.45.2 Background

1.45.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 26/89;

■  Analysis type: static linear;

■  Element type: planar.

Simply supported rectangular plate loaded with punctual force and moments

01-0054SSLSB_FEM

Units

I. S.

Geometry

■  Width: DA = CB = 20 m,

■  Length: AB = DC = 5 m,

■  Thickness: h = 1 m,

Materials properties

■  Longitudinal elastic modulus: E =1000 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer: Punctual support at A, B and D (null displacement along z-axis),

■  Inner: None.

Page 157: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 157/682

  ADVANCE VALIDATION GUIDE

157

Loading

■  External:

►  In A: MX = 20 Nm, MY = -10 Nm,

►  In B: MX = 20 Nm, MY = 10 Nm,

►  In C: FZ = -2 N, MX = -20 Nm, MY = 10 Nm,

►  In D: MX = -20 Nm, MY = -10 Nm,■  Internal: None.

1.45.2.2 Vertical displacement at C

Reference solution

Love-Kirchhoff thin plates theory.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  867 nodes,

■  800 surface quadrangles.

Deformed shape

Simply supported rectangular plate loaded with punctual force and moments

Deformed

1.45.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Dz Vertical displacement in point C [m] -12.480

1.45.3 Calculated results

Result name Result description Value Error

Dz Vertical displacement in point C [m] -12.6677 m -1.50%

Page 158: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 158/682

 ADVANCE VALIDATION GUIDE

158 

1.46 Shear plate perpendicular to the medium surface (01-0055SSLSB_FEM)

Test ID: 2485

Test status: Passed 

1.46.1 Description

Verifies the vertical displacement of a rectangular shear plate fixed at one end, loaded with two forces.

1.46.2 Background

1.46.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 27/89;

■  Analysis type: static;

■  Element type: planar.

Shear plate Scale = 1/50

01-0055SSLSB_FEM

Units

I. S.

Geometry

■  Length: L = 12 m,

■  Width: l = 1 m,

■  Thickness: h = 0.05 m,

Materials properties

■  Longitudinal elastic modulus: E = 1.0 x 107 Pa,

■  Poisson's ratio:  = 0.25.

Boundary conditions

■  Outer: Fixed AD edge,

■  Inner: None.

Page 159: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 159/682

  ADVANCE VALIDATION GUIDE

159

Loading

■  External:

►   At B: Fz = -1.0 N,

►   At C: FZ = 1.0 N,

■  Internal: None.

1.46.2.2 Vertical displacement at C

Reference solution

 Analytical solution.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  497 nodes,

■  420 surface quadrangles.

Deformed shape 

Shear plate Scale = 1/35Deformed

1.46.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Dz Vertical displacement in point C [m] 35.37 x 10-3

 

1.46.3 Calculated results

Result name Result description Value Error

Dz Vertical displacement in point C [m] 35.6655 mm 0.84%

Page 160: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 160/682

 ADVANCE VALIDATION GUIDE

160 

1.47 Spherical shell with holes (01-0049SSLSB_FEM)

Test ID: 2479

Test status: Passed 

1.47.1 Description

 A spherical shell with holes is subjected to 4 forces, opposite 2 by 2. The horizontal displacement is verified.

1.47.2 Background

■  Reference: Structure Calculation Software Validation Guide, test SSLS 21/89;

■  Analysis type: static, linear elastic;

■  Element type: planar.

1.47.2.1 Model description

Spherical shell with holes01-0049SSLSB_FEM

Units

I. S.

Geometry

■  Radius: R = 10 m

■  Thickness: h = 0.04 m,

■  Opening angle of the hole: 0 = 18°.

Page 161: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 161/682

  ADVANCE VALIDATION GUIDE

161

Materials properties

■  Longitudinal elastic modulus: E = 6.285 x 107 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer: For modeling, we consider only a quarter of the shell, so we impose symmetryconditions (nodes in the vertical yz plane are restrained in translation along x and in rotation along y and z.Nodes on the vertical xy plane are restrained in translation along z and in rotation along x and y),

■  Inner: None.

Loading

■  External: Punctual loads F = 1 N, according to the diagram,

■  Internal: None.

1.47.2.2 Horizontal displacement at point A

Reference solution

The reference solution is determined by averaging the results of several calculation software with implemented finiteelements method. 2% uncertainty about the reference solution.

Finite elements modeling

■  Planar element: shell, imposed mesh,

■  99 nodes,

■  80 surface quadrangles.

Deformed shape

Spherical shell with holes Scale = 1/79

Deformed

Page 162: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 162/682

 ADVANCE VALIDATION GUIDE

162 

1.47.2.3 Theoretical background

Solver Result name Result description Reference value

CM2 DX Horizontal displacement at point A(R,0,0) [mm] 94.0

1.47.3 Calculated results

Result name Result description Value Error

DX Horizontal displacement at point A(R,0,0) [mm] 92.6205 mm -1.47%

Page 163: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 163/682

  ADVANCE VALIDATION GUIDE

163

1.48 Simply supported rectangular plate under a uniform load (01-0053SSLSB_FEM)

Test ID: 2483

Test status: Passed 

1.48.1 Description

 A rectangular plate simply supported is subjected to a uniform load. The vertical displacement and the bendingmoments at the plate center are verified.

1.48.2 Background

1.48.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 24/89;

■  Analysis type: static, linear elastic;

■  Element type: planar.

Simply supported rectangular plate under a uniform load Scale = 1/25

01-0053SSLSB_FEM

Units

I. S.

Geometry

■  Width: a = 1 m,

■  Length: b = 5 m,

■  Thickness: h = 0.01 m,

Materials properties

■  Longitudinal elastic modulus: E = 1.0 x 107 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer: Simple support on the plate perimeter (null displacement along z-axis),

■  Inner: None.

Page 164: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 164/682

 ADVANCE VALIDATION GUIDE

164 

Loading

■  External: Normal pressure of plate p = pZ = -1.0 Pa,

■  Internal: None.

1.48.2.2 Vertical displacement and bending moment at the center of the plate

Reference solution

Love-Kirchhoff thin plates theory.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  793 nodes,

■  720 surface quadrangles.

1.48.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DZ Vertical displacement at plate center [m] 1.416 x 10-2

 

CM2 Mxx MX bending moment at plate center [Nm] 0.1246

CM2 Myy MY bending moment at plate center [Nm] 0.0375

1.48.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement at plate center [cm] -1.40141 cm 1.03%

Mxx Mx bending moment at plate center [Nm] -0.124082 N*m 0.42%

Myy My bending moment at plate center [Nm] -0.0375624 N*m -0.17%

Page 165: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 165/682

  ADVANCE VALIDATION GUIDE

165

1.49 A plate (0.01333 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0058SSLSB_FEM)

Test ID: 2488

Test status: Passed 

1.49.1 Description

Verifies the vertical displacement for a square plate (0.01333 m thick), of side "a", fixed on its perimeter, loaded witha uniform pressure.

1.49.2 Background

1.49.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLV 09/89;

■  Analysis type: static;

■  Element type: planar.

Square plate of side "a", for the modeling, only a quarter of the plate is considered.

Units

I. S.

Geometry

■  Side: a = 1 m,

■  Thickness: h = 0.01333 m,

■  Slenderness:  =ah

  = 75.

Materials properties

■  Reinforcement,

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer:

Fixed sides: AB and BD,

For the modeling, we impose symmetry conditions at the CB side (restrained displacement along x andrestrained rotation around y and z) and CD side (restrained displacement along y and restrained rotationaround x and z),

■  Inner: None.

Page 166: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 166/682

 ADVANCE VALIDATION GUIDE

166 

Loading

■  External: 1 MPa uniform pressure,

■  Internal: None.

1.49.2.2 Vertical displacement at C

Reference solution

This problem has a precise analytical solution only for thin plates. Therefore we propose the solutions obtained withSerendip elements with 20 nodes or thick plate elements of 4 nodes. The expected result should be between thesevalues at ± 5%.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  289 nodes,

■  256 surface quadrangles.

1.49.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Dz Vertical displacement in point C [m] -2.8053 x 10-2

 

1.49.3 Calculated results

Result name Result description Value Error

Dz Vertical displacement in point C [cm] -2.79502 cm 0.37%

Page 167: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 167/682

  ADVANCE VALIDATION GUIDE

167

1.50 A plate (0.02 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0059SSLSB_FEM)

Test ID: 2489

Test status: Passed 

1.50.1 Description

Verifies the vertical displacement for a square plate (0.02 m thick), of side "a", fixed on its perimeter, loaded with auniform pressure.

1.50.2 Background

1.50.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLV 09/89;

■  Analysis type: static;

■  Element type: planar.

Units

I. S.

Geometry

■  Side: a = 1 m,

■  Thickness: h = 0.02 m,

■  Slenderness:  =ah

  = 50.

Materials properties

■  Reinforcement,

■  Longitudinal elastic modulus: E = 2.1 x 1011 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer:

Fixed edges: AB and BD,

For the modeling, we impose symmetry conditions at the CB side (restrained displacement along x andrestrained rotation around y and z) and CD side (restrained displacement along y and restrained rotationaround x and z),

■  Inner: None.

Page 168: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 168/682

 ADVANCE VALIDATION GUIDE

168 

Loading

■  External: 1 MPa uniform pressure,

■  Internal: None.

1.50.2.2 Vertical displacement at C

Reference solution

This problem has a precise analytical solution only for thin plates. Therefore we propose the solutions obtained withSerendip elements with 20 nodes or thick plate elements of 4 nodes. The expected result should be between thesevalues at ± 5%.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  289 nodes,

■  256 surface quadrangles.

1.50.2.3 Theoretical resultsSolver Result name Result description Reference value

CM2 Dz Vertical displacement in point C [m] -0.83480 x 10-2

 

1.50.3 Calculated results

Result name Result description Value Error

Dz Vertical displacement in point C [cm] -0.82559 cm 1.10%

Page 169: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 169/682

  ADVANCE VALIDATION GUIDE

169

1.51 A plate (0.01 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0057SSLSB_FEM)

Test ID: 2487

Test status: Passed 

1.51.1 Description

Verifies the vertical displacement for a square plate (0.01 m thick), of side "a", fixed on its perimeter, loaded with auniform pressure.

1.51.2 Background

1.51.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLV 09/89;

■  Analysis type: static;

■  Element type: planar.

Units

I. S.

Geometry

■  Side: a = 1 m,

■  Thickness: h = 0.01 m,

■  Slenderness:  =ah

  = 100.

Materials properties

■  Reinforcement,

■  Longitudinal elastic modulus: E = 2.1 x 1011 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer:

Fixed sides: AB and BD,

For the modeling, we impose symmetry conditions at the CB side (restrained displacement along x andrestrained rotation around y and z) and CD side (restrained displacement along y and restrained rotationaround x and z),

■  Inner: None.

Page 170: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 170/682

 ADVANCE VALIDATION GUIDE

170 

Loading

■  External: 1 MPa uniform pressure,

■  Internal: None.

1.51.2.2 Vertical displacement at C

Reference solution

This problem has a precise analytical solution only for thin plates. Therefore we propose the solutions obtained withSerendip elements with 20 nodes or thick plate elements of 4 nodes. The expected result should be between these

values at  5%.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  289 nodes,

■  256 surface quadrangles.

1.51.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Dz Vertical displacement in point C [m] -6.639 x 10-2

 

1.51.3 Calculated results

Result name Result description Value Error

Dz Vertical displacement in point C [cm] -6.56563 cm 1.11%

Page 171: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 171/682

  ADVANCE VALIDATION GUIDE

171

1.52 Pinch cylindrical shell (01-0048SSLSB_FEM)

Test ID: 2478

Test status: Passed 

1.52.1 Description

 A cylinder of length L is pinched by 2 diametrically opposite forces (F). The vertical displacement is verified.

1.52.2 Background

■  Reference: Structure Calculation Software Validation Guide, test SSLS 20/89;

■  Analysis type: static, linear elastic;

■  Element type: planar.

1.52.2.1 Model description

 A cylinder of length L is pinched by 2 diametrically opposite forces (F).

Pinch cylindrical shell

01-0048SSLSB_FEM

Units

I. S.

Geometry

■  Length: L = 10.35 m (total length),■  Radius: R = 4.953 m,

■  Thickness: h = 0.094 m.

Page 172: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 172/682

 ADVANCE VALIDATION GUIDE

172 

Materials properties

■  Longitudinal elastic modulus: E = 10.5 x 106 Pa,

■  Poisson's ratio:  = 0.3125.

Boundary conditions

■  Outer: For the modeling, we consider only half of the cylinder, so we impose symmetryconditions (nodes in the horizontal xz plane are restrained in translation along y and in rotation along x and z),

■  Inner: None.

Loading

■  External: 2 punctual loads F = 100 N,

■  Internal: None.

1.52.2.2 Vertical displacement at point A

Reference solution

The reference solution is determined by averaging the results of several calculation software with implemented finite

elements method. 2% uncertainty about the reference solution.

Finite elements modeling

■  Planar element: shell, imposed mesh,

■  777 nodes,

■  720 surface quadrangles.

1.52.2.3 Theoretical result

Solver Result name Result description Reference value

CM2 DZ Vertical displacement in point A [m] -113.9 x 10-3

 

1.52.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement in point A [mm] -113.3 mm 0.53%

Page 173: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 173/682

  ADVANCE VALIDATION GUIDE

173

1.53 Simply supported rectangular plate under a uniform load (01-0052SSLSB_FEM)

Test ID: 2482

Test status: Passed 

1.53.1 Description

 A rectangular plate simply supported is subjected to a uniform load. The vertical displacement and the bendingmoments at the plate center are verified.

1.53.2 Background

1.53.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLS 24/89;

■  Analysis type: static, linear elastic;

■  Element type: planar.

Simply supported rectangular plate under a uniform load Scale = 1/11

01-0052SSLSB_FEM

Units

I. S.

Geometry

■  Width: a = 1 m,

■  Length: b = 2 m,

■  Thickness: h = 0.01 m,

Materials properties

■  Longitudinal elastic modulus: E = 1.0 x 107 Pa,

■  Poisson's ratio:  = 0.3.

Page 174: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 174/682

 ADVANCE VALIDATION GUIDE

174 

Boundary conditions

■  Outer: Simple support on the plate perimeter (null displacement along z-axis),

■  Inner: None.

Loading

■  External: Normal pressure of plate p = pZ = -1.0 Pa,■  Internal: None.

1.53.2.2 Vertical displacement and bending moment at the center of the plate

Reference solution

Love-Kirchhoff thin plates theory.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  435 nodes,

■  392 surface quadrangles.

1.53.2.3 Theoretical background

Solver Result name Result description Reference value

CM2 DZ Vertical displacement at plate center [m] -1.1060 x 10-2

 

CM2 Mxx MX bending moment at plate center [Nm] -0.1017

CM2 Myy MY bending moment at plate center [Nm] -0.0464

1.53.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement at plate center [cm] -1.10238 cm 0.33%

Mxx Mx bending moment at plate center [Nm] -0.101737 N*m -0.04%

Myy My bending moment at plate center [Nm] -0.0462457 N*m 0.33%

Page 175: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 175/682

  ADVANCE VALIDATION GUIDE

175

1.54 Triangulated system with hinged bars (01-0056SSLLB_FEM)

Test ID: 2486

Test status: Passed 

1.54.1 Description

 A truss with hinged bars is placed on three punctual supports (subjected to imposed displacements) and is loadedwith two punctual forces. A thermal load is applied to all the bars. The traction force and the vertical displacement areverified.

1.54.2 Background

1.54.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 12/89;

■  Analysis type: static (plane problem);

■  Element type: linear.

Units

I. S.

Geometry

■   = 30°,■  Section A1 = 1.41 x 10

-3 m

2,

■  Section A2 = 2.82 x 10-3

 m2.

Materials properties

■  Longitudinal elastic modulus: E =2.1 x 1011

 Pa,

■  Coefficient of linear expansion:  = 10-5

 °C-1

.

Boundary conditions

■  Outer:

►  Hinge at A (u A = v A = 0),

►  Roller supports at B and C ( uB = v’C = 0),

■  Inner: None.

Page 176: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 176/682

 ADVANCE VALIDATION GUIDE

176 

Loading

■  External:

►  Support displacement: v A = -0.02 m ; vB = -0.03 m ; v’C = -0.015 m ,

►  Punctual loads: FE = -150 KN ; FF = -100 KN,

►  Expansion effect on all bars for a temperature variation of 150° in relation with the assemblytemperature (specified geometry),

■  Internal: None.

1.54.2.2 Tension force in BD bar

Reference solution

Determining the hyperstatic unknown with the section cut method.

Finite elements modeling

■  Linear element: S beam, automatic mesh,

■  11 nodes,

■  17 S beams + 1 rigid S beam for the modeling of the simple support at C.

1.54.2.3 Vertical displacement at D

Reference solution

vD displacement was determined by several software with implemented finite elements method.

Finite elements modeling

■  Linear element: S beam, automatic mesh,

■  11 nodes,

■  17 S beams + 1 rigid S beam for the modeling of simple support at C.

Deformed shape

Triangulated system with hinged bars01-0056SSLLB_FEM

Page 177: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 177/682

  ADVANCE VALIDATION GUIDE

177

1.54.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 Fx FX traction force on BD bar [N] 43633

CM2 DZ Vertical displacement on point D [m] -0.01618

1.54.3 Calculated results

Result name Result description Value Error

Fx Fx traction force on BD bar [N] 42870.9 N -1.75%

DZ Vertical displacement on point D [m] -0.0162358 m -0.34%

Page 178: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 178/682

 ADVANCE VALIDATION GUIDE

178 

1.55 A plate (0.01 m thick), fixed on its perimeter, loaded with a punctual force (01-0062SSLSB_FEM)

Test ID: 2492

Test status: Passed 

1.55.1 Description

Verifies the vertical displacement for a square plate (0.01 m thick), of side "a", fixed on its perimeter, loaded with apunctual force in the center.

1.55.2 Background

■  Reference: Structure Calculation Software Validation Guide, test SSLV 09/89;

■  Analysis type: static;

■  Element type: planar.

1.55.2.1 Model description

Square plate of side "a".

0.01 m thick plate fixed on its perimeter Scale = 1/5

01-0062SSLSB_FEM

Units

I. S.

Geometry

■  Side: a = 1 m,

■  Thickness: h = 0.01 m,

■  Slenderness:  =ah  = 100.

Page 179: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 179/682

  ADVANCE VALIDATION GUIDE

179

Materials properties

■  Reinforcement,

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer: Fixed edges,

■  Inner: None.

Loading

■  External: Punctual force applied on the center of the plate: FZ = -106 N,

■  Internal: None.

1.55.2.2 Vertical displacement at point C (center of the plate)

Reference solution

This problem has a precise analytical solution only for thin plates. Therefore we propose the solutions obtained withSerendip elements with 20 nodes or thick plate elements of 4 nodes. The expected result should be between thesevalues at ± 5%.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  961 nodes,

■  900 surface quadrangles.

Page 180: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 180/682

 ADVANCE VALIDATION GUIDE

180 

1.55.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DZ Vertical displacement in point C [m] -0.29579

1.55.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement in point C [m] -0.292146 m 1.23%

Page 181: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 181/682

  ADVANCE VALIDATION GUIDE

181

1.56 A plate (0.01333 m thick), fixed on its perimeter, loaded with a punctual force (01-0063SSLSB_FEM)

Test ID: 2493

Test status: Passed 

1.56.1 Description

Verifies the vertical displacement for a square plate (0.01333 m thick), of side "a", fixed on its perimeter, loaded witha punctual force in the center.

1.56.2 Background

1.56.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLV 09/89;

■  Analysis type: static;

■  Element type: planar.

0.01333 m thick plate fixed on its perimeter Scale = 1/5

01-0063SSLSB_FEM

Units

I. S.

Geometry

■  Side: a = 1 m,

■  Thickness: h = 0.01333 m,

■  Slenderness:  =ah

  = 75.

Materials properties

■  Reinforcement,

■  Longitudinal elastic modulus: E = 2.1 x 1011 Pa,

■  Poisson's ratio:  = 0.3.

Page 182: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 182/682

 ADVANCE VALIDATION GUIDE

182 

Boundary conditions

■  Outer: Fixed sides,

■  Inner: None.

Loading

■  External: Punctual force applied on the center of the plate: FZ = -10

6

 N,■  Internal: None.

1.56.2.2 Vertical displacement at point C (the center of the plate)

Reference solution

This problem has a precise analytical solution only for thin plates. Therefore we propose the solutions obtained withSerendip elements with 20 nodes or thick plate elements of 4 nodes. The expected result should be between thesevalues at ± 5%.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  961 nodes,■  900 surface quadrangles.

1.56.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DZ Vertical displacement in point C [m] -0.12525

1.56.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement in point C [m] -0.124583 m 0.53%

Page 183: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 183/682

  ADVANCE VALIDATION GUIDE

183

1.57 A plate (0.1 m thick), fixed on its perimeter, loaded with a punctual force (01-0066SSLSB_FEM)

Test ID: 2496

Test status: Passed 

1.57.1 Description

Verifies the vertical displacement for a square plate (0.1 m thick), of side "a", fixed on its perimeter, loaded with apunctual force in the center.

1.57.2 Background

1.57.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLV 09/89;

■  Analysis type: static;

■  Element type: planar.

0.1 m thick plate fixed on its perimeter Scale = 1/501-0066SSLSB_FEM

Units

I. S.

Geometry

■  Side: a = 1 m,

■  Thickness: h = 0.1 m,

■  Slenderness:  = 10.

Materials properties

■  Reinforcement,

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Page 184: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 184/682

 ADVANCE VALIDATION GUIDE

184 

Boundary conditions

■  Outer: Fixed edges,

■  Inner: None.

Loading

■  External: punctual force applied in the center of the plate: FZ = -10

6

 N,■  Internal: None.

1.57.2.2 Vertical displacement at point C (center of the plate)

Reference solution

This problem has a precise analytical solution only for thin plates. Therefore we propose the solutions obtained withSerendip elements with 20 nodes or thick plate elements of 4 nodes. The expected result should be between thesevalues at ± 5%.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  961 nodes,■  900 surface quadrangles.

1.57.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DZ Vertical displacement in point C [m] -0.42995 x 10-3

 

1.57.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement in point C [mm] -0.412094 mm 4.15%

Page 185: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 185/682

  ADVANCE VALIDATION GUIDE

185

1.58 Vibration mode of a thin piping elbow in space (case 1) (01-0067SDLLB_FEM)

Test ID: 2497

Test status: Passed 

1.58.1 Description

Verifies the eigen mode transverse frequencies for a thin piping elbow with a radius of 1 m, fixed on its ends andsubjected to its self weight only.

1.58.2 Background

1.58.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 14/89;

■  Analysis type: modal analysis (space problem);

■  Element type: linear.

Vibration mode of a thin piping elbow Scale = 1/701-0067SDLLB_FEM

Units

I. S.

Geometry

■  Average radius of curvature: OA = R = 1 m,

■  Straight circular hollow section:

■  Outer diameter: de = 0.020 m,

■  Inner diameter: di = 0.016 m,

■  Section: A = 1.131 x 10-4

 m2,

■  Flexure moment of inertia relative to the y-axis: Iy = 4.637 x 10-9

 m4,

■  Flexure moment of inertia relative to z-axis: Iz = 4.637 x 10-9 m4,

■  Polar inertia: Ip = 9.274 x 10-9

 m4.

Page 186: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 186/682

 ADVANCE VALIDATION GUIDE

186 

■  Points coordinates (in m):

►  O ( 0 ; 0 ; 0 )

►   A ( 0 ; R ; 0 )

►  B ( R ; 0 ; 0 )

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer: Fixed at points A and B,

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

1.58.2.2 Eigen modes frequencies

Reference solution

The Rayleigh method applied to a thin curved beam is used to determine parameters such as:

■  transverse bending:

f  j =i

2

2 R2 

GIp A   where i = 1,2.

Finite elements modeling

■  Linear element: beam,

■  11 nodes,■  10 linear elements.

Eigen mode shapes

Page 187: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 187/682

  ADVANCE VALIDATION GUIDE

187

1.58.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode Transverse 1 frequency [Hz] 44.23

CM2 Eigen mode Eigen mode Transverse 2 frequency [Hz] 125

1.58.3 Calculated results

Result name Result description Value Error

Eigen mode Transverse 1 frequency [Hz] 44.12 Hz -0.25%

Eigen mode Transverse 2 frequency [Hz] 120.09 Hz -3.93%

Page 188: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 188/682

 ADVANCE VALIDATION GUIDE

188 

1.59 A plate (0.1 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0061SSLSB_FEM)

Test ID: 2491

Test status: Passed 

1.59.1 Description

Verifies the vertical displacement for a square plate (0.1 m thick), of side "a", fixed on its perimeter, loaded with auniform pressure.

1.59.2 Background

1.59.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLV 09/89;

■  Analysis type: static;

■  Element type: planar.

Units

I. S.

Geometry

■  Side: a = 1 m,

■  Thickness: h = 0.1 m,

■  Slenderness:  =ah  = 10.

Materials properties

■  Reinforcement,

■  Longitudinal elastic modulus: E = 2.1 x 1011 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer:

Fixed edges: AB and BD,

For the modeling, we impose symmetry conditions at the CB side (restrained displacement along x andrestrained rotation around y and z) and CD side (restrained displacement along y and restrained rotationaround x and z),

■  Inner: None.

Page 189: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 189/682

  ADVANCE VALIDATION GUIDE

189

Loading

■  External: 1 MPa uniform pressure,

■  Internal: None.

1.59.2.2 Vertical displacement at C

Reference solution

This problem has a precise analytical solution only for thin plates. Therefore we propose the solutions obtained withSerendip elements with 20 nodes or thick plate elements of 4 nodes. The expected result should be between thesevalues at ± 5%.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  289 nodes,

■  256 surface quadrangles.

1.59.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Dz Vertical displacement in point C [m] -0.78661 x 10-4

 

1.59.3 Calculated results

Result name Result description Value Error

Dz Vertical displacement in point C [mm] -0.0781846 mm 0.61%

Page 190: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 190/682

 ADVANCE VALIDATION GUIDE

190 

1.60 A plate (0.05 m thick), fixed on its perimeter, loaded with a punctual force (01-0065SSLSB_FEM)

Test ID: 2495

Test status: Passed 

1.60.1 Description

Verifies the vertical displacement for a square plate (0.05 m thick), of side "a", fixed on its perimeter, loaded with apunctual force in the center.

1.60.2 Background

1.60.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLV 09/89;

■  Analysis type: static;

■  Element type: planar.

0.05 m thick plate fixed on its perimeter Scale = 1/5

01-0065SSLSB_FEM

Units

I. S.

Geometry

■  Side: a = 1 m,

■  Thickness: h = 0.05 m,

■  Slenderness:  = 20.

Materials properties

■  Reinforcement,

■  Longitudinal elastic modulus: E = 2.1 x 1011 Pa,

■  Poisson's ratio:  = 0.3.

Page 191: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 191/682

  ADVANCE VALIDATION GUIDE

191

Boundary conditions

■  Outer: Fixed sides,

■  Inner: None.

Loading

■  External: Punctual force applied at the center of the plate: FZ = -10

6

 N,■  Internal: None.

1.60.2.2 Vertical displacement at point C center of the plate)

Reference solution

This problem has a precise analytical solution only for thin plates. Therefore we propose the solutions obtained withSerendip elements with 20 nodes or thick plate elements of 4 nodes. The expected result should be between thesevalues at ± 5%.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  961 nodes,■  900 surface quadrangles.

1.60.2.3 Theoretical results

Solver Result name Result description Reference valueCM2 DZ Vertical displacement in point C [m] -0.2595 x 10

-2 

1.60.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement in point C [m] -0.00257232 m 0.86%

Page 192: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 192/682

 ADVANCE VALIDATION GUIDE

192 

1.61 Reactions on supports and bending moments on a 2D portal frame (Rafters) (01-0077SSLPB_FEM)

Test ID: 2500

Test status: Passed 

1.61.1 Description

Moments and actions on supports calculation on a 2D portal frame. The purpose of this test is to verify the results of Advance Design for the M. R. study of a 2D portal frame.

1.61.2 Background

1.61.2.1 Model description

■  Reference: Design and calculation of metal structures.

■  Analysis type: static linear;

■  Element type: linear.

Page 193: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 193/682

  ADVANCE VALIDATION GUIDE

193

1.61.2.2 Moments and actions on supports M.R. calculation on a 2D portal frame.

RDM results, for the linear load perpendicular on the rafters, are:

2

qLVV E A    

H

f h3f 3k²h

f 5h8

32

²qLHH E A  

 

HhMM DB     f hH8

²qLMC    

1.61.2.3 Theoretical results

Comparison between theoretical results and the results obtained by Advance Design for a linear load perpendicular on the chords

Solver Result name Result description Reference value

CM2 Fz Vertical reaction V in A [DaN] -1000

CM2 Fz Vertical reaction V in E  [DaN] -1000

CM2 Fx Horizontal reaction H in A  [DaN] -332.9

CM2 Fx Horizontal reaction H in E  [DaN] -332.9CM2 My Moment in node B  [DaNm] 2496.8

CM2 My Moment in node D [DaNm] -2496.8

CM2 My Moment in node C [DaNm] -1671

1.61.3 Calculated results

Result name Result description Value Error

Fz Vertical reaction V on node A [daN] -1000 daN 0.00%

Fz Vertical reaction V on node E [daN] -1000 daN 0.00%

Fx Horizontal reaction H on node A [daN] -332.665 daN 0.07%

Fx Horizontal reaction H on node E [daN] -332.665 daN 0.07%

My Moment in node B [daNm] 2494.99 daN*m -0.07%

My Moment in node D [daNm] -2494.99 daN*m 0.07%

My Moment in node C [daNm] -1673.35 daN*m -0.14%

Page 194: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 194/682

 ADVANCE VALIDATION GUIDE

194 

1.62 Reactions on supports and bending moments on a 2D portal frame (Columns) (01-0078SSLPB_FEM)

Test ID: 2501

Test status: Passed 

1.62.1 Description

Moments and actions on supports calculation on a 2D portal frame. The purpose of this test is to verify the results of Advance Design for the M. R. study of a 2D portal frame.

1.62.2 Background

1.62.2.1 Model description

■  Reference: Design and calculation of metal structures.

■  Analysis type: static linear;

■  Element type: linear.

Page 195: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 195/682

  ADVANCE VALIDATION GUIDE

195

1.62.2.2 Moments and reactions on supports M.R. calculation on a 2D portal frame.

RDM results, for the linear load perpendicular on the column, are:

L2

²qhVV E A    

f h3f 3k²h

f h26kh5

16

²qhHE

  qhHH E A    

h H qh

 M   E  B   2

²  f hH

4

²qhM EC     hHM ED    

1.62.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Fz Vertical reaction V in A  [DaN] 140.6

CM2 Fz Vertical reaction V in E  [DaN] -140.6

CM2 Fx Horizontal reaction H in A [DaN] 579.1

CM2 Fx Horizontal reaction H in E [DaN] 170.9

CM2 My Moment in B [DaNm] -1530.8

CM2 My Moment in D [DaNm] -1281.7

CM2 My Moment in C [DaNm] 302.7

1.62.3 Calculated results

Result name Result description Value Error

Fz Vertical reaction V on node A [daN] 140.625 daN 0.02%

Fz Vertical reaction V on node E [daN] -140.625 daN -0.02%

Fx Horizontal reaction H on node A [daN] 579.169 daN 0.01%

Fx Horizontal reaction H on node E [daN] 170.831 daN -0.04%

My Moment in node B [daNm] -1531.27 daN*m -0.03%

My Moment in node D [daNm] -1281.23 daN*m 0.04%

My Moment in node C [daNm] 302.063 daN*m -0.21%

Page 196: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 196/682

 ADVANCE VALIDATION GUIDE

196 

1.63 Vibration mode of a thin piping elbow in space (case 3) (01-0069SDLLB_FEM)

Test ID: 2499

Test status: Passed 

1.63.1 Description

Verifies the eigen mode transverse frequencies for a thin piping elbow with a radius of 1 m, extended with twostraight elements (2 m long) and subjected to its self weight only.

1.63.1.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 14/89;

■  Analysis type: modal analysis (space problem);

■  Element type: linear.

Vibration mode of a thin piping elbow Scale = 1/12

01-0069SDLLB_FEM

Units

I. S.

Page 197: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 197/682

  ADVANCE VALIDATION GUIDE

197

Geometry

■  Average radius of curvature: OA = R = 1 m,

■  L = 2 m,

■  Straight circular hollow section:

■  Outer diameter: de = 0.020 m,

■  Inner diameter: di = 0.016 m,

■  Section: A = 1.131 x 10-4

 m2,

■  Flexure moment of inertia relative to the y-axis: Iy = 4.637 x 10-9

 m4,

■  Flexure moment of inertia relative to z-axis: Iz = 4.637 x 10-9

 m4,

■  Polar inertia: Ip = 9.274 x 10-9

 m4.

■  Points coordinates (in m):

►  O ( 0 ; 0 ; 0 )

►   A ( 0 ; R ; 0 )

►  B ( R ; 0 ; 0 )

►  C ( -L ; R ; 0 )

►  D ( R ; -L ; 0 )

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer:

►  Fixed at points C and D

►   At A: translation restraint along y and z,

►   At B: translation restraint along x and z,

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

Page 198: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 198/682

 ADVANCE VALIDATION GUIDE

198 

1.63.1.2 Eigen modes frequencies

Reference solution

The Rayleigh method applied to a thin curved beam is used to determine parameters such as:

■  transverse bending:

f  j =i

2

2 R2 

GIp A  where i = 1,2 with i = 1,2:

Finite elements modeling

■  Linear element: beam,

■  41 nodes,

■  40 linear elements.

Eigen mode shapes

1.63.1.3 Theoretical results

Reference

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode Transverse 1 frequency [Hz] 17.900

CM2 Eigen mode Eigen mode Transverse 2 frequency [Hz] 24.800

1.63.2 Calculated results

Result name Result description Value Error

Eigen mode Transverse 1 frequency [Hz] 17.65 Hz -1.40%

Eigen mode Transverse 2 frequency [Hz] 24.43 Hz -1.49%

Page 199: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 199/682

  ADVANCE VALIDATION GUIDE

199

1.64 A plate (0.05 m thick), fixed on its perimeter, loaded with a uniform pressure (01-0060SSLSB_FEM)

Test ID: 2490

Test status: Passed 

1.64.1 Description

Verifies the vertical displacement for a square plate (0.05 m thick), of side "a", fixed on its perimeter, loaded with auniform pressure.

1.64.2 Background

1.64.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLV 09/89;

■  Analysis type: static;

■  Element type: planar.

Units

I. S.

Geometry

■  Side: a = 1 m,

■  Thickness: h = 0.05 m,

■  Slenderness:  =ah

  = 20.

Materials properties

■  Reinforcement,

■  Longitudinal elastic modulus: E = 2.1 x 1011 Pa,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer:

Fixed edges: AB and BD,

For the modeling, we impose symmetry conditions at the CB side (restrained displacement along x andrestrained rotation around y and z) and CD side (restrained displacement along y and restrained rotationaround x and z),

■  Inner: None.

Page 200: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 200/682

 ADVANCE VALIDATION GUIDE

200 

Loading

■  External: 1 MPa uniform pressure,

■  Internal: None.

1.64.2.2 Vertical displacement at C

Reference solution

This problem has a precise analytical solution only for thin plates. Therefore we propose the solutions obtained withSerendip elements with 20 nodes or thick plate elements of 4 nodes. The expected result should be between thesevalues at ± 5%.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  289 nodes,

■  256 surface quadrangles.

1.64.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Dz Vertical displacement in point C [m] -0.55474 x 10-3

 

1.64.3 Calculated results

Result name Result description Value Error

Dz Vertical displacement in point C [cm] -0.0549874 cm 0.88%

Page 201: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 201/682

  ADVANCE VALIDATION GUIDE

201

1.65 A plate (0.02 m thick), fixed on its perimeter, loaded with a punctual force (01-0064SSLSB_FEM)

Test ID: 2494

Test status: Passed 

1.65.1 Description

Verifies the vertical displacement for a square plate (0.02 m thick), of side "a", fixed on its perimeter, loaded with apunctual force in the center.

1.65.2 Background

1.65.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLV 09/89;

■  Analysis type: static;

■  Element type: planar.

0.02 m thick plate fixed on its perimeter Scale = 1/5

01-0064SSLSB_FEM

Units

I. S.

Geometry

■  Side: a = 1 m,

■  Thickness: h = 0.02 m,

■  Slenderness:  = 50.

Materials properties

■  Reinforcement,

■  Longitudinal elastic modulus: E = 2.1 x 1011 Pa,

■  Poisson's ratio:  = 0.3.

Page 202: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 202/682

 ADVANCE VALIDATION GUIDE

202 

Boundary conditions

■  Outer: Fixed edges,

■  Inner: None.

Loading

■  External: punctual force applied in the center of the plate: FZ = -10

6

 N,■  Internal: None.

1.65.2.2 Vertical displacement at point C (the center of the plate)

Reference solution

This problem has a precise analytical solution only for thin plates. Therefore we propose the solutions obtained withSerendip elements with 20 nodes or thick plate elements of 4 nodes. The expected result should be between thesevalues at ± 5%.

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  961 nodes,■  900 surface quadrangles.

1.65.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DZ Vertical displacement in point C [m] -0.037454

1.65.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement in point C [m] -0.0369818 m 1.26%

Page 203: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 203/682

  ADVANCE VALIDATION GUIDE

203

1.66 Vibration mode of a thin piping elbow in space (case 2) (01-0068SDLLB_FEM)

Test ID: 2498

Test status: Passed 

1.66.1 Description

Verifies the eigen mode transverse frequencies for a thin piping elbow with a radius of 1 m, extended with twostraight elements (0.6 m long) and subjected to its self weight only.

1.66.2 Background

1.66.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 14/89;

■  Analysis type: modal analysis (in space);

■  Element type: linear.

Vibration mode of a thin piping elbow Scale = 1/1101-0068SDLLB_FEM

Units

I. S.

Geometry

■  Average radius of curvature: OA = R = 1 m,

■  L = 0.6 m,

■  Straight circular hollow section:

■  Outer diameter: de = 0.020 m,

■  Inner diameter: di = 0.016 m,

■  Section: A = 1.131 x 10-4

 m2,

■  Flexure moment of inertia relative to the y-axis: Iy = 4.637 x 10-9

 m4,

■  Flexure moment of inertia relative to z-axis: Iz = 4.637 x 10-9

 m4

,■  Polar inertia: Ip = 9.274 x 10

-9 m

4.

Page 204: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 204/682

 ADVANCE VALIDATION GUIDE

204 

■  Points coordinates (in m):

►  O ( 0 ; 0 ; 0 )

►   A ( 0 ; R ; 0 )

►  B ( R ; 0 ; 0 )

►  C ( -L ; R ; 0 )

►  D ( R ; -L ; 0 )

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Density:  = 7800 kg/m3.

Boundary conditions

■  Outer:

►  Fixed at points C and D

►  In A: translation restraint along y and z,

►  In B: translation restraint along x and z,

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

1.66.2.2 Eigen modes frequencies

Reference solution

The Rayleigh method applied to a thin curved beam is used to determine parameters such as:

■  transverse bending:

f  j = i2

2 R2 

GIp A   where i = 1,2.

Finite elements modeling

■  Linear element: beam,

■  23 nodes,

■  22 linear elements.

Eigen mode shapes

Page 205: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 205/682

  ADVANCE VALIDATION GUIDE

205

1.66.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode Transverse 1 frequency [Hz] 33.4

CM2 Eigen mode Eigen mode Transverse 2 frequency [Hz] 100

1.66.3 Calculated results

Result name Result description Value Error

Eigen mode Transverse 1 frequency [Hz] 33.19 Hz -0.63%

Eigen mode Transverse 2 frequency [Hz] 94.62 Hz -5.38%

Page 206: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 206/682

 ADVANCE VALIDATION GUIDE

206 

1.67 Slender beam of variable rectangular section (fixed-fixed) (01-0086SDLLB_FEM)

Test ID: 2504

Test status: Passed 

1.67.1 Description

Verifies the eigen modes (flexion) for a slender beam with variable rectangular section (fixed-fixed).

1.67.2 BackgroundOverview

1.67.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 10/89;

■  Analysis type: modal analysis (plane problem);

■  Element type: linear.

Units

I. S.

Geometry

■  Length: L = 0.6 m,

■  Constant thickness: h = 0.01 m

■  Initial section:

►  b0 = 0.03 m

►   A0 = 3 x 10-4

 m²

■  Section variation:

►  with ( = 1)

►  b = b0e-2x

 

►   A = A0e-2x

 

Materials properties

■  E = 2 x 1011

 Pa

■   = 0.3

■   = 7800 kg/m3 

Boundary conditions

■  Outer:

►  Fixed at end x = 0,

►  Fixed at end x = 0.6 m.

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

Page 207: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 207/682

  ADVANCE VALIDATION GUIDE

207

1.67.2.2 Reference results

Calculation method used to obtain the reference solution

i  pulsation is given by the roots of the equation:

0rlsinslshrs2

²r ²sslchrlcos1  

 

with

0²²s;²r ;EI

 A 2i

si2i

2i

zo

2i04

i      

 

Therefore, the translation components of i(x) mode, are:

 

  ))sx(rsh)rxsin(s()rlsin(s)sl(rsh

)sl(ch)rlcos(sxchrxcosex x

i  

Uncertainty about the reference: analytical solution:

Reference values

Eigen mode i(x)*Eigen modeorder

Frequency (Hz)

x = 0 0.1 0.2 0.3 0.4 0.5 0.6

1 143.303 0 0.237 0.703 1 0.859 0.354 0

2 396.821 0 -0.504 -0.818 0 0.943 0.752 0

3 779.425 0 0.670 0.210 -0.831 0.257 1 0

4 1289.577 0 -0.670 0.486 0 -0.594 1 0

* i(x) eigen modes* standardized to 1 at the point of maximum amplitude.

Eigen modes

Page 208: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 208/682

 ADVANCE VALIDATION GUIDE

208 

1.67.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Frequency of eigen mode 1 [Hz] 143.303

CM2 Eigen mode Frequency of eigen mode 2 [Hz] 396.821

CM2 Eigen mode Frequency of eigen mode 3 [Hz] 779.425

CM2 Eigen mode Frequency of eigen mode 4 [Hz] 1289.577

1.67.3 Calculated results

Result name Result description Value Error

Frequency of eigen mode 1 [Hz] 145.88 Hz 1.80%

Frequency of eigen mode 2 [Hz] 400.26 Hz 0.87%

Frequency of eigen mode 3 [Hz] 783.15 Hz 0.48%

Frequency of eigen mode 4 [Hz] 1293.42 Hz 0.30%

Page 209: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 209/682

  ADVANCE VALIDATION GUIDE

209

1.68 Plane portal frame with hinged supports (01-0089SSLLB_FEM)

Test ID: 2505

Test status: Passed 

1.68.1 Description

Calculation of support reactions of a 2D portal frame with hinged supports.

1.68.2 Background

1.68.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 14/89;

■  Analysis type: static linear;

■  Element type: linear.

Units

I. S.

Geometry

■  Length: L = 20 m,

■  I1 = 5.0 x 10-4

 m4 

■  a = 4 m

■  h = 8 m

■  b = 10.77 m

■  I2 = 2.5 x 10-4

 m4 

Materials properties

■  Isotropic linear elastic material.

■  E = 2.1 x 1011

 Pa

Page 210: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 210/682

 ADVANCE VALIDATION GUIDE

210 

Boundary conditions

Hinged base plates A and B (u A = v A = 0 ; uB = vB = 0).

Loading

■  p = -3 000 N/m

■  F1 = -20 000 N

■  F2 = -10 000 N

■  M = -100 000 Nm

1.68.2.2 Calculation method used to obtain the reference solution

■  K = (I2/b)(h/I1)

■  p = a/h

■  m = 1 + p

■  B = 2(K + 1) + m

■  C = 1 + 2m

■  N = B + mC

■  V A = 3pl/8 + F1/2 – M/l + F2h/l

■  H A = pl²(3 + 5m)/(32Nh) + (F1l/(4h))(C/N) + F2(1-(B + C)/(2N)) + (3M/h)((1 + m)/(2N))

1.68.2.3 Reference values

Point Magnitudes and units Value

 A V, vertical reaction (N) 31 500.0

 A H, horizontal reaction (N) 20 239.4

C vc (m) -0.03072

1.68.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 Fz Vertical reaction V in point A [N] -31500

CM2 Fx Horizontal reaction H in point A [N] -20239.4

CM2 DZ vc displacement in point C [m] -0.03072

1.68.3 Calculated results

Result name Result description Value Error

Fz Vertical reaction V in point A [N] -31500 N 0.00%

Fx Horizontal reaction H in point A [N] -20239.3 N 0.00%

DZ Displacement in point C [m] -0.0307191 m 0.00%

Page 211: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 211/682

  ADVANCE VALIDATION GUIDE

211

1.69 A 3D bar structure with elastic support (01-0094SSLLB_FEM)

Test ID: 2508

Test status: Passed 

1.69.1 Description

 A 3D bar structure with elastic support is subjected to a vertical load of -100 kN. The V2 magnitude on node 5, thenormal force magnitude, the reaction magnitude on supports and the action magnitude are verified.

1.69.1.1 Model description

■  Reference: Internal GRAITEC;

■  Analysis type: static linear;

■  Element type: linear.

Units

I. S.

Geometry

For all bars:

■  H = 3 m

■  B = 3 m■  S = 0.02 m

Element Node i Node j

1 (bar) 1 5

2 (bar) 2 5

3 (bar) 3 5

4 (bar) 4 5

5 (spring) 5 6

Materials properties

■  Isotropic linear elastic materials

■  Longitudinal elastic modulus: E = 2.1 E8 N/m2,

Page 212: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 212/682

 ADVANCE VALIDATION GUIDE

212 

Boundary conditions

■  Outer: At node 5: K = 50000 kN/m ;

■  Inner: None.

Loading

■  External: Vertical load at node: P = -100 kN,■  Internal: None.

1.69.1.2 Theoretical results

System solution

2

22   B

 H  L   . Also, U1 = V1 = U5 = U6 = V6 = 0

■  Stiffness matrix of bar 1

1L

2x=  where 

.12

1.1

2

1)(.).1()(

 

     ji ji   uuuu L

 xu

 L

 x xu

 

Page 213: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 213/682

  ADVANCE VALIDATION GUIDE

213

in the local coordinate system:

)(

)(

)(

)(

0000

0101

0000

0101

)(

)(

11

11

4

1

4

14

1

4

12

2

2

1

2

1

2

12

1

1

1

1

101

 j

 j

i

i

 j

i

 L T 

e

v

v

u

v

u

 L

 ES 

u

u

 L

 ES d 

 L

 ES 

d  L

 ES dx B B ES dV  B H  Bk 

e

 

 

 

where

)v(

)u(

)v(

)u(

0000

0101

0000

0101

L

ESk

5

5

1

1

1

 

The elementary matrix ek  expressed in the global coordinate system XY is the following: ( angle allowing

the transition from the global base to the local base):

22

22

22

22

e

eee

T

ee

sinsincossinsincossincoscossincoscos

sinsincossinsincos

sincoscossincoscos

L

ESK 

cossin00

sincos00

00cossin

00sincos

RavecRkRK 

Knowing thatL

Hsinand

2cos       

 L

 B, then:

2

2

22

2

22

L2

HBcossin

L

Hsin

L2

Bcos

 

)(

)(

)(

)(

22

2222

22

2222

:)D

H(arctan=5,1nodes1elementfor

5

5

1

1

22

22

22

22

31

 H  HB

 H  HB

 HB B HB B

 H  HB

 H  HB

 HB B HB B

 L

 ES  K 

     

Page 214: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 214/682

 ADVANCE VALIDATION GUIDE

214 

■  Stiffness matrix of spring support 5

)(

)(

)(

)(

0000

01010000

0101

)(

)(

1111 :systemcoordinatelocalin the

4

K K sayWe

5

 j

 j

i

i

 j

i

v

u

v

u

 K u

u K k 

 

)(

)(

)(

)(

1010

0000

1010

0000

':90=6,5nodes5elementfor

6

6

5

5

5

 K  K 

     

■  System FQK    

6Y

6X

5X

1Y

1X

6

6

5

5

1

1

2

33

2

33

3

2

33

2

3

2

33

2

33

3

2

33

2

3

R

R

P

R

R

R

V

U

V

U

V

U

K0K000

000000

K0KHL

ES

2

HB

L

ESH

L

ES

2

HB

L

ES

002

HB

L

ES

2

B

L

ES

2

HB

L

ES

2

B

L

ES

00HL

ES

2

HB

L

ESH

L

ES

2

HB

L

ES

002

HB

L

ES

2

B

L

ES

2

HB

L

ES

2

B

L

ES

 

If U1 = V1 = U5 = U6 = V6 = 0, then:

m001885.0

4

KH

L

ES4

P

KHL

ES4

P

V2

3

2

3

5  

 

 And

N23563V4

KRN1436VH

L

ESR

0RN1015V2

HB

L

ESRN1015V

2

HB

L

ESR

56Y52

31Y

6X535X531X

 

Note:

■  The values on supports specified by Advance Design correspond to the actions,

■  RY6 calculated value must be multiplied by 4 in relation to the double symmetry,

■  x1 value is similar to the one found by Advance Design by dividing this by 2  

Page 215: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 215/682

  ADVANCE VALIDATION GUIDE

215

Effort in bar 1:

1759

1759

11

11

 and

200

200

00

2

002

5

1

5

1

5

5

1

1

5

5

1

1

 N 

 N 

u

u

 L

 ES 

 L

 B

 L

 H  L

 H 

 L

 B L

 B

 L

 H  L

 H 

 L

 B

v

u

v

u

 

5

1

5

1

5

5

1

1

5

5

1

1

11

11 and

cossin00

sincos00

00cossin

00sincos

 N 

 N 

u

u

 L

 ES 

v

u

v

u

  

  

  

  

 

Reference values 

Point Magnitude Units Value

5  V2  m -1.885 10-3

 

 All bars Normal force N -1759

Supports 1, 3, 4 and 5 Fz action N -1436

Supports 1, 3, 4 and 5 Action Fx=Fy N 7182/1015    

Support 6 Fz action N 23563 x 4=94253

Finite elements modeling

■  Linear element: beam, automatic mesh,

■  5 nodes,

■  4 linear elements.

Page 216: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 216/682

 ADVANCE VALIDATION GUIDE

216 

Deformed shape

Normal forces diagram

Page 217: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 217/682

  ADVANCE VALIDATION GUIDE

217

1.69.1.3 Reference values

Solver Result name Result description Reference value

CM2 D V2 magnitude on node 5 [m] -1.885 10-3

 

CM2 Fx Normal force magnitude on bar 1 [N] -1759

CM2 Fx Normal force magnitude on bar 2 [N] -1759

CM2 Fx Normal force magnitude on bar 3 [N] -1759

CM2 Fx Normal force magnitude on bar 4 [N] -1759

CM2 Fz Fz reaction magnitude on support 1 [N] 1436

CM2 Fz Fz reaction magnitude on support 3 [N] 1436

CM2 Fz Fz reaction magnitude on support 4 [N] 1436

CM2 Fz Fz reaction magnitude on support 5 [N] 1436

CM2 Fx Action Fx magnitude on support 1 [N] -718

CM2 Fx Action Fx magnitude on support 3 [N] 718

CM2 Fx Action Fx magnitude on support 4 [N] 718

CM2 Fx Action Fx magnitude on support 5 [N] -718

CM2 Fy Action Fy magnitude on support 1 [N] -718CM2 Fy Action Fy magnitude on support 3 [N] -718

CM2 Fy Action Fy magnitude on support 4 [N] 718

CM2 Fy Action Fy magnitude on support 5 [N] 718

CM2 Fz Fz reaction magnitude on support 6 [N] 23563 x 4=94253

1.69.2 Calculated results

Result name Result description Value Error

D Displacement on node 5 [mm] 1.88508 mm 0.00%

Fx Normal force magnitude on bar 1 [N] -1759.4 N -0.02%

Fx Normal force magnitude on bar 2 [N] -1759.4 N -0.02%

Fx Normal force magnitude on bar 3 [N] -1759.4 N -0.02%

Fx Normal force magnitude on bar 4 [N] -1759.4 N -0.02%

Fy Fz reaction magnitude on support 1 [N] 1436.55 N 0.04%

Fy Fz reaction magnitude on support 2 [N] 1436.55 N 0.04%

Fy Fz reaction magnitude on support 3 [N] 1436.55 N 0.04%

Fy Fz reaction magnitude on support 4 [N] 1436.55 N 0.04%

Fx Action Fx magnitude on support 1 [N] -718.274 N -0.04%

Fx Action Fx magnitude on support 2 [N] 718.274 N 0.04%

Fx Action Fx magnitude on support 3 [N] 718.274 N 0.04%

Fx Action Fx magnitude on support 4 [N] -718.274 N -0.04%

Fz Action Fy magnitude on support 1 [N] -718.274 N -0.04%

Fz Action Fy magnitude on support 2 [N] -718.274 N -0.04%

Fz Action Fy magnitude on support 3 [N] 718.274 N 0.04%

Fz Action Fy magnitude on support 4 [N] 718.274 N 0.04%

Fy Action Fy magnitude on support 6 [N] 94253.8 N 0.00%

Page 218: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 218/682

 ADVANCE VALIDATION GUIDE

218 

1.70 Fixed/free slender beam with centered mass (01-0095SDLLB_FEM)

Test ID: 2509

Test status: Passed 

1.70.1 Description

Fixed/free slender beam with centered mass.

Tested functions: Eigen mode frequencies, straight slender beam, combined bending-torsion, plane bending,transverse bending, punctual mass.

1.70.2 Background

■  Reference: Structure Calculation Software Validation Guide, test SDLL 15/89;

■  Analysis type: modal analysis;

■  Element type: linear.

■  Tested functions: Eigen mode frequencies, straight slender beam, combined bending-torsion,

plane bending, transverse bending, punctual mass.

1.70.2.1 Test data

Units

I. S.

Geometry

■  Outer diameter de = 0.35 m,

■  Inner diameter: di = 0.32 m,

■  Beam length: l = 10 m,

■  Area: A = 1.57865 x 10-2 m2

■  Polar inertia: IP = 4.43798 x 10-4

m4 

■  Inertia: Iy = Iz = 2.21899 x 10-4

m4 

■  Punctual mass: mc = 1000 kg■  Beam self-weight: M

Page 219: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 219/682

  ADVANCE VALIDATION GUIDE

219

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Density:  = 7800 kg/m3

■  Poisson's ratio: =0.3 (this coefficient was not specified in the AFNOR test , the value 0.3seems to be the more appropriate to obtain the correct frequency value of mode No. 8 with NE/NASTRAN)

Boundary conditions

■  Outer: Fixed at point A, x = 0,

■  Inner: none

Loading

None for the modal analysis

1.70.2.2 Reference results

Reference frequency

For the first mode, the Rayleigh method gives the approximation formula

)M24.0m(I

EI3x2/1f 

c3

z1

 

Mode Shape Units Reference

1 Flexion Hz 1.65

2 Flexion Hz 1.65

3 Flexion Hz 16.07

4 Flexion Hz 16.07

5 Flexion Hz 50.02

6 Flexion Hz 50.02

7 Traction Hz 76.47

8 Torsion Hz 80.47

9 Flexion Hz 103.210 Flexion Hz 103.2

Comment: The mass matrix associated with the beam torsion on two nodes, is expressed as:

12/1

2/11

3

Il P  

 And to the extent that Advance Design uses a condensed mass matrix, the value of the torsion mass inertia

introduced in the model is set to:3

Il p 

Uncertainty about the reference frequencies

■  Analytical solution mode 1

■  Other modes:  1%

Finite elements modeling

■  Linear element AB: Beam

■  Beam meshing: 20 elements.

Page 220: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 220/682

 ADVANCE VALIDATION GUIDE

220 

Modal deformations

Page 221: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 221/682

  ADVANCE VALIDATION GUIDE

221

Observation: the deformed shape of mode No. 8 that does not really correspond to a torsion deformation, isactually the display result of the translations and not of the rotations. This is confirmed by the rotation values of thecorresponding mode.

Eigen modes vector 8

Node DX DY DZ RX RY RZ

1 -3.336e-033 6.479e-031 -6.316e-031 1.055e-022 5.770e-028 5.980e-0282 -5.030e-013 1.575e-008 -1.520e-008 1.472e-002 6.022e-008 6.243e-0083 -1.005e-012 6.185e-008 -5.966e-008 2.944e-002 1.171e-007 1.214e-0074 -1.505e-012 1.365e-007 -1.317e-007 4.416e-002 1.705e-007 1.769e-0075 -2.002e-012 2.381e-007 -2.296e-007 5.887e-002 2.206e-007 2.289e-0076 -2.495e-012 3.648e-007 -3.517e-007 7.359e-002 2.673e-007 2.774e-0077 -2.983e-012 5.149e-007 -4.963e-007 8.831e-002 3.106e-007 3.225e-0078 -3.464e-012 6.867e-007 -6.618e-007 1.030e-001 3.506e-007 3.641e-0079 -3.939e-012 8.785e-007 -8.464e-007 1.177e-001 3.873e-007 4.023e-00710 -4.406e-012 1.088e-006 -1.049e-006 1.325e-001 4.207e-007 4.371e-00711 -4.863e-012 1.315e-006 -1.267e-006 1.472e-001 4.508e-007 4.684e-00712 -5.310e-012 1.556e-006 -1.499e-006 1.619e-001 4.777e-007 4.964e-00713 -5.746e-012 1.811e-006 -1.744e-006 1.766e-001 5.015e-007 5.210e-00714 -6.169e-012 2.077e-006 -2.000e-006 1.913e-001 5.221e-007 5.423e-00715 -6.580e-012 2.353e-006 -2.265e-006 2.061e-001 5.396e-007 5.605e-00716 -6.976e-012 2.637e-006 -2.539e-006 2.208e-001 5.541e-007 5.755e-00717 -7.357e-012 2.928e-006 -2.819e-006 2.355e-001 5.658e-007 5.874e-00718 -7.723e-012 3.224e-006 -3.104e-006 2.502e-001 5.746e-007 5.965e-00719 -8.072e-012 3.524e-006 -3.393e-006 2.649e-001 5.808e-007 6.028e-00720 -8.403e-012 3.826e-006 -3.685e-006 2.797e-001 5.844e-007 6.065e-00721 -8.717e-012 4.130e-006 -3.977e-006 2.944e-001 5.856e-007 6.077e-007

With NE/NASTRAN, the results associated with mode No. 8, are:

Page 222: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 222/682

 ADVANCE VALIDATION GUIDE

222 

1.70.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode 1 frequency [Hz] 1.65

CM2 Eigen mode 2 frequency [Hz] 1.65

CM2 Eigen mode 3 frequency [Hz] 16.07

CM2 Eigen mode 4 frequency [Hz] 16.07

CM2 Eigen mode 5 frequency [Hz] 50.02

CM2 Eigen mode 6 frequency [Hz] 50.02

CM2 Eigen mode 7 frequency [Hz] 76.47

CM2 Eigen mode 9 frequency [Hz] 103.20

CM2 Eigen mode 10 frequency [Hz] 103.20

Comment: The difference between the reference frequency of torsion mode (mode No. 8) and the one found by Advance Design may be explained by the fact that Advance Design is using a lumped mass matrix (see thecorresponding description sheet).

1.70.3 Calculated results

Result name Result description Value Error

Eigen mode 1 frequency [Hz] 1.65 Hz 0.00%

Eigen mode 2 frequency [Hz] 1.65 Hz 0.00%

Eigen mode 3 frequency [Hz] 16.06 Hz -0.06%

Eigen mode 4 frequency [Hz] 16.06 Hz -0.06%

Eigen mode 5 frequency [Hz] 50 Hz -0.04%

Eigen mode 6 frequency [Hz] 50 Hz -0.04%

Eigen mode 7 frequency [Hz] 76.46 Hz -0.01%Eigen mode 9 frequency [Hz] 103.14 Hz -0.06%

Eigen mode 10 frequency [Hz] 103.14 Hz -0.06%

Page 223: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 223/682

  ADVANCE VALIDATION GUIDE

223

1.71 Slender beam of variable rectangular section with fixed-free ends (ß=5) (01-0085SDLLB_FEM)

Test ID: 2503

Test status: Passed 

1.71.1 Description

Verifies the eigen modes (bending) for a slender beam with variable rectangular section (fixed-free).

1.71.2 Background

1.71.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 09/89;

■  Analysis type: modal analysis (plane problem);

■  Element type: linear.

Units

I. S.

Geometry

■  Length: L = 1 m,

■  Straight initial section:

►  h0 = 0.04 m

►  b0 = 0.05 m

►   A0 = 2 x 10-3

 m²

■  Straight final section

►  h1 = 0.01 m

►  b1 = 0.01 m

►   A1 = 10-4

 m²

Materials properties

■  E = 2 x 1011

 Pa

■   = 7800 kg/m3 

Boundary conditions

■  Outer:

►  Fixed at end x = 0,

►  Free at end x = 1

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

Page 224: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 224/682

 ADVANCE VALIDATION GUIDE

224 

1.71.2.2 Reference results

Calculation method used to obtain the reference solution

Precise calculation by numerical integration of the differential equation of beams bending (Euler-Bernoulli theories):

²t

² A

²x

²EIz

x

2

2

 

 

 

 

 

where Iz and A vary with the abscissa.

The result is:

12

E²l

1h,i

2

1fi  with

51b

b

41h

h

 

1 2 3 4 5

 = 5 24.308 75.56 167.21 301.9 480.4

Uncertainty about the reference: analytical solution:

Reference values

Eigen mode type Frequency (Hz)

1 56.55

2 175.79

3 389.01

4 702.36

Flexion

5 1117.63

MODE 1 Scale = 1/4

Page 225: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 225/682

  ADVANCE VALIDATION GUIDE

225

MODE 2 Scale = 1/4

MODE 3 Scale = 1/4

Page 226: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 226/682

 ADVANCE VALIDATION GUIDE

226 

MODE 4 Scale = 1/4

MODE 5 Scale = 1/4

Page 227: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 227/682

  ADVANCE VALIDATION GUIDE

227

1.71.2.3 Theoretical results

TheoreticalFrequency

Result name Result description Reference value

Eigen mode Frequency of eigen mode 1 [Hz] 56.55

Eigen mode Frequency of eigen mode 2 [Hz] 175.79

Eigen mode Frequency of eigen mode 3 [Hz] 389.01

Eigen mode Frequency of eigen mode 4 [Hz] 702.36

Eigen mode Frequency of eigen mode 5 [Hz] 1117.63

1.71.3 Calculated results

Result name Result description Value Error

Frequency of eigen mode 1 [Hz] 58.49 Hz 3.43%

Frequency of eigen mode 2 [Hz] 177.67 Hz 1.07%

Frequency of eigen mode 3 [Hz] 388.85 Hz -0.04%Frequency of eigen mode 4 [Hz] 697.38 Hz -0.71%

Frequency of eigen mode 5 [Hz] 1106.31 Hz -1.01%

Page 228: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 228/682

 ADVANCE VALIDATION GUIDE

228 

1.72 Cantilever beam in Eulerian buckling with thermal load (01-0092HFLLB_FEM)

Test ID: 2507

Test status: Passed 

1.72.1 Description

Verifies the vertical displacement and the normal force on a cantilever beam in Eulerian buckling with thermal load.

1.72.2 Background

1.72.2.1 Model description

■  Reference: Euler theory;

■  Analysis type: Eulerian buckling;

■  Element type: linear.

Units

I. S.

Geometry

■  L = 10 m

■  S=0.01 m2 

■  I = 0.0002 m4 

Materials properties

■  Longitudinal elastic modulus: E = 2.0 x 1010

 N/m2,

■  Poisson's ratio:  = 0.1.

■  Coefficient of thermal expansion:  = 0.00001

Boundary conditions

■  Outer: Fixed at end x = 0,■  Inner: None.

Loading

■  External: Punctual load P = -100000 N at x = L,

■  Internal: T = -50°C (Contraction equivalent to the compression force)

( 5000001.0T0005.001.010.2

100000

ES

N100  

)

Page 229: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 229/682

  ADVANCE VALIDATION GUIDE

229

1.72.2.2 Displacement of the model in the linear elastic range

Reference solution

The reference critical load established by Euler is:

98696.0100000

98696

 986964P 2

2

critical      

 

 N  L

 EI 

 

Observation: in this case, the thermal load has no effect over the critical coefficient

Finite elements modeling

■  Linear element: beam, imposed mesh,

■  5 nodes,

■  4 elements.

Deformed shape

1.72.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DZ Vertical displacement v5 on Node 5 - Case 101 [cm] -1.0

CM2 Fx Normal Force on Node A - Case 101 [N] -100000

CM2 Fx Normal Force on Node A - Case 102 [N] -98696

1.72.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement on Node 5 [cm] -1 cm 0.00%

Fx Normal Force - Case 101 [N] -100000 N 0.00%

Fx Normal Force - Case 102 [N] -98699.3 N 0.00%

Page 230: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 230/682

 ADVANCE VALIDATION GUIDE

230 

1.73 Simple supported beam in free vibration (01-0098SDLLB_FEM)

Test ID: 2512

Test status: Passed 

1.73.1 Description

Simple supported beam in free vibration.

Tested functions: Shear force, eigen frequencies.

1.73.2 Background

■  Reference: NAFEMS, FV5

■  Analysis type: modal analysis;

■  Tested functions: Shear force, eigen frequencies.

1.73.2.1 Problem data

Units

I. S.

Geometry

Full square section:

■  Dimensions: a x b = 2m x 2 m

■  Area: A = 4 m

■  Inertia: IP = 2.25 m4 

Iy = Iz = 1.333 m4 

Page 231: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 231/682

  ADVANCE VALIDATION GUIDE

231

Materials properties

■  Longitudinal elastic modulus: E = 2 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

■  Density:  = 8000 kg/m3 

Boundary conditions

■  Outer:

►  x = y = z = Rx = 0 at A ;

►  y = z =0 at B ;

■  Inner: None.

Loading

None for the modal analysis

1.73.2.2 Reference frequencies

Mode Shape Units Reference

1 Flexion Hz 42.6492 Flexion Hz 42.649

3 Torsion Hz 77.542

4 Traction Hz 125.00

5 Flexion Hz 148.31

6 Flexion Hz 148.31

7 Torsion Hz 233.10

8 Flexion Hz 284.55

9 Flexion Hz 284.55

Comment: Due to the condensed (lumped) nature of the mass matrix of Advance Design, the frequencies values of 3and 7 modes cannot be found by this software. The same modeling done with NE/NASTRAN gave respectively formode 3 and 7: 77.2 and 224.1 Hz.

Finite elements modeling

■  Straight elements: linear element

■  Imposed mesh: 5 meshes

Page 232: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 232/682

 ADVANCE VALIDATION GUIDE

232 

Modal deformations

1.73.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Frequency of eigen mode 1 [Hz] 42.649CM2 Frequency of eigen mode 2 [Hz] 42.649

CM2 Frequency of eigen mode 3 [Hz] 77.542

CM2 Frequency of eigen mode 4 [Hz] 125.00

CM2 Frequency of eigen mode 5 [Hz] 148.31

CM2 Frequency of eigen mode 6 [Hz] 148.31

CM2 Frequency of eigen mode 7 [Hz] 233.10

Comment: The torsion modes No. 3 and 7 that are calculated with NASTRAN cannot be calculated with Advance DesignCM2 solver and therefore the mode No. 3 of the Advance Design analysis corresponds to mode No. 4 of the reference.The same problem in the case of No. 7 - Advance Design, that corresponds to mode No. 8 of the reference.

1.73.3 Calculated results

Result name Result description Value Error

Frequency of eigen mode 1 [Hz] 43.11 Hz 1.08%

Frequency of eigen mode 2 [Hz] 43.11 Hz 1.08%

Frequency of eigen mode 3 [Hz] 124.49 Hz -0.41%

Frequency of eigen mode 4 [Hz] 149.38 Hz 0.72%

Frequency of eigen mode 5 [Hz] 149.38 Hz 0.72%

Frequency of eigen mode 6 [Hz] 269.55 Hz -5.27%

Frequency of eigen mode 7 [Hz] 269.55 Hz -5.27%

Page 233: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 233/682

  ADVANCE VALIDATION GUIDE

233

1.74 Membrane with hot point (01-0099HSLSB_FEM)

Test ID: 2513

Test status: Passed 

1.74.1 Description

Membrane with hot point.

Tested functions: Stresses.

1.74.2 Background

■  Reference: NAFEMS, Test T1

■  Analysis type: static, thermo-elastic;

■  Tested functions: Stresses.

1.74.2.1 Problem data

Observation: the units system of the initial NAFEMS test, defined in mm, was transposed in m for practical reasons.However, this has no influence on the results values.

Page 234: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 234/682

 ADVANCE VALIDATION GUIDE

234 

Units

I. S.

Geometry / meshing

 A quarter of the structure is modeled by incorporating the terms of symmetries.

Thickness: 1 m

Materials properties

■  Longitudinal elastic modulus: E = 1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3,

■  Elongation coefficient  = 0.00001.

Boundary conditions

■  Outer:

►  For all nodes in y = 0, uy =0;

►  For all nodes in x = 0, ux =0;

■  Inner: None.

Loading

■  External: None,

■  Internal: Hot point, thermal load T = 100°C;

Page 235: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 235/682

  ADVANCE VALIDATION GUIDE

235

1.74.3 yy stress at point A:

Reference solution:

Reference value: yy = 50 MPa in A

Finite elements modeling

■  Planar elements: membranes,

■  28 planar elements,

■  39 nodes.

1.74.3.1 Theoretical results

Solver Result name Result description Reference value

CM2 syy_mid yy in A [MPa] 50

Note: This value (50.87) is obtained with a vertical cross section through point A. The value represents yy at the leftend of the diagram.

With CM2, it is essential to display the results with the “Smooth results on planar elements” option deactivated.

1.74.4 Calculated results

Result name Result description Value Error

syy_mid Sigma yy in A [MPa] 50.8666 MPa 1.73%

Page 236: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 236/682

 ADVANCE VALIDATION GUIDE

236 

1.75 Double cross with hinged ends (01-0097SDLLB_FEM)

Test ID: 2511

Test status: Passed 

1.75.1 Description

Double cross with hinged ends.

Tested functions: Eigen frequencies, crossed beams, in plane bending.

1.75.2 Background

■  Reference: NAFEMS, FV2 test

■  Analysis type: modal analysis;

■  Tested functions: Eigen frequencies, Crossed beams, In plane bending.

1.75.2.1 Problem data

Units

I. S.

Geometry

Full square section:

■  Arm length: L = 5 m

■  Dimensions: a x b = 0.125 x 0.125

■  Area: A = 1.563 10-2

m2 

■  Inertia: IP = 3.433 x 10-5

m4 

Iy = Iz = 2.035 x 10-5

m4 

Page 237: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 237/682

  ADVANCE VALIDATION GUIDE

237

Materials properties

■  Longitudinal elastic modulus: E = 2 x 1011

 Pa,

■  Density:  = 8000 kg/m3 

Boundary conditions

■  Outer: A, B, C, D, E, F, G, H points restraint along x and y;

■  Inner: None.

Loading

None for the modal analysis

1.75.2.2 Reference frequencies

Mode Units Reference

1 Hz 11.336

2,3 Hz 17.709

4 to 8 Hz 17.709

9 Hz 45.345

10,11 Hz 57.39012 to 16 Hz 57.390

Finite elements modeling

■  Linear elements type: Beam

■  Imposed mesh: 4 Elements / Arms

Page 238: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 238/682

 ADVANCE VALIDATION GUIDE

238 

Modal deformations

Page 239: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 239/682

  ADVANCE VALIDATION GUIDE

239

1.75.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Frequency Frequency of Eigen Mode 1 [Hz] 11.336

CM2 Frequency Frequency of Eigen Mode 2 [Hz] 17.709

CM2 Frequency Frequency of Eigen Mode 3 [Hz] 17.709

CM2 Frequency Frequency of Eigen Mode 4 [Hz] 17.709

CM2 Frequency Frequency of Eigen Mode 5 [Hz] 17.709

CM2 Frequency Frequency of Eigen Mode 6 [Hz] 17.709

CM2 Frequency Frequency of Eigen Mode 7 [Hz] 17.709

CM2 Frequency Frequency of Eigen Mode 8 [Hz] 17.709

CM2 Frequency Frequency of Eigen Mode 9 [Hz] 45.345

CM2 Frequency Frequency of Eigen Mode 10 [Hz] 57.390

CM2 Frequency Frequency of Eigen Mode 11 [Hz] 57.390

CM2 Frequency Frequency of Eigen Mode 12 [Hz] 57.390

CM2 Frequency Frequency of Eigen Mode 13 [Hz] 57.390

CM2 Frequency Frequency of Eigen Mode 14 [Hz] 57.390CM2 Frequency Frequency of Eigen Mode 15 [Hz] 57.390

CM2 Frequency Frequency of Eigen Mode 16 [Hz] 57.390

1.75.3 Calculated results

Result name Result description Value Error

Frequency of Eigen Mode 1 [Hz] 11.33 Hz -0.05%

Frequency of Eigen Mode 2 [Hz] 17.66 Hz -0.28%

Frequency of Eigen Mode 3 [Hz] 17.66 Hz -0.28%

Frequency of Eigen Mode 4 [Hz] 17.69 Hz -0.11%

Frequency of Eigen Mode 5 [Hz] 17.69 Hz -0.11%

Frequency of Eigen Mode 6 [Hz] 17.69 Hz -0.11%

Frequency of Eigen Mode 7 [Hz] 17.69 Hz -0.11%

Frequency of Eigen Mode 8 [Hz] 17.69 Hz -0.11%

Frequency of Eigen Mode 9 [Hz] 45.02 Hz -0.72%

Frequency of Eigen Mode 10 [Hz] 56.06 Hz -2.32%

Frequency of Eigen Mode 11 [Hz] 56.06 Hz -2.32%

Frequency of Eigen Mode 12 [Hz] 56.34 Hz -1.83%

Frequency of Eigen Mode 13 [Hz] 56.34 Hz -1.83%

Frequency of Eigen Mode 14 [Hz] 56.34 Hz -1.83%

Frequency of Eigen Mode 15 [Hz] 56.34 Hz -1.83%

Frequency of Eigen Mode 16 [Hz] 56.34 Hz -1.83%

Page 240: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 240/682

 ADVANCE VALIDATION GUIDE

240 

1.76 Short beam on two hinged supports (01-0084SSLLB_FEM)

Test ID: 2502

Test status: Passed 

1.76.1 Description

Verifies the deflection magnitude on a non-slender beam with two hinged supports.

1.76.2 Background

1.76.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 02/89

■  Analysis type: static linear (plane problem);

■  Element type: linear.

Units

I. S.

Geometry

■  Length: L = 1.44 m,

■  Area: A = 31 x 10-4

 m²

■  Inertia: I = 2810 x 10-8 m4 

■  Shearing coefficient: az = 2.42 = A/Ar  

Materials properties

■  E = 2 x 1011

 Pa

■   = 0.3

Boundary conditions

■  Hinge at end x = 0,

■  Hinge at end x = 1.44 m.

LoadingUniformly distributed force of p = -1. X 10

5 N/m on beam AB.

Page 241: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 241/682

  ADVANCE VALIDATION GUIDE

241

1.76.2.2 Reference results

Calculation method used to obtain the reference solution

The deflection on the middle of a non-slender beam considering the shear force deformations given by theTimoshenko function:

G A8

pl

EI

pl

384

5

vr 

24

 

where

12

EG   and

zr  a

 A A    

where "Ar " is the reduced area and "az" the shear coefficient calculated on the transverse section.

Uncertainty about the reference: analytical solution:

Reference values

Point Magnitudes and units Value

C V, deflection (m) -1.25926 x 10-3

 

1.76.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Dz Deflection magnitude in point C [m] -0.00125926

1.76.3 Calculated results

Result name Result description Value Error

Dz Deflection magnitude in node C [m] -0.00125926 m 0.00%

Page 242: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 242/682

 ADVANCE VALIDATION GUIDE

242 

1.77 Double fixed beam in Eulerian buckling with a thermal load (01-0091HFLLB_FEM)

Test ID: 2506

Test status: Passed 

1.77.1 Description

Verifies the normal force on the nodes of a double fixed beam in Eulerian buckling with a thermal load.

1.77.2 Background

1.77.2.1 Model description

■  Reference: Euler theory;

■  Analysis type: Eulerian buckling;

■  Element type: linear.

Units

I. S.

Geometry

L = 10 m

Cross Section Sx m² Sy m² Sz m² Ix m4 Iy m4 Iz m4Vx m3 V1y m3 V1z m3 V2y m3 V2z m3

IPE200 0.002850 0.001400 0.001799 0.0000000646 0.0000014200 0.0000194300  0.00000000 0.00002850 0.00019400 0.00002850 0.00019400

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 N/m2,

■  Poisson's ratio:  = 0.3.

■  Coefficient of thermal expansion:  = 0.00001

Boundary conditions

■  Outer: Fixed at end x = 0,

■  Inner: None.

Page 243: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 243/682

  ADVANCE VALIDATION GUIDE

243

Loading

■  External: Punctual load FZ = 1 N at = L/2 (load that initializes the deformed shape),

■  Internal: T = 5°C corresponding to a compression force of:

kN925.29500001.000285.011E1.2TESN    

1.77.2.2 Displacement of the model in the linear elastic range

Reference solution

The reference critical load established by Euler is:

93.3724.117

925.29k 724.117

2

P2

2

critical  

 

  

      

 N  L

 EI  

Observation: in this case, the thermal load has no effect over the critical coefficient

Finite elements modeling

■  Linear element: beam, imposed mesh,

■  11 nodes,

■  10 elements.

Deformed shape of mode 1

1.77.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Fx Normal Force on Node 6 - Case 101 [kN] -29.925

CM2 Fx Normal Force on Node 6 - Case 102 [kN] -117.724

1.77.3 Calculated results

Result name Result description Value Error

Fx Normal Force Fx on Node 6 - Case 101 [kN] -29.904 kN 0.07%

Fx Normal Force Fx on Node 6 - Case 102 [kN] -118.081 kN -0.30%

Page 244: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 244/682

 ADVANCE VALIDATION GUIDE

244 

1.78 Fixed/free slender beam with eccentric mass or inertia (01-0096SDLLB_FEM)

Test ID: 2510

Test status: Passed 

1.78.1 Description

Fixed/free slender beam with eccentric mass or inertia.

Tested functions: Eigen mode frequencies, straight slender beam, combined bending-torsion, plane bending,transverse bending, punctual mass.

1.78.2 Background

1.78.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 15/89;

■  Analysis type: modal analysis;

■  Element type: linear.■  Tested functions: Eigen mode frequencies, straight slender beam, combined bending-torsion,

plane bending, transverse bending, punctual mass..

1.78.2.2 Problem data

Units

I. S.

Geometry

■  Outer diameter: de= 0.35 m,

■  Inner diameter: di = 0.32 m,

■  Beam length: l = 10 m,

■  Distance BC: lBC = 1 m

■  Area: A =1.57865 x 10-2 m2

■  Inertia: Iy = Iz = 2.21899 x 10-4

m4 

■  Polar inertia: Ip = 4.43798 x 10-4m4 

■  Punctual mass: mc = 1000 kg

Page 245: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 245/682

  ADVANCE VALIDATION GUIDE

245

Materials properties

■  Longitudinal elasticity modulus of AB element: E = 2.1 x 1011

 Pa,

■  Density of the linear element AB:  = 7800 kg/m3 

■  Poisson's ratio =0.3(this coefficient was not specified in the AFNOR test , the value 0.3 seemsto be the more appropriate to obtain the correct frequency value of modes No. 4 and 5 with NE/NASTRAN:

■  Elastic modulus of BC element: E = 10

21

 Pa■  Density of the linear element BC:  = 0 kg/m3

Boundary conditions

Fixed at point A, x = 0,

Loading

None for the modal analysis

1.78.2.3 Reference frequencies

Reference solutions

The different eigen frequencies are determined using a finite elements model of Euler beam (slender beam).

f z + t0 = flexion x,z + torsion

f y + tr = flexion x,y + traction

Mode Units Reference

1 (f z + t0) Hz 1.636

2 (f y + tr ) Hz 1.642

3 (f y + tr ) Hz 13.460

4 (f z + t0) Hz 13.590

5 (f z + t0) Hz 28.900

6 (f y + tr ) Hz 31.960

7 (f z + t0) Hz 61.610

1 (f z + t0) Hz 63.930

Uncertainty about the reference solutions

The uncertainty about the reference solutions:  1%

Finite elements modeling

■  Linear element AB: Beam

■  Imposed mesh: 50 elements.

■  Linear element BC: Beam

■  Without meshing

Page 246: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 246/682

 ADVANCE VALIDATION GUIDE

246 

Modal deformations

Page 247: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 247/682

  ADVANCE VALIDATION GUIDE

247

1.78.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 Frequency Eigen mode 1 frequency (f z + t0) [Hz] 1.636

CM2 Frequency Eigen mode 2 frequency (f y + tr ) [Hz] 1.642

CM2 Frequency Eigen mode 3 frequency (f y + tr ) [Hz] 13.46

CM2 Frequency Eigen mode 4 frequency (f z + t0) [Hz] 13.59

CM2 Frequency Eigen mode 5 frequency (f z + t0) [Hz] 28.90

CM2 Frequency Eigen mode 6 frequency (f y + tr ) [Hz] 31.96

CM2 Frequency Eigen mode 7 frequency (f z + t0) [Hz] 61.61

CM2 Frequency Eigen mode 8 frequency (f y + tr ) [Hz] 63.93

Note:

f z + t0 = flexion x,z + torsion

f y + tr = flexion x,y + traction

Observation: because the mass matrix of Advance Design is condensed and not consistent, the torsion modesobtained are not taking into account the self rotation mass inertia of the beam.

1.78.3 Calculated results

Result name Result description Value Error

Eigen mode 1 frequency [Hz] 1.64 Hz 0.24%

Eigen mode 2 frequency [Hz] 1.64 Hz -0.12%

Eigen mode 3 frequency [Hz] 13.45 Hz -0.07%

Eigen mode 4 frequency [Hz] 13.65 Hz 0.44%

Eigen mode 5 frequency [Hz] 29.72 Hz 2.84%

Eigen mode 6 frequency [Hz] 31.96 Hz 0.00%

Eigen mode 7 frequency [Hz] 63.09 Hz 2.40%

Eigen mode 8 frequency [Hz] 63.93 Hz 0.00%

Page 248: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 248/682

 ADVANCE VALIDATION GUIDE

248 

1.79 Beam on 3 supports with T/C (k = -10000 N/m) (01-0102SSNLB_FEM)

Test ID: 2516

Test status: Passed 

1.79.1 Description

Verifies the rotation, the displacement and the moment on a beam consisting of two elements of the same length andidentical characteristics with 3 T/C supports (k = -10000 N/m).

1.79.2 Background

1.79.2.1 Model description

■  Reference: internal GRAITEC test;

■  Analysis type: static non linear;

■  Element type: linear, T/C.

Units

I. S.

Geometry

■  L = 10 m

■  Section: IPE 200, Iz = 0.00001943 m4

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 N/m2,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer:

►  Support at node 1 restrained along x and y (x = 0),

►  Support at node 2 restrained along y (x = 10 m),

►  T/C ky Rigidity = -10000 N/m (the – sign corresponds to an upwards restraint),

■  Inner: None.

Loading

■  External: Vertical punctual load P = -100 N at x = 5 m,

■  Internal: None.

Page 249: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 249/682

  ADVANCE VALIDATION GUIDE

249

1.79.2.2 References solutions

Displacements

rad000034.0Lk2EI3EI32

LkEI6PL

m00058.0Lk2EI316

PL3v

rad000106.0Lk2EI3EI16

LkEI3PL

rad000129.0Lk2EI3EI32

LkEI2PL3

3

yzz

3yz

2

3

3yz

3

3

3yzz

3yz

2

2

3

yzz

3yz

2

1

 

M z  Moments

N.m9.2202

MM

4

PL)m5x(M

N.m15.58Lk2EI316

PLk3M

0M

1z2zz

3yz

4y

2z

1z

 

Finite elements modeling

■  Linear element: S beam, automatic mesh,

■  3 nodes,

■  2 linear elements + 1 T/C.

Deformed shape

Page 250: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 250/682

 ADVANCE VALIDATION GUIDE

250 

Moment diagram

1.79.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 RY Rotation Ry in node 1 [rad] -0.000129

CM2 RY Rotation Ry in node 2 [rad] 0.000106

CM2 DZ Displacement - node 3 [m] 0.00058

CM2 RY Rotation Ry in node 3 [rad] 0.000034

CM2 My M moment - node 1 [Nm] 0

CM2 My M moment - node 2 [Nm] -58.15

CM2 My M moment - middle span 1 [Nm] -220.9

1.79.3 Calculated results

Result name Result description Value Error

RY Rotation Ry in node 1 [rad] 0.000129488 Rad 0.38%

RY Rotation Ry in node 2 [rad] -0.000105646 Rad 0.33%

DZ Displacement - node 3 [m] 0.000581169 m 0.20%

RY Rotation Ry in node 3 [rad] -3.44295e-005 Rad -1.26%

My M moment - node 1 [Nm] 1.77636e-015 N*m 0.00%My M moment - node 2 [Nm] 58.1169 N*m -0.06%

My M moment - middle span 1 [Nm] -220.942 N*m -0.02%

Page 251: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 251/682

  ADVANCE VALIDATION GUIDE

251

1.80 Linear system of truss beams (01-0103SSLLB_FEM)

Test ID: 2517

Test status: Passed 

1.80.1 Description

Verifies the displacement and the normal force for a bar system containing 4 elements of the same length and 2diagonals.

1.80.2 Background

1.80.2.1 Model description

■  Reference: internal GRAITEC test;

■  Analysis type: static linear;

■  Element type: linear, bar.

Units

I. S.

Geometry■  L = 5 m

■  Section S = 0.005 m2 

Materials properties

Longitudinal elastic modulus: E = 2.1 x 1011

 N/m2.

Boundary conditions

■  Outer:

►  Support at node 1 restrained along x and y,

►  Support at node 2 restrained along x and y,

■  Inner: None.

Page 252: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 252/682

 ADVANCE VALIDATION GUIDE

252 

Loading

■  External: Horizontal punctual load P = 50000 N at node 3,

■  Internal: None.

1.80.2.2 References solutions

Displacements

m000108.0ES11

PL5v

m000541.0ES11

PL25u

m000129.0ES11

PL6v

m000649.0ES11

PL30u

4

4

3

3

 

N normal forces

N32141P11

25N N22727P

11

5N

N38569P11

26N N27272P

11

6N

 N22727P11

5N 0N

4243

1323

1412

 

Finite elements modeling

■  Linear element: bar, without meshing,

■  4 nodes,

■  6 linear elements.

Deformed shape

Page 253: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 253/682

  ADVANCE VALIDATION GUIDE

253

Normal forces

1.80.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DX u3 displacement on Node 3 [m] 0.000649

CM2 DZ v3 displacement on Node 3 [m] -0.000129

CM2 DX u4 displacement on Node 4 [m] 0.000541

CM2 DZ v4 displacement on Node 4 [m] 0.000108

CM2 Fx N12 normal force on Element 1 [N] 0

CM2 Fx N23 normal force on Element 2 [N] -27272

CM2 Fx N43 normal force on Element 3 [N] 22727

CM2 Fx N14 normal force on Element 4 [N] 22727

CM2 Fx N13 normal effort on Element 5 [N] 38569

CM2 Fx N42 normal force on Element 6 [N] -32141

1.80.3 Calculated results

Result name Result description Value Error

DX u3 displacement on Node 3 [m] 0.000649287 m 0.04%

DZ v3 displacement on Node 3 [m] -0.000129871 m -0.68%

DX u4 displacement on Node 4 [m] 0.000541063 m 0.01%

DZ v4 displacement on Node 4 [m] 0.000108224 m 0.21%

Fx N12 normal force on Element 1 [N] 0 N 0.00%

Fx N23 normal force on Element 2 [N] -27272.9 N 0.00%

Fx N43 normal force on Element 3 [N] 22727.1 N 0.00%

Fx N14 normal force on Element 4 [N] 22727.1 N 0.00%

Fx N13 normal effort on Element 5 [N] 38569.8 N 0.00%

Fx N42 normal force on Element 6 [N] -32140.9 N 0.00%

Page 254: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 254/682

 ADVANCE VALIDATION GUIDE

254 

1.81 Linear element in combined bending/tension - without compressed reinforcements - Partiallytensioned section (02-0158SSLLB_B91)

Test ID: 2520

Test status: Passed 

1.81.1 Description

Verifies the reinforcement results for a concrete beam with 8 isostatic spans subjects to uniform loads andcompression normal forces.

1.81.1.1 Model description

■  Reference: J. Perchat (CHEC) reinforced concrete course

■  Analysis type: static linear;

■  Element type: planar.

Units

■  Forces: kN

■  Moment: kN.m

■  Stresses: MPa

■  Reinforcement density: cm²

Geometry

■  Beam dimensions: 0.2 x 0.5 ht

■  Length: l = 48 m in 8 spans of 6m,

Materials properties

■  Longitudinal elastic modulus: E = 20000 MPa,

■  Poisson's ratio:  = 0.

Boundary conditions

■  Outer:

►  Hinged at end x = 0,

►  Vertical support at the same level with all other supports

■  Inner: Hinged at each beam end (isostatic)

Loading

■  External:

►  Case 1 (DL): uniform linear load g= -5kN/m (on all spans except 8)

Fx = 10 kN at x = 42m: Ng = -10 kN for spans from 6 to 7

Fx = 140 kN at x = 32m: Ng = -150 kN for span 5

Fx = -50 kN at x = 24m: Ng = -100 kN for span 4

Fx = 50 kN at x = 18m: Ng = -50 kN for span 3

Fx = 50 kN at x = 12m: Ng = -100 kN for span 2

Fx = -70 kN at x = 6m: Ng = -30 kN for span 1

►  Case 10 (DL): uniform linear load g =-5 kN/m (span 8)

Fx = 10 kN at x = 48m: Ng = -10 kN

Fx = -10 kN at x = 42m

Page 255: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 255/682

  ADVANCE VALIDATION GUIDE

255

►  Case 2 to 8 (LL): uniform linear load q = -9 kN/m (on spans 1, 3 to 7)

uniform linear load q = -15 kN/m (on span 2)

Fx = 30 kN at x = 6m (case 2 span 1)

Fx = -50 kN at x = 6m (case 3 span 2)

Fx = 50 kN at x = 12m (case 3 span 2)

Fx = -40 kN at x = 12m (case 4 span 3)

Fx = 40 kN at x = 18m (case 4 span 3)

Fx = -100 kN at x = 18m (case 5 span 4)

Fx = 100 kN at x = 24m (case 5 span 4)

Fx = -150 kN at x = 24m (case 6 span 5)

Fx = 150 kN at x = 30m (case 6 span 5)

Fx = -8 kN at x = 30m (case 7 span 6)

Fx = 8 kN at x = 36m (case 7 span 6)

Fx = -8 kN at x = 36m (case 8 span 7

Fx = 8 kN at x = 42m (case 8 span 7)

►  Case 9 (ACC): uniform linear load a = -25 kN/m (on 8th span)

Fx = 8 kN at x = 36m (case 9 span 8)

Fx = -8 kN at x = 42m (case 9 span 8)

Comb BAELUS: 1.35xDL+1.5xLL with duration of more than 24h (comb 101, 104 to 107)

Comb BAEULI: 1.35xDL+1.5xLL with duration between 1h and 24h (comb 102)

Comb BAELUC: 1.35xDL + 1.5xLL with duration of less than 1h (comb 103)

Comb BAELS: 1xDL + 1*LL (comb 108 to 114)

Comb BAELA: 1xDL + 1xACC with duration of less than 1h (comb 115)

■  Internal: None.

Reinforced concrete calculation hypothesis:

 All concrete covers are set to 5 cm

BAEL 91 calculation (according to 99 revised version)

Span Concrete Reinforcement Application Concrete Cracking

1 B20 HA fe500 D>24h No Nonprejudicial

2 B35 Adx fe235 1h<D<24h No Nonprejudicial

3 B50 HA fe 400 D<1h Yes Non

prejudicial4 B25 HA fe500 D>24h Yes Prejudicial

5 B25 HA fe500 D>24h No Veryprejudicial

6 B30 Adx fe235 D>24h Yes Prejudicial

7 B40 HA fe500 D>24h Yes 160 MPa

8 B45 HA fe500 D<1h Yes Nonprejudicial

Page 256: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 256/682

 ADVANCE VALIDATION GUIDE

256 

1.81.1.2 Reinforcement calculation

Reference solution

Span 1  Span 2  Span 3  Span 4  Span 5  Span 6  Span 7  Span 8 

fc28 20 35 50 25 25 30 40 45ft28 1.8 2.7 3.6 2.1 2.1 2.4 3 3.3

fe 500 235 400 500 500 235 500 500

teta 1 0.9 0.85 1 1 1 1 0.85

gamb 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.15

gams 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1

h 1.6 1 1.6 1.6 1.6 1 1.6 1.6

fbu 11.33 22.04 33.33 14.17 14.17 17.00 22.67 39.13

fed 434.78 204.35 347.83 434.78 434.78 204.35 434.78 500.00

sigpreju 250.00 156.67 264.00 250.00 250.00 156.67 160.00 252.76

sigtpreju 200.00 125.33 211.20 200.00 200.00 125.33 160.00 202.21

g 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

q 9.00 15.00 9.00 9.00 9.00 9.00 9.00 25.00

pu 20.25 29.25 20.25 20.25 20.25 20.25 20.25 30.00

pser 14.00 20.00 14.00 14.00 14.00 14.00 14.00

G -30.00 -100.00 -50.00 -100.00 -150.00 -10.00 -10.00 -10.00

Q -30.00 -50.00 -40.00 -100.00 -100.00 -8.00 -8.00 -8.00

l 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Mu 91.13 131.63 91.13 91.13 91.13 91.13 91.13 135.00

Nu -85.50 -210.00 -127.50 -285.00 -352.50 -25.50 -25.50 -18.00

Mser 63.00 90.00 63.00 63.00 63.00 63.00 63.00

Nser -60.00 -150.00 -90.00 -200.00 -250.00 -18.00 -18.00

Vu 60.75 87.75 60.75 60.75 60.75 60.75 60.75 90.00

Main reinforcement calculation according to ULS

Mu/A 74.03 89.63 65.63 34.13 20.63 86.03 86.03 131.40

ubu 0.161 0.100 0.049 0.059 0.036 0.125 0.094 0.083

a 0.221 0.133 0.062 0.077 0.046 0.167 0.123 0.108

z 0.410 0.426 0.439 0.436 0.442 0.420 0.428 0.430

 Au 6.12 20.57 7.97 8.35 9.18 11.27 5.21 6.46

Main reinforcement calculation with prejudicial cracking according to SLS

Mser/A 51.000 60.000 45.000 23.000 13.000 59.400 59.400 0.000

a 0.4186 0.6678 0.6303 0.4737 0.4737 0.6328 0.6923 0.6157

Mrb 87.53 220.78 302.44 121.16 121.16 182.01 258.82 267.55

 A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

B -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000

C -0.4533 -0.8511 -0.3788 -0.2044 -0.1156 -0.8426 -0.8250 0.0000

D 0.4533 0.8511 0.3788 0.2044 0.1156 0.8426 0.8250 0.0000

alpha1 0.238 0.432 0.428

z 0.414 0.385 0.386

 Aserp 10.22 10.99 10.75

Page 257: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 257/682

  ADVANCE VALIDATION GUIDE

257

Span 1  Span 2  Span 3  Span 4  Span 5  Span 6  Span 7  Span 8 

Main reinforcement calculation with very prejudicial cracking according to SLS

Mser/A 51.00 60.00 45.00 23.00 13.00 59.40 59.40 0.00

a 0.47 0.72 0.68 0.53 0.53 0.68 0.69 0.67

Mrb 96.93 231.67 319.66 132.43 132.43 192.27 258.82 283.60

 A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000B -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -3.0000

C -0.5667 -1.0638 -0.4735 -0.2556 -0.1444 -1.0532 -0.8250 0.0000

D 0.5667 1.0638 0.4735 0.2556 0.1444 1.0532 0.8250 0.0000

alpha1 0.203

z 0.420

 Asertp 14.049

Transverse reinforcement calculation

tu 0.68 0.98 0.68 0.68 0.68 0.68 0.68 1.00

k 0.57 0.40 0.00 -0.14 -0.41 0.00 0.00 0.00

 At/st 1.87 7.08 4.31 3.90 4.77 7.34 3.45 4.44

Recapitulation

 Aflex 6.12 20.57 7.97 10.22 14.05 11.27 10.75 6.46

e0 -0.95 -1.67 -1.43 -3.17 -3.97 -0.29 -0.29 -0.13

 Aminfsimp 0.75 2.38 1.86 0.87 0.87 2.11 1.24 1.37

 Aminfcomp 0.83 2.54 2.01 0.90 0.90 2.80 1.65 0.30

 At 1.87 7.08 4.31 3.90 4.77 7.34 3.45 4.44

 Atmin 1.60 3.40 2.00 1.60 1.60 3.40 1.60 1.60

Finite elements modeling

■  Linear elements: beams with imposed mesh

■  29 nodes,

■  28 linear elements.

Page 258: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 258/682

 ADVANCE VALIDATION GUIDE

258 

1.81.1.3 Theoretical results

Solver Result name Result description Reference value

CM2 Az Inf. main reinf. T1 [cm2] 6.12

CM2 Amin Min. main reinf. T1 [cm2] 0.75

CM2 Atz Trans. reinf. T1 [cm2

] 1.87CM2 Az Inf. main reinf. T2 [cm

2] 20.57

CM2 Amin Min. main reinf. T2 [cm2] 2.38

CM2 Atz Trans. reinf. T2 [cm2] 7.08

CM2 Az Inf. main reinf. T3 [cm2] 7.97

CM2 Amin Min. main reinf. T3 [cm2] 1.86

CM2 Atz Trans. reinf. T3 [cm2] 4.31

CM2 Az Inf. main reinf. T4 [cm2] 10.22

CM2 Amin Min. main reinf. T4 [cm2] 0.87

CM2 Atz Trans. reinf. T4 [cm2] 3.90

CM2 Az Inf. main reinf. T5 [cm2] 14.05

CM2 Amin Min. main reinf. T5 [cm2] 4.20

CM2 Atz Trans. reinf. T5 [cm2] 4.77

CM2 Az Inf. main reinf. T6 [cm2] 11.27

CM2 Amin Min. main reinf. T6 [cm2] 2.11

CM2 Atz Trans. reinf. T6 [cm2] 7.34

CM2 Az Inf. main reinf. T7 [cm2] 10.75

CM2 Amin Min. main. reinf. T7 [cm2] 1.24

CM2 Atz Trans. reinf. T7 [cm2] 3.45

CM2 Az Inf. main reinf. T8 [cm2] 6.46

CM2 Amin Min. main reinf. T8 [cm2] 1.37

CM2 Atz Trans. reinf. T8 [cm2] 4.44

The "Mu limit" method must be applied in order to achieve the same results.

Page 259: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 259/682

  ADVANCE VALIDATION GUIDE

259

1.81.2 Calculated results

Result name Result description Value Error

 Az Inf. main reinf. T1 [cm²] -6.11718 cm² 0.05%

 Amin Min. main reinf. T1 [cm²] 0.7452 cm² -0.64% Atz Trans. reinf. T1 [cm²] 1.8699 cm² -0.01%

 Az Inf. main reinf. T2 [cm²] -20.5688 cm² 0.01%

 Amin Min. main reinf. T2 [cm²] 2.3783 cm² -0.07%

 Atz Trans. reinf. T2 [cm²] 7.07943 cm² -0.01%

 Az Inf. main reinf. T3 [cm²] -7.96552 cm² 0.06%

 Amin Min. main reinf. T3 [cm²] 1.863 cm² 0.16%

 Atz Trans. reinf. T3 [cm²] 4.3125 cm² 0.06%

 Az Inf. main reinf. T4 [cm²] -10.2301 cm² -0.10%

 Amin Min. main reinf. T4 [cm²] 0.8694 cm² -0.07%

 Atz Trans. reinf. T4 [cm²] 3.9008 cm² 0.02% Az Inf. main reinf. T5 [cm²] -14.0512 cm² -0.01%

 Amin Min. main reinf. T5 [cm²] 4.2 cm² 0.00%

 Atz Trans. reinf. T5 [cm²] 4.7702 cm² 0.00%

 Az Inf. main reinf. T6 [cm²] -11.2742 cm² -0.04%

 Amin Min. main reinf. T6 [cm²] 2.11404 cm² 0.19%

 Atz Trans. reinf. T6 [cm²] 7.34043 cm² 0.01%

 Az Inf. main reinf. T7 [cm²] -10.7634 cm² -0.12%

 Amin Min. main. reinf. T7 [cm²] 1.242 cm² 0.16%

 Atz Trans. reinf. T7 [cm²] 3.45 cm² 0.00%

 Az Inf. main reinf. T8 [cm²] -6.47718 cm² -0.27% Amin Min. main reinf. T8 [cm²] 1.3662 cm² -0.28%

 Atz Trans. reinf. T8 [cm²] 4.44444 cm² 0.10%

Page 260: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 260/682

 ADVANCE VALIDATION GUIDE

260 

1.82 Linear element in simple bending - without compressed reinforcement (02-0162SSLLB_B91)

Test ID: 2521

Test status: Passed 

1.82.1 Description

Verifies the reinforcement results for a concrete beam with 8 isostatic spans subjected to uniform loads.

1.82.1.1 Model description

■  Reference: J. Perchat (CHEC) reinforced concrete course

■  Analysis type: static linear;

■  Element type: planar.

Units

■  Forces: kN

■  Moment: kN.m■  Stresses: MPa

■  Reinforcement density: cm2 

Geometry

■  Beam dimensions: 0.2 x 0.5 ht

■  Length: l = 42 m in 7 spans of 6m,

Materials properties

■  Longitudinal elastic modulus: E = 20000 MPa,

■  Poisson's ratio:  = 0.

Boundary conditions

■  Outer:

►  Hinged at end x = 0,

►  Vertical support at the same level with all other supports

■  Inner: Hinge z at each beam end (isostatic)

Loading

■  External:

►  Case 1 (DL): uniform linear load g =-5 kN/m (on all spans except 8)

►  Case 2 to 8 (LL): uniform linear load q = -9 kN/m (on spans 1, 3 to 7)uniform linear load q = -15 kN/m (on span 2)

►  Case 9 (ACC): uniform linear load a = -25 kN/m (on 8th span)

►  Case 10 (DL): uniform linear load g = -5 kN/m (on 8th span)

Comb BAELUS: 1.35xDL+1.5xLL with duration of more than 24h (comb 101, 104 to 107)

Comb BAEULI: 1.35xDL+1.5xLL with duration between 1h and 24h (comb 102)

Comb BAELUC: 1.35xDL + 1.5xLL with duration of less than 1h (comb 103)

Comb BAELS: 1xDL + 1*LL (comb 108 to 114)

Comb BAELUA: 1xDL + 1xACC (comb 115)

■  Internal: None.

Page 261: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 261/682

  ADVANCE VALIDATION GUIDE

261

Reinforced concrete calculation hypothesis:

■  All concrete covers are set to 5 cm

■  BAEL 91 calculation with the revised version 99

Span  Concrete  Reinforcement Application  Concrete  Cracking 

1 B20 HA fe500 D>24h No Nonprejudicial

2 B35 Adx fe235 1h<D<24h No Nonprejudicial

3 B50 HA fe 400 D<1h Yes Nonprejudicial

4 B25 HA fe500 D>24h Yes Prejudicial

5 B60 HA fe500 D>24h No Veryprejudicial

6 B30 Adx fe235 D>24h Yes Prejudicial

7 B40 HA fe500 D>24h Yes 160 MPa

8 B45 HA fe500 D<1h Yes Nonprejudicial

1.82.1.2 Reinforcement calculation

Reference solution

Span 1  Span 2  Span 3  Span 4  Span 5  Span 6  Span 7  Span 8 

fc28 20 35 50 25 60 30 40 45ft28 1.8 2.7 3.6 2.1 4.2 2.4 3 3.3fe 500 235 400 500 500 235 500 500

teta 1 0.9 0.85 1 1 1 1 0.85gamb 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.15gams 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1

h 1.6 1 1.6 1.6 1.6 1 1.6 1.6

fbu 11.33 22.04 33.33 14.17 34.00 17.00 22.67 39.13fed 434.78 204.35 347.83 434.78 434.78 204.35 434.78 500.00

sigpreju 250.00 156.67 264.00 250.00 285.15 156.67 160.00 252.76

sigtpreju 200.00 125.33 211.20 200.00 228.12 125.33 160.00 202.21

g 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00q 9.00 15.00 9.00 9.00 9.00 9.00 9.00 25.00pu 20.25 29.25 20.25 20.25 20.25 20.25 20.25 30.00

pser 14.00 20.00 14.00 14.00 14.00 14.00 14.00l 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Mu 91.13 131.63 91.13 91.13 91.13 91.13 91.13 135.00Mser 63.00 90.00 63.00 63.00 63.00 63.00 63.00Vu 60.75 87.75 60.75 60.75 60.75 60.75 60.75 90.00

Longitudinal reinforcement calculation according to ELU

ubu 0.199 0.147 0.068 0.159 0.066 0.132 0.099 0.085a 0.279 0.200 0.087 0.217 0.086 0.178 0.131 0.111z 0.400 0.414 0.434 0.411 0.435 0.418 0.426 0.430

 Au 5.24 15.56 6.03 5.10 4.82 10.67 4.91 6.28Main reinforcement calculation with prejudicial cracking according to SLS

 A 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000B -3.000 -3.000 -3.000 -3.000 -3.000 -3.000 -3.000 -3.000C -0.56000 -0.89362 -0.87500D 0.56000 0.89362 0.87500

alpha1 0.367 0.442 0.438z 0.395 0.384 0.384

 Aserp 6.38 10.48 10.25

Main reinforcement calculation with very prejudicial cracking according to SLS

 A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00B -3.00 -3.00 -3.00 -3.00 -3.00 -3.00 -3.00 -3.00C -0.70 -1.60 -0.66 -0.70 -0.61371 -1.12 -0.88 0.00D 0.70 1.60 0.66 0.70 0.61371 1.12 0.88 0.00

alpha1 0.381z 0.393

 Asertp 7.030

Page 262: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 262/682

 ADVANCE VALIDATION GUIDE

262 

Span 1  Span 2  Span 3  Span 4  Span 5  Span 6  Span 7  Span 8 

Transversal reinforcement calculation

tu 0.68 0.98 0.68 0.68 0.68 0.68 0.68 1.00k 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

 At/st 0.69 1.79 4.31 3.45 3.45 7.34 3.45 4.44

Recapitulation

 Aflex 5.24 15.56 6.03 6.38 7.03 10.67 10.25 6.28

 Aminflex 0.75 2.38 1.86 0.87 1.74 2.11 1.24 1.37 At 0.69 1.79 4.31 3.45 3.45 7.34 3.45 4.44

 Atmin 1.60 3.40 2.00 1.60 1.60 3.40 1.60 1.60

Finite elements modeling

■  Linear elements: beams with imposed mesh

■  29 nodes,

■  28 linear elements.

1.82.1.3 Theoretical results

Reference

Solver Result name Result description Reference value

CM2 Az Inf. main reinf. T1 [cm2] 5.24

CM2 Amin Min. main reinf. T1 [cm2] 0.75

CM2 Atz Trans. reinf. T1 [cm2] 0.69

CM2 Az Inf. main reinf. T2 [cm2] 15.56

CM2 Amin Min. main reinf. T2 [cm2] 2.38

CM2 Atz Trans. reinf. T2 [cm2] 1.79

CM2 Az Inf. main reinf. T3 [cm2] 6.03

CM2 Amin Min. main reinf. T3 [cm2] 1.86

CM2 Atz Trans. reinf. T3 [cm

2

] 4.31CM2 Az Inf. main reinf. T4 [cm

2] 6.38

CM2 Amin Min. main reinf. T4 [cm2] 0.87

CM2 Atz Trans. reinf. T4 [cm2] 3.45

CM2 Az Inf. main reinf. T5 [cm2] 7.03

CM2 Amin Min. main reinf. T5 [cm2] 1.74

CM2 Atz Trans. reinf. T5 [cm2] 3.45

CM2 Az Inf. main reinf. T6 [cm2] 10.67

CM2 Amin Min. main reinf. T6 [cm2] 2.11

CM2 Atz Trans. reinf. T6 [cm2] 7.34

CM2 Az Inf. main reinf. T7 [cm2] 10.25

CM2 Amin Min. main. reinf. T7 [cm2] 1.24

CM2 Atz Trans. reinf. T7 [cm2] 3.45

CM2 Az Inf. main reinf. T8 [cm2] 6.28

CM2 Amin Min. main reinf. T8 [cm2] 1.37

CM2 Atz Trans. reinf. T8 [cm2] 4.44

The "Mu limit" method must be applied to attain the same results.

Page 263: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 263/682

  ADVANCE VALIDATION GUIDE

263

1.82.2 Calculated results

Result name Result description Value Error

 Az Inf. main reinf. T1 [cm²] -5.24348 cm² -0.07% Amin Min. main reinf. T1 [cm²] 0.7452 cm² -0.64%

 Atz Trans. reinf. T1 [cm²] 0.69 cm² 0.00%

 Az Inf. main reinf. T2 [cm²] -15.5613 cm² -0.01%

 Amin Min. main reinf. T2 [cm²] 2.3783 cm² -0.07%

 Atz Trans. reinf. T2 [cm²] 1.79433 cm² 0.24%

 Az Inf. main reinf. T3 [cm²] -6.03286 cm² -0.05%

 Amin Min. main reinf. T3 [cm²] 1.863 cm² 0.16%

 Atz Trans. reinf. T3 [cm²] 4.3125 cm² 0.06%

 Az Inf. main reinf. T4 [cm²] -6.38336 cm² -0.05%

 Amin Min. main reinf. T4 [cm²] 0.8694 cm² -0.07% Atz Trans. reinf. T4 [cm²] 3.45 cm² 0.00%

 Az Inf. main reinf. T5 [cm²] -7.03527 cm² -0.07%

 Amin Min. main reinf. T5 [cm²] 1.7388 cm² -0.07%

 Atz Trans. reinf. T5 [cm²] 3.45 cm² 0.00%

 Az Inf. main reinf. T6 [cm²] -10.6698 cm² 0.00%

 Amin Min. main reinf. T6 [cm²] 2.11404 cm² 0.19%

 Atz Trans. reinf. T6 [cm²] 7.34043 cm² 0.01%

 Az Inf. main reinf. T7 [cm²] -10.2733 cm² -0.23%

 Amin Min. main. reinf. T7 [cm²] 1.242 cm² 0.16%

 Atz Trans. reinf. T7 [cm²] 3.45 cm² 0.00% Az Inf. main reinf. T8 [cm²] -6.29338 cm² -0.21%

 Amin Min. main reinf. T8 [cm²] 1.3662 cm² -0.28%

 Atz Trans. reinf. T8 [cm²] 4.44444 cm² 0.10%

Page 264: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 264/682

 ADVANCE VALIDATION GUIDE

264 

1.83 Beam on 3 supports with T/C (k -> infinite) (01-0101SSNLB_FEM)

Test ID: 2515

Test status: Passed 

1.83.1 Description

Verifies the rotation, the displacement and the moment on a beam consisting of two elements of the same length andidentical characteristics with 3 T/C supports (k -> infinite).

1.83.2 Background

1.83.2.1 Model description

■  Reference: internal GRAITEC test;

■  Analysis type: static non linear;

■  Element type: linear, T/C.

Units

I. S.

Geometry

■  L = 10 m

■  Section: IPE 200, Iz = 0.00001943 m4 

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 N/m2,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer:

►  Support at node 1 restrained along x and y (x = 0),

►  Support at node 2 restrained along y (x = 10 m),

►  T/C stiffness ky   (1.1030

N/m),

■  Inner: None.

Loading

■  External: Vertical punctual load P = -100 N at x = 5 m,

■  Internal: None.

Page 265: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 265/682

  ADVANCE VALIDATION GUIDE

265

1.83.2.2 References solutions

ky being infinite, the non linear model behaves the same way as a beam on 3 supports.

Displacements

rad000038.0Lk2EI3EI32

LkEI6PL

0Lk2EI316

PL3v

rad000077.0Lk2EI3EI16

LkEI3PL

rad000115.0Lk2EI3EI32

LkEI2PL3

3yzz

3yz

2

3

3yz

3

3

3yzz

3

yz

2

2

3yzz

3yz

2

1

 

M z  Moments 

N.m13.2032

MM

4

PL)m5x(M

N.m75.93Lk2EI316

PLk3M

0M

1z2zz

3

yz

4y

2z

1z

 

Finite elements modeling

■  Linear element: S beam, automatic mesh,

■  3 nodes,

■  2 linear elements + 1 T/C.

Deformed shape

Page 266: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 266/682

 ADVANCE VALIDATION GUIDE

266 

Moment diagram

1.83.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 RY Rotation Ry - node 1 [rad] 0.000115

CM2 RY Rotation Ry - node 2 [rad] -0.000077

CM2 DZ Displacement - node 3 [m] 0

CM2 RY Rotation Ry - node 3 [rad] 0.000038

CM2 My Moment M - node 1 [Nm] 0

CM2 My Moment M - node 2 [Nm] 93.75

CM2 My Moment M - middle span 1 [Nm] -203.13

1.83.3 Calculated results

Result name Result description Value Error

RY Rotation Ry in node 1 [rad] 0.000115005 Rad 0.00%

RY Rotation Ry in node 2 [rad] -7.65875e-005 Rad 0.54%

DZ Displacement - node 3 [m] 9.36486e-030 m 0.00%

RY Rotation Ry in node 3 [rad] 3.81695e-005 Rad 0.45%

My Moment M - node 1 [Nm] 1.3145e-013 N*m 0.00%

My Moment M - node 2 [Nm] 93.6486 N*m -0.11%

My Moment M - middle span 1 [Nm] -203.176 N*m -0.02%

Page 267: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 267/682

  ADVANCE VALIDATION GUIDE

267

1.84 Study of a mast subjected to an earthquake (02-0112SMLLB_P92)

Test ID: 2519

Test status: Passed 

1.84.1 Description

 A structure consisting of 2 beams and 2 punctual masses, subjected to a lateral earthquake along X. The frequencymodes, the eigen vectors, the participation factors, the displacement at the top of the mast and the forces at the topof the mast are verified.

1.84.1.1 Model description

■  Reference: internal GRAITEC test;

■  Analysis type: modal and spectral analyses;

■  Element type: linear, mass.

1.84.1.2 Material strength model

Units

I. S.

Geometry

■  Length: L = 35 m,

■  Outer radius: Rext = 3.00 m

■  Inner radius: Rint = 2.80 m

■  Axial section: S= 3.644 m2 

■  Polar inertia: Ip = 30.68 m4 

■  Bending inertias: Ix =15.34 m4 

Iy = 15.34 m4 

Masses

■  M1 =203873.6 kg

■  M2 =101936.8 kg

Materials properties

■  Longitudinal elastic modulus: E = 1.962 x 1010

 N/m2,

■  Poisson's ratio:  = 0.1,

■  Density:  = 25 kN/m3 

Page 268: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 268/682

 ADVANCE VALIDATION GUIDE

268 

Boundary conditions

■  Outer: Fixed in X = 0, Y = 0 m,

Loading

■  External: Seismic excitation on X direction

Finite elements modeling

Linear element: beam, automatic mesh,

1.84.1.3 Seismic hypothesis in conformity with PS92 regulation

■  Zone: Nice Sophia Antipolis (Zone II).

■  Site: S1 (Medium soil, 10m thickness).

■  Construction type class: B

■  Behavior coefficient: 3

■  Material damping: 4% (Reinforced concrete).

1.84.1.4 Modal analysis

Eigen periods reference solution

Substract the value of structure’s specific horizontal periods by solving the following equation:

0MKdet 2  

 

  

 

 

  

 

2

1

3

M0

0MM

25

516

L7

EI48K

 

Eigen modes Units Reference

1 Hz 2.0852 Hz 10.742

Modal vectors

For 1:

 

  

 

 

  

 

 

  

 

 

 

 

 

 

  

 

 

  

 

055.3

1

U

U0

U

U

M0

0M

25

516

L7

EI48

2

1

1

2

1

12

2

2

11

For 2:

 

 

 

 

 

 

 

 

655.0

1

U

U

2

1

2  

Normalizing relative to the mass

 

  

 

3

4

110842.2

10305.9 ;

 

  

 

3

3

210316.1

1001.2 

Page 269: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 269/682

  ADVANCE VALIDATION GUIDE

269

Modal deformations

1.84.1.5 Spectral study

Design spectrum

Nominal acceleration:

2n1 sm5411.5a 2.085Hzf     

2n2 sm25.6aHz742.01f     

Observation: the gap between pulses is greater than 10%, so the modal responses can be regarded as independent.

Page 270: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 270/682

 ADVANCE VALIDATION GUIDE

270 

Reference participation factors

Mii  

séismedudirectionladedirecteur Vecteur :    

Eigen modes Reference

1 479.4272 275.609

Pseudo-acceleration

iiii a     in (m/s2)

4.0

%5 

  

 

: Damping correction factor.

: Structure damping.

 

  

 

8.2556

2.70261  

 

  

 

2.4783-

3.78521  

Reference modal displacement

 

  

 

024.814E

021.576E1  

 

  

 

045.446E-

048.318E2  

Equivalent static forces

 

  

 

058.415E

055.510EF1  

 

  

 

052.526E-

057.717EF2  

Displacement at the top of the mast

22

1 04E446.502E81.4U    

Units Reference

m 4.814 E-02

Shear force at the top of the mast

3

05E526.205E415.8T

22

1

 

3: Being the behavior coefficient of forces

Units Reference

N 2.929 

E+05

Moment at the base

Units Reference

N.m 1.578 E+07

Page 271: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 271/682

  ADVANCE VALIDATION GUIDE

271

1.84.1.6 Theoretical results

Reference

Solver Result name Result description Reference value

CM2 Frequency Frequency Mode 1 [Hz] 2.085

CM2 Frequency Frequency Mode 2 [Hz] 10.742CM2 D Displacement at the top of the mast [cm] 4.814

CM2 Fz Forces at the top of the mast [N] 2.929E+05

1.84.2 Calculated results

Result name Result description Value Error

Frequency Mode 1 [Hz] 2.08 Hz -0.24%

Frequency Mode 2 [Hz] 10.74 Hz -0.02%

D Displacement at the top of the mast [cm] 4.81159 cm -0.05%

Fz Forces at the top of the mast [N] 292677 N -0.08%

Page 272: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 272/682

 ADVANCE VALIDATION GUIDE

272 

1.85 Design of a concrete floor with an opening (03-0208SSLLG_BAEL91)

Test ID: 2524

Test status: Passed 

1.85.1 Description

Verifies the displacements, bending moments and reinforcement results for a 2D concrete slab with supports andpunctual loads.

1.85.2 Background

1.85.2.1 Model description

■  Calculation model: 2D concrete slab.

►  Slab thickness: 20 cm

►  Slab length: 20m

►  Slab width: 10m

►  The supports (punctual and linear) are considered as hinged.

►  Supports positioning (see scheme below)

►  1,50m*2,50m opening => see positioning on the following scheme

■  Materials:

►  Concrete B25

►  Young module: E= 36000 MPa

■  Load case:

►  Permanent loads: 100 kg/m2

►  Permanent loads: 200 kg/ml around the opening

►  Punctual loads of 2T in permanent loads (see the following definition)

►  Usage overloads: 250 kg/m2

■  Mesh density: 0.5 m

Slab geometry

Page 273: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 273/682

  ADVANCE VALIDATION GUIDE

273

Support positions

Positions of punctual loads

Page 274: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 274/682

 ADVANCE VALIDATION GUIDE

274 

Global loading overview

Load Combinations

Code  Numbers  Type  Title 

BAGMAX 1 Static Permanent loads + self weightBAQ 2 Static Usage overloads

BAELS 101 Comb_Lin Gmax+Q

BAELU 102 Comb_Lin 1.35Gmax+1.5Q

Page 275: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 275/682

  ADVANCE VALIDATION GUIDE

275

1.85.2.2 Effel Structure Results

SLS max displacements (load combination 101)

Mx bending moment for ULS load combination

Page 276: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 276/682

 ADVANCE VALIDATION GUIDE

276 

My bending moment for ULS load combination

Mxy bending moment for ULS load combination

1.85.2.3 Effel RC Expert Results

Main hypothesis

■  Top and bottom concrete covers: 3 cm

■  Slightly dangerous cracking

■  Concrete B25 => Fc28= 25 MPa

■  Reinforcement calculation according to Wood method.

■  Calculation starting from non averaged forces.

Page 277: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 277/682

  ADVANCE VALIDATION GUIDE

277

 Axi reinforcements

 Ayi reinforcements

Page 278: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 278/682

 ADVANCE VALIDATION GUIDE

278 

 Axs reinforcements

 Ays reinforcements

Page 279: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 279/682

  ADVANCE VALIDATION GUIDE

279

1.85.2.4 Theoretical results

Solver Resultname

Result description Referencevalue

CM2 D Max displacement for SLS (load combination 101) [cm] 0.176

CM2 Myy Mx and My bending moments for ULS (load combination 102) Max(Mx) [kN.m] 25.20

CM2 Myy Mx and My bending moments for ULS (load combination 102) Min(Mx) [kN.m] -15.71

CM2 Mxx Mx and My bending moments for ULS (load combination 102) Max(My) [kN.m] 31.17

CM2 Mxx Mx and My bending moments for ULS (load combination 102) Min(My) [kN.m] -18.79

CM2 Mxy Mx and My bending moments for ULS (load combination 102) Max (Mxy) [kN.m] 10.26

CM2 Mxy Mx and My bending moments for ULS (load combination 102) Min (Mxy) [kN.m] -10.14

CM2 Axi Theoretic reinforcements Axi [cm2] 3.84

CM2 Axs Theoretic reinforcements Axs [cm2] 3.55

CM2 Ayi Theoretic reinforcements Ayi [cm2] 3.75

CM2 Ays Theoretic reinforcements Ays [cm2] 4.53

These values are obtained from the maximum values from the mesh.

1.85.3 Calculated results

Result name Result description Value Error

D Max displacement for SLS (load combination 101) [cm] 0.174641 cm -0.77%

Myy Mx and My bending moments for ULS (load combination 102)Max(Mx) [kNm]

25.2594 kN*m 0.24%

Myy Mx and My bending moments for ULS (load combination 102)Min(Mx) [kNm]

-15.6835 kN*m 0.17%

Mxx Mx and My bending moments for ULS (load combination 102)Max(My) [kNm]

31.2449 kN*m 0.24%

Mxx Mx and My bending moments for ULS (load combination 102)Min(My) [kNm]

-18.7726 kN*m 0.09%

Mxy Mx and My bending moments for ULS (load combination 102)Max (Mxy) [kNm]

10.1558 kN*m -1.02%

Mxy Mx and My bending moments for ULS (load combination 102) Min(Mxy) [kNm]

-10.2508 kN*m -1.09%

 Axi Theoretic reinforcements Axi [cm2] 3.83063 cm² -0.24%

 Axs Theoretic reinforcementsAxs [cm2] 3.629 cm² 2.23%

 Ayi Theoretic reinforcements Ayi [cm2] 3.72879 cm² -0.57%

 Ays Theoretic reinforcements Ays [cm2] 4.61909 cm² 1.97%

Page 280: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 280/682

 ADVANCE VALIDATION GUIDE

280 

1.86 Design of a 2D portal frame (03-0207SSLLG_CM66)

Test ID: 2523

Test status: Passed 

1.86.1 Description

Verifies the steel calculation results (displacement at ridge, normal forces, bending moments, deflections, stresses,buckling lengths, lateral torsional buckling lengths and cross section optimization) for a 2D metallic portal frame,according to CM66.

1.86.2 Background

1.86.2.1 Model description

■  Calculation model: 2D metallic portal frame.

►  Column section: IPE500

►  Rafter section: IPE400

►  Base plates: hinged.

►  Portal frame width: 20m

►  Columns height: 6m

►  Portal frame height at the ridge: 7.5m

■  Load case:

►  Permanent loads: 150 kg/m on the roof + elements self weight.

►  Usage overloads: 800 kg/ml on the roof

■  Mesh density: 1m

Model preview

Combinations

Code Numbers Type Title

CMP 1 Static Permanent load + self weight

CMS 2 Static Usage overloads

CMCFN 101 Comb_Lin 1.333P

CMCFN 102 Comb_Lin 1.333P+1.5S

CMCFN 103 Comb_Lin P+1.5S

CMCD 104 Comb_Lin P+S

Page 281: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 281/682

  ADVANCE VALIDATION GUIDE

281

1.86.2.2 Effel Structure Results

Ridge displacements (combination 104)

Diagram of normal force envelope

Page 282: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 282/682

 ADVANCE VALIDATION GUIDE

282 

Envelope of bending moments diagram

1.86.2.3 Effel Expert CM results

Main hypotheses

For columns

■  Deflections: 1/150

Envelopes deflections calculation.

■  Buckling: XY plane: Automatic calculation of the structure on fixed nodes

XZ plane: Automatic calculation of the structure on fixed nodes

Ka-Kb Method

■  Lateral-torsional buckling: Ldi automatic calculation: no restraints

Lds imposed value: 2 m

For the rafters

■  Deflections: 1/200

Envelopes deflections calculation.

■  Buckling: XY plane: Automatic calculation of the structure on fixed nodes

XZ plane: Automatic calculation of the structure on fixed nodes

Ka-Kb Method

■  Lateral-torsional buckling: Ldi automatic calculation: No restraints

Lds imposed value: 1.5m

Optimization criteria

■  Work ratio optimization between 90 and 100%

■  Labels optimization (on Advance Design templates)

Page 283: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 283/682

  ADVANCE VALIDATION GUIDE

283

Deflection verification

Ratio

CM Stress diagrams

Work ratio

Stresses

Page 284: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 284/682

 ADVANCE VALIDATION GUIDE

284 

Buckling lengths

Lfy

Lfz

Lateral-torsional buckling lengths

Ldi

Page 285: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 285/682

  ADVANCE VALIDATION GUIDE

285

Lds

Optimization

Page 286: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 286/682

 ADVANCE VALIDATION GUIDE

286 

1.86.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 D Displacement at the ridge [cm] 9.36

CM2 Fx Envelope normal forces on Columns (min) [T] -15.77

CM2 Fx Envelope normal forces on Rafters (max) [T] -1.02

CM2 My Envelope bending moments on Columns (min) [T.m] -42.41

CM2 My Envelope bending moments on Rafters (max) [T.m] 42.41

CM2 Deflection CM deflections on Columns [%] L / 438 (34%)

CM2 Deflection CM deflections on Rafters [%] L / 111 (180%)

CM2 Stress CM stresses on Columns [MPa] 230.34

CM2 Stress CM stresses on Rafters [MPa] 458.38

CM2 Lfy Buckling lengths on Columns - Lfy [m] 5.84

CM2 Lfz Buckling lengths on Columns - Lfz [m] 6

CM2 Lfy Buckling lengths on Rafters - Lfy [m] 7.08

CM2 Lfz Buckling lengths on Rafters - Lfz [m] 10.11

Warning, the local axes in Effel Structure have different orientation in Advance Design.

Solver Result name Result description Reference value

CM2 Ldi Lateral-torsional buckling lengths on Columns Ldi [m] 6

CM2 Lds Lateral-torsional buckling lengths on Columns Lds [m] 2

CM2 Ldi Lateral-torsional buckling lengths on Rafters Ldi [m] 10.11

CM2 Lds Lateral-torsional buckling lengths on Rafters Lds [m] 1.5

Solver Result name Result description Rate (%) Final section

CM2 Work ratio IPE500 columns - section optimization 98 IPE500

CM2 Work ratio IPE400 rafters - section optimization 195 IPE550

Page 287: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 287/682

  ADVANCE VALIDATION GUIDE

287

1.86.3 Calculated results

Result name Result description Value Error

D Displacement at the ridge [cm] 9.36473 cm 0.05%

Fx Envelope normal forces on Columns (min) [T] -15.7798 T -0.06%Fx Envelope normal forces on Rafters (max) [T] -1.0161 T 0.38%

My Envelope bending moments on Columns (min) [Tm] 42.4226 T*m 0.03%

My Envelope bending moments on Rafters (max) [Tm] 42.4226 T*m 0.03%

Deflection CM deflections on Columns [adm] 438.077 Adim. 0.02%

Deflection CM deflections on Rafters [adm] 111.325 Adim. 0.29%

Stress CM stresses on Columns [adm] 230.331 MPa 0.00%

Stress CM stresses on Rafters [adm] 458.367 MPa 0.00%

Lfy Buckling lengths on Columns - Lfy [m] 6 m 0.00%

Lfz Buckling lengths on Columns - Lfz [m] 5.84401 m 0.07%

Lfy Buckling lengths on Rafters - Lfy [m] 10.1119 m 0.02%Lfz Buckling lengths on Rafters - Lfz [m] 7.07904 m -0.01%

Ldi Lateral-torsional buckling lengths on Columns Ldi [m] 6 m 0.00%

Lds Lateral-torsional buckling lengths on Columns Lds [m] 2 m 0.00%

Ldi Lateral-torsional buckling lengths on Rafters Ldi [m] 10.1119 m 0.02%

Lds Lateral-torsional buckling lengths on Rafters Lds [m] 1.5 m 0.00%

Work ratio IPE500 columns - section optimization [adm] 0.980131 Adim. 0.01%

Work ratio IPE400 rafters - section optimization [adm] 1.9505 Adim. 0.03%

Page 288: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 288/682

 ADVANCE VALIDATION GUIDE

288 

1.87 Beam on 3 supports with T/C (k = 0) (01-0100SSNLB_FEM)

Test ID: 2514

Test status: Passed 

1.87.1 Description

Verifies the rotation, the displacement and the moment on a beam consisting of two elements of the same length andidentical characteristics with 3 T/C supports (k = 0).

1.87.2 Background

1.87.2.1 Model description

■  Reference: internal GRAITEC test;

■  Analysis type: static non linear;

■  Element type: linear, T/C.

UnitsI. S.

Geometry

■  L = 10 m

■  Section: IPE 200, Iz = 0.00001943 m4 

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 N/m2,

■  Poisson's ratio:  = 0.3.

Boundary conditions

■  Outer:

►  Support at node 1 restrained along x and y (x = 0),

►  Support at node 2 restrained along y (x = 10 m),

►  T/C stiffness ky = 0,

■  Inner: None.

Loading

■  External: Vertical punctual load P = -100 N at x = 5 m,

■  Internal: None.

Page 289: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 289/682

  ADVANCE VALIDATION GUIDE

289

1.87.2.2 References solutions

ky being null, the non linear model behaves the same way as the structure without support 3.

Displacements

rad000153.0Lk2EI3EI32

LkEI6PL

m00153.0Lk2EI316

PL3v

rad000153.0Lk2EI3EI16

LkEI3PL

rad000153.0Lk2EI3EI32

LkEI2PL3

3yzz

3yz

2

3

3yz

3

3

3yzz

3yz

2

2

3yzz

3yz

2

1

 

M z  Moments

N.m2502

MM

4

PL)m5x(M

0Lk2EI316

PLk3M

0M

1z2zz

3

yz

4y

2z

1z

 

Finite elements modeling

■  Linear element: S beam, automatic mesh,

■  3 nodes,

■  2 linear elements + 1 T/C.

Deformed shape

Page 290: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 290/682

 ADVANCE VALIDATION GUIDE

290 

Moment diagrams

1.87.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 RY Rotation Ry in node 1 [rad] 0.000153

CM2 RY Rotation Ry in node 2 [rad] -0.000153

CM2 DZ Displacement V in node 3 [m] 0.00153

CM2 RY Rotation Ry in node 3 [rad] 0.000153

CM2 My Moment M in node 1 [Nm] 0

CM2 My Moment M - middle span 1 [Nm] -250

1.87.3 Calculated results

Result name Result description Value Error

RY Rotation Ry in node 1 [rad] 0.000153175 Rad 0.11%

RY Rotation Ry in node 2 [rad] -0.000153175 Rad -0.11%

DZ Displacement V in node 3 [m] 0.00153175 m 0.11%

RY Rotation Ry in node 3 [rad] -0.000153175 Rad -0.11%

My Moment M in node 1 [Nm] 5.05771e-014 N*m 0.00%

My Moment M - middle span 1 [Nm] -250 N*m 0.00%

Page 291: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 291/682

  ADVANCE VALIDATION GUIDE

291

1.88 Non linear system of truss beams (01-0104SSNLB_FEM)

Test ID: 2518

Test status: Passed 

1.88.1 Description

Verifies the displacement and the normal force for a bar system containing 4 elements of the same length and 2diagonals.

1.88.2 Background

1.88.2.1 Model description

■  Reference: internal GRAITEC test;

■  Analysis type: static non linear;

■  Element type: linear, bar, tie.

Units

I. S.

Geometry■  L = 5 m

■  Section S = 0.005 m2

Materials properties

Longitudinal elastic modulus: E = 2.1 x 1011

 N/m2.

Boundary conditions

■  Outer:

►  Support at node 1 restrained along x and y,

►  Support at node 2 restrained along x and y,

■  Inner: None.

Page 292: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 292/682

 ADVANCE VALIDATION GUIDE

292 

Loading

■  External: Horizontal punctual load P = 50000 N at node 3,

■  Internal: None.

1.88.2.2 References solutions

In non linear analysis without large displacement, the introduction of ties for the diagonal bars removes bar 5 (testNo. 0103SSLLB_FEM allows finding an compression force in this bar at the linear calculation).

Displacements

0v

m000238.0ES

PLv

m001195.0ES11

PL5uu

4

3

43

 

N normal forces

0N 0N

N70711P2N N50000PN

 0N 0N

4243

1323

1412

 

Finite elements modeling

■  Linear element: bar, without meshing,

■  4 nodes,

■  6 linear elements.

Deformed shape

Page 293: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 293/682

  ADVANCE VALIDATION GUIDE

293

Normal forces

Page 294: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 294/682

 ADVANCE VALIDATION GUIDE

294 

1.88.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DX u3 displacement on Node 3 [m] 0.001195

CM2 DZ v3 displacement on Node 3 [m] -0.000238

CM2 DX u4 displacement on Node 4 [m] 0.001195

CM2 DZ v4 displacement on Node 4 [m] 0

CM2 Fx N12 normal force on Element 1 [N] 0

CM2 Fx N23 normal force on Element 2 [N] -50000

CM2 Fx N34 normal force on Element 3 [N] 0

CM2 Fx N14 normal force on Element 4 [N] 0

CM2 Fx N13 normal effort on Element 5 [N] 70711

CM2 Fx N24 normal force on Element 6 [N] 0

1.88.3 Calculated results

Result name Result description Value Error

DX u3 displacement on Node 3 [m] 0.00119035 m -0.39%

DZ v3 displacement on Node 3 [m] -0.000238095 m -0.04%

DX u4 displacement on Node 4 [m] 0.00119035 m -0.39%

DZ v4 displacement on Node 4 [m] 9.94686e-316 m 0.00%

Fx N12 normal force on Element 1 [N] 0 N 0.00%

Fx N23 normal force on Element 2 [N] -50000 N 0.00%

Fx N34 normal force on Element 3 [N] 0 N 0.00%

Fx N14 normal force on Element 4 [N] 2.08884e-307 N 0.00%

Fx N13 normal effort on Element 5 [N] 70710.7 N 0.00%

Fx N24 normal force on Element 6 [N] 0 N 0.00%

Page 295: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 295/682

  ADVANCE VALIDATION GUIDE

295

1.89 Design of a Steel Structure according to CM66 (03-0206SSLLG_CM66)

Test ID: 2522

Test status: Passed 

1.89.1 Description

Verifies the steel calculation results (maximum displacement, normal force, bending moment, deflections, bucklinglengths, lateral-torsional buckling and cross section optimization) for a simple metallic framework with a concretefloor, according to CM66.

1.89.2 Background

1.89.2.1 Model description

■  Calculation model: Simple metallic framework with a concrete floor.

■  Load case:

►  Permanent loads: 150 kg/m² for the floor and 25kg/m² for the roof.

►  Overloads: 250 kg/m² on the floor.

►  Wind loads on region II for a normal location

►  Snow loads on region 2B at an altitude of 750m.

■  CM66 Combinations

Model preview

Page 296: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 296/682

 ADVANCE VALIDATION GUIDE

296 

Structure’s load case 

Code  No.  Type  Title 

CMP 1 Static SW + Dead loadsCMS 2 Static Overloads for usageCMV 3 Static Wind overloads along +X in overpressureCMV 4 Static Wind overloads along +X in depression

CMV 5 Static Wind overloads along -X in overpressureCMV 6 Static Wind overloads along -X in depressionCMV 7 Static Wind overloads along +Z in overpressureCMV 8 Static Wind overloads along +Z in depressionCMV 9 Static Wind overloads along -Z in overpressureCMV 10 Static Wind overloads along -Z in depressionCMN 11 Static Normal snow overloads

1.89.2.2 Effel Structure results

Displacement Envelope (“CMCD" load combinations)

Envelope of linear element forces 

D  DX  DY  DZ Env.  Case  No.  Max.location  (cm)  (cm)  (cm)  (cm) 

Max(D) 213 148 CENTER 12.115 0.037 12.035 -1.393

Min(D) 188 1.1 START 0.000 0.000 0.000 0.000

Max(DX) 204 72.1 START 3.138 3.099 0.434 0.244

Min(DX) 204 313 END 2.872 -1.872 -0.129 -2.174

Max(DY) 213 148 CENTER 12.115 0.037 12.035 -1.393

Min(DY) 213 61.5 END 9.986 -0.118 -9.985 0.046

Max(DZ) 201 371 CENTER 4.149 -0.006 -0.188 4.145

Min(DZ) 203 370 CENTER 4.124 -0.006 -0.240 -4.118

Envelope of forces on linear elements (“CMCFN” load combinations)

Envelope of linear element forces 

Fx  Fy  Fz  Mx  My  Mz Env.  Case  No.  MaxSite (T)  (T)  (T)  (T*m)  (T*m)  (T*m) 

Max (Fx) 120 4.1 START 19.423 -4.108 -1.384 -0.003 1.505 7.551

Min (Fx) 138 98 START -41.618 -0.962 -0.192 0.000 0.000 0.000

Max(Fy) 120 57 END -13.473 16.349 -0.016 -0.003 0.002 55.744

Min(Fy) 120 60 START -15.994 -16.112 -0.006 -3E-004 6E-006 53.096

Max(Fz) 177 371 START -3.486 -0.118 2.655 0.000 0.000 0.000

Min(Fz) 187 370 START -3.666 -0.147 -2.658 0.000 0.000 0.000

Max(Mx) 120 111 END 3.933 4.840 0.278 0.028 -4E-005 11.531

Min(Mx) 120 21 END -22.324 13.785 -0.191 -0.028 -0.004 42.562

Max(My) 177 371 CENTER -3.099 -0.118 -0.323 0.000 4.403 -0.500

Min(My) 179 370 CENTER -3.283 -0.155 0.321 0.000 -4.373 -0.660Max (Mz) 120 57 END -13.473 16.349 -0.016 -0.003 0.002 55.744

Min (Mz) 120 59.2 END -19.455 -8.969 -0.702 -0.003 -0.001 -57.105

Envelope of linear element stresses (“CMCFN” load combinations)

Envelope of linear element stresses 

sxxMax  sxyMax  sxzMax  sFxx  sMxxMax Env.  Case  No.  MaxSite 

(MPa)  (MPa)  (MPa)  (MPa)  (MPa) 

Max(sxxMax) 120 59.2 END 273.860 -14.696 -1.024 -16.453 290.312

Min(sxxMax) 120 292 START -150.743 0.000 0.000 -150.743 0.000

Max(sxyMax) 120 57 START 262.954 37.139 -0.030 -15.609 278.562

Min(sxyMax) 120 60 END 241.643 -36.595 -0.011 -18.536 260.179

Max(sxzMax) 185 371 START -2.949 -0.183 3.876 -2.949 0.000

Min(sxzMax) 179 370 START -3.104 -0.255 -3.882 -3.104 0.000

Max(sFxx) 120 293 END 161.095 9E-005 -0.002 161.095 0.000

Min(sFxx) 120 292 START -150.743 0.000 0.000 -150.743 0.000

Max(sMxxMax) 120 59.2 END 273.860 -14.696 -1.024 -16.453 290.312

Min(sMxxMax) 1 1.1 START -4.511 3.155 -0.646 -4.511 0.000

Page 297: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 297/682

  ADVANCE VALIDATION GUIDE

297

1.89.2.3 CM66 Effel Expertise results

Hypotheses

For columns

■  Deflections: 1/150

Envelopes deflections calculation.

■  Buckling XY plane: Automatic calculation of the structure on displaceable nodes

XZ plane: Automatic calculation of the structure on fixed nodes

■  Lateral-torsional buckling: Ldi automatic calculation: hinged restraint

Lds automatic calculation: hinged restraint

For rafters

■  Deflections: 1/200

Envelopes deflections calculation.

■  Buckling: XY plane: Automatic calculation of the structure on displaceable nodes

XZ plane: Automatic calculation of the structure on fixed nodes

■  Lateral-torsional buckling: Ldi automatic calculation: no restraint

Lds automatic calculation: hinged restraint

For columns

■  Deflections: 1/150

Envelopes deflections calculation.

■  Buckling: XY plane: Automatic calculation of the structure on displaceable nodes

XZ plane: Automatic calculation of the structure on displaceable nodes

■  Lateral-torsional buckling: Ldi automatic calculation: hinged restraintLds automatic calculation: hinged restraint

Optimization parameters

■  Work ratio optimization between 90 and 100%

■  All the sections from the library are available.

■  Labels optimization.

The results of the optimization given below correspond to an iteration of the finite elements calculation.

Page 298: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 298/682

 ADVANCE VALIDATION GUIDE

298 

Deflection verification

Ratio

Max values on the element

■  Columns: L / 168

■  Rafter: L / 96

■  Column: L / 924

CM Stress diagrams

Page 299: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 299/682

  ADVANCE VALIDATION GUIDE

299

Work ratio

Stresses

Max values on the element■  Columns: 375.16 MPa

■  Rafter: 339.79 MPa

■  Column: 180.98 MPa

Page 300: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 300/682

 ADVANCE VALIDATION GUIDE

300 

Buckling lengths

Lfy

Lfz

Page 301: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 301/682

  ADVANCE VALIDATION GUIDE

301

Lateral-torsional buckling lengths

Ldi

Lds

Page 302: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 302/682

 ADVANCE VALIDATION GUIDE

302 

Optimization

1.89.2.4 Theoretical results

Solver Result name Result description Reference value

CM2 D Maximum displacement (CMCD) [cm] 12.115

CM2 Fx Envelope normal force (CMCFN) Min (Fx) [T] -41.618

CM2 Fx Envelope normal force (CMCFN) Max (Fx) [T] 19.423

CM2 My Envelope bending moment (CMCFN) Min (Mz) [Tm] -57.105CM2 My Envelope bending moment (CMCFN) Max (Mz) [Tm] 55.744

Warning, the Mz bending moment of Effel Structure corresponds to the My bending moment of Advance Design.

Solver Result name Result description Reference value

CM2 Deflection CM deflections on Columns [adm] L / 168 (89%)

CM2 Deflection CM deflections on Rafters [adm] L / 96 (208%)

CM2 Deflection CM deflections on Columns [adm] L / 924 (16%)

CM2 Stress CM stresses on Columns [MPa] 374.67

CM2 Stress CM stresses on Rafters [MPa] 339.74

CM2 Stress CM stresses on Columns [MPa] 180.98

CM2 Lfy Buckling lengths on Columns Lfy [m] 8.02

CM2 Lfz Buckling lengths on Columns Lfz [m] 24.07

CM2 Lfy Buckling lengths on Rafters Lfy [m] 1.72

CM2 Lfz Buckling lengths on Rafters Lfz [m] 20.25

CM2C Lfy Buckling lengths on Columns Lfy [m] 4.20

CM2 Lfz Buckling lengths on Columns Lfz [m] 5.67

Page 303: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 303/682

  ADVANCE VALIDATION GUIDE

303

Warning, the local axes in Effel Structure are opposite to those in Advance Design.

Solver Result name Result description Reference value

CM2 Ldi Lateral-torsional buckling lengths on Columns Ldi [m] 8.5

CM2 Lds Lateral-torsional buckling lengths on Columns Lds [m] 8.5

CM2 Ldi Lateral-torsional buckling lengths on Rafters Ldi [m] 8.61

CM2 Lds Lateral-torsional buckling lengths on Rafters Lds [m] 1.72

CM2 Ldi Lateral-torsional buckling lengths on Columns Ldi [m] 2

CM2 Lds Lateral-torsional buckling lengths on Columns Lds [m] 2

Solver Result name Result description Rate (%) Final section

CM2 Work ratio IPE500 columns - section optimization [adm] 1.59 IPE600

CM2 Work ratio IPE400 rafters - section optimization [adm] 1.45 IPE500

CM2 Work ratio IPE400 columns - section optimization [adm] 0.77 IPE360

1.89.3 Calculated results

Result name Result description Value Error

D Maximum displacement (CMCD) [cm] 12.1379 cm 0.19%

Fx Envelope normal force (CMCFN) Min (Fx) [T] -41.6547 T -0.09%

Fx Envelope normal force (CMCFN) Max (Fx) [T] 19.4819 T 0.30%

My Envelope bending moment (CMCFN) Min (Mz)[Tm] -57.1196 T*m -0.03%

My Envelope bending moment (CMCFN) Max (Mz) [Tm] 55.7697 T*m 0.05%

Deflection CM deflections on Columns [adm] 167.707 Adim. -0.17%

Deflection CM deflections on Rafters [adm] 96.1075 Adim. 0.11%

Deflection CM deflections on Columns [adm] 924.933 Adim. 0.10%

Stress CM stresses on Columns [MPa] 374.61 MPa -0.02%

Stress CM stresses on Rafters [MPa] 352.36 MPa 3.71%

Stress CM stresses on Columns [MPa] 180.693 MPa -0.16%

Lfy Buckling lengths on Columns Lfy [m] 7.96718 m -0.66%

Lfz Buckling lengths on Columns Lfz [m] 24.0693 m 0.00%

Lfy Buckling lengths on Rafters Lfy [m] 6.63414 m 0.06%

Lfz Buckling lengths on Rafters Lfz [m] 20.2452 m -0.02%

Lfy Buckling lengths on Columns Lfy [m] 4.19567 m -0.10%

Lfz Buckling lengths on Columns Lfz [m] 5.67211 m 0.04%

Ldi Lateral-torsional buckling lengths on Columns Ldi [m] 8.5 m 0.00%

Lds Lateral-torsional buckling lengths on Columns Lds [m] 8.5 m 0.00%

Ldi Lateral-torsional buckling lengths on Rafters Ldi [m] 8.61187 m 0.02%

Lds Lateral-torsional buckling lengths on Rafters Lds [m] 8.61187 m 0.02%

Ldi Lateral-torsional buckling lengths on Columns Ldi [m] 2 m 0.00%

Lds Lateral-torsional buckling lengths on Columns Lds [m] 2 m 0.00%

Work ratio IPE500 columns - section optimization [adm] 1.59408 Adim. 0.26%

Work ratio IPE400 rafters - section optimization [adm] 1.4994 Adim. 3.41%

Work ratio IPE400 columns - section optimization [adm] 0.768905 Adim. -0.14%

Page 304: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 304/682

 ADVANCE VALIDATION GUIDE

304 

1.90 Slender beam with variable section (fixed-free) (01-0004SDLLB_FEM)

Test ID: 2436

Test status: Passed 

1.90.1 Description

Verifies the first eigen mode frequencies for a slender beam with variable section, subjected to its own weight.

1.90.2 Background

1.90.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SDLL 09/89;

■  Analysis type: modal analysis;

■  Element type: linear.

Slender beam with variable section (fixed-free) Scale =1/4

01-0004SDLLB_FEM

Units

I. S.

Geometry

■  Beam length: l = 1 m,

■  Initial section (in A):

►  Height: h1 = 0.04 m,

►  Width: b1 = 0.04 m,

►  Section: A1 = 1.6 x 10-3 m2,

►  Flexure moment of inertia relative to z-axis: Iz1 = 2.1333 x 10-7

 m4,

Page 305: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 305/682

  ADVANCE VALIDATION GUIDE

305

■  Final section (in B):

►  Height: h2 = 0.01 m,

►  Width: b2 = 0.01 m,

►  Section: A2 = 10-4

 m2,

►  Flexure moment of inertia relative to z-axis: Iz2 = 8.3333 x 10-10

 m4.

Materials properties

■  Longitudinal elastic modulus: E = 2 x 1011

 Pa,

■  Density: 7800 kg/m3.

Boundary conditions

■  Outer: Fixed in A,

■  Inner: None.

Loading

■  External: None,

■  Internal: None.

1.90.2.2 Eigen mode frequencies

Reference solutions

Precise calculation by numerical integration of the differential equation of beams bending (Euler-Bernoulli theories):

2

x2  (EIz 

2v

x2  ) = - A

2v

x2  where Iz and A vary with the abscissa.

The result is: f i =1

2 i 

h2

l2  

E

12 

1  2  3  4  5

23.289 73.9 165.23 299.7 478.1

Finite elements modeling

■  Linear element: variable beam, imposed mesh,

■  31 nodes,

■  30 linear elements.

Eigen mode shapes

Page 306: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 306/682

 ADVANCE VALIDATION GUIDE

306 

1.90.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 Eigen mode Eigen mode 1 frequency [Hz] 54.18

CM2 Eigen mode Eigen mode 2 frequency [Hz] 171.94

CM2 Eigen mode Eigen mode 3 frequency [Hz] 384.4

CM2 Eigen mode Eigen mode 4 frequency [Hz] 697.24CM2 Eigen mode Eigen mode 5 frequency [Hz] 1112.28

1.90.3 Calculated results

Result name Result description Value Error

Eigen mode 1 frequency [Hz] 54.01 Hz -0.31%

Eigen mode 2 frequency [Hz] 170.58 Hz -0.79%

Eigen mode 3 frequency [Hz] 378.87 Hz -1.44%

Eigen mode 4 frequency [Hz] 681.31 Hz -2.28%

Eigen mode 5 frequency [Hz] 1075.7 Hz -3.29%

Page 307: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 307/682

  ADVANCE VALIDATION GUIDE

307

1.91 Tied (sub-tensioned) beam (01-0005SSLLB_FEM)

Test ID: 2437

Test status: Passed 

1.91.1 Description

Verifies the tension force on a beam reinforced by a system of hinged bars, subjected to a uniform linear load.

1.91.2 Background

1.91.2.1 Model description

■  Reference: Structure Calculation Software Validation Guide, test SSLL 13/89;

■  Analysis type: static, thermoelastic (plane problem);

■  Element type: linear.

Tied (sub-tensioned) beam Scale =1/37

01-0005SSLLB_FEM

Units

I. S.

Geometry

■  Length:

►   AD = FB = a = 2 m,

►  DF = CE = b = 4 m,

►  CD = EF = c = 0.6 m,

►   AC = EB = d = 2.088 m,

►  Total length: L = 8 m,

Page 308: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 308/682

 ADVANCE VALIDATION GUIDE

308 

■  AD, DF, FB Beams:

►  Section: A = 0.01516 m2,

►  Shear area: Ar  = A / 2.5,

►  Inertia moment: I = 2.174 x 10-4

 m4,

■  CE Bar:

►  Section: A1 = 4.5 x 10-3

 m2,

■  AC, EB bar:

►  Section: A2 = 4.5 x 10-3

 m2,

■  CD, EF bars:

►  Section: A3 = 3.48 x 10-3

 m2.

Materials properties

■  Isotropic linear elastic material,

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Shearing module: G = 0.4x E.

Boundary conditions

■  Outer: Hinged in A, support connection in B (blocked vertical translation),

■  Inner: Hinged at bar ends: AC, CD, EF, EB.

Loading

■  External: Uniform linear load p = -50000 N/ml,

■  Internal: Shortening of the CE tie of  = 6.52 x 10-3

 m (dilatation coefficient: CE = 1 x 10-5

/°C

and temperature variation T = -163°C).

1.91.2.2 Compression force in CE bar

Reference solution

The solution is established by considering the deformation effects due to the shear force and normal force:

 = 1 -43  x

aL 

k = A Ar 

  = 2.5

t =I

 A 

 = (L/c)2 x (1+ (A/A1) x (b/L) + 2 x (A/A2) x (d/a)

2 x (d/L) + 2 x (A/A3) (c/a)

2 x (c/L)

 = k x [(2Et2) / (GaL)]

 =  +  +  

0 = 1 – (a/L)2

 x (2 – a/L)

0 = 6k x (E/G) x (t/L)2 x (1 + b/L)

0 = 0 + 0

NCE = - (1/12) x (pL2/c) x (0 /) + (EI/(Lc

2)) x (/) = 584584 N

Finite elements modeling

Linear element: without meshing,

■  AD, DF, FB: S beam (considering the shear force deformations),

■  AC, CD, EF, EB: bar,

■  CE: beam,

■  6 nodes.

Page 309: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 309/682

  ADVANCE VALIDATION GUIDE

309

Force diagrams

Tied (sub-tensioned) beam Scale =1/31

Compression force in CE bar

1.91.2.3 Bending moment at point H

Reference solution

MH = - (1/8) x pL2 x [1- (2/3) x (0/)] – (EI/(Lc)) x (/p) = 49249.5 N

Finite elements modeling

Linear element: without meshing,

■  AD, DF, FB: S beam (considering the shear force deformations),

■  AC, CD, EF, EB: bar,

■  CE: beam,

■  6 nodes.

Page 310: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 310/682

 ADVANCE VALIDATION GUIDE

310 

Shape of the bending moment diagram

Tied (sub-tensioned) beam Scale =1/31

Mz bending moment 

1.91.2.4 Vertical displacement at point D

Reference solution

The reference displacement vD provided by AFNOR is determined by averaging the results of several software with

implemented finite elements method.

vD = -0.5428 x 10-3

 m

Finite elements modeling

■  Linear element: without meshing,

►   AD, DF, FB: S beam (considering the shear force deformations),

►   AC, CD, EF, EB: bar,

►  CE: beam,

■  6 nodes.

Page 311: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 311/682

  ADVANCE VALIDATION GUIDE

311

Deformed shape

Tied (sub-tensioned) beam Scale =1/31

Deformed

1.91.2.5 Theoretical results

Solver Result name Result description Reference valueCM2 FX Tension force on CE bar [N] 584584

1.91.3 Calculated results

Result name Result description Value Error

Fx Tension force on CE bar [N] 584580 N 0.00%

Page 312: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 312/682

 ADVANCE VALIDATION GUIDE

312 

1.92 Circular plate under uniform load (01-0003SSLSB_FEM)

Test ID: 2435

Test status: Passed 

1.92.1 Description

On a circular plate of 5 mm thickness and 2 m diameter, an uniform load, perpendicular on the plan of the plate, isapplied. The vertical displacement on the plate center is verified.

1.92.2 Background

1.92.2.1 Model description

Reference: Structure Calculation Software Validation Guide, test SSLS 03/89;

■  Analysis type: linear static;

■  Element type: planar.

Circular plate under uniform load Scale =1/1001-0003SSLSB_FEM

Units

I. S.

Geometry

■  Circular plate radius: r = 1m,

■  Circular plate thickness: h = 0.005 m.

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011

 Pa,

■  Poisson's ratio:  = 0.3.

Page 313: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 313/682

  ADVANCE VALIDATION GUIDE

313

Boundary conditions

■  Outer: Plate fixed on the side (in all points of its perimeter),

For the modeling, we consider only a quarter of the plate and we impose symmetry conditions on some nodes(see the following model; yz plane symmetry condition):translation restrained nodes along x and rotationrestrained nodes along y and z: translation restrained nodes along x and rotation restrained nodes along y andz:

■  Inner: None.

Loading

■  External: Uniform loads perpendicular on the plate: pZ = -1000 Pa,

■  Internal: None.

1.92.2.2 Vertical displacement of the model at the center of the plate

Reference solution

Circular plates form:

u =pr 

4

64D

  =-1000 x 1

4

64 x 2404

 = - 6.50 x 10-3

 m

with the plate radius coefficient: D =Eh

3

12(1-2)  =

2.1 x 1011

 x 0.0053

12(1-0.32)

 

D = 2404

Finite elements modeling

■  Planar element: plate, imposed mesh,

■  70 nodes,

■  58 planar elements.

Circular plate under uniform load Scale =1.5

Meshing 01-0003SSLSB_FEM

Page 314: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 314/682

 ADVANCE VALIDATION GUIDE

314 

Deformed shape

Circular plate under uniform load Scale =1.5

Deformed 01-0003SSLSB_FEM

1.92.2.3 Theoretical results

Solver Result name Result description Reference value

CM2 DZ Vertical displacement on the plate center [mm] -6.50

1.92.3 Calculated results

Result name Result description Value Error

DZ Vertical displacement on the plate center [mm] -6.47032 mm 0.46%

Page 315: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 315/682

  ADVANCE VALIDATION GUIDE

315

1.93 Verifying the displacement results on linear elements for vertical seism (TTAD #11756)

Test ID: 3442

Test status: Passed 

1.93.1 Description

Verifies the displacements results on an inclined steel bar for vertical seism according to Eurocodes 8 localizationand generates the corresponding report.

The steel bar has a rigid support and IPE100 cross section and is subjected to self weight and seism load on Zdirection (vertical).

1.94 Verifying constraints for triangular mesh on planar elements (TTAD #11447)

Test ID: 3460

Test status: Passed 

1.94.1 Description

Performs the finite elements calculation, verifies the stresses for triangular mesh on a planar element and generatesa report for planar elements stresses in neutral fiber.

The planar element is 20 cm thick, C20/25 material with a linear rigid support. A linear load of 30.00 kN is applied onFX direction.

1.95 Verifying forces results on concrete linear elements (TTAD #11647)

Test ID: 3551

Test status: Passed 

1.95.1 Description

Verifies forces results on concrete beams consisting of a linear element and on beams consisting of two linearelements. Generates the linear elements forces by load case report.

1.96 Verifying diagrams after changing the view from standard (top, left,...) to user view (TTAD#11854)

Test ID: 3539

Test status: Passed 

1.96.1 Description

Verifies the results diagrams display after changing the view from standard (top, left,...) to user view.

1.97 Verifying forces for triangular meshing on planar element (TTAD #11723)

Test ID: 3463

Test status: Passed 

1.97.1 Description

Performs the finite elements calculation, verifies the forces for triangular meshing on a planar element and generatesa report for planar elements forces by load case.

The planar element is a square shell (5 m) with a thickness of 20 cm, C20/25 material with a linear rigid support. Alinear load of -10.00 kN is applied on FZ direction.

Page 316: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 316/682

 ADVANCE VALIDATION GUIDE

316 

Page 317: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 317/682

  ADVANCE VALIDATION GUIDE

317

1.98 Verifying stresses in beam with "extend into wall" property (TTAD #11680)

Test ID: 3491

Test status: Passed 

1.98.1 Description

Verifies the results on two concrete beams which have the "Extend into the wall" option enabled. One of the beams isconnected to 2 walls on both sides and one with a wall and a pole. Generates the linear elements forces by elementsreport.

1.99 Generating planar efforts before and after selecting a saved view (TTAD #11849)

Test ID: 3454

Test status: Passed 

1.99.1 Description

Generates efforts for all planar elements before and after selecting the third saved view.

1.100 Verifying results on punctual supports (TTAD #11489)

Test ID: 3693

Test status: Passed 

1.100.1 Description

Performs the finite elements calculation and generates the punctual supports report, containing the following tables:"Displacements of point supports by load case", "Displacements of point supports by element", "Point support actionsby load case", "Point support actions by element" and "Sum of actions on supports and nodes restraints".

The structure consists of concrete, steel and timber linear elements with punctual supports.

1.101 Verifying the level mass center (TTAD #11573, TTAD #12315)

Test ID: 3609

Test status: Passed 

1.101.1 Description

Performs the finite elements calculation on a model with two planar concrete elements with a linear support. Verifiesthe level mass center and generates the "Excited total masses" and "Level modal mass and rigidity centers" reports.

The model consists of two planar concrete elements with a linear fixed support. The loads applied on the model: selfweight, a planar live load of -1 kN and seism loads according to French standards of Eurocodes 8.

1.102 Verifying diagrams for Mf Torsors on divided walls (TTAD #11557)

Test ID: 3610

Test status: Passed 

1.102.1 Description

Performs the finite elements calculation and verifies the results diagrams for Mf torsors on a high wall divided in 6walls (by height).

The loads applied on the model: self weight, two live load cases and seism loads according to Eurocodes 8.

Page 318: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 318/682

 ADVANCE VALIDATION GUIDE

318 

1.103 Verifying Sxx results on beams (TTAD #11599)

Test ID: 3595

Test status: Passed 

1.103.1 Description

Performs the finite elements calculation on a complex model with concrete, steel and timber elements. Verifies theSxx results on beams. Generates the maximum stresses report.

The structure has 40 timber linear elements, 24 concrete linear elements, 143 steel elements. The loads applied onthe structure: dead loads, live loads, snow loads, wind loads and temperature loads (according to Eurocodes).

1.104 Generating results for Torsors NZ/Group (TTAD #11633)

Test ID: 3594

Test status: Passed 

1.104.1 Description

Performs the finite elements calculation on a complex concrete structure with four levels. Generates results forTorsors NZ/Group. Verifies the legend results.

The structure has 88 linear elements, 30 planar elements, 48 windwalls, etc.

1.105 Verifying nonlinear analysis results for frames with semi-rigid joints and rigid joints (TTAD#11495)

Test ID: 3795

Test status: Passed 

1.105.1 Description

Verifies the nonlinear analysis results for two frames with one level. One of the frames has semi-rigid joints and theother has rigid joints.

1.106 Generating a report with torsors per level (TTAD #11421)

Test ID: 3774

Test status: Passed 

1.106.1 Description

Generates a report with the torsors per level results.

1.107 Verifying tension/compression supports on nonlinear analysis (TTAD #11518)

Test ID: 4198

Test status: Passed 

1.107.1 Description

Verifies the behavior of supports with several rigidities fields defined.

Performs the finite elements calculation and generates the "Displacements of linear elements by element" report.

The model consists of a vertical linear element (concrete B20, R20*30 cross section) with a rigid punctual support atthe base and a T/C punctual support at the top. A value of 15000.00 kN/m is defined for the KTX and KTZ stiffenersof the T/C support. Two loads of 500.00 kN are applied.

Page 319: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 319/682

  ADVANCE VALIDATION GUIDE

319

1.108 Verifying tension/compression supports on nonlinear analysis (TTAD #11518)

Test ID: 4197

Test status: Passed 

1.108.1 Description

Verifies the supports behavior when the rigidity has a high value.

Performs the finite elements calculation and generates the "Displacements of linear elements by element" report.

The model consists of a vertical linear element (concrete B20, R20*30 cross section) with a rigid punctual support atthe base and a T/C punctual support at the top. A large value of the KTX stiffener of the T/C support is defined. Twoloads of 500.00 kN are applied.

1.109 Verifying the display of the forces results on planar supports (TTAD #11728)

Test ID: 4375

Test status: Passed 

1.109.1 Description

Performs the finite elements calculation and verifies the display of the forces results on a planar support. The modelconsists of a concrete vertical element with a planar support.

Page 320: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 320/682

 ADVANCE VALIDATION GUIDE

320 

1.110 Verifying results of a steel beam subjected to dynamic temporal loadings (TTAD #14586)

Test ID: 5853

Test status: Passed 

1.110.1 Description

Verifies a double-end fixed steel beam subjected to harmonic concentrated loadings.

2 Hz and 3 Hz excitation frequencies are studied.

1.110.2 Background

The harmonic response of a steel beam fixed at both ends is studied. The beam contains 8 elements having thesame length and identical characteristics. Harmonic concentrated loadings (a vertical load and a bending moment)are applied in the middle of the beam. Two excitation frequencies are studied: 2.0 and 3.0 Hz.

1.110.2.1 Model description

■  Reference: NE/Nastran V8;■  Analysis type: modal analysis;

■  Element type: linear.

Units

I. S.

Geometry

Below are described the beam cross section characteristics:

■  Beam length: L = 16 m,

■  Square shaped cross section: b = 0.05 m,■  Section area: A = 0.06 m2,

■  Flexion inertia moment about the y (or z) axis: I = 0.0001 m4.

Materials properties

■  Longitudinal elastic modulus: E = 2.1 x 1011 N/m2,

■  Poisson coefficient:  = 0.3,

■  Density:  = 7850 kg/m3.

Boundary conditions

■  Outer:

►  Fixed support at start point (x = 0),

Page 321: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 321/682

  ADVANCE VALIDATION GUIDE

321

►  Fixed s

upport at end point (x= 16.00).

■  Inner: None.

Loading

■  External:

►  Point load at x=8: P = Fz = -50 000 sin (2π f t) N

►  Bending moment at x=8: M = My = 10000 sin (2π f t) Nm

■  Internal: None.

1.110.2.2 Harmonic response from NE/Nastran V8

Reference solution

Considering a natural frequency (modal) analysis for a double-end fixed beam, the first four natural frequencies canbe determined using the following formula:

 A

 I  E 

 L f     n

n

   

  2

2

The modal response is determined considering 14 modes.

The first four mode shapes and their frequencies are:

12 = 22.37 f1 = 2.937 Hz

22 = 61.67 f2 = 8.095 Hz

32 = 120.9 f3 = 15.871 Hz

42 = 199.8 f4 = 26.228 Hz

The vertical reference displacement is calculated in the middle of the beam at x = 8 m.

Software NE/NASTRAN 8.0

Vertical maximum displacement (f = 2 Hz) in the middleof the beam

0.155 m

Vertical maximum displacement (f = 3 Hz) in the middleof the beam

2.266 m

Page 322: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 322/682

 ADVANCE VALIDATION GUIDE

322 

Response in the middle of the beam with f = 2 Hz

Response in the middle of the beam with f = 3 Hz

Finite elements modeling

■  Linear element: beam, imposed mesh

■  9 nodes,

■  8 linear elements.

Page 323: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 323/682

  ADVANCE VALIDATION GUIDE

323

1.110.2.3 Reference results

Result name Result description Reference value

Deformed – D Vertical maximum displacement in the middle of the beam2 Hz m

0.155 m

Deformed – D Vertical maximum displacement in the middle of the beam(3 Hz) [m]

2.266 m

1.110.3 Calculated results

Result name Result description Value Error

D Vertical maximum displacement in the middle of the beam (2 Hz) 15.3783 cm -0.7853 %

D Vertical maximum displacement in the middle of the beam (3 Hz) 211.41 cm -6.7036 %

Page 324: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 324/682

 

1.111 Verifying the main axes results on a planar element (TTAD #11725)

Test ID: 4310

Test status: Passed 

1.111.1 Description

Verifies the main axes results on a planar element.

Performs the finite elements calculation for a concrete wall (20 cm thick) with a linear support. Displays the forcesresults on the planar element main axes.

1.112 Verifying torsors on a single story coupled walls subjected to horizontal forces

Test ID: 4804

Test status: Passed 

1.112.1 DescriptionVerifies torsors on a single story coupled walls subjected to horizontal forces

1.113 Calculating torsors using different mesh sizes for a concrete wall subjected to a horizontalforce (TTAD #13175)

Test ID: 5088

Test status: Passed 

1.113.1 Description

Calculates torsors using different mesh sizes for a concrete wall subjected to a horizontal force.

1.114 Verifying the internal forces results for a simple supported steel beam

Test ID: 4533

Test status: Passed 

1.114.1 Description

Performs the finite elements calculation for a horizontal element (S235 material and IPE180 cross section) with twohinge rigid supports at each end. One of the supports has translation restraints on X, Y and Z, the other support hasrestraints on Y and Z.

Verifies the internal forces My, Fz.

Validated according to:

Example: 3.1 - Simple beam bending without the stability loss

Publication: Steel structures members - Examples according to Eurocodes

By: F. Wald a kol.

Page 325: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 325/682

 

325

1.115 Verifying forces on a linear elastic support which is defined in a user workplane (TTAD#11929)

Test ID: 4553

Test status: Passed 

1.115.1 Description

Verifies forces on a linear elastic support, which is defined in a user workplane, and generates a report with forces forlinear support in global and local workplane.

Page 326: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 326/682

Page 327: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 327/682

 

2 CAD, rendering and visualization

Page 328: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 328/682

 ADVANCE VALIDATION GUIDE

328 

2.1 Verifying hide/show elements command (TTAD #11753)

Test ID: 3443

Test status: Passed 

2.1.1 Description

Verifies the hide/show elements command for the whole structure using the right-click option.

2.2 Verifying the dimensions and position of annotations on selection when new analysis ismade.(TTAD #12807)

Test ID: 6201

Test status: Passed 

2.2.1 Description

Verifies the dimensions and position of annotations on selection when new analysis is made. It takes a printscreen ofthe loaded saved view.

2.3 Verifying the saved view of elements with annotations. (TTAD #13033)

Test ID: 6209

Test status: Passed 

2.3.1 Description

Verifies the saved view of elements with annotations. It makes saved views and takes printscreens of them afterswitching between them.

2.4 Verifying the visualisation of supports with rotational or moving DoFs.(TTAD #13891)

Test ID: 6213

Test status: Passed 

2.4.1 Description

Verifies the visualisation of supports with rotational or moving DoFs by taking a printscreen.

2.5 Verifying the annotations of a wind generated load. (TTAD #13190)

Test ID: 6210

Test status: Passed 

2.5.1 Description

Verifies annotations of a wind generated load. It generates wind on the current 2 slope building( the remarks arefilled) then hides all the elements, makes visible only the load with identifier 1 and takes a printscreen.

Page 329: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 329/682

  ADVANCE VALIDATION GUIDE

329

2.6 System stability during section cut results verification (TTAD #11752)

Test ID: 3457

Test status: Passed 

2.6.1 Description

Performs the finite elements calculation and verifies the section cut results on a concrete planar element with anopening.

2.7 Generating combinations (TTAD #11721)

Test ID: 3468

Test status: Passed 

2.7.1 Description

Generates combinations for three types of loads: live loads, dead loads and snow (with an altitude > 1000 m andbase effect); generates the combinations description report.

2.8 Verifying the grid text position (TTAD #11704)

Test ID: 3464

Test status: Passed 

2.8.1 Description

Verifies the grid text position from different views.

2.9 Verifying descriptive actors after creating analysis (TTAD #11589)

Test ID: 3579

Test status: Passed 

2.9.1 Description

Generates the finite elements calculation on a complex concrete structure (C35/45 material). Verifies the descriptiveactors after creating the analysis.

The structure consists of 42 linear elements, 303 planar elements, 202 supports, etc. 370 planar loads are applied:live loads, dead loads and temperature.

2.10 Verifying the coordinates system symbol (TTAD #11611)Test ID: 3550

Test status: Passed 

2.10.1 Description

Verifies the coordinates system symbol display from different views.

Page 330: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 330/682

 ADVANCE VALIDATION GUIDE

330 

2.11 Creating a circle (TTAD #11525)

Test ID: 3607

Test status: Passed 

2.11.1 Description

Creates a circle.

2.12 Creating a camera (TTAD #11526)

Test ID: 3608

Test status: Passed 

2.12.1 Description

Verifies the camera creation and visibility.

2.13 Verifying the representation of elements with HEA cross section (TTAD #11328)

Test ID: 3701

Test status: Passed 

2.13.1 Description

Verifies the representation of elements with HEA340 cross section.

2.14 Verifying the snap points behavior during modeling (TTAD #11458)

Test ID: 3644

Test status: Passed 

2.14.1 Description

Verifies the snap points behavior when the "Allowed deformation" function is enabled (stretch points) and when it isdisabled (grip points).

2.15 Verifying the local axes of a section cut (TTAD #11681)

Test ID: 3637

Test status: Passed 

2.15.1 Description

Changes the local axes of a section cut in the descriptive model and verifies if the local axes are kept in analysismodel.

Page 331: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 331/682

  ADVANCE VALIDATION GUIDE

331

2.16 Verifying the descriptive model display after post processing results in analysis mode (TTAD#11475)

Test ID: 3733

Test status: Passed 

2.16.1 Description

Performs the finite elements calculation and displays the forces results on linear elements. Returns to the modelmode to verify the descriptive model display.

2.17 Modeling using the tracking snap mode (TTAD #10979)

Test ID: 3745

Test status: Passed 

2.17.1 DescriptionEnables the "tracking" snap mode to model structure elements.

2.18 Verifying holes in horizontal planar elements after changing the level height (TTAD #11490)

Test ID: 3740

Test status: Passed 

2.18.1 Description

Verifies holes in horizontal planar elements after changing the level height.

2.19 Verifying the display of elements with compound cross sections (TTAD #11486)

Test ID: 3742

Test status: Passed 

2.19.1 Description

Creates an element with compound cross section (CS1 IPE400 IPE240) and verifies the cross section display.

2.20 Moving a linear element along with the support (TTAD #12110)

Test ID: 4302

Test status: Passed 

2.20.1 Description

Moves a linear element along with the element support, after selecting both elements.

Page 332: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 332/682

 ADVANCE VALIDATION GUIDE

332 

2.21 Turning on/off the "ghost" rendering mode (TTAD #11999)

Test ID: 4304

Test status: Passed 

2.21.1 Description

Verifies the on/off function for the "ghost" rendering mode when the workplane display is disabled.

2.22 Verifying the "ghost" display after changing the display colors (TTAD #12064)

Test ID: 4349

Test status: Passed 

2.22.1 Description

Verifies the "ghost" display on selected elements after changing the element display color.

2.23 Verifying the grid text position (TTAD #11657)

Test ID: 3465

Test status: Passed 

2.23.1 Description

Verifies the grid text position from different views.

2.24 Verifying the "ghost display on selection" function for saved views (TTAD #12054)

Test ID: 4347

Test status: Passed 

2.24.1 Description

Verifies the display of saved views which contain elements with the "ghost on selection" function enabled.

2.25 Verifying the steel connections modeling (TTAD #11698)

Test ID: 4440

Test status: Passed 

2.25.1 Description

Verifies the modeling of steel connections.

2.26 Verifying the fixed load scale function (TTAD #12183).

Test ID: 4429

Test status: Passed 

2.26.1 Description

Verifies the "fixed load scale" function.

Page 333: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 333/682

  ADVANCE VALIDATION GUIDE

333

2.27 Verifying the saved view of elements by cross-section. (TTAD #13197)

Test ID: 6180

Test status: Passed 

2.27.1 Description

Verifies the saved view of elements by cross-section. It takes a printscreen of the loaded saved view.

2.28 Verifying the annotations dimensions when new analysis is made.(TTAD #14825)

Test ID: 6199

Test status: Passed 

2.28.1 Description

Verifies the annotations dimensions when new analysis is made. It takes a printscreen of the loaded saved view.

2.29 Verifying the default view.(TTAD #13248)

Test ID: 6198

Test status: Passed 

2.29.1 Description

Verifies the default view to be the top view. It takes a printscreen of the loaded saved view.

2.30 Verifying the dividing of planar elements which contain openings (TTAD #12229)

Test ID: 4483

Test status: Passed 

2.30.1 Description

Verifies the dividing of planar elements which contain openings.

2.31 Verifying the program behavior when trying to create lintel (TTAD #12062)

Test ID: 4507

Test status: Passed 

2.31.1 Description

Verifies the program behavior when trying to create lintel on a planar element with an inappropriate opening.

2.32 Verifying the program behavior when launching the analysis on a model with overlapped loads(TTAD #11837)

Test ID: 4511

Test status: Passed 

2.32.1 Description

Verifies the program behavior when launching the analysis on a model that had overlapped loads.

Page 334: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 334/682

 ADVANCE VALIDATION GUIDE

334 

2.33 Verifying the display of punctual loads after changing the load case number (TTAD #11958)

Test ID: 4508

Test status: Passed 

2.33.1 Description

Creates a punctual load and verifies the display of the load after placing it in another load case using the load casenumber from the properties window.

2.34 Verifying the display of a beam with haunches (TTAD #12299)

Test ID: 4513

Test status: Passed 

2.34.1 Description

Verifies the display of a beam with haunches, in the "Linear contour" rendering mode.

2.35 Creating base plate connections for non-vertical columns (TTAD #12170)

Test ID: 4534

Test status: Passed 

2.35.1 Description

Creates a base plate connection on a non-vertical column.

2.36 Verifying drawing of joints in y-z plan (TTAD #12453)

Test ID: 4551

Test status: Passed 

2.36.1 Description

Verifying drawing of joints in y-z plan (TTAD #12453)

2.37 Verifying rotation for steel beam with joint (TTAD #12592)

Test ID: 4560

Test status: Passed 

2.37.1 Description

Verifying rotation for steel beam with joint at one end (TTAD #12592)

2.38 Verifying annotation on selection (TTAD #12700)

Test ID: 4575

Test status: Passed 

2.38.1 Description

Verifying annotation on selection (TTAD #12700)

Page 335: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 335/682

 

3 Climatic generator 

Page 336: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 336/682

 ADVANCE VALIDATION GUIDE

336 

3.1 EC1: Generating snow loads on 2 closed building with gutters. (TTAD #12808)

Test ID: 4849

Test status: Passed 

3.1.1 Description

Generates snow loads on 2 closed building with gutters, according to the Eurocodes 1 - French standard (NF EN1991-1-3/NA).

3.2 EC1: wind load generation on a high building with horizontal roof using UK annex(DEV2013#4.1) (TTAD #12608)

Test ID: 5560

Test status: Passed 

3.2.1 Description

Generates wind loads on the windwalls of a concrete structure, according to the BS EN 1991-1-4:2005 standard.

The structure is 63m high, has 4 columns and 4 beams (R20*30 cross section and C20/25 material), rigid supportsand horizontal roof.

3.3 EC1: Generating snow loads on a 4 slopes shed with gutters (TTAD #12528)

Test ID: 4569

Test status: Passed 

3.3.1 Description

Generates snow loads on a 4 slopes shed with gutters on each slope and middle parapets, according to theEurocodes 1 - French standard (NF EN 1991-1-3/NA).

3.4 EC1: Generating snow loads on a single slope with lateral parapets (TTAD #12606)

Test ID: 4570

Test status: Passed 

3.4.1 Description

Generates snow loads on a single slope with lateral parapets, according to the Eurocodes 1 - French standard (NFEN 1991-1-3/NA).

3.5 EC1: Generating snow loads on a 4 slopes shed with gutters (TTAD #12528)

Test ID: 4568

Test status: Passed 

3.5.1 Description

Generates snow loads on a 4 slopes shed with gutters on each slope and lateral parapets, according to theEurocodes 1 - French standard (NF EN 1991-1-3/NA).

Page 337: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 337/682

  ADVANCE VALIDATION GUIDE

337

3.6 EC1: generating wind loads on a square based lattice structure with compound profiles andautomatic calculation of "n" (NF EN 1991-1-4/NA) (TTAD #12744)

Test ID: 4580

Test status: Passed 

3.6.1 Description

Generates the wind loads on a square based lattice structure with compound profiles, using automatic calculation of"n" - eigen mode frequency. The wind loads are generated according to Eurocodes 1 - French standards (NF EN1991-1-4/NA).

3.7 EC1: Generating snow loads on a 4 slopes with gutters building. (TTAD #12719)

Test ID: 4847

Test status: Passed 

3.7.1 Description

Generates snow loads on a model from CTCIM which contains 4 slopes with gutters, according to the Eurocodes 1 -French standard (NF EN 1991-1-3/NA). It verifies snow fall from higher to lower close building.

3.8 EC1: Generating snow loads on two side by side buildings with gutters (TTAD #12806)

Test ID: 4848

Test status: Passed 

3.8.1 Description

Generates snow loads on two side by side buildings with gutters, according to the Eurocodes 1 - French standard(NF EN 1991-1-3/NA).

3.9 EC1: Generating snow loads on a 4 slopes with gutters building (TTAD #12716)

Test ID: 4846

Test status: Passed 

3.9.1 Description

Generates snow loads on a model from CTCIM which contains 4 slopes with gutters and lateral parapets, accordingto the Eurocodes 1 - French standard (NF EN 1991-1-3/NA). It also verifies snow fall from higher to lower closebuilding.

3.10 EC1: Generating snow loads on 2 closed building with gutters. (TTAD #12841)

Test ID: 4851

Test status: Passed 

3.10.1 Description

Generates snow loads on 2 closed building with gutters. The lower building is longer and has a 4 slope shed and thehigher building has a 2 slope roof. The snow loads are generated according to the Eurocodes 1 - French standard(NF EN 1991-1-3/NA).

Page 338: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 338/682

 ADVANCE VALIDATION GUIDE

338 

3.11 EC1: Generating wind loads on a square based structure according to UK standards (BS EN1991-1-4:2005) (TTAD #12608)

Test ID: 4845

Test status: Passed 

3.11.1 Description

Generates the wind loads on a square based structure. The wind loads are generated according to Eurocodes 1 - UKstandards (BS EN 1991-1-4:2005).

3.12 EC1: Generating snow loads on a 2 slope building with gutters and parapets. (TTAD #12878)

Test ID: 4852

Test status: Passed 

3.12.1 DescriptionGenerates snow loads on a 2 slope building with gutters and lateral parapets on all sides, according to the Eurocodes1 - French standard (NF EN 1991-1-3/NA).

3.13 EC1: Generating snow loads on 2 closed building with gutters. (TTAD #12835)

Test ID: 4850

Test status: Passed 

3.13.1 Description

Generates snow loads on 2 closed building with gutters. The lower building is longer. The wind loads are generatedaccording to Eurocodes 1 - French standards (NF EN 1991-1-3/NA).

3.14 EC1: generating snow loads on a 3 slopes 3D portal frame with parapets (NF EN 1991-1-3/NA)(TTAD #11111)

Test ID: 4546

Test status: Passed 

3.14.1 Description

Generates snow loads on a 3 slopes 3D portal frame with parapets, according to the Eurocodes 1 - French standard(NF EN 1991-1-3/NA). The third slope is an extension of the roof with a different angle.

3.15 EC1: generating wind loads on a 2 slopes 3D portal frame (NF EN 1991-1-4/NA) (VT : 3.3 - Wind- Example C)

Test ID: 4523

Test status: Passed 

3.15.1 Description

Generates wind loads on a 2 slopes 3D portal frame, according to the Eurocodes 1 - French standard (NF EN 1991-1-4/NA).

Page 339: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 339/682

  ADVANCE VALIDATION GUIDE

339

3.16 EC1: generating wind loads on a 2 slopes 3D portal frame (NF EN 1991-1-4/NA) (VT : 3.1 - Wind- Example A)

Test ID: 4520

Test status: Passed 

3.16.1 Description

Generates wind loads on a 2 slopes 3D portal frame, according to the Eurocodes 1 - French standard (NF EN 1991-1-4/NA).

3.17 EC1: wind loads on a triangular based lattice structure with compound profiles and userdefined "n" (NF EN 1991-1-4/NA) (TTAD #12276)

Test ID: 4526

Test status: Passed 

3.17.1 Description

Generates wind loads on a triangular based lattice structure with compound profiles using user defined "n" - eigenmode frequency - (NF EN 1991-1-4/NA) (TTAD #12276).

3.18 EC1: generating wind loads on a 3D portal frame with one slope roof (NF EN 1991-1-4/NA) (VT :3.2 - Wind - Example B)

Test ID: 4521

Test status: Passed 

3.18.1 Description

Generates wind loads on a 3D portal frame with one slope roof, according to the Eurocodes 1 - French standard (NF

EN 1991-1-4/NA).

3.19 EC1: generating wind loads on a triangular based lattice structure with compound profiles andautomatic calculation of "n" (NF EN 1991-1-4/NA) (TTAD #12276)

Test ID: 4525

Test status: Passed 

3.19.1 Description

Generates the wind loads on a triangular based lattice structure with compound profiles, using automatic calculationof "n" - eigen mode frequency (NF EN 1991-1-4/NA). The wind loads are generated according to Eurocodes 1 -

French standards.

3.20 EC1: generating snow loads on a 2 slopes 3D portal frame (NF EN 1991-1-3/NA) (VT : 3.4 -Snow - Example A)

Test ID: 4518

Test status: Passed 

3.20.1 Description

Generates snow loads on a 2 slopes 3D portal frame, according to the Eurocodes 1 - French standard (NF EN 1991-1-3/NA)

Page 340: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 340/682

 ADVANCE VALIDATION GUIDE

340 

3.21 EC1: Verifying the wind loads generated on a building with protruding roof (TTAD #12071,#12278)

Test ID: 4510

Test status: Passed 

3.21.1 Description

Generates wind loads on the windwalls of a concrete structure with protruding roof, according to the Eurocodes 1 -French standard. Verifies the wind loads from both directions and generates the "Description of climatic loads" report.

The structure has concrete columns and beams (R2*3 cross section and B20 material) and rigid supports.

3.22 EC1: Verifying the geometry of wind loads on an irregular shed. (TTAD #12233)

Test ID: 4478

Test status: Passed 

3.22.1 Description

Verifies the geometry of wind loads on an irregular shed. The wind loads are generated according to Eurocodes 1 -French standard.

3.23 EC1: Generating snow loads on a 4 slopes shed with parapets. (TTAD #14578)

Test ID: 6193

Test status: Passed 

3.23.1 Description

Generates snow loads on a 4 slopes shed with parapets on Y+/- sides, according to the Eurocodes 1 - Frenchstandard (NF EN 1991-1-3/NA).

3.24 EC1: Generating 2D snow loads on a 2 slope portal with one lateral parapet. (TTAD #14530)

Test ID: 6195

Test status: Passed 

3.24.1 Description

Generates 2D snow loads on a 2 slope portal with one lateral parapet, according to the Eurocodes 1 - Frenchstandard (NF EN 1991-1-3/NA).

3.25 EC1: Generating wind loads on a 2 almost horizontal slope building. (TTAD #13663)

Test ID: 6196

Test status: Passed 

3.25.1 Description

Generates wind loads on a 2 almost horizontal slope building, according to the Eurocodes 1 - French standard (NFEN 1991-1-4/NA).

Page 341: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 341/682

  ADVANCE VALIDATION GUIDE

341

3.26 EC1: Generating 2D wind loads on a 2 slope portal. (TTAD #14531)

Test ID: 6194

Test status: Passed 

3.26.1 Description

Generates 2D wind loads on a 2 slope portal, according to the Eurocodes 1 - French standard (NF EN 1991-1-4/NA).

3.27 EC1: Generating wind loads on a 4 slopes shed with parapets. (TTAD #14179)

Test ID: 6184

Test status: Passed 

3.27.1 Description

Generates wind loads on a 4 slopes shed with parapets on all sides, according to the Eurocodes 1 - French standard(NF EN 1991-1-4/NA).

3.28 EC1: Generating snow loads on 2 side by side single roof compounds with different height(TTAD 13158)

Test ID: 6188

Test status: Passed 

3.28.1 Description

Generates snow loads on on 2 side by side single roof compounds, according to the Eurocodes 1 - French standard(NF EN 1991-1-3/NA). One compound is higher than the other and the slopes have opposite sign. The model isreversed in comparison with the one from 6187 and has only the exceptional snow fall is checked.

3.29 EC1: Generating snow loads on 2 side by side single roof compounds with different height(TTAD 13159)

Test ID: 6187

Test status: Passed 

3.29.1 Description

Generates snow loads on on 2 side by side single roof compounds, according to the Eurocodes 1 - French standard(NF EN 1991-1-3/NA). One compound is higher than the other and the slopes have opposite sign. Exceptional snowfalls and accumulations are checked.

3.30 EC1: snow load generation on double compound with gutters and parapets on all sides.(TTAD#13717)

Test ID: 6186

Test status: Passed 

3.30.1 Description

Generates snow loads on a metal based double compound with gutters and parapets on all sides, according to theEurocodes 1 France. One compound is a double-roof volume and the second is a single-roof volume with the sameslope as the one it is next to.

Page 342: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 342/682

 ADVANCE VALIDATION GUIDE

342 

3.31 EC1: snow load generation on building with 2 slopes > 60 degrees according to Czech nationalannex. (TTAD #14235)

Test ID: 6185

Test status: Passed 

3.31.1 Description

Generates snow load on building with 2 slopes > 60 degrees, according to the Eurocodes 1 - Czech standard.

3.32 EC1: Generating snow loads on 2 side by side single roof compounds (TTAD #13286)

Test ID: 6177

Test status: Passed 

3.32.1 Description

Generates snow loads on on 2 side by side single roof compounds, according to the Eurocodes 1 - French standard(NF EN 1991-1-3/NA). It verifies the normal and accidental snow loads on Y+/- wind directions.

3.33 EC1: Generating wind loads on a 2 slope building with parapets. (TTAD #13669)

Test ID: 6168

Test status: Passed 

3.33.1 Description

Generates wind loads on a 2 slope building with lateral parapets on all sides, according to the Eurocodes 1 - Frenchstandard (NF EN 1991-1-4/NA).

3.34 EC1: Generating wind loads on a 2 slope building with increased height. (TTAD #13759)

Test ID: 6172

Test status: Passed 

3.34.1 Description

Generates wind loads on a 2 slope building with increased height to 26m, according to the Eurocodes 1 - Frenchstandard (NF EN 1991-1-4/NA).

3.35 EC1: Generating snow loads on a 2 slope building with custom pressure values. (TTAD

#14004)

Test ID: 6176

Test status: Passed 

3.35.1 Description

Generates snow loads on a 2 slope building, according to the Eurocodes 1 - French standard (NF EN 1991-1-3/NA).It verifies the accidental accumulation from exceptional drifted snow when other region is selected.

Page 343: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 343/682

  ADVANCE VALIDATION GUIDE

343

3.36 EC1: wind load generation on portal with CsCd set to auto according to Romanian nationalannex. (TTAD #13930w)

Test ID: 6182

Test status: Passed 

3.36.1 Description

Generates wind loads on a 3 compound building according to the Eurocodes 1 Romanian standard (CR 1-1-4/2012)using auto CsCd values and CsCd min to 0.7. 2 compounds are double sloped and one is single sloped.

3.37 EC1: snow load generation on a 3 compound building according to Romanian national annex.(TTAD #13930s)

Test ID: 6183

Test status: Passed 

3.37.1 Description

Generates snow load generation on a 3 compound building according to the Eurocodes 1 Romanian standard (CR 1-1-3/2012). 2 compounds are double sloped and one is single sloped. It also verifies parapet and valleyaccumulations.

3.38 EC1: Generating snow loads on a 2 slope building with gutters and lateral parapets. (TTAD#14005)

Test ID: 6181

Test status: Passed 

3.38.1 Description

Generates snow loads on a 2 slope building with gutters and lateral parapets, according to the Eurocodes 1 - Frenchstandard (NF EN 1991-1-3/NA).

3.39 EC1: Generating snow loads on a 2 slope building with parapets. (TTAD #13671)

Test ID: 6167

Test status: Passed 

3.39.1 Description

Generates snow loads on a 2 slope building with lateral parapets on all sides, according to the Eurocodes 1 - French

standard (NF EN 1991-1-3/NA).

3.40 EC1: snow load generation on compound with a double-roof volume close to a single-roofvolume (TTAD #13559)

Test ID: 6166

Test status: Passed 

3.40.1 Description

Generates snow loads on a metal based compound with a double-roof volume close to a single-roof volumeaccording to the Eurocodes 1 France.

Page 344: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 344/682

 ADVANCE VALIDATION GUIDE

344 

3.41 EC1: wind load generation on multibay canopies (TTAD #11668)

Test ID: 6164

Test status: Passed 

3.41.1 Description

Generates wind loads on multibay canopies, according to the Eurocodes 1 France.

3.42 EC1: wind load generation on portal with CsCd set to auto (TTAD #12823)

Test ID: 6165

Test status: Passed 

3.42.1 Description

Generates wind loads on a 3 slope building according to the Eurocodes 1 France standard using auto CsCd values

and CsCd min to 0.7.

3.43 EC1: generating wind loads on a 35m high structure according to Eurocodes 1 - Frenchstandard with CsCd min set to 0.7 and Delta to 0.15. (TTAD #11196)

Test ID: 6170

Test status: Passed 

3.43.1 Description

Generates wind loads on the roof a 35m high structure, according to Eurocodes 1 - French standard (NF EN 1991-1-4/NA) with CsCd min set to 0.7 and Delta to 0.15.

The structure has concrete beams and columns (R20*30 cross section and C20/25 material) with fixed rigid supports.

3.44 EC1: generating wind loads on a canopy according to Eurocodes 1 - French standard. (TTAD#13855)

Test ID: 6171

Test status: Passed 

3.44.1 Description

Generates wind loads on a canopy, according to the Eurocodes 1 - French standard (NF EN 1991-1-4/NA) only forselected wind directions.

3.45 EC1: Generating wind loads on a single-roof volume compound with parapets. (TTAD #13672)

Test ID: 6169

Test status: Passed 

3.45.1 Description

Generates wind loads on a single-roof volume compound with lateral parapets on all sides, according to theEurocodes 1 - French standard (NF EN 1991-1-4/NA).

Page 345: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 345/682

  ADVANCE VALIDATION GUIDE

345

3.46 EC1: Generating snow loads on a shed with parapets. (TTAD #12494)

Test ID: 6175

Test status: Passed 

3.46.1 Description

Generates snow loads on a model which contains 4 slopes with lateral parapets on X+/- direction, according to theEurocodes 1 - French standard (NF EN 1991-1-3/NA). It verifies also the valley accumulation.

3.47 EC1: Generating snow loads on a shed with gutters building. (TTAD #13856)

Test ID: 6174

Test status: Passed 

3.47.1 Description

Generates snow loads on a model from CTCIM which contains 4 slopes with gutters, according to the Eurocodes 1 -French standard (NF EN 1991-1-3/NA). It verifies also the valley accumulation.

3.48 EC1: generating snow loads on a 3 slopes 3D portal frame.(TTAD #13169)

Test ID: 6178

Test status: Passed 

3.48.1 Description

Generates snow loads on a 3 slopes 3D portal frame, according to the Eurocodes 1 - French standard (NF EN 1991-1-3/NA).

3.49 EC1: Generating snow loads on 2 side by side single roof compounds with parapets (TTAD#13992)

Test ID: 6179

Test status: Passed 

3.49.1 Description

Generates snow loads on on 2 side by side single roof compounds with parapets, according to the Eurocodes 1 -French standard (NF EN 1991-1-3/NA). One compound is much higher than the other and has the slope < 15degrees causing the drifted snow to dissipate.

3.50 EC1: generating Cf and Cp,net wind loads on an isolated roof with double slope (DEV2013#4.3)

Test ID: 5594

Test status: Passed 

3.50.1 Description

Generates wind loads on a concrete structure, according to the Eurocodes 1 French standard. The obstruction isdifferent for each direction: X+ 1; X- 0.9; Y+ 0.8 and Y- 0.

The structure has concrete columns and beams (R20*30 cross section and C20/25 material) and an isolated roofwith double slope.

Page 346: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 346/682

 ADVANCE VALIDATION GUIDE

346 

3.51 EC1: wind load generation on a high building with double slope roof using differentparameters defined per directions (DEV2013#4.2)

Test ID: 5561

Test status: Passed 

3.51.1 Description

Generates wind loads on the windwalls of a concrete structure, according to the Eurocodes 1 FR standard usingdifferent parameters defined per directions.

The structure is 22m high, has 4 columns and 7 beams (R20*30 cross section and C20/25 material), rigid supportsand a double slope roof.

3.52 EC1: generating Cf and Cp,net wind loads on an multibay canopy roof (DEV2013#4.3)

Test ID: 5595

Test status: Passed 

3.52.1 Description

Generates wind loads on a concrete structure, according to the Eurocodes 1 French standard.

The structure has concrete columns and beams (R20*30 cross section and C20/25 material) and a multibay canopyroof.

3.53 EC1: generating Cf and Cp,net wind loads on an isolated roof with one slope (DEV2013#4.3)

Test ID: 5593

Test status: Passed 

3.53.1 Description

Generates wind loads on a concrete structure, according to the Eurocodes 1 French standard. The obstruction isdifferent for each direction: X+ 1; X- 0; Y+ 0.8 and Y- 1.

The structure has concrete columns and beams (R20*30 cross section and C20/25 material) and an isolated roofwith one slope.

3.54 EC1: wind load generation on a high building with a horizontal roof using different CsCdvalues for each direction (DEV2013#4.4)

Test ID: 5596

Test status: Passed 

3.54.1 Description

Generates wind loads on the windwalls of a concrete structure, according to the Eurocodes 1 France standard usingdifferent CsCd values for each direction : X+ auto; X- imposed to 0.9; Y+ auto and Y- no.

The structure is 35m high, has 4 columns and 4 beams (R20*30 cross section and C20/25 material), rigid supportsand a horizontal roof.

Page 347: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 347/682

  ADVANCE VALIDATION GUIDE

347

3.55 EC1: generating wind loads on a 2 slopes 3D portal frame using the Romanian national annex(TTAD #11687)

Test ID: 4055

Test status: Passed 

3.55.1 Description

Generates wind loads on the windwalls of a 2 slopes 3D portal frame, according to Eurocodes 1 Romanianstandards.

The structure consists of concrete (C20/25) beams and columns with rigid fixed supports.

3.56 EC1: generating snow loads on a 2 slopes 3D portal frame using the Romanian national annex(TTAD #11569)

Test ID: 4087

Test status: Passed 

3.56.1 Description

Generates snow loads on the windwalls of a 2 slopes 3D portal frame, according to Eurocodes 1 Romanianstandards.

The structure consists of concrete (C20/25) beams and columns with rigid fixed supports, with rectangular crosssection (R20*30).

3.57 EC1: generating wind loads on a 2 slopes 3D portal frame (TTAD #11531)

Test ID: 4090

Test status: Passed 

3.57.1 Description

Generates wind loads on the windwalls of a 2 slopes 3D portal frame, according to Eurocodes 1 French standards -Martinique wind speed.

The structure consists of concrete (C20/25) beams and columns with rigid fixed supports, with rectangular crosssection (R20*30).

3.58 EC1: generating snow loads on a 2 slopes 3D portal frame using the Romanian national annex(TTAD #11570)

Test ID: 4086

Test status: Passed 

3.58.1 Description

Generates snow loads on the windwalls of a 2 slopes 3D portal frame, according to Eurocodes 1 Romanianstandards.

The structure consists of concrete (C20/25) beams and columns with rigid fixed supports, with rectangular crosssection (R20*30).

Page 348: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 348/682

 ADVANCE VALIDATION GUIDE

348 

3.59 EC1: generating wind loads on a 2 slopes 3D portal frame (TTAD #11699)

Test ID: 4085

Test status: Passed 

3.59.1 Description

Generates wind loads on a 2 slopes 3D portal frame according to Eurocodes 1 French standards, using the "Case 1"formula for calculating the turbulence factor.

The structure consists of steel elements with hinge rigid supports.

3.60 Generating the description of climatic loads report according to EC1 Romanian standards(TTAD #11688)

Test ID: 4104

Test status: Passed 

3.60.1 Description

Generates the "Description of climatic loads" report according to EC1 Romanian standards.

The model consists of a steel portal frame with rigid fixed supports. Haunches are defined at both ends of the beams.Dead loads and SR EN 1991-1-4/NB wind loads are generated.

3.61 EC1: generating snow loads on a 2 slopes 3D portal frame with roof thickness greater than theparapet height (TTAD #11943)

Test ID: 3706

Test status: Passed 

3.61.1 Description

Generates snow loads on a 2 slopes 3D portal frame with roof thickness greater than the parapet height, according toEurocodes 1 French standard.

The structure has concrete beams and columns (R20*30 cross section and C20/25 material) with fixed rigid supports.

3.62 EC1: verifying the snow loads generated on a monopitch frame (TTAD #11302)

Test ID: 3713

Test status: Passed 

3.62.1 Description

Generates wind loads on the windwalls of a monopitch frame, according to the Eurocodes 1 French standard.

The structure has concrete beams and columns (R20*30 cross section and B20 material) with rigid fixed supports.

Page 349: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 349/682

  ADVANCE VALIDATION GUIDE

349

3.63 EC1: generating wind loads on a 2 slopes 3D portal frame with 2 fully opened windwalls (TTAD#11937)

Test ID: 3705

Test status: Passed 

3.63.1 Description

Generates wind loads on a 2 slopes 3D portal frame with 2 fully opened windwalls, according to the Eurocodes 1French standards.

The structure has concrete beams and columns (R20*30 cross section and C20/25 material) with rigid fixed supports.

3.64 EC1: generating snow loads on two close roofs with different heights according to Czechstandards (CSN EN 1991-1-3) (DEV2012 #3.18)

Test ID: 3623

Test status: Passed 

3.64.1 Description

Generates snow loads on two close roofs with different heights, according to Eurocodes 1 Czech standards.

The structure has concrete beams and columns (R20*30 cross section and C20/25 material) with fixed rigid supports.

3.65 EC1: generating wind loads on double slope 3D portal frame according to Czech standards(CSN EN 1991-1-4) (DEV2012 #3.18)

Test ID: 3621

Test status: Passed 

3.65.1 Description

Generates wind loads on the windwalls of a double slope 3D portal frame, according to the Eurocodes 1 Czechstandard (CSN EN 1991-1-4).

The structure has concrete columns and beams (R20*30 cross section and C20/25 material).

3.66 EC1: generating snow loads on a 3D portal frame with a roof which has a small span (< 5m)and a parapet (TTAD #11735)

Test ID: 3606

Test status: Passed 

3.66.1 Description

Generates snow loads on the windwalls of a 3D portal frame with a roof which has a small span (< 5m) and aparapet, according to Eurocodes 1.

The structure has concrete beams and columns (R20*30 cross section and C20/25 material) with fixed rigid supports.

Page 350: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 350/682

 ADVANCE VALIDATION GUIDE

350 

3.67 EC1: generating snow loads on a 2 slopes 3D portal frame with gutter (TTAD #11113)

Test ID: 3603

Test status: Passed 

3.67.1 Description

Generates snow loads on the windwalls of a 2 slopes 3D portal frame with gutter, according to Eurocodes 1. Thestructure consists of concrete (C20/25) beams and columns with rigid fixed supports.

3.68 EC1: generating snow loads on a 3D portal frame with horizontal roof and gutter (TTAD#11113)

Test ID: 3604

Test status: Passed 

3.68.1 DescriptionGenerates snow loads on the windwalls of a 3D portal frame with horizontal roof and gutter, according to Eurocodes1.

The structure has concrete beams and columns (R20*30 cross section and C20/25 material) with fixed rigid supports.

3.69 EC1: generating snow loads on duopitch multispan roofs according to German standards (DINEN 1991-1-3/NA) (DEV2012 #3.13)

Test ID: 3613

Test status: Passed 

3.69.1 DescriptionGenerates snow loads on the windwalls of duopitch multispan roofs structure, according to Eurocodes 1 Germanstandards.

The structure has concrete beams and columns (R20*30 cross section and C20/25 material) with fixed rigid supports.

3.70 EC1: generating wind loads on a 55m high structure according to German standards (DIN EN1991-1-4/NA) (DEV2012 #3.12)

Test ID: 3618

Test status: Passed 

3.70.1 DescriptionGenerates wind loads on the windwalls of a 55m high structure, according to Eurocodes 1 German standards.

The structure has concrete beams and columns (R20*30 cross section and C20/25 material) with fixed rigid supports.

Page 351: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 351/682

  ADVANCE VALIDATION GUIDE

351

3.71 EC1: generating snow loads on two side by side roofs with different heights, according toGerman standards (DIN EN 1991-1-3/NA) (DEV2012 #3.13)

Test ID: 3615

Test status: Passed 

3.71.1 Description

Generates snow loads on two side by side roofs with different heights, according to Eurocodes 1 German standards.

The structure has concrete beams and columns (R20*30 cross section and C20/25 material) with fixed rigid supports.

3.72 EC1: snow on a 3D portal frame with horizontal roof and parapet with height reduction (TTAD#11191)

Test ID: 3605

Test status: Passed 

3.72.1 Description

Generates snow loads on the windwalls of a 3D portal frame with horizontal roof and 2 parapets, according toEurocodes 1. The height of one parapet is reduced.

The structure has concrete beams and columns (R20*30 cross section and C20/25 material) with fixed rigid supports.

3.73 EC1: generating snow loads on monopitch multispan roofs according to German standards(DIN EN 1991-1-3/NA) (DEV2012 #3.13)

Test ID: 3614

Test status: Passed 

3.73.1 Description

Generates snow loads on the windwalls of a monopitch multispan roofs structure, according to Eurocodes 1 Germanstandards.

The structure has concrete beams and columns (R20*30 cross section and C20/25 material) with fixed rigid supports.

3.74 EC1: generating wind loads on an isolated roof with two slopes (TTAD #11695)

Test ID: 3529

Test status: Passed 

3.74.1 Description

Generates wind loads on a concrete structure, according to the Eurocodes 1 French standard.

The structure has concrete columns and beams (R20*30 cross section and C20/25 material) and an isolated roof withtwo slopes.

Page 352: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 352/682

 ADVANCE VALIDATION GUIDE

352 

3.75 EC1: generating wind loads on double slope 3D portal frame with a fully opened face(DEV2012 #1.6)

Test ID: 3535

Test status: Passed 

3.75.1 Description

Generates wind loads on the windwalls of a concrete structure, according to the Eurocodes 1 French standard.

The structure has concrete columns and beams (R20*30 cross section and C20/25 material), a double slope roof anda fully opened face.

3.76 EC1: generating wind loads on duopitch multispan roofs with pitch < 5 degrees (TTAD #11852)

Test ID: 3530

Test status: Passed 

3.76.1 Description

Generates wind loads on the windwalls of a steel structure, according to the Eurocodes 1 French standard.

The structure has steel columns and beams (I cross section and S275 material), rigid hinge supports and multispanroofs with pitch < 5 degrees.

3.77 EC1 NF: generating wind loads on a 3D portal frame with 2 slopes roof (TTAD #11932)

Test ID: 3004

Test status: Passed 

3.77.1 DescriptionGenerates the wind loads on a concrete structure according to the French Eurocodes 1 standard.

The structure has a roof with two slopes, concrete columns and beams (R20*30 cross section and C20/25 material).The columns have rigid supports.

3.78 EC1: wind load generation on simple 3D portal frame with 4 slopes roof (TTAD #11604)

Test ID: 3104

Test status: Passed 

3.78.1 Description

Generates wind loads on the windwalls of a concrete structure with 4 slopes roof, according to the Eurocodes 1standard.

The structure has 6 concrete columns (R20*30 cross section and C20/25 material) with rigid supports and C20/25concrete walls.

Page 353: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 353/682

  ADVANCE VALIDATION GUIDE

353

3.79 EC1: Generating 2D wind and snow loads on a 2 opposite slopes portal with Z down axis.(TTAD #15094)

Test ID: 6206

Test status: Passed 

3.79.1 Description

Generates 2D wind and snow loads on a 2 opposite slopes portal, according to the Eurocodes 1 - French standard(NF EN 1991-1-4/NA / 1991-1-3/NA), with Z down axis.

3.80 EC1: Generating wind loads on a 3 compound building. (TTAD #13190)

Test ID: 6211

Test status: Passed 

3.80.1 DescriptionGenerates wind loads on a 3 compound building, according to the Eurocodes 1 - French standard (NF EN 1991-1-4/NA).

3.81 EC1: Generating 2D wind loads on a double slope roof with an opening. (TTAD #15328)

Test ID: 6216

Test status: Passed 

3.81.1 Description

Generates 2D wind loads on a double slope roof with an opening, according to the Eurocodes 1 - French standard(NF EN 1991-1-4/NA).

3.82 EC1: Generating wind loads on a double slope with 5 degrees. (TTAD #15307)

Test ID: 6217

Test status: Passed 

3.82.1 Description

Generates wind loads on a double slope with 5 degrees, according to the Eurocodes 1 - French standard (NF EN1991-1-4/NA).

3.83 EC1: Generating wind loads on a 2 horizontal slopes building one higher that the other. (TTAD#13320)

Test ID: 6212

Test status: Passed 

3.83.1 Description

Generates wind loads on a 2 horizontal slopes building one higher that the other, according to the Eurocodes 1 -French standard (NF EN 1991-1-4/NA).

Page 354: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 354/682

 ADVANCE VALIDATION GUIDE

354 

3.84 EC1: Generating snow loads on a custom multiple slope building. (TTAD #14285)

Test ID: 6197

Test status: Passed 

3.84.1 Description

Generates wind loads on a 2 almost horizontal slope building, according to the Eurocodes 1 - French standard (NFEN 1991-1-4/NA).

3.85 EC1: Generating 2D wind loads on a 2 slope isolated roof. (TTAD #14985)

Test ID: 6204

Test status: Passed 

3.85.1 Description

Generates 2D wind loads on a 2 slope isolated roof, according to the Eurocodes 1 - French standard (NF EN 1991-1-4/NA). The depth for one slope is set to 20m and for the other to 40m.

3.86 EC1: Generating 2D wind and snow loads on a 4 slope shed next to a higher one slopecompound. (TTAD #15047)

Test ID: 6205

Test status: Passed 

3.86.1 Description

Generates 2D wind and snow loads on a 4 slope shed next to a higher one slope compound, according to theEurocodes 1 - French standard (NF EN 1991-1-4/NA / 1991-1-3/NA).

3.87 EC1: Generating 2D snow loads on a one horizontal slope portal. (TTAD #14975)

Test ID: 6203

Test status: Passed 

3.87.1 Description

Verifies the generation of 2D snow loads on a one horizontal slope portal.

3.88 EC1: Generating 2D wind loads on a multiple roof portal. (TTAD #15140)

Test ID: 6208

Test status: Passed 

3.88.1 Description

Generates 2D wind loads on a one slope compound next to a higher double slope compound, according to theEurocodes 1 - French standard (NF EN 1991-1-4/NA).

Page 355: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 355/682

 

3.89 EC1: wind load generation on a signboard

Test ID: 3107

Test status: Passed 

3.89.1 Description

Generates wind loads on the windwall of a concrete signboard, according to the Eurocodes 1 standard.

The signboard has concrete elements (R20*30 cross section and C20/25 material) and rigid supports.

3.90 EC1: wind load generation on a building with multispan roofs

Test ID: 3106

Test status: Passed 

3.90.1 Description

Generates wind loads on the windwalls of a concrete structure with multispan roofs, according to the Eurocodes 1standard.

The structure has concrete columns and beams (R20*30 cross section and C20/25 material) and rigid supports.

3.91 EC1: wind load generation on a high building with horizontal roof

Test ID: 3101

Test status: Passed 

3.91.1 Description

Generates wind loads on the windwalls of a concrete structure, according to the Eurocodes 1 standard.

The structure is 63m high, has 4 columns and 4 beams (R20*30 cross section and C20/25 material), rigid supportsand horizontal roof.

3.92 EC1: wind load generation on a simple 3D portal frame with 2 slopes roof (TTAD #11602)

Test ID: 3103

Test status: Passed 

3.92.1 Description

Generates wind loads on the windwalls of a concrete structure with 2 slopes roof, according to the Eurocodes 1standard.

The structure has concrete columns and beams (R20*30 cross section and C20/25 material) and rigid supports.

3.93 EC1: wind load generation on a simple 3D structure with horizontal roof

Test ID: 3099

Test status: Passed 

3.93.1 Description

Generates wind loads on the windwalls of a concrete structure, according to the Eurocodes 1 standard.

The structure has concrete columns and beams (R20*30 cross section and C20/25 material) and horizontal roof.

Page 356: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 356/682

Page 357: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 357/682

 

4 Combinations

Page 358: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 358/682

 ADVANCE VALIDATION GUIDE

358 

4.1 Generating combinations (TTAD #11673)

Test ID: 3471

Test status: Passed 

4.1.1 Description

Generates concomitance between three types of loads applied on a structure (live loads, dead loads and seismicloads - EN 1998-1), using the quadratic combination function. Generates the combinations description report and thepoint support actions by element report.

4.2 Generating load combinations with unfavorable and favorable/unfavorable predominant action(TTAD #11357)

Test ID: 3751

Test status: Passed 

4.2.1 Description

Generates load combinations with unfavorable and favorable/unfavorable predominant action. Predominant action isa case family with 2 static load cases.

4.3 Defining concomitance rules for two case families (TTAD #11355)

Test ID: 3749

Test status: Passed 

4.3.1 Description

Generates live loads and dead loads on a steel structure. Defines the concomitance rules between the two load casefamilies and generates the concomitance matrix.

4.4 Generating combinations for NEWEC8.cbn (TTAD #11431)

Test ID: 3746

Test status: Passed 

4.4.1 Description

Generates combinations for NEWEC8.cbn.

4.5 Generating the concomitance matrix after adding a new dead load case (TTAD #11361)

Test ID: 3766

Test status: Passed 

4.5.1 Description

Creates a new dead load case, after two case families were created, and generates the concomitance matrix. Areport with the combinations description is generated.

Page 359: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 359/682

  ADVANCE VALIDATION GUIDE

359

4.6 Generating load combinations after changing the load case number (TTAD #11359)

Test ID: 3756

Test status: Passed 

4.6.1 Description

Generates load combinations with concomitance matrix after changing the load case number. A report with thecombinations description is generated.

4.7 Performing the combinations concomitance standard test no.7 (DEV2012 #1.7)

Test ID: 4405

Test status: Passed 

4.7.1 Description

Creates loads:

1 - G (Favorable or Unfavorable)

2 - Q (Base or Acco)

3 - G (Favorable or Unfavorable)

4 - Q (Acco)

5 - Acc (Base)

Generates combinations. Generates the combinations report.

4.8 Performing the combinations concomitance standard test no.8 (DEV2012 #1.7)

Test ID: 4407Test status: Passed 

4.8.1 Description

Generates loads:

1 - G (Favorable or Unfavorable)

2 - Q Group(Base or Acco)

2 - Q

3 - Q

4 - Q

5 - Q (Base or Acco)

6 - Snow (Base or Acco)

Generates combinations. Generates the combinations report.

Un-group 2-Q Group to independent 2-Q, 3-Q, 4-Q loads.

Generates combinations. Generates the combinations report.

Page 360: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 360/682

 ADVANCE VALIDATION GUIDE

360 

4.9 Performing the combinations concomitance standard test no.2 (DEV2012 #1.7)

Test ID: 4384

Test status: Passed 

4.9.1 Description

Generates loads:

1 - G (Favorable or Unfavorable)

2 - Q (Base or Acco)

3 - G (Favorable or Unfavorable)

3 - Q (Base)

Generates combinations. Generates the combinations report.

4.10 Performing the combinations concomitance standard test no.1 (DEV2010#1.7)

Test ID: 4382

Test status: Passed 

4.10.1 Description

Generates loads:

1 - G (Favorable or Unfavorable)

2 - Q (Base or Acco)

3 - Q (Acco)

Generates combinations. Generates the combinations report.

4.11 Performing the combinations concomitance standard test no. 5 (DEV2012 #1.7)

Test ID: 4394

Test status: Passed 

4.11.1 Description

Generates loads:

1 - G (Favorable or Unfavorable)

2 - Q (Base or Acco)

3 - E (Base) - only one seismic load !

4 - Q (Base or Acco)

Set value "0" (exclusive) between seismic and all Q loads (seism only combination).

Generates combinations. Generates the combinations report.

Page 361: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 361/682

  ADVANCE VALIDATION GUIDE

361

4.12 Performing the combinations concomitance standard test no.6 (DEV2012 #1.7)

Test ID: 4397

Test status: Passed 

4.12.1 Description

Generates loads:

1 - G (Favorable or Unfavorable)

2 - Q (Base or Acco)

3 - E (Base) - only one seismic load

Generates combinations. Generates the combinations report.

4.13 Performing the combinations concomitance standard test no.4 (DEV2012 #1.7)

Test ID: 4391

Test status: Passed 

4.13.1 Description

Generates loads:

1 - G (Favorable or Unfavorable)

2 - Q (Base)

3 - G (Favorable or Unfavorable)

4 - Q (Base)

Generates combinations. Generates the combinations report.

4.14 Performing the combinations concomitance standard test no.9 (DEV2012 #1.7)

Test ID: 4408

Test status: Passed 

4.14.1 Description

Generates loads:

1 - G (Favorable or Unfavorable)

2 - Q (Base or Acco)

3 - E Group (Base)

3 - EX

4 - EY

5 - EZ

Un-group 3 - E Group to independent loads : 3 - EX 4 - EY 5 - EZ

Generates combinations. Generates the combinations report.

Page 362: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 362/682

 ADVANCE VALIDATION GUIDE

362 

4.15 Performing the combinations concomitance standard test no.10 (DEV2012 #1.7)

Test ID: 4409

Test status: Passed 

4.15.1 Description

Generates loads:

1 - G (Favorable or Unfavorable)

2 - Q (Base or Acco)

3 - E Group (Base)

3 - EX

4 - EY

5 - EZ

Defines the seismic group type as "Quadratic".

Generates the corresponding combinations and the combinations report.

Resets the combination set. Defines the seismic group type as "Newmark".

Generates the corresponding combinations and the combinations report.

4.16 Generating a set of combinations with different Q "Base" types (TTAD #11806)

Test ID: 4357

Test status: Passed 

4.16.1 Description

Generates a set of combinations with different Q "Base" types

1 - G

2 - Q - Base

3 - G

4 - Q -Base or acco

Generates the first set of combinations and the first combinations report.

1 - G

2 - Q - Base

3 - G

4 - Q -BaseGenerates the second set of combinations and the second combinations report.

Page 363: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 363/682

 

363

4.17 Performing the combinations concomitance standard test no.3 (DEV2012 #1.7)

Test ID: 4386

Test status: Passed 

4.17.1 Description

Generates loads:

1 - G (Favorable or Unfavorable)

2 - Q (Base or Acco)

3 - G (Favorable or Unfavorable)

4 - Q (Base or Acco)

Generates combinations. Generates the combinations report.

4.18 Generating a set of combinations with Q group of loads (TTAD #11960)

Test ID: 4353

Test status: Passed 

4.18.1 Description

Generates a set of combinations with Q group of loads.

4.19 Generating the concomitance matrix after switching back the effect for live load (TTAD #11806)

Test ID: 4219

Test status: Passed 

4.19.1 Description

Generates the concomitance matrix and the combinations description reports after switching back the effect for liveload.

4.20 Generating a set of combinations with seismic group of loads (TTAD #11889)

Test ID: 4350

Test status: Passed 

4.20.1 Description

Generates a set of combinations with seismic group of loads.

4.21 Verifying combinations for CZ localization (TTAD #12542)

Test ID: 4550

Test status: Passed 

4.21.1 Description

Verifies simplified combinations for CZ localization.

Page 364: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 364/682

Page 365: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 365/682

 

5 Concrete Design

Page 366: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 366/682

 ADVANCE VALIDATION GUIDE

366 

5.1 EC2: Verifying the transverse reinforcement area for a beam subjected to linear loads

Test ID: 4555

Test status: Passed 

5.1.1 Description

Verifies the transverse reinforcement area for a beam subjected to linear loads. The verification is made according toEC2 norm with French Annex.

5.2 EC2: Verifying the longitudinal reinforcement area of a beam under a linear load - bilinearstress-strain diagram

Test ID: 4541

Test status: Passed 

5.2.1 Description

Verifies the longitudinal reinforcement area of a simply supported beam under a linear load - bilinear stress-straindiagram.

Verification is done according to Eurocodes 2 norm with French Annex.

5.3 Modifying the "Design experts" properties for concrete linear elements (TTAD #12498)

Test ID: 4542

Test status: Passed 

5.3.1 Description

Defines the "Design experts" properties for a concrete (EC2) linear element in analysis model and verifies propertiesfrom descriptive model.

5.4 EC2: Verifying the longitudinal reinforcement area of a beam under a linear load - horizontallevel behavior law

Test ID: 4557

Test status: Passed 

5.4.1 Description

Verifies the longitudinal reinforcement area of a beam under self-weight and linear loads - horizontal level behaviorlaw. The verification is made according to EC2 norm with French Annex.

5.5 EC2: Verifying the longitudinal reinforcement area of a beam under a linear load - inclinedstress strain behavior law

Test ID: 4522

Test status: Passed 

5.5.1 Description

Verifies the longitudinal reinforcement area of a beam under a linear load - inclined stress strain behavior law.

Verification is done according to Eurocodes 2 norm with French Annex.

Page 367: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 367/682

  ADVANCE VALIDATION GUIDE

367

5.6 EC2: Verifying the longitudinal reinforcement area for a beam subjected to point loads

Test ID: 4527

Test status: Passed 

5.6.1 Description

Verifies the longitudinal reinforcement area for a beam subjected to point loads (applied at the middle of the beam).

The verification is performed according to EC2 norm with French Annex.

5.7 EC2: Verifying the longitudinal reinforcement area of a beam under a linear load

Test ID: 4519

Test status: Passed 

5.7.1 Description

Verifies the longitudinal reinforcement area of a beam under a linear load (horizontal level behavior law).

Verification is done with Eurocodes 2 norm French Annex.

5.8 EC2: Verifying the minimum reinforcement area for a simply supported beam

Test ID: 4517

Test status: Passed 

5.8.1 Description

Verifies the minimum reinforcement area for a simply supported concrete beam subjected to self weight. Theverification is made with Eurocodes 2 - French annex.

Page 368: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 368/682

 ADVANCE VALIDATION GUIDE

368 

5.9 EC2 Test 2: Verifying a rectangular concrete beam subjected to a uniformly distributed load,without compressed reinforcement - Bilinear stress-strain diagram

Test ID: 4970

Test status: Passed 

5.9.1 Description

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the determination of stresses is made along with the determination of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

5.9.2 Background

Simple Bending Design for Ultimate Limit State

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the calculation of stresses will be made along with the calculation of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

5.9.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 15 kN/m + dead load,

■  Exploitation loadings (category A): Q = 20kN/m,

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.3 x Q

Simply supported beam

Units

Metric System

Page 369: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 369/682

  ADVANCE VALIDATION GUIDE

369

Geometry

Beam cross section characteristics:

■  Height: h = 0.60 m,

■  Width: b = 0.25 m,

■  Length: L = 5.80 m,

■  Section area: A = 0.15 m2 ,

■  Concrete cover: c=4.5cm

■  Effective height: d=h-(0.6*h+ebz)=0.519m; d’=ebz=0.045m

Materials properties

Rectangular solid concrete C25/30 and S500A reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XD1

■  Concrete density: 25kN/m3 

■  Stress-strain law for reinforcement: Bilinear stress-strain diagram

■  Cracking calculation required

■  Concrete C25/30: MPa,,

f f 

c

ckcd   6716

51

25

γ

  According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.6(1); 4.4.2.4(1); Table 2.1.N

■  MPa.*.f *.f  //ckctm   56225300300   3232  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

■  Steel S500 : MPa,,

f f 

s

ykyd   78434

151

500

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.2

■  MPa*f 

*E

..

ckcm   3147610

8252200010

822000

3030

 

  

     

  

     

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

 

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x = 0) restrained in translation along X, Y and Z,

►  Support at end point (x = 5.80) restrained in translation along Y, Z and restrained in rotationalong X.

■  Inner: None.

Page 370: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 370/682

 ADVANCE VALIDATION GUIDE

370 

Loading

The beam is subjected to the following load combinations:

■  Permanent loads:

G’=0.25*0.6*2.5=3.75kN/ml

■  Load combinations:The ultimate limit state (ULS) combination is:

Cmax = 1.35 x G + 1.5 x Q=1.35*(15+3.75)+1.5*20=55.31kN/ml

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=15+3.75+20=38.75kN/ml

Quasi-permanent combination of actions:

CQP = 1.0 x G + 0.3 x Q=15+3.75+0.3*20=24.75kN/ml

■  Load calculations:

mkN  M  Ed    .59,232

8

²80,5*31,55

 

mkN  M  Ecq   .94,1628

²80,5*75,38

 

mkN  M  Eqp   .07,1048

²80,5*75,24  

Page 371: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 371/682

  ADVANCE VALIDATION GUIDE

371

5.9.2.2 Reference results in calculating the equivalent coefficient

To determine the equivalence coefficient, we must first estimate the creep coefficient, related to elastic deformation at28 days and 50% humidity:

)t(*)f (*)t,( cmRH   00   ββ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.2

9252825

816816β .

.

.)f (

cm

cm  

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.4

48802810

1

10

2002000

0 ..t.

)t(..

 

  at t0=28 days

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.5

The value of the φRH coefficient depends of the concrete quality:

213

0

αα10

100

1

1 **h*.

RH

RH

 

 

 

 

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.3a

1αα 21     if MPaf CM   35  

If not:

70

135

α

.

cmf     

  

    and

20

235

α

.

cmf     

  

   

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.8c

In this case: 1αα338 21   MpaMpaf f  ckcm  

8914717610

100

501

1471766002502

60025022

30 ..*.

mm.)(*

**

u

 Ac*h RH  

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.6

70248809252891ββ 00 ..*.*.)t(*)f (*)t,( cmRH    

The coefficient of equivalence is determined by the following formula:

Ecar 

Eqp

cm

se

M

M*)t,(

E

E

01

α

 

Defined earlier:

 

m.kN,²,*,

MEcar    941628

8057538  

m.kN,²,*,

MEqp   071048

8057524  

This gives:

32.17

94.16207.104*70.21

31476

200000

e   

Page 372: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 372/682

 ADVANCE VALIDATION GUIDE

372 

5.9.2.3 Reference results in calculating the concrete beam reduced moment limit

Due to exposure class XD1, we will verify the section having non-compressed steel reinforcement, determining thereduced moment limit, using the formula defined by Jeans Roux in his book “Practice of EC2”:

This value can be determined by the next formula if  MPa f  ck    50 valid for a constitutive law to horizontal plateau:

)*..(f *)*..(f *)(K

ck

ckeluc

γ207690159γ701694αμ

 

  24αα10α eee *c*ba*K      

The values of the coefficients "a", "b" and "c" are defined in the following table:

Diagram for inclined tier Diagram for horizontal plateau

a 8,189*3,75   ck  f   

108*2,71   ck  f   

b 5,874*6,5     ck  f   

4,847*2,5     ck  f   

c 13*04,0   ck  f   

5,12*03,0   ck  f   

This gives us:

■  188810825*2,71   a  

■  4.7174,84725*2,5   b  

■  75.115,1225*03,0   c  

■    079.1²27.17*75.1127.17*4.717188810   4   e K     

Then:

■  43,1

94,162

58,232   

■  2504.0)*20.7690.159(*)*70.169.4(

).(  

  

  ck 

ck eluc

 f  

 f   K 

 

Reference reinforcement calculation at SLU:

The calculation of the reinforcement is detailed below:

■  Effective height: d=0.9*h=0.53m

■  Calculation of reduced moment:

207,067,16*²519,0*25,0

233,0

*²*

cd w

 Ed 

cu  f  d b

 M  

 

■  Calculation of the lever arm zc:

md  z  uc   458,0)294,0*4,01(*519,0)*4,01(*       

■  Calculation of the reinforcement area:

Page 373: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 373/682

  ADVANCE VALIDATION GUIDE

373

Reference reinforcement calculation at SLS:

We will also conduct a SLS design to ensure that we do not get an upper section of longitudinal reinforcement.

We must determine the position of the neutral axis by calculating (position corresponding to the state of maximum

stress on the concrete and reinforcement).

■  3940400153217

153217σσα

σαα1 ,*.

*.*

*sce

ce

 

  rbcq ser    M kNm M    163,  there in no compressed steel reinforcement. This confirms what we previously

found by determining the critical moment limit depending on the coefficient of equivalence and .

Then we calculate the reinforcement resulted from the SLS efforts (assuming the maximum constrain is reached onsteel and concrete):

■  Neutral axes position :394,01  

 

■  Lever arm : md  z c   451.0

3

394.01*519.0

3

1*   1

 

 

 

 

 

 

 

 

    

■  Reinforcement section : ²03.9400*451.0

163.0

*,1   cm

 z 

 M  A

 sc

 Ecq

 ser  s    

 

This shows that the tensile reinforcement obtained in SLS are not dimensioning compared to SLU.

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

■ 

d*b*.

d*b*f 

f *.

Max A

w

wyk

eff ,ct

min,s

00130

260 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2

Where:

MPa.f f  ctmeff ,ct   562  from cracking conditions

Therefore:

► 

²cm.

²m*..*.*.

²m*..*.*.

*.max A min,s   731

10701519025000130

107315190250500

562260

4

4

 

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Page 374: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 374/682

 ADVANCE VALIDATION GUIDE

374 

ULS and SLS load combinations(kNm)

Simply supported beam subjected to bending

ULS (reference value: 232.59kNm)

SLS (reference value: 162.94kNm)

Theoretical reinforcement area(cm2  )

(reference value: 11.68cm2)

Minimum reinforcement area(cm2  )

(reference value: 1.73cm2)

5.9.2.4 Reference results

Result name Result description Reference value

My,ULS My corresponding to the 101 combination (ULS) [kNm] 232.59 kNm

My,SLS My corresponding to the 102 combination (SLS) [kNm] 162.94 kNm

 Az Theoretical reinforcement area [cm2] 11.68 cm

2

 Amin Minimum reinforcement area [cm2] 1.73 cm

2

Page 375: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 375/682

  ADVANCE VALIDATION GUIDE

375

5.9.3 Calculated results

Result name Result description Value Error

My My USL -232.578 kN*m -0.0001 %

My My SLS -162.936 kN*m 0.0001 %

 Az Az -11.6779 cm² 0.0004 %

 Amin Amin -1.73058 cm² -0.0001 %

Page 376: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 376/682

 ADVANCE VALIDATION GUIDE

376 

5.10 EC2 Test 4 I: Verifying a rectangular concrete beam subjected to Pivot A efforts – Inclinedstress-strain diagram

Test ID: 4977

Test status: Passed 

5.10.1 Description

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the determination of stresses is made along with the determination of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

The purpose of this test is to verify the software results for Pivot A efforts. For these tests, the constitutive law forreinforcement steel, on the inclined stress-strain diagram is applied.

The objective is to verify:

- The stresses results

- The longitudinal reinforcement corresponding to Class A reinforcement steel ductility

- The minimum reinforcement percentage

5.10.2 Background

This test performs the verification of the  value (hence the position of the neutral axis) to determine the Pivot efforts(A or B) to be considered for the calculations.

The distinction between the Pivot A and Pivot B efforts is from the following diagram:

d d d 

 x

cuud 

cuu

cuud 

cuu  ..x 2

2

2

2

  

  

  

  

 

The limit for  depends of the ductility class:

■  For a Class A steel: 13460α5022ε .. uud    

■  For a Class B steel: 0720α45ε .uud    

■  For a Class C steel: 0490α5067ε .. uud  

 

The purpose of this test is to verify the software results for Pivot A efforts. For these tests, it will be used theconstitutive law for reinforcement steel, on the inclined stress-strain diagram.

 MPa AS   su su   454.38,95271,432500         

 MPa BS   su su   466.27,72771,432500         

 MPaC S   su su   493.52,89571,432500         

Page 377: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 377/682

  ADVANCE VALIDATION GUIDE

377

The Pivot efforts types are described below:

■  Pivot A: Simple traction and simple bending or combined

■  Pivot B: Simple or combined bending

■  Pivot C: Combined bending with compression and simple compression

5.10.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 25 kN/m+ dead load,

■  Exploitation loadings (category A): Q = 50kN/m,

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  There will be considered a Class A reinforcement steel

■  The calculation will be made considering inclined stress-strain diagram

The objective is to verify:

■  The stresses results

■  The longitudinal reinforcement corresponding to Class A reinforcement steel ductility

■  The minimum reinforcement percentage

Page 378: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 378/682

 ADVANCE VALIDATION GUIDE

378 

Simply supported beam

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.90 m,

■  Width: b = 0.50 m,

■  Length: L = 5.80 m,

■  Section area: A = 0.45 m2 ,

■  Concrete cover: c = 4.00 cm

■  Effective height: d = h - (0.6 * h + ebz)=0.806 m; d’ = ebz = 0.040 m

Materials properties

Rectangular solid concrete C25/30 and S500B reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XC1

■  Concrete density: 25kN/m3 

■  There will be considered a Class A reinforcement steel ductility

■  The calculation will be made considering inclined stress-strain diagram

■  Cracking calculation required

■  Concrete C25/30: MPa,,

f f 

c

ckcd   6716

51

25

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.6(1); 4.4.2.4(1); Table 2.1.N

■  MPa.*.f *.f  //ckctm

  56225300300   3232  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

■  Steel S500 : MPa,,

f f 

s

ykyd   78434

151

500

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.2

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 5.8) restrained in translation along Y and Z, and restrained rotationalong X.

■  Inner: None.

Page 379: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 379/682

  ADVANCE VALIDATION GUIDE

379

Loading

The beam is subjected to the following load combinations:

Dead load:

G’=0.9*0.5*2.5=11.25 kN/ml

Load combinations:

■  The ultimate limit state (ULS) combination is:

Cmax = 1.35 x G + 1.5 x Q=1.35*(25+11.25)+1.5*50=123.94 kN/ml

■  Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=25+11.25+50=86.25kN/ml

■  Load calculations:

kNm M  Ed    16.5218

²80.5*94.123

 

kNm M  Ecq   68.3628

²80.5*25.86

 

5.10.2.2 Reference results in calculating the concrete beam reduced moment limit

For a S500B reinforcement steel, we have 372.0lu  (since we consider no limit on the compression concrete to

SLS).

Reference reinforcement calculation:

The calculation of the reinforcement is detailed below:

■  Effective height: d=h-(0.6*h+ebz)=0.806 m

■  Calculation of reduced moment:

096,067,16*²806.0*50,0

10*52116.0

*²*   2

3

 MPamm

 Nm

 f  d b

 M 

cd w

 Ed 

cu

 

 

■  The α value:

■  The condition: 13460αα .ucu    is satisfied, therefore the Pivot A effort conditions are true

There will be a design in simple bending, by considering an extension on the reinforced steel tension equal to

  5022ε .ud

, which gives the following available stress:

■  MPa.,, AS su   454022503895271432σ500    

Page 380: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 380/682

 ADVANCE VALIDATION GUIDE

380 

The calculation of the concrete shortening:

  27.3

127.01

127.0*50.22

1*

cu

cu sucu

 

   

 

It is therefore quite correct to consider a design stress of concrete equal to cd  f   .

md  z  cuc   765.0)127.0*4.01(*806.0)*4,01(*       

²00.15454*765.0

52116.0

*cm

 f   z 

 M  A

 yd c

 Ed u  

 

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

d b

d b f  

 f  

 Max A

w

w

 yk 

eff  ct 

 s

**0013.0

***26.0  ,

min,

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2

Where:

 MPa f   f   ctmeff  ct    56.2,    from cracking conditions

Therefore:

²38.5

²10*24.5806.0*50.0*0013.0

²10*38.5806.0*50.0*500

56.2*26.0

max4

4

min,   cm

m

m A s

 

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Page 381: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 381/682

  ADVANCE VALIDATION GUIDE

381

ULS and SLS load combinations (kNm)

Simply supported beam subjected to bending

ULS (reference value: 521.16kNm)

SLS (reference value: 362.68kNm)

Theoretical reinforcement area (cm2  )

For Class A reinforcement steel ductility (reference value: A=15.00cm2)

Minimum reinforcement area(cm2  )

(reference value: 5.38cm2)

Page 382: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 382/682

 ADVANCE VALIDATION GUIDE

382 

5.10.2.3 Reference results

Result name Result description Reference value

My,ULS My corresponding to the 101 combination (ULS) [kNm] 521.16 kNm

My,SLS My corresponding to the 102 combination (SLS) [kNm] 362.68 kNm

 Az  Theoretical reinforcement area (Class A) [cm2] 15.00 cm

2

 Amin Minimum reinforcement area [cm2] 5.38 cm2

5.10.3 Calculated results

Result name Result description Value Error

My My USL -521.125 kN*m 0.0000 %

My My SLS -362.657 kN*m -0.0001 %

 Az Az Class A -14.9973 cm² -0.0001 %

 Az Az Class B -14.9973 cm² 0.7491 % Amin Amin -5.37514 cm² 0.0000 %

Page 383: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 383/682

  ADVANCE VALIDATION GUIDE

383

5.11 EC2 Test 6: Verifying a T concrete section, without compressed reinforcement- Bilinear stress-strain diagram

Test ID: 4979

Test status: Passed 

5.11.1 Description

The purpose of this test is to verify the software results for the My resulted stresses for the USL load combination andfor the results of the theoretical reinforcement area Az.

5.11.2 Background

This test performs the verification of the theoretical reinforcement area for the T concrete beam subjected to thedefined loads. The test confirms the absence of the compressed reinforcement for this model.

5.11.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 45 kN/m

■  Exploitation loadings (category A): Q = 37.4kN/m,

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■ 

■  Reinforcement steel ductility: Class B

■  The calculation is made considering bilinear stress-strain diagram

The objective is to verify:

■  The theoretical reinforcement area results

Simply supported beam

Page 384: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 384/682

 ADVANCE VALIDATION GUIDE

384 

Units

Metric System

Geometry

Beam cross section characteristics:

■  Beam length: 8m■  Concrete cover: c=3.50 cm

■  Effective height: d=h-(0.6*h+ebz)=0.435 m; d’=ebz=0.035m

Materials properties

Rectangular solid concrete C25/30 and S500B reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XC1

■  Concrete density: 25kN/m3 

■  Reinforcement steel ductility: Class B

■  The calculation is made considering bilinear stress-strain diagram

■  Concrete C25/30:  MPa f   f  c

ck cd    67.10

5,125

  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.6(1); 4.4.2.4(1); Table 2.1.N

■   MPa f   f   ck ctm   56.225*30.0*30.0   3/23/2  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

■  Steel S500B :  MPa f  

 f   s

 yk 

 yd    78.43415,1

500

  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.2

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 8) restrained in translation along Y and Z, and restrained rotationalong X.

■  Inner: None.

Page 385: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 385/682

  ADVANCE VALIDATION GUIDE

385

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

Cmax = 1.35 x G + 1.5 x Q=1.35*45+1.5*37.4=116.85kN/ml

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=45+34.7=79.7kN/ml

■  Load calculations:

kNm M  Ed    8.9348

²8*85.116

 

5.11.2.2 Reference results in calculating the concrete beam moment

 At first it will be determined the moment resistance of the concrete section only:

kNm f  hd hb M  cd  f  

 f  eff  btu   967.16*215.0435.0*15.0*00.1*

2**       

  

    

Comparing Mbtu with MEd:

Therefore, the concrete section is not entirely compressed;

Therefore, the calculations considering the T section are required.

5.11.2.3 Reference reinforcement calculation:

Theoretical section 2:The moment corresponding to this section is:

kNm

hd  f  hbb M 

  f  

cd  f  weff   Ed 

720

2

15.0435.0*67.16*15.0*)20.01(

2***)(2

 

  

   

  

 

 

 According to this value, the steel section is:

²00.46

8.347*

2

15.0435.0

720.0

*

2

22   cm

 f  h

 M  A

 yd 

 f  

 Ed 

 

 

 

 

 

 

 

 

 

Theoretical section 1:

The theoretical section 1 corresponds to a calculation for a rectangular shape beam section.

kNm M  M  M   Ed  Ed  Ed    21572093521    

341.067.16*²435.0*20.0

215.0

*²*

1 cd w

 Ed cu

 F d b

 M    

kNm M kNm M   Ed btu   8.934900  

Page 386: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 386/682

 ADVANCE VALIDATION GUIDE

386 

For a S500B reinforcement and for a XC1 exposure class, there will be a: 3720μμ .lucu   , therefore there will be no

compressed reinforcement (the compression concrete limit is not exceeded because of the exposure class)

There will be a calculation without considering compressed reinforcement:

  544.0341.0*211*25.1)*21(1*25.1     cuu       

md  z  uc   340.0)544.0*40.01(*435.0)*4.01(*1        

²52.1478.347*340.0

215.0

*1

11   cm

 f   z 

 M  A

 yd c

 Ed   

Theoretical section 1:

In conclusion, the entire reinforcement steel area is A=A1+A2=46+14.52=60.52cm2 

Finite elements modeling

■  Linear element: S beam,

■  9 nodes,

■  1 linear element.

ULS load combinations(kNm)

Simply supported beam subjected to bending

Theoretical reinforcement area(cm2  )

For Class B reinforcement steel ductility (reference value: A=60.52cm2)

5.11.2.4 Reference results

Result name Result description Reference value

 Az (Class B) Theoretical reinforcement area [cm2] 60.52 cm

2

5.11.3 Calculated results

Result name Result description Value Error

 Az Az -60.5167 cm² 0.0001 %

Page 387: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 387/682

  ADVANCE VALIDATION GUIDE

387

5.12 EC2 Test 5: Verifying a T concrete section, without compressed reinforcement - Bilinearstress-strain diagram

Test ID: 4978

Test status: Passed 

5.12.1 Description

Verifies a T concrete section, without compressed reinforcement - Bilinear stress-strain diagram.

The purpose of this test is to verify the My resulted stresses for the USL load combination and the results of thetheoretical reinforcement area Az.

The objective is to verify:

- The stresses results

- The theoretical reinforcement area results

5.12.2 Background

This test performs the verification of the theoretical reinforcement area for the T concrete beam subjected to thedefined loads. The test confirms the absence of the compressed reinforcement for this model.

5.12.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 52.3 kN/m

■  Exploitation loadings (category A): Q = 13kN/m,

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Reinforcement steel ductility: Class B

■  The calculation is made considering bilinear stress-strain diagram

The objective is to verify:

■  The stresses results

■  The theoretical reinforcement area results

Simply supported beam

Page 388: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 388/682

 ADVANCE VALIDATION GUIDE

388 

Units

Metric System

Geometry

Beam cross section characteristics:

■  Beam length: 7m

■  Concrete cover: c=3.50 cm

■  Effective height: d=h-(0.6*h+ebz)=0.595 m; d’=ebz=0.035m

Materials properties

Rectangular solid concrete C16/20 and S400B reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XC1

■  Concrete density: 16kN/m3 

■  Reinforcement steel ductility: Class A

■  The calculation is made considering bilinear stress-strain diagram

■  Concrete C16/20:  MPa f  

 f  c

ck cd    67.10

5,1

16

 

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.6(1); 4.4.2.4(1); Table 2.1.N

■  MPa.*.f *.f  //ckctm

  90116300300   3232  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

■  Steel S400B :  MPa f  

 f   s

 yk 

 yd    8.34715,1

400

  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.2

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 7) restrained in translation along Y and Z, and restrained rotationalong X.

■  Inner: None.

Page 389: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 389/682

  ADVANCE VALIDATION GUIDE

389

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

Cmax = 1.35 x G + 1.5 x Q=1.35*352.3+1.5*13=90.105kN/ml

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=52.3+13=65.3kN/ml

Load calculations:

kNm M  Ed    89.5518

²7*105.70

 

kNm M  Ecq   96.3998

²7*3.65

 

5.12.2.2 Reference results in calculating the concrete beam moment At first, it will be determined the moment resistance of the concrete section only:

kNm,*,

,*,*,f *h

d*h*bM cdf 

f eff btu   52367102

100595010090

2

 

  

 

 

  

   

Comparing Mbtu with MEd:

Therefore the concrete section is not entirely compressed;

Therefore, calculations considering the T section are required.

5.12.2.3 Reference reinforcement calculation:

Theoretical section 2:

■  The moment corresponding to this section is:

 MNm

hd  f  hbb M 

  f  

cd  f  weff   Ed 

418.0

2

1.00595*67.10*1.0*)18.09.0(

2***)(2

 

  

   

  

 

 

■  According to this value, the steel section is:

²08.22

8.347*21.0595.0

418.0

*2

22   cm

 f  hd 

 M  A

 yd  f  

 Ed 

    

  

  

 

kNm M kNm M   Ed btu   89.551523  

Page 390: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 390/682

 ADVANCE VALIDATION GUIDE

390 

Theoretical section 1:

The theoretical section 1 corresponds to a calculation for a rectangular shape beam section

kNm M  M  M   Ed  Ed  Ed    133418.0552.021    

197.067.10*²595.0*18.0

133.0

*²*

1

cd w

 Ed 

cu  F d b

 M 

   

For a S400B reinforcement and for a XC1 exposure class, there will be a: 3720μμ .lucu   , therefore there will be no

compressed reinforcement.

There will be a calculation without compressed reinforcement:

  276.0197.0*211*25.1)*21(1*25.1     cuu      

md  z  uc   529.0)276.0*40.01(*595.0)*4.01(*1       

²25.78.347*529.0

133.0

*1

11   cm

 f   z 

 M  A

 yd c

 Ed 

 

Theoretical section 1:

In conclusion the entire reinforcement steel area is A=A1+A2=7.25+22.08=29.33cm2 

Finite elements modeling

■  Linear element: S beam,

■  8 nodes,

■  1 linear element.

ULS and SLS load combinations(kNm)

Simply supported beam subjected to bending

ULS (reference value: 552kNm)

Theoretical reinforcement area(cm2  )

For Class B reinforcement steel ductility (reference value: A=29.33cm2)

Page 391: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 391/682

  ADVANCE VALIDATION GUIDE

391

5.12.2.4 Reference results

Result name Result description Reference value

My,ULS My corresponding to the 101 combination (ULS) [kNm] 552 kNm

 Az (Class B) Theoretical reinforcement area [cm2] 29.33 cm

2

5.12.3 Calculated results

Result name Result description Value Error

My My USL -551.893 kN*m -0.0000 %

 Az Az -29.3334 cm² 0.0002 %

Page 392: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 392/682

 ADVANCE VALIDATION GUIDE

392 

5.13 EC2 Test 8: Verifying a rectangular concrete beam without compressed reinforcement –Inclined stress-strain diagram

Test ID: 4981

Test status: Passed 

5.13.1 Description

Verifies the adequacy of a rectangular cross section made from concrete C30/37 to resist simple bending. During thistest, the determination of stresses is made along with the determination of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

The purpose of the test is to verify the results using a constitutive law for reinforcement steel, on the inclined stress-strain diagram.

The objective is to verify:

- The stresses results

- The longitudinal reinforcement corresponding to Class A reinforcement steel ductility

- The minimum reinforcement percentage

5.13.2 Background

Verifies the adequacy of a rectangular cross section made from concrete C30/37 to resist simple bending. During thistest, the calculation of stresses is made along with the calculation of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

The purpose of this test is to verify the software results for using a constitutive law for reinforcement steel, on theinclined stress-strain diagram.

5.13.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 25 kN/m (including the dead load)

■  Exploitation loadings (category A): Q = 30kN/m,

■ 

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.6 x Q

■  Reinforcement steel: Class A

■  The calculation is performed considering inclined stress-strain diagram

■  Cracking calculation required

The objective is to verify:

■  The stresses results

■  The longitudinal reinforcement corresponding to doth Class A reinforcement steel ductility

■  The minimum reinforcement percentage

Page 393: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 393/682

  ADVANCE VALIDATION GUIDE

393

Simply supported beam

Units

Metric System

Geometry

Beam cross section characteristics:

■  Height: h = 0.65 m,

■  Width: b = 0.28 m,

■  Length: L = 6.40 m,

■  Section area: A = 0.182 m2 ,

■  Concrete cover: c=4.50 cm

■  Effective height: d=h-(0.6*h+ebz)=0.806 m; d’=ebz=0.045m

Materials properties

Rectangular solid concrete C30/37 and S500A reinforcement steel is used. The following characteristics are used in

relation to this material:

■  Exposure class XD3

■  Concrete density: 25kN/m3 

■  Reinforcement steel ductility: Class A

■  The calculation is performed considering inclined stress-strain diagram

■  Cracking calculation required

■  Concrete C25/30:  MPa f  

 f  c

ck cd    20

5,1

30

  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.6(1); 4.4.2.4(1); Table 2.1.N

■   MPa f   f   ck ctm   90.230*30.0*30.0   3/23/2  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

■  MPa*f 

*E

..ck

cm   3283710

83022000

10

822000

3030

 

  

   

 

  

     

■  Steel S500 : MPa,,

f f 

s

ykyd   78434

151

500

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.2

Page 394: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 394/682

 ADVANCE VALIDATION GUIDE

394 

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 6.40) restrained in translation along Y and Z, and restrained rotationalong X.

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

Cmax = 1.35 x G + 1.5 x Q=1.35*(25)+1.5*30=78.75kN/ml

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=25+30=55kN/ml

Quasi-permanent combination of actions:

CQP = 1.0 x G + 0.6 x Q=25+0.6*30=43kNm

■  Load calculations:

kNm M  Ed    20.4038

²40.6*75.78

 

kNm M  Ecq   60.2818

²40.6*55

 

kNm M  Eqp   16.2208

²40.6*43

 

Page 395: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 395/682

  ADVANCE VALIDATION GUIDE

395

5.13.2.2 Reference results in calculating the equivalent coefficient

To determine the equivalence coefficient, we must first estimate the creep coefficient, related to elastic deformation at28 days and 50% humidity:

)(*)(*),( 00   t  f  t  cm RH            

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.2

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.4

at t0=28 days

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.5

The value of the φRH coefficient depends of the concrete quality:

213

0

αα10

1001

1 **h*.

RH

RH

 

 

 

   

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.3a

1αα 21    if MPaf CM   35  

If not:

70

135

α

.

cmf     

  

   and

20

235

α

.

cmf     

  

   

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.8c

In this case, MpaMpaf f  ckcm   388    

944038

3535α

7070

1 .f 

..

cm

 

  

 

 

  

   

984038

3535α

2020

2 .f 

..

cm

 

  

 

 

  

   

7819840719510

100

501

171956502802

65028022

30 ..*.*.

mm.)(*

**

u

 Ac*h RH  

 

 

 

 

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.6

3724880732781ββ 00 ..*.*.)t(*)f (*)t,( cmRH    

The coefficient of equivalence is determined using the following formula:

4017

60281

162203721

32837

200000

1

α

0

.

.

.*.

M

M*)t,(

E

E

Ecar 

Eqp

cm

se  

 

Page 396: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 396/682

 ADVANCE VALIDATION GUIDE

396 

5.13.2.3 Reference results in calculating the concrete beam reduced moment limit

Due to exposure class XD3, we will verify the section having non-compressed steel reinforcement, determining thereduced moment limit, using the formula defined by Jeans Roux in his book “Practice of EC2”:

This value can be determined by the next formula if  MPa f  ck    50 and valid for a constitutive law considering

inclined stress-strain diagram:

)*62.7969.165(*)*66.162.4(*)(

    

ck 

ck eluc

 f  

 f   K   

  24 ***10 eee   cba K             

The values of the coefficients "a", "b" and "c" are defined in the following table:

Diagram for inclined stress-strain diagram Diagram for bilinear stress-strain diagram

a 8,189*3,75   ck  f   

108*2,71   ck  f   

b 5,874*6,5     ck  f   

4,847*2,5     ck  f   

c 13*04,0   ck  f   

5,12*03,0   ck  f   

This gives us:

22069818925375 ..*.a    

570658743025 ..*,b    

8111330040 .*,c    

  087.1²60.17*80.1160.17*5.7062.206910   4   e K   

 

Then:

425,12.307

76.437   

272.0)*62.7969.165(*)*66.162.4(

).(  

  

  ck 

ck eluc

 f  

 f   K 

 

Calculation of reduced moment:

225,020*²566.0*50,0

10*403.0

*²*   2

3

 MPamm

 Nm

 f  d b

 M 

cd w

 Ed cu 

 

272.0225.0     luccu  therefore, there is no compressed reinforcement

Reference reinforcement calculation at SLS:

The calculation of the reinforcement is detailed below:

■  Effective height: d = 0.566m

■  Calculation of reduced moment:

225.0cu  

■  Calculation of the lever arm zc:

md  z  uc   493,0)323,0*4,01(*566,0)*4,01(*       

Page 397: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 397/682

  ADVANCE VALIDATION GUIDE

397

■  Calculation of the reinforcement area:

²68,11²10*68,1178,434*458,0

233,0

*

4 cmm f   z 

 M  A

 yd c

 Ed u    

 

■  Calculation of the stresses from the tensioned reinforcement:

Reinforcement steel elongation:

35.75.3*323,0

323,01*

12  

  cu

u

u su    

 

   ‰

Tensioned reinforcement efforts:

 MPa MPa su su   45471.43900735.0*38,95271,432*38,95271,432        

■  Reinforcement section calculation:

²60.18²10*60.1871.439*493.0

403.0

*

4 cmm f   z 

 M  A

 yd c

 Ed u    

 

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

d*b*.

d*b*f 

f *.

Max A

w

wyk

eff ,ct

min,s

00130

260 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2

Where:

MPa.f f  ctmeff ,ct   902  from cracking conditions

Therefore:

²39.2

²10*06.2566.0*28.0*0013.0

²10*39.2566.0*28.0*500

90.2*26.0

max4

4

min,   cm

m

m A s

 

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Page 398: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 398/682

 ADVANCE VALIDATION GUIDE

398 

ULS and SLS load combinations (kNm)

Simply supported beam subjected to bending

ULS (reference value: 403.20kNm)

SLS (reference value: 281.60kNm)

Theoretical reinforcement area(cm2  )

For Class A reinforcement steel ductility (reference value: A=18.60cm2)

Minimum reinforcement area(cm2  )

(reference value: 2.39cm2)

Page 399: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 399/682

  ADVANCE VALIDATION GUIDE

399

5.13.2.4 Reference results

Result name Result description Reference value

My,ULS My corresponding to the 101 combination (ULS) [kNm] 403.20 kNm

My,SLS My corresponding to the 102 combination (SLS) [kNm] 281.60 kNm

 Az (Class A) Theoretical reinforcement area [cm2] 18.60 cm2

 Amin Minimum reinforcement area [cm2] 2.39 cm

2

5.13.3 Calculated results

Result name Result description Value Error

My My USL -403.2 kN*m 0.0000 %

My My SLS -281.6 kN*m 0.0000 %

 Az Az -18.6006 cm² -0.0001 %

 Amin Amin -2.38697 cm² 0.0001 %

Page 400: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 400/682

 ADVANCE VALIDATION GUIDE

400 

5.14 EC2 Test 9: Verifying a rectangular concrete beam with compressed reinforcement – Inclinedstress-strain diagram

Test ID: 4982

Test status: Passed 

5.14.1 Description

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the determination of stresses is made along with the determination of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

For these tests, the constitutive law for reinforcement steel, on the inclined stress-strain diagram is applied.

This test performs the verification of the theoretical reinforcement area for a rectangular concrete beam subjected tothe defined loads. The test confirms the presence of the compressed reinforcement for this model.

5.14.2 Background

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the calculation of stresses, the calculation of the longitudinal reinforcement and the verification of the minimumreinforcement percentage are performed.

For these tests, the constitutive law for reinforcement steel, on the inclined stress-strain diagram is applied.

This test performs the verification of the theoretical reinforcement area for a rectangular concrete beam subjected tothe defined loads. The test confirms the presence of the compressed reinforcement for this model.

5.14.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Linear loadings :

Loadings from the structure: G = 55 kN/m+ dead load,

Live loads: Q=60kN/m

■  Point loads:

Loadings from the structure: G = 35kN;

Live loads: Q=25kN

■  8,02   

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.6 x Q■  Reinforcement steel ductility: Class A

■  The calculation is performed considering inclined stress-strain diagram

The objective is to verify:

■  The stresses results

■  The longitudinal reinforcement

■  The minimum reinforcement percentage

Page 401: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 401/682

  ADVANCE VALIDATION GUIDE

401

Simply supported beam

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.80 m,

■  Width: b = 0.40 m,

■  Length: L = 6.30 m,

■  Section area: A = 0.32 m2 ,

■  Concrete cover: c=4.50 cm

■  Effective height: d=h-(0.6*h+ebz)=0.707 m; d’=ebz=0.045m

Materials properties

Rectangular solid concrete C25/30 and S500A reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XD1

■  Concrete density: 25kN/m3 

■  Reinforcement steel ductility: Class A

■  The calculation is performed considering inclined stress-strain diagram

■  Cracking calculation required

■  Concrete C25/30:

MPa,,

f f 

c

ckcd   6716

51

25

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.6(1); 4.4.2.4(1); Table 2.1.N

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

 MPa f  

 E    ck cm   31476

10

82522000

10

822000

3.03.0

  

    

 

  

   

 

■  Steel S500 :

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.2

Page 402: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 402/682

 ADVANCE VALIDATION GUIDE

402 

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 6.3) restrained in translation along Y and Z, and restrained rotation

along X.■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Dead load:

G’=0.4*0.8*2.5=8.00 kN/ml

■  Linear load combinations:

The ultimate limit state (ULS) combination is:

Cmax = 1.35 x G + 1.5 x Q=1.35*(55+8)+1.5*60=175.05 kN/ml

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=55+8+60=123 kN/ml

Quasi-permanent combination of actions:

CQP = 1.0 x G + 0.6 x Q=55+8+0.8*60=111 kN/m

■  Point load combinations:

The ultimate limit state (ULS) combination is:

Cmax = 1.35 x G + 1.5 x Q=1.35*35+1.5*25=84.75 kN

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=35+25=60 kN

Quasi-permanent combination of actions:

CQP = 1.0 x G + 0.6 x Q=35+0.8*25=55 kN

■  Load calculations:

kNm M  Ed    10024

30.6*75.184

8

²30.6*05.175

 

kNm M  Ecq   7054

30.6*60

8

²30.6*123

 

kNm M  Eqp   6374

30.6*55

8

²30.6*111

 

Page 403: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 403/682

  ADVANCE VALIDATION GUIDE

403

5.14.2.2 Reference results in calculating the equivalent coefficient

To determine the equivalence coefficient, we must first estimate the creep coefficient, related to elastic deformation at28 days and 50% humidity:

)(*)(*),( 00   t  f  t  cm RH            

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.2

925.2825

8.168.16)(  

cm

cm f  

 f      

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.4

at t0 = 28 days

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.5

The value of the φRH coefficient depends of the concrete quality:

213

0

***1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.3a

121        if  MPa f  CM    35  

If not:

7.0

1

35 

  

 

cm f      and

2.0

2

35 

  

 

cm f     

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.8c

In this case,

 Mpa Mpa f   f   ck cm   338    

121       

78.167.266*1.0

100

501

167.266)800400(*2

800*400*2*230  

 

 

 

 

  RH mm

u

 Ach      

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.6

54.2488.0*92.2*78.1)(*)(*),( 00     t  f  t  cm RH           

The coefficient of equivalence is determined by the following formula:

94.20

705

637*54..21

31476

200000

*),(1 0

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

 

   

Page 404: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 404/682

 ADVANCE VALIDATION GUIDE

404 

5.14.2.3 Reference results in calculating the concrete beam reduced moment limit

Due to exposure class XD3, we will verify the section having non-compressed steel reinforcement, determining thereduced moment limit, using the formula defined by Jeans Roux in his book “Practice of EC2”:

This value can be determined by the next formula if  MPa f  ck    50 valid for a constitutive law to horizontal plateau:

)*62.7969.165(*)*66.162.4(*)(

    

ck 

ck eluc

 f  

 f   K 

 

  24 ***10 eee   cba K           

 

Where:

7.16928,18925*3,75   a 

5.7345,87425*6,5   b 

121325*04,0   c 

  181.1²94.20*1294.20*5.7347.1692*10   4   e K   

 

Then:

422,1705

1002 

 

271.0)*62.7969.165(*)*66.162.4(

*)(  

  

  ck 

ck eluc

 f  

 f   K   

Calculation of reduced moment:

301.067.16*²707.0*40.0

002.1

*²* cd w

 Ed cu f  d b

 M  

 

271.0301.0     luccu   therefore the compressed reinforcement is present in the beam section

Reference reinforcement calculation at SLU:

The calculation will be divided for theoretical sections:

Calculation of the tension steel section (Section A1 ):

The calculation of tensioned steel section must be conducted with the corresponding moment of  lu :

 Nm f  d b M  cd wlu Ed 

6

1   10*902.067.16*²707.0*40.0*271.0*²**       

■  The α value:

404.0)271.0*21(1*25.1)*21(1*25.1     lulu      

■  Calculation of the lever arm zc:

md  z  lulu   593.0)404.0*4.01(*707.0)*4.01(*       

■  Tensioned reinforcement elongation calculation:

17.55.3*404.0

404.01*

12  

  cu

u

u su    

 

  

Page 405: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 405/682

  ADVANCE VALIDATION GUIDE

405

■  Tensioned reinforcement efforts calculation(S500A):

 MPa su su   454*38,95271,432        

 Mpa MPa su   45463.43700517.0*38,95271,432     

■  Calculation of the reinforcement area:

²76.3463.437*593.0

10*902.0

.

6

11   cm

 MPam

 Nm

 f   z 

 M  A

 yd lu

 Ed 

 

Compressed steel reinforcement reduction (Section As2  ):

Reduction coefficient:

  9572045070704040707040401000

53α

α1000

53ε ...*.

.*.*

.)'dd*(

d**

,lu

lusc   ‰

 MPa sc yd  sc   52.43500295.0*38.95271.43200217.000295.0          

Compressed reinforcement calculation:

²47.352.435*)045.0707.0(

902.0002.1

)'(

12   cm

d d 

 M  M  A

 sc

 Ed  Ed  s  

  

The steel reinforcement condition:

²48.364.437

52.435*47.3.22   cm

 f   A A

 yd 

 sc s      

 

Total area to be implemented:

■  In the lower part: As1=A1+A2=38.24 cm2 (tensioned reinforcement)

■  In the top part: As2=3.47 cm2 (compressed reinforcement)

Reference reinforcement calculation at SLS:

The concrete beam design at SLS will be made considering a limitation of the characteristic compressive cylinderstrength of concrete at 28 days, at 0.6*f ck 

The assumptions are:

■  The SLS moment: kNmMEcq   705  

■  The equivalence coefficient: 9420α .e    

■  The stress on the concrete will be limited at 0.6*fck=15Mpa and the stress on steel at 0.8*fyk, or 400MPa

Page 406: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 406/682

 ADVANCE VALIDATION GUIDE

406 

Calculation of the resistance moment M Rd  for detecting the presence of the compressed reinforcement:

md  x sce

ce 311.0707.0*40015*94.20

15*94.20*

*

*1  

   

  

 

 N  xb F  cwc

6

1   10*933.015311.0*40.0*2

1

***2

1

     

m x

d  z c   603.03

311.0707.0

3

1  

 Nm z  F  M  ccrb

6610*563.0603.0*10*933.0*    

Therefore the compressed reinforced established earlier was correct.

Theoretical section 1 (tensioned reinforcement only)

 Nm M  M  rb

6

1   10*563.0 

440.0707.0

311.011

  d 

 x   

m x

d  z c   603.03

311.0707.0

3

1  

²34.23400603.0

563.011   cm

 z 

 M  A

 sc

 

 

Theoretical section 2 (compressed reinforcement and complementary tensioned reinforcement)

 Nm M  M  M  rbcq ser 

66

,2   10*142.010*)591.0705.0(    

Compressed reinforcement stresses:

d d ce sc

*

'***

1

1

 

     

 

 MPa sc   66.268707.0*440.0

045.0707.0*440.0*15*94.20  

   

Compressed reinforcement area:

  ²98.766.268*045.0707.0

142.0

*)'('

  2

cmd d 

 M 

 A  sc    

Complementary tensioned reinforcement area:

²36.5400

66.268*98.7*' cm A A

 s

 sc s  

 

 

 

Page 407: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 407/682

  ADVANCE VALIDATION GUIDE

407

Section area:

Tensioned reinforcement: 23.34+5.36=28.7 cm2

Compressed reinforcement: 7.98 cm2

Considering an envelope calculation of ULS and SLS, it will be obtained:

Tensioned reinforcement ULS: A=38.24cm2

Compressed reinforcement SLS: A=7.98cm2

To optimize the reinforcement area, it is preferable a third iteration by recalculating with SLS as a baseline amount oftensioned reinforcement (after ULS: Au=38.24cm

2)

Reference reinforcement third calculation at SLS:

For this third iteration, the calculation will begin considering the section of the tensile reinforcement found whencalculating for ULS: Au=38.24cm

2

From this value,it will be calculated the stress obtained in the tensioned reinforcement:

 MPa

 A

 A s

 ELU 

 ELS  s   21.300400*

24.38

70.28*       

 

Calculating the moment resistance Mrb for detecting the presence of compressed steel reinforcement:

md  x sce

ce 361.0707.0*21.30015*94.20

15*94.20*

*

*1  

   

   

 N  xb F  cwc

6

1   10*083.115361.0*40.0*2

1***

2

1      

m x

d  z c   587.03

361.0707.0

3

1  

 Nm z  F  M  ccrb

66 10*636.0587.0*10*083.1*    

Therefore the compressed reinforced established earlier was correct.

Theoretical section 1 (tensioned reinforcement only)

 Nm M  M  rb

6

1   10*636.0 

511.0707.0

361.011  

 x   

m

 x

d  z c   587.03

361.0

707.03

1

 

²09.36400*578.0

36.0

*

11   cm

 z 

 M  A

 sc

 

 

Page 408: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 408/682

 ADVANCE VALIDATION GUIDE

408 

Theoretical section 2 (compressed reinforcement and complementary tensioned reinforcement)

 Nm M  M  M  rbcq ser 

66

,2   10*069.010*)636.0705.0(    

Compressed reinforcement stresses:

 MPad d d ce sc   275

707.0*511.0045.0707.0*511.0*15*94.20

*'***

1

1  

    

 

Compressed reinforcement area:

  ²79.3

275*045.0707.0

069.0

*)'('   2 cm

d d 

 M  A

 sc

 

 

Complementary tensioned reinforcement area:

²47.321.300

275*79.3*' cm A A

 s

 sc s  

 

  

Section area:

Tensioned reinforcement: 36.09+3.47=39.56 cm2

Compressed reinforcement: 3.79 cm2

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

d b

d b f  

 f  

 Max A

w

w

 yk 

eff  ct 

 s

**0013.0

***26.0  ,

min,

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2

Where:

 MPa f   f   ctmeff  ct    56.2,    from cracking conditions

Therefore:

²77.3

²10*68.3707.0*40.0*0013.0

²10*77.3707.0*40.0*500

56.2*26.0

max4

4

min,   cm

m

m A s

 

Finite elements modeling

■  Linear element: S beam,

■  9 nodes,

■  1 linear element.

Page 409: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 409/682

  ADVANCE VALIDATION GUIDE

409

ULS and SLS load combinations(kNm)

Simply supported beam subjected to bending

ULS (reference value: 1002kNm)

SLS (reference value: 705kNm)

SLS –Quasi-permanent (reference value: 637kNm)

Theoretical reinforcement area(cm2  )

For Class A reinforcement steel ductility (reference value: A=39.56cm2 and A’=3.79cm

2)

Minimum reinforcement area(cm2  )

(reference value: 3.77cm2)

Page 410: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 410/682

 ADVANCE VALIDATION GUIDE

410 

5.14.2.4 Reference results

Result name Result description Reference value

My,ULS My corresponding to the 101 combination (ULS) [kNm] 1001 kNm

My,SLS,cq My corresponding to the 102 combination (SLS) [kNm] 705 kNm

My,SLS,qp My corresponding to the 102 combination (SLS) [kNm] 637 cm2

 Az (Class A) Theoretical reinforcement area [cm2] 39.56 cm2

 Amin Minimum reinforcement area [cm2] 3.77 cm

2

5.14.3 Calculated results

Result name Result description Value Error

My My USL -1001.92 kN*m -0.0001 %

My My SLS cq -704.714 kN*m 0.0000 %

My My SLS qp -637.304 kN*m 0.0001 % Az Az -39.5904 cm² -0.0001 %

 Amin Amin 3.77193 cm² 0.0001 %

Page 411: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 411/682

  ADVANCE VALIDATION GUIDE

411

5.15 EC2 Test 3: Verifying a rectangular concrete beam subjected to uniformly distributed load,with compressed reinforcement- Bilinear stress-strain diagram

Test ID: 4976

Test status: Passed 

5.15.1 Description

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the determination of stresses is made along with the determination of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

The objective is to verify:

- The stresses results

- The longitudinal reinforcement

- The verification of the minimum reinforcement percentage

5.15.2 Background

Simple Bending Design for Ultimate Limit State

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the calculation of stresses is made along with the calculation of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

5.15.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combinations are used:

■  Loadings from the structure: G = 70 kN/m,

■  Exploitation loadings (category A): Q = 80kN/m,

■ 

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.3 x Q

The objective is to verify:

■  The stresses results

■  The longitudinal reinforcement

■  The verification of the minimum reinforcement percentage

Page 412: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 412/682

 ADVANCE VALIDATION GUIDE

412 

Simply supported beam

Units

Metric System

Geometry

Beam cross section characteristics:■  Height: h = 1.25 m,

■  Width: b = 0.65 m,

■  Length: L = 14 m,

■  Section area: A = 0.8125 m2 ,

■  Concrete cover: c = 4.50 cm

■  Effective height: d = h-(0.6*h+ebz) = 1.130 m; d’ = ebz = 0.045m

Materials properties

Rectangular solid concrete C25/30 and S500B reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XD1■  Concrete density: 25kN/m

■  Stress-strain law for reinforcement: Bilinear stress-strain diagram

■  Cracking calculation required

■  Concrete C25/30: MPa,,

f f 

c

ckcd   6716

51

25

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.6(1); 4.4.2.4(1); Table 2.1.N

■  MPa.*.f *.f  //ckctm   56225300300   3232  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

■  Steel S500 : MPa,,

f  s

yk

yd   78434151

500

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.2

■  MPa*f 

*E

..ck

cm   3147610

82522000

10

822000

3030

 

  

   

 

  

     

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

Page 413: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 413/682

  ADVANCE VALIDATION GUIDE

413

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 14) restrained in translation along Z.

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

Cmax = 1.35 x G + 1.5 x Q=1.35*70+1.5*80=214.5*103 N/ml

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=70+80=150*103 N/ml

Quasi-permanent combination of actions:

CQP = 1.0 x G + 0.3 x Q=70+0.3*80=94*103 N/ml

■  Load calculations:

Nm*.²*.

MEd6102555

8

145214  

Nm*.²*

MEcq6106753

8

14150150    

Nm*.²*

MEqp6103032

8

1494  

Page 414: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 414/682

 ADVANCE VALIDATION GUIDE

414 

5.15.2.2 Reference results in calculating the equivalent coefficient

To determine the equivalence coefficient, we must first estimate the creep coefficient, related to elastic deformation at28 days and 50% humidity:

■  )t(*)f (*)t,( cmRH   00   ββ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.2

■  9252825

816816β .

.

.)f (

cm

cm  

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.4

■  48802810

1

10

2002000

0 ..t.

)t(..

 

  at t0=28 days

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.5

The value of the φRH coefficient depends of the concrete quality:

■  2130

αα10

1001

1 **h*.

RH

RH

 

 

 

 

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.3a

■  121        if MPaf cm   35  

■  If not:

70

135

α

.

cmf     

  

    and

20

235

α

.

cmf     

  

   

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.8c

■  In our case we have: 1338 21        Mpa Mpa f   f   ck cm  

■  6616342710

100501

16342712506502

125065022

30 ..*.

mm.)(*

**

u

 Ac*h RH  

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002; Annex B; Chapter B.1(1); B.6

■  375248809252661ββ 00 ..*.*.)t(*)f (*)t,( cmRH    

The coefficient of equivalence is determined by the following formula:

■ 

Ecar 

Eqp

cm

se

M

M*)t,(

E

E

01

α

 

Defined earlier: 

 Nm M  Ecar 3

10*3675  

 Nm M  Eqp3

10*2303  

This gives:

8215

103975

1023037021

31476

200000α

3

3

.

*

**.

e  

 

Page 415: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 415/682

  ADVANCE VALIDATION GUIDE

415

5.15.2.3 Reference results in calculating the concrete beam reduced moment limit

For the calculation of steel ULS, we consider the moment reduced limit of 372.0lu for a steel grade 500Mpa.

Therefore, make sure to enable the option "limit   )500/372.0(   S  " in Advance Design.

Reference reinforcement calculation at SLU:The calculation of the reinforcement is detailed below:

■  Effective height: d=0.9*h=1.125 m

■  Calculation of reduced moment:

383,067,16*²125.1*65,0

10*25.5255

*²*   2

3

 MPamm

 Nm

 f  d b

 M 

cd w

 Ed cu 

 

372.0383.0     lucu       therefore the compressed reinforced must be resized and then the concrete section

must be adjusted.

Calculation of the tension steel section (Section A1):

The calculation of tensioned steel section must be conducted with the corresponding moment of :

 Nm f  d b M  cd wlu Ed 

6

1   10*10.567.16*²125.1*65.0*372.0*²**      

■  The α value: 61803720211251μ211251α .).*(*.)*(*. lulu    

■  Calculation of the lever arm zc: m.).*.(*.)*.(*dz lulu   851061804011301α401    

■  Calculation of the reinforcement area:

²35.13778.434*851.0

10*10.5

.

6

11   cm

 MPam

 Nm

 f   z 

 M  A

 yd lu

 Ed 

 

Page 416: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 416/682

 ADVANCE VALIDATION GUIDE

416 

Compressed steel reinforcement reduction (Section As2):

Reduction coefficient:

  00327.0045.0130.1*618.0130.1*618.0*1000

5.3)'*(

**1000

5,3   d d 

d   lu

lu

 sc     

 

 

 MPa f   yd  sc yd  sc   78.43400217.000327.0         

Compressed reinforcement calculation:

²32.278.434)045.0130.1(

15.5255.5

)'(

12   cm

d d 

 M  M  A

 sc

 Ed  Ed  s  

  

The steel reinforcement condition:

²32.2.22   cm f  

 A A yd 

 sc s      

 

Total area to be implemented:

In the lower part: As1=A1+A2=142.42 cm2

In the top part: As2=2.32 cm2

Reference reinforcement calculation at SLS:

The concrete beam design at SLS will be made considering a limitation of the characteristic compressive cylinderstrength of concrete at 28 days, at 0.6*f ck 

The assumptions are:

■  The SLS moment: Nm*.²*

MEcq6106753

8

14150150    

■  The equivalence coefficient: 8215α .e    

■  The stress on the concrete will be limited at 0.6*fck=15Mpa and the stress on steel at 0.8*fyk, or 400MPa

Calculation of the resistance moment MRd for detecting the presence of the compressed reinforcement:

m..*.

*.d.

*

*x

sce

ce 41901251400158215

158215

σσα

σα1  

 

N*..*.**x*b*F cwc6

1   100421541906502

2

1  

m..

.x

dzc   98503

41901251

3

1  

Nm*..**.z*FMccrb

66 10012985010042    

Therefore the compressed reinforced established earlier was correct.

Page 417: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 417/682

  ADVANCE VALIDATION GUIDE

417

Theoretical section 1 (tensioned reinforcement only)

 Nm M  M  rb

6

1   10*01.2 

372.0125.1

419.011

  d 

 x   

m x

d  z c   985.03

419.0125.1

31  

²01.51400985.0

01.211   cm

 z 

 M  A

 sc

 

 

Theoretical section 2 (compressed reinforcement and complementary tensioned reinforcement)

 Nm M  M  M  rbcq ser 

66

,2   10*665.110*)01.2675.3(    

Compressed reinforcement stresses:

d d ce sc

*

'***

1

1

 

     

 

 MPa sc   78.211125.1*372.0

045.0125.1*372.0*15*82.15  

 

 

Compressed reinforcement area:

  ²92.71

78.211*045.0125.1

645.1

*)'('   2 cm

d d 

 M  A

 sc

 

 

Complementary tensioned reinforcement area:

²08.38400

78.211*92.71*' cm A A

 s

 sc s  

 

 

 

Section area:

Tensioned reinforcement: 51.01+38.08=89.09 cm2

Compressed reinforcement: 71.92 cm2

Considering an envelope calculation of ULS and SLS, it will be obtained:

Tensioned reinforcement ULS: A=141.42cm2

Compressed reinforcement SLS: A=71.92cm2

To optimize the reinforcement area, it is preferable a third iteration by recalculating with SLS as a baseline amount oftensioned reinforcement (after ULS: Au=141.44cm

2)

Page 418: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 418/682

 ADVANCE VALIDATION GUIDE

418 

Reference reinforcement additional iteration for calculation at SLS:

For this iteration the calculation will be started from the section of the tensioned reinforcement found when calculatingthe SLS: Au=141.44cm

2.

For this particular value, it will be calculated the resistance obtained for tensioned reinforcement:

 MPa A A  s

 ELU 

 ELS  s   252400

42.14118.89     

 

This is a SLS calculation, considering this limitation:

Calculating the moment resistance MRb for detecting the presence of compressed steel reinforcement:

md  x sce

ce 55.0130.1*25215*82.15

15*82.15*

*

*1  

   

  

 

 N  xb F  cwc

6

1   10*67.215*55.0*65.0*2

1***

2

1      

m xd  z c   94.0355.0125.1

31  

 Nm x

d  xb z  F  M  cwccrb

611   10*52.2

3

55.0125.1*15*55.0*65.0*

2

1

3****

2

1*  

 

  

   

  

       

 According to the calculation above Mser,cq is grater then Mrb the compressed steel reinforcement is set.

Theoretical section 1 (tensioned reinforcement only)

 Nm M  M  rb

6

1   10*52.2 

488.0125.155.01

1   d  x   

m x

d  z c   94.03

548.0125.1

31  

²38.10625294.0

52.211   cm

 z 

 M  A

 sc

 

 

Theoretical section 2 (compressed reinforcement and complementary tensioned reinforcement)

 Nm M  M  M  rbcq ser 

66

,2   10*155.110*)52.2675.3(    

Compressed reinforcement stresses:

d d ce sc

*

'***

1

1

 

     

 

 MPa sc   73.217125.1*485.0

045.0125.1*485.0*15*82.15  

   

Page 419: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 419/682

  ADVANCE VALIDATION GUIDE

419

Compressed reinforcement area:

  ²12.49

73.217*045.0125.1

155.1

*)'('   2 cm

d d 

 M  A

 sc

 

 

Complementary tensioned reinforcement area:

²44.42252

73.217*12.49*'cm A A

 s

 sc s  

 

 

 

Section area:

Tensioned reinforcement: 106.38+42.44=148.82 cm2

Compressed reinforcement: 49.12 cm2

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

d b

d b f  

 f  

 Max A

w

w yk 

eff  ct 

 s

**0013.0

***26.0

  ,

min,

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2

Where:

 MPa f   f   ctmeff  ct    56.2,    from cracking conditions

Therefore:

²73.9

²10*51.9125.1*65.0*0013.0

²10*73.9125.1*65.0*500

56.2*26.0

max

4

4

min,   cm

m

m A s

 

Finite elements modeling

■  Linear element: S beam,

■  15 nodes,

■  1 linear element.

Page 420: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 420/682

 ADVANCE VALIDATION GUIDE

420 

ULS and SLS load combinations(kNm)

Simply supported beam subjected to bending

ULS (reference value: 5255kNm)

SLS –Characteristic (reference value: 3675kNm)

SLS –Quasi-permanent (reference value: 2303kNm)

Theoretical reinforcement area(cm2  )

(reference value: A’=148.82cm2 A=49.12cm

2)

Minimum reinforcement area(cm2  )

(reference value: 9.73cm2

)

Page 421: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 421/682

  ADVANCE VALIDATION GUIDE

421

5.15.2.4 Reference results

Result name Result description Reference value

My,ULS My corresponding to the 101 combination (ULS) [kNm] 5255 kNm

My,SLS,c My corresponding to the 102 combination (SLS) [kNm] 3675 kNm

My,SLS,q My corresponding to the 103 combination (SLS) [kNm] 2303 kNm

 Az (A’) Tensioned theoretical reinforcement area [cm2] 148.82 cm2

 Amin Minimum reinforcement area [cm2] 9.73 cm

2

5.15.3 Calculated results

Result name Result description Value Error

My My USL -5255.25 kN*m 0.0000 %

My My SLS cq -3675 kN*m 0.0000 %

My My SLS pq -2303 kN*m 0.0000 % Az Az -147.617 cm² -0.0003 %

 Amin Amin 9.79662 cm² 0.0000 %

Page 422: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 422/682

 ADVANCE VALIDATION GUIDE

422 

5.16 EC2 Test 7: Verifying a T concrete section, without compressed reinforcement- Bilinear stress-strain diagram

Test ID: 4980

Test status: Passed 

5.16.1 Description

The purpose of this test is to verify the My resulted stresses for the USL load combination and the results of thetheoretical reinforcement area Az.

This test performs verification of the theoretical reinforcement area for the T concrete beam subjected to the definedloads. The test confirms the absence of the compressed reinforcement for this model.

5.16.2 Background

Verifies the theoretical reinforcement area for a T concrete beam subjected to the defined loads. The test confirmsthe absence of the compressed reinforcement for this model.

5.16.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 0 kN/m (the dead load is not taken into account)

■  Exploitation loadings (category A): Q = 18.2kN/m,

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■ 

■  Reinforcement steel ductility: Class B

■  The calculation is made considering bilinear stress-strain diagram

The objective is to test:

■  The theoretical reinforcement area

Simply supported beam

Page 423: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 423/682

  ADVANCE VALIDATION GUIDE

423

Units

Metric System

Geometry

Beam cross section characteristics:

■  Beam length: 8m

■  Concrete cover: c=3.50 cm■  Effective height: d=h-(0.6*h+ebz)=0.482 m; d’=ebz=0.035m

Materials properties

Rectangular solid concrete C25/30 and S400B reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XC1

■  Concrete density: 25kN/m3 

■  Reinforcement steel ductility: Class B

■  The calculation is made considering bilinear stress-strain diagram

■  Concrete C25/30: MPa

 f  

 f   c

ck 

cd    67.105,1

25

  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.6(1); 4.4.2.4(1); Table 2.1.N

■   MPa f   f   ck ctm   56.225*30.0*30.0   3/23/2  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

■  Steel S400B :  MPa f  

 f   s

 yk 

 yd    83.34715,1

400

  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.2

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x = 0) restrained in translation along X, Y and Z,

►  Support at end point (x = 8) restrained in translation along Y and Z, and restrained rotationalong X.

■  Inner: None.

Page 424: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 424/682

 ADVANCE VALIDATION GUIDE

424 

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

Cmax = 1.35 x G + 1.5 x Q=1.35*0+1.5*18.2=27.3kN/ml

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=0+18.2=18.2kN/ml

■  Load calculations:

kNm M  Ed    40.2188

²8*3.27

 

kNm M  Ecq   60.1458

²8*20.18

 

5.16.2.2 Reference results in calculating the concrete beam moment

 At first it will be determined the moment resistance of the concrete section only:

kNm f  h

d hb M  cd 

 f  

 f  eff  btu   92867.16*2

12.0482.0*12.0*10.1*

2**  

 

  

   

  

   

Comparing Mbtu with MEd:

Therefore, the concrete section is not entirely compressed; This requires a calculation considering a rectangularsection of b=110cm and d=48.2cm.

Reference longitudinal reinforcement calculation:

051.067.16*²482.0*10.1

218.0

*²*

1 cd w

 Ed cu

 F d b

 M  

 

  066.0051.0*211*25.1)*21(1*25.1     cuu       

md  z  uc   469.0)066.0*40.01(*482.0)*4.01(*        

²38.1383.347*469.0

218.0

*cm

 f   z 

 M  A

 yd c

 Ed   

Finite elements modeling

■  Linear element: S beam,

■  9 nodes,

■  1 linear element.

kNm M kNm M  btu Ed    92840.218  

Page 425: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 425/682

  ADVANCE VALIDATION GUIDE

425

ULS load combinations(kNm)

Simply supported beam subjected to bending

Theoretical reinforcement area(cm2  )

For Class B reinforcement steel ductility (reference value: A=13.38cm2)

5.16.2.3 Reference results

Result name Result description Reference value

 Az (Class B) Theoretical reinforcement area [cm2] 13.38 cm

2

5.16.3 Calculated results

Result name Result description Value Error

 Az Az -13.3793 cm² 0.0002 %

Page 426: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 426/682

 ADVANCE VALIDATION GUIDE

426 

5.17 EC2 Test 12: Verifying a rectangular concrete beam subjected to uniformly distributed load,without compressed reinforcement- Bilinear stress-strain diagram (Class XD3)

Test ID: 4985

Test status: Passed 

5.17.1 Description

Simple Bending Design for Service State Limit

Verifies the adequacy of a rectangular cross section made from concrete C30/37 to resist simple bending. Theverification of the bending stresses at service limit state is performed.

During this test, the determination of stresses is made along with the determination of the longitudinal reinforcementand the verification of the minimum reinforcement percentage.

5.17.2 Background

Simple Bending Design for Service State Limit

Verify the adequacy of a rectangular cross section made from concrete C30/37 to resist simple bending. During thistest, the calculation of stresses, the calculation of the longitudinal reinforcement and the verification of the minimumreinforcement percentage are performed.

5.17.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 25 kN/m (including dead load),

■  Exploitation loadings (category A): Q = 15kN/m,

■ 

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.3 x Q

Simply supported beam

Units

Metric System

Page 427: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 427/682

  ADVANCE VALIDATION GUIDE

427

Geometry

Beam cross section characteristics:

■  Height: h = 0.65 m,

■  Width: b = 0.28 m,

■  Length: L = 6.40 m,

■  Section area: A = 0.182 m2 ,

■  Concrete cover: c = 4.5 cm

■  Effective height: d = h-(0.6*h+ebz) = 0.57m; d’ = ebz = 0.045 m

Materials properties

Rectangular solid concrete C30/37 and S500A reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XD3

■  Concrete density: 25 kN/m3 

■  Stress-strain law for reinforcement: Bilinear stress-strain diagram

■  The concrete age t0 = 28 days

■  Humidity 50%

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x = 0) restrained in translation along X, Y and Z,

►  Support at end point (x = 5.80) restrained in translation along Y, Z and restrained in rotationalong X.

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q = 25 + 15 = 40 kN/ml

Quasi-permanent combination of actions:

CQP = 1.0 x G + 0.3 x Q = 25 + 0.3*15 = 29.5 kN/ml

■  Load calculations:

kNm².*)(

MEcq   2058

4061525

 

kNm

².*)*.(

MEqp   1518

406153025

 

Page 428: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 428/682

 ADVANCE VALIDATION GUIDE

428 

5.17.2.2 Reference results in calculating the concrete final value of creep coefficient

)()(),( 00   t  f  t  cm RH             

Where:

 MPa f   f  cm

cm   725.2830

8.168.16

)(      

488.0281.0

1

1.0

1)(

20.020.0

0

0  

t     

t0 : concrete age t0=28days

21

0

3  **

*1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

121     if  Mpa f  cm   35  

If not

70

135

α

.

cmf     

  

  and

20

235

α

.

cmf     

  

   

In this case therefore

944.038

3535  7.07.0

1    

  

  

  

 

cm f   

 

984.0383535

  2.02.0

2     

  

  

  

cm f   

 

In this case:

Humidity RH = 50 %

  mm

u

 Ach   70.195

650280*2

650*280*220  

 

37.2488.0*73.2*78.1)(*)(*),(78.1984.0*

70.195*1.0

100

501

1 003

  t  f  t  cm RH  RH          

 

Page 429: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 429/682

  ADVANCE VALIDATION GUIDE

429

Calculating the equivalence coefficient:

The coefficient of equivalence is determined by the following formula:

 Ecar 

 Eqp

cm

 se

 M  M t 

 E 

 E 

*),(1 0

 

   

Where:

 MPa f  

 E    ck cm   32837

10

830*22

10

8*22

3.03.0

 

  

   

 

  

     

 MPa E  s   200000  

75.2

205

151*37.21*),(1 0  

 Ecar 

 Eqp

 M 

 M t  

 

76.16

205

151*37.21

32837

200000

*),(1 0

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

 

   

Material characteristics:

The maximum compression on the concrete is:  Mpa f  ck bc   1830*6,0*6,0      

For the maximum stress on the steel taut, we consider the constraint limit  Mpa f   yk  s

  400*8,0      

Neutral axis position calculation:

The position of the neutral axis must be determined by calculating 1  (position corresponding to the state of

maximum stress on the concrete and reinforcement):

430.040018*76.16

15*76.16

*

*1  

 sce

ce

   

   

 

Moment resistance calculation:

Knowing the 1α   value, it can be determined the moment resistance of the concrete section, using the following

formulas:

243057004300α11 ..*.d*x   m

MNm..

.**.*.*.x

d**x*b*M cwrb   29703

2430570018243028050

2

1 11  

 

  

 

 

  

   

Where:

Utile height : d = h – (0.06h + ebz) = 0.57 m

The moment resistance Mrb = 297 KNm

Because kNmMkNmM rbEcq   297205    the supposition of having no compressed reinforcement is correct.

Page 430: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 430/682

 ADVANCE VALIDATION GUIDE

430 

Calculation of reinforcement area with max constraint on steel and concrete

The reinforcement area is calculated using the SLS load combination

Neutral axis position: 4300α1 ,  

Lever arm: m..

*.*dzc   48503

430015703

α1

  1

 

  

  

 

 

 

 

Reinforcement section: ²cm.*.

.

*z

M A

sc

ser ser ,s   5610

4004850

2050

σ1    

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

d*b*.

d*b*f 

f *.

Max A

w

wyk

eff ,ct

min,s

00130

260 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2Where:

MPa.f f  ctmeff ,ct   8962  from cracking conditions

Therefore:

²cm.

²m*..*.*.

²m*..*.*.

.max A min,s   402

1007257028000130

10402570280500

8962260

4

4

 

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,■  1 linear element.

Page 431: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 431/682

  ADVANCE VALIDATION GUIDE

431

ULS and SLS load combinations (kNm)

Simply supported beam subjected to bending

SLS (reference value: 205kNm)

Theoretical reinforcement area (cm2  )

(reference value: 10.50cm2)

Minimum reinforcement area (cm2  )

(reference value: 2.40cm2)

5.17.2.3 Reference results

Result name Result description Reference value

My,SLS My corresponding to the 102 combination (SLS) [kNm] 205 kNm

 Az Theoretical reinforcement area [cm2] 10.50 cm2

 Amin Minimum reinforcement area [cm2] 2.39 cm

2

5.17.3 Calculated results

Result name Result description Value Error

My My SLS -204.8 kN*m 0.0000 %

 Az Az -10.3489 cm² -0.0001 %

 Amin Amin -2.38697 cm² 0.0001 %

Page 432: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 432/682

 ADVANCE VALIDATION GUIDE

432 

5.18 EC2 Test 13: Verifying a rectangular concrete beam subjected to a uniformly distributed load,without compressed reinforcement - Bilinear stress-strain diagram (Class XD1)

Test ID: 4986

Test status: Passed 

5.18.1 Description

Simple Bending Design for Service State Limit - Verifies the adequacy of a rectangular cross section made fromconcrete C25/30 to resist simple bending.

During this test, the determination of stresses is made along with the determination of the longitudinal reinforcementand the verification of the minimum reinforcement percentage.

The verification of the bending stresses at service limit state is performed.

5.18.2 Background

Simple Bending Design for Service State Limit

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the calculation of stresses will be made along with the calculation of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

5.18.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 25 kN/m (including dead load),

■  Exploitation loadings (category A): Q = 30kN/m,

■ 

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.3 x Q

Simply supported beam

Units

Metric System

Page 433: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 433/682

  ADVANCE VALIDATION GUIDE

433

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.60 m,

■  Width: b = 0.25 m,

■  Length: L = 5.80 m,

■  Section area: A = 0.150 m2 ,

■  Concrete cover: c=4.5cm

■  Effective height: d=h-(0.6*h+ebz)=0.519m; d’=ebz=0.045m

Materials properties

Rectangular solid concrete C25/30 and S500A reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XD1

■  Concrete density: 25kN/m3 

■  Stress-strain law for reinforcement: Bilinear stress-strain diagram

■  The concrete age t0=28 days

■  Humidity RH=50%

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x = 0) restrained in translation along X, Y and Z,

►  Support at end point (x = 5.80) restrained in translation along Y, Z and restrained in rotationalong X.

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q = 25 + 30 = 55 kN/ml

Quasi-permanent combination of actions:

CQP = 1.0 x G + 0.3 x Q = 25 + 0.3*30 = 34 kN/ml

■  Load calculations:

kNm M  Ecq   28.2318

²80.5*)3025(

 

kNm M  Eqp   97.1428

²80.5*)30*3.025(  

Page 434: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 434/682

 ADVANCE VALIDATION GUIDE

434 

5.18.2.2 Reference results in calculating the concrete final value of creep coefficient

)()(),( 00   t  f  t  cm RH             

Where:

 MPa f   f  cm

cm   92.2825

8.168.16

)(      

488.0281.0

1

1.0

1)(

20.020.0

0

0  

t     

t0 : concrete age t0 = 28 days

21

0

3  **

*1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

121     if  Mpa f  cm   35  

If not

7.0

1

35

 

  

 

cm f   

and

2.0

2

35

 

  

 

cm f   

 

In this case, therefore:

121      

In this case:

Humidity RH = 50 %

  mm

u

 Ach   176

600250*2

600*250*220  

 

70.2488.0*92.2*89.1)(*)(*),(89.1176*1.0

100

501

1 003

  t  f  t  cm RH  RH          

 

Calculating the equivalence coefficient:

The coefficient of equivalence is determined by the following formula:

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E  E 

*),(1 0

 

   

Where:

 MPa f  

 E    ck cm   31476

10

825*22

10

8*22

3.03.0

 

  

   

 

  

     

 MPa E  s   200000  

Page 435: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 435/682

  ADVANCE VALIDATION GUIDE

435

67.2231

143*69.21*),(1 0  

 Ecar 

 Eqp

 M 

 M t  

 

97.16

231

143*69.21

31476

200000

*),(1 0

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

 

   

Material characteristics:

The maximum compression on the concrete is:  Mpa f  ck bc   1515*6,0*6,0      

For the maximum stress on the steel taut, we consider the constraint limit  Mpa f   yk  s   400*8,0      

Neutral axis position calculation:

The position of the neutral axis must be determined by calculating 1  (position corresponding to the state ofmaximum stress on the concrete and reinforcement):

389.040018*97.16

15*97.16

*

*1  

 sce

ce

   

   

 

Moment resistance calculation:

Knowing the 1α   value, it can be determined the moment resistance of the concrete section, using the following

formulas:

202051903890α11 ..*.d*x   m

 MNm x

d  xb M  cwrb   171.03

202.0519.0*15*202.0*25.0*5.0)

3(****

2

1 11  

  

        

Where:

Utile height : d = h – (0.06h + ebz) = 0.519m

The moment resistance Mrb = 171KNm

Because kNm M kNm M  rb Ecq   171231   , the supposition of having no compressed reinforcement is

incorrect.

The calculation of the tension reinforcement theoretical section A1

m x

d  z c   452.03

202.0519.0

31

 

²46.9400*452.0

171.0

*1   cm

 z 

 M  A

 sc

rb  

 

Page 436: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 436/682

 ADVANCE VALIDATION GUIDE

436 

Stress calculation for steel reinforcement σ sc :

087.0519.0

045.0''  

d  

 

 MPace sc   75.197389.0

087.0389.0*15*97.16

'**

1

1

 

       

Calculation of the steel compressed reinforcement A’:

²44.675.197*)045.0519.0(

171.0231.0

*)'('   cm

d d 

 M  M  A

 sc

rb ser 

 

 

Calculation of the steel tensioned reinforcement A2 :

²18.3400

75.197*44.6'*2   cm A A

 s

 sc  

 

 

Calculation of the steel reinforcement:

²64.1218.346.921   cm A A A    

²44.6'   cm A   

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2

Where:

MPa.f f  ctmeff ,ct   8962  from cracking conditions

Therefore:

²73.1

²10*69.1519.0*25.0*0013.0

²10*73.1519.0*25.0*500

56.2*26.0

max4

4

min,   cm

m

m A s

 

Finite elements modeling

■  Linear element: S beam,

■  6 nodes,

■  1 linear element.

Page 437: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 437/682

  ADVANCE VALIDATION GUIDE

437

ULS and SLS load combinations(kNm)

Simply supported beam subjected to bending

SLS (reference value: 231.28kNm)

Theoretical reinforcement area(cm2  )

(reference value: As=12.64cm2; A’=6.44cm

2)

Minimum reinforcement area(cm2  )

(reference value: 1.73cm2)

5.18.2.3 Reference results

Result name Result description Reference value

My,SLS My corresponding to the 102 combination (SLS) [kNm] 231.28 kNm Az Theoretical reinforcement area [cm

2] 12.64 cm

2

 Amin Minimum reinforcement area [cm2] 1.73 cm

2

5.18.3 Calculated results

Result name Result description Value Error

My My SLS -231.275 kN*m -0.0000 %

 Az Az -12.6425 cm² -0.0002 %

 Amin Amin -1.73058 cm² -0.0001 %

Page 438: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 438/682

 ADVANCE VALIDATION GUIDE

438 

5.19 EC2 Test 16: Verifying a T concrete section, without compressed reinforcement- Bilinearstress-strain diagram

Test ID: 4999

Test status: Passed 

5.19.1 Description

Simple Bending Design for Service State Limit

The purpose of this test is to verify the My resulted stresses for the SLS load combination and the results of thetheoretical reinforcement area Az and of the minimum reinforcement percentage. This test performs verification forthe theoretical reinforcement area for the T concrete beam subjected to the defined loads. The test confirms theabsence of the compressed reinforcement for this model.

5.19.2 Background

This test performs the verification of the theoretical reinforcement area for the T concrete beam subjected to thedefined loads. The test confirms the absence of the compressed reinforcement for this model.

5.19.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 40 kN/m (including the dead load)

■  Exploitation loadings (category A): Q = 10kN/m,

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.3 x Q

■  Reinforcement steel ductility: Class A

■  The calculation is performed considering bilinear stress-strain diagram

The objective is to verify:

■  The stresses results

■  The theoretical reinforcement area

■  The minimum reinforcement percentage

Simply supported beam

Page 439: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 439/682

  ADVANCE VALIDATION GUIDE

439

Units

Metric System

Geometry

Beam cross section characteristics:

■  Beam length: 8m

■  Beam height: h=0.67m

■  Concrete cover: c=4.50 cm■  Effective height: d=h-(0.6*h+ebz)=0.585 m; d’=ebz=0.045m

Materials properties

Rectangular solid concrete C20/25 and S500A reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XD1

■  Concrete: f ck = 20MPa

■  Reinforcement steel ductility: Class A

■  The calculation is performed considering bilinear stress-strain diagram

■  The concrete age t0=28 days

■  Humidity RH=50%

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 7) restrained in translation along Y and Z, and restrained rotationalong X.

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=40+10=50kN/ml

Quasi-permanent combination of actions:

CQP = 1.0 x G + 0.3 x Q=40+0.3*10=43kN/ml

■  Load calculations:

kNm

²*M cq,ser    400

8

81040

 

kNm

²**.M qp,ser    344

8

8103040

 

Page 440: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 440/682

 ADVANCE VALIDATION GUIDE

440 

5.19.2.2 Reference results in calculating the concrete final value of creep coefficient

)()(),( 00   t  f  t  cm RH             

Where:

 MPa f   f  cm

cm   17.3820

8.168.16

)(      

488.0281.0

1

1.0

1)(

20.020.0

0

0  

t     

t0 : concrete age t0=28days

21

0

3  **

*1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

if

If not

7.0

1

35

 

  

 

cm f    and

2.0

2

35

 

  

 

cm f     

In this case,

therefore:

121      

In this case:

Humidity RH=50 %

mmu

 Ach   123

3140

192600*220    

11.3488.0*17.3*2)(*)(*),(2123*1.0

100

501

1 003

  t  f  t  cm RH  RH          

 

Calculating the equivalence coefficient:

The coefficient of equivalence is determined by the following formula:

Ecar 

Eqp

cm

se

M

M*)t,(

E

E

01

α

 

Where:

MPa*f 

*E

..ck

cm   2996210

82022

10

822

3030

 

  

   

 

  

     

MPaEs   200000  

683400

344

11311 0 .*.M

M

*)t,( Ecar 

Eqp

 

Page 441: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 441/682

  ADVANCE VALIDATION GUIDE

441

54.24

400

344*11.31

29962

200000

*),(1 0

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

 

   

Material characteristics:

The maximum compression on the concrete is:

For the maximum stress on the steel taut, we consider the constraint limit 

 Mpa f   yk  s   400*8,0     

Neutral axis position calculation; Calculation of M tser :

 MNmhbhd 

hd 

 M   f  eff  

 f  

 f  

e

 stser    083,010,0*90.10*

10,0585,0

3

10,0585,0

*54.24*2

400**3*

*2

22

 

 

 kNm M kNm M  tser  ser    83400   the neutral axes is on the beam body

Concrete compressive stresses

 MPah

d hb

 M 

 f  

 f  eff  

 ser m   31.8

)2

10,0585,0(*10,0*90.0

400,0

)2

(**

   

 MPahd 

d e

 s

 f  

e

 sm

c

  61.1054.24

400

210,0585,0

54.24

40031.8

*585,0

2

*  

 

 

 

 

 

 

 

 

 

  

  

   

 MPa MPa cc   1261.10          => there is no compressed reinforcement

The calculation of the tension reinforcement theoretical section As1 

and

Page 442: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 442/682

 ADVANCE VALIDATION GUIDE

442 

Calculation of the steel compressed reinforcement As2 :

mh x x  f     1306,010,02306,012    

 MPa

 x

 xcc   01.6

2306,0

1306,0*61.1*

1

22  

     

 MN  xbb N    cweff  c   282,0

2

01.6*1306,0*)18,090.0(

2*)(   2

22      

 

 Nm z  N  M  cc   125,0441,0*282,0* 222    

with m z c   441,03

1306,010,0585,02    

²06.7400*441,0

125,0

*2

22   cm

 z 

 M  A

 sc

 s    

 

Notions of serviceability moment M 0  :

Theoretical steel reinforcement section :

²83.18435,0

400,0*46.20*

0

0 cm M 

 M  A A   ser  s

 s    

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

d b

d b f  

 f  

 Max A

w

w

 yk 

eff  ct 

 s

**0013.0

***26.0  ,

min,

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2

Where:

 MPa f   f   ctmeff  ct    21.2, 

 from cracking conditions

Therefore:

²37.1

²10*37.1585.0*18.0*0013.0

²10*21.1585.0*18.0*500

21.2*26.0

max4

4

min,   cm

m

m A s

 

Finite elements modeling

■  Linear element: S beam,

■  9 nodes,

■  1 linear element.

Page 443: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 443/682

  ADVANCE VALIDATION GUIDE

443

SLS load combinations(kNm)

Simply supported beam subjected to bending

SLS (reference value: 400kNm)

Theoretical reinforcement area(cm2  )

(reference value: As=18.83cm2)

Minimum reinforcement area(cm2  )

(reference value: 1.37cm2)

5.19.2.3 Reference results

Result name Result description Reference value

My,SLS My corresponding to the 102 combination (SLS) [kNm] 400 kNm

 Az Theoretical reinforcement area [cm2] 18.83 cm

2

 Amin Minimum reinforcement area [cm2] 1.37 cm

2

5.19.3 Calculated results

Result name Result description Value Error

My My SLS -400 kN*m 0.0000 %

 Az Az -18.8948 cm² 0.0001 %

 Amin Amin -1.36843 cm² -0.0001 %

Page 444: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 444/682

 ADVANCE VALIDATION GUIDE

444 

5.20 EC2 Test 17: Verifying a rectangular concrete beam subjected to a uniformly distributed load,without compressed reinforcement - Inclined stress-strain diagram (Class XD1)

Test ID: 5000

Test status: Passed 

5.20.1 Description

Simple Bending Design for Serviceability State Limit

Verifies the adequacy of a rectangular cross section made from concrete C20/25 to resist simple bending. During thistest, the determination of stresses is made along with the determination of compressing stresses in concrete sectionand compressing stresses in the steel reinforcement section.

5.20.2 Background

Simple Bending Design for Serviceability State Limit

Verifies the adequacy of a rectangular cross section made from concrete C20/25 to resist simple bending. During this

test, the calculation of stresses is made along with the calculation of compressing stresses in concrete section σc andcompressing stresses in the steel reinforcement section σs.

5.20.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 9.375 kN/m (including the dead load),

■  Mfq = Mcar = Mqp = 75 kNm

■  Structural class: S4

■  Characteristic combination of actions: CCQ = 1.0 x G

■  Reinforcement steel ductility: Class B

The objective is to verify:

■  The stresses results

■  The compressing stresses in concrete section σc

■  The compressing stresses in the steel reinforcement section σs.

Simply supported beam

Units

Metric System

Page 445: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 445/682

  ADVANCE VALIDATION GUIDE

445

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.50 m,

■  Width: b = 0.20 m,

■  Length: L = 8.00 m,

■  Section area: A = 0.10 m2 ,

■  Concrete cover: c=4.5cm

■  Effective height: d=44cm;

Materials properties

Rectangular solid concrete C20/25 is used. The following characteristics are used in relation to this material:

■  Exposure class XD1

■  Stress-strain law for reinforcement: Inclined stress-strain diagram

■  The concrete age t0=28 days

■  Humidity RH=50%

■  Characteristic compressive cylinder strength of concrete at 28 days:  Mpa f  ck    20  

■  Characteristic yield strength of reinforcement:  Mpa f   yk    400  

■  ²42,9   cm A st    for 3 HA20

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 8) restrained in translation along Y and Z

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Characteristic combination of actions:

CCQ = 1.0 x G =9.375kN/ml

■  Load calculations:

Mfq = Mcar  = Mqp = 75 kNm

Page 446: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 446/682

 ADVANCE VALIDATION GUIDE

446 

5.20.2.2 Reference results in calculating the concrete final value of creep coefficient

)()(),( 00   t  f  t  cm RH             

Where:

 MPa f   f  cm

cm   17.3820

8.168.16

)(      

488.0281.0

1

1.0

1)(

20.020.0

0

0  

t     

t0 : concrete age t0=28days

21

0

3  **

*1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

121     if  Mpa f  cm   35  

If not,

7.0

1

35

 

  

 

cm f    and

2.0

2

35

 

  

 

cm f     

In this case,

Therefore121     

 

In this case:

Humidity RH=50 %

  mm

u

 Ach   86.142

500200*2

500*200*220  

 

03.3488.0*17.3*96.1)(*)(*),(96.186.142*1.0

100

501

1 003

  t  f  t  cm RH  RH          

 

The coefficient of equivalence is determined by the following formula:

 Ecar 

 Eqp

cm

 se

 M  M t 

 E 

 E 

*),(1 0

 

   

Page 447: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 447/682

  ADVANCE VALIDATION GUIDE

447

Where:

 MPa f  

 E    ck cm   29962

10

820*22

10

8*22

3.03.0

 

  

   

 

  

     

 MPa E  s   200000  

03.41*03.31*),(1 0    Ecar 

 Eqp

 M 

 M t  

 

90.26

1*03.31

29962

200000

*),(1 0

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

 

   

Material characteristics:

The maximum compression on the concrete is: Mpa*,f , ckbc   15256060σ    

For the maximum stress on the steel taut, we consider the constraint limit Mpaf *, yks   32080σ    

Checking inertia cracked or not:

Before computing the constraints, check whether the section is cracked or not. For this, we determine the crackingmoment which corresponds to a tensile stress on the concrete equal to

ctm f   :

v

 I  f   M    ctm

cr 

*

 

Where:

433

00208,012

50,0*20,0

12

*m

hb I   

 

mh

v   25,02

 

The average stress in concrete is:

 Mpa f   f   ck ctm   21,220*30.0*30.0   3

2

3

2

 

The critical moment of cracking is therefore:

 MNmv

 I  f   M    ctmcr    018,0

25,000208,0*21,2*

 

The servility limit state moment is 0.075MNm therefore the cracking inertia is present.

Page 448: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 448/682

 ADVANCE VALIDATION GUIDE

448 

Neutral axis position calculation:

Neutral axis equation: 0)'(**)(**²**2

1111     d  x A xd  A xb e sce st w       

w

 st  scew st  sce st  sce

b

 Ad  Ad b A A A A

 x

)*'*(***2)²(*)(*   2

1

     

 

By simplifying the previous equation, by considering   0 sc A  , it will be obtained:

w

 st ew st e st e

b

 Ad b A A x

)****2²*)(*   2

1

     

 

cm x   04,2320

)42,9/44(*90,26*20*2²42,9*²90.2642,9*90.261  

 

Calculating the second moment:

443

1

3

1 001929,0)²230,044,0(*90.26*10*42,93

230,0*20,0)²(**

3

*m xd  A

 xb I  e st 

w

   

 

Stresses calculation:

 Mpa Mpa x I 

 M c

 ser c   1294,8230,0*

001929,0

075,0* 1       

 

 Mpa Mpa x

 xd  sce st    32057.219

230,0

230,044,0*94,8*90.26**

1

1

      

 

Finite elements modeling

■  Linear element: S beam,

■  9 nodes,

■  1 linear element.

Page 449: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 449/682

  ADVANCE VALIDATION GUIDE

449

SLS load combinations (kNm) and stresses (MPa)

Simply supported beam subjected to bending

SLS (reference value: Mscq=75kNm)

Compressing stresses in concrete section σ c  

(reference value: σc =8.94MPa )

Compressing stresses in the steel reinforcement section σ s

(reference value: σs=218.57MPa)

5.20.2.3 Reference results

Result name Result description Reference value

My,SLS My corresponding to the 103 combination (SLS) [kNm] 75 kNm

σc Compressing stresses in concrete section σc (MPa) 8.94 MPa 

σs Compressing stresses in the steel reinforcement section σs (MPa) 219.67 MPa 

5.20.3 Calculated results

Result name Result description Value Error

My My SLS -75 kN*m -0.0000 %

Sc CQ Sc CQ 8.99322 MPa 0.0359 %

Ss CQ Ss CQ -219.639 MPa 0.0006 %

Page 450: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 450/682

 ADVANCE VALIDATION GUIDE

450 

5.21 EC2 Test 20: Verifying the crack openings for a rectangular concrete beam subjected to auniformly distributed load, without compressed reinforcement - Bilinear stress-strain diagram(Class XD1)

Test ID: 5034Test status: Passed 

5.21.1 Description

Simple Bending Design for Serviceability State Limit

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the determination of stresses is made along with the determination of compressing stresses in concrete sectionand compressing stresses in the steel reinforcement section; the maximum spacing of cracks and the crack openingsare verified.

5.21.2 Background

Simple Bending Design for Serviceability State Limit

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the calculation of stresses will be made along with the calculation of compressing stresses in concrete section σc and compressing stresses in the steel reinforcement section σs; maximum spacing of cracks and the crack openings.

5.21.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 30 kN/m (including the dead load)

■  Exploitation loadings (category A): Q = 37.5 kN/m,

■  Structural class: S4

■  Reinforcement steel ductility: Class B

The objective is to verify:

■  The stresses results

■  The compressing stresses in concrete section σc

■  The compressing stresses in the steel reinforcement section σs.

■  The maximum spacing of cracks

■  The crack opening

Simply supported beam

Page 451: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 451/682

  ADVANCE VALIDATION GUIDE

451

Units

Metric System

Geometry

Beam cross section characteristics:

■  Height: h = 0.80 m,

■  Width: b = 0.40 m,

■  Length: L = 8.00 m,

■  Section area: A = 0.32 m2 ,

■  Concrete cover: c=4.5cm

■  Effective height: d=71cm;

Materials properties

Rectangular solid concrete C25/30 is used. The following characteristics are used in relation to this material:

■  Exposure class XD1

■  Stress-strain law for reinforcement: Bilinear stress-strain diagram■  The concrete age t0=28 days

■  Humidity RH=50%

■  Characteristic compressive cylinder strength of concrete at 28 days: Mpaf ck   25  

■  Characteristic yield strength of reinforcement: Mpaf yk   500  

■  ²cm. Ast   1630  for 3 beds of 5HA16

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 8) restrained in translation along Y and Z

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Load calculations:

►  M0Ed = 774 kNm

►  Mcar = 540 kNm

►  Mfq = 390 kNm

►  Mqp = 330 kNm

Page 452: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 452/682

 ADVANCE VALIDATION GUIDE

452 

5.21.2.2 Reference results in calculating the concrete final value of creep coefficient

)()(),( 00   t  f  t  cm RH             

Where:

 MPa f   f  cm

cm   92.2825

8.168.16

)(      

488.0281.0

1

1.0

1)(

20.020.0

0

0  

t     

t0 : concrete age t0=28days

21

0

3  **

*1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

If  Mpa f  cm   35 ,

121      

If not,

7.0

1

35

 

  

 

cm f   

and

2.0

2

35

 

  

 

cm f   

 

In this case,

, therefore 121       

In this case:

Humidity RH=50 %

  mm

u

 Ach   67.266

800400*2

800*400*220  

 

55.2488.0*92.2*78.1)(*)(*),(78.167.266*1.0

100

501

1 003

  t  f  t  cm RH  RH          

 

The coefficient of equivalence is determined by the following formula:

Under quasi-permanent combinations:

),(1 0t 

 E 

 E 

cm

 se

 

   

Where:

 MPa f  

 E    ck cm   31476

10

825*22

10

8*22

3.03.0

 

  

   

 

  

     

 MPa E  s   200000 

55.2),( 0    t   

Page 453: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 453/682

  ADVANCE VALIDATION GUIDE

453

56.22

55.21

31476

200000

),(1 0

 E 

 E 

cm

 se

 

   

Material characteristics:

The maximum compression on the concrete is: Mpa f  ck bc   1525*6,06,0    

 

For the maximum stress on the steel taut, we consider the constraint limit  Mpa f   yk  s   400*8,0      

Neutral axis position calculation:

Neutral axis equation: 0αα2

1111   )'dx(** A)xd(** A²x*b* escestw  

w

stscewstscestsce

b

) A*d A'*d(**b*)² A A(*) A A(*x

  α2αα   2

1  

By simplifying the previous equation, by considering   0 sc A  , it will be obtained:

cm.**.**².*²..*.

b

) A*d**b*² A* A*x

stewsteste

3540

16307156224021630562216305622

α2αα   2

1

 

Calculating the second moment:

443

11

31

01450350071056221016303

350040

αα3

m.)²..(*.**,.*.

)²'dx(** A)²xd(** Ax*b

I escestw

 

Stresses calculation:

 Mpa x I 

 M  ser c   96.7350,0*

0145,0

330,0* 1    

 

 Mpa Mpa x

 xd  sce st    4007.184

350,0

350,071,0*96.7*56.22**

1

1

        

Page 454: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 454/682

 ADVANCE VALIDATION GUIDE

454 

Maximum spacing of cracks:

Bottom reinforcement 3HA20+3HA16=15.46cm2

2,   06.015.0*4.0

4.02

8.0

15.03

)350.08.0(

255.0)71.08.0(*5.2

min*40.0

2

3)(

)(*5.2

min*   m

h

 xh

d h

b A eff  c  

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 7.3.4.(2); Figure 7.1

0500.006.0

10*16.30   4

,

,  

eff  c

 seff   p

 A

 A  

 

mmnn

nneq   16

**

**

2211

2

22

2

11

  

   

  According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 7.3.4.(3)

eff   p

k k ck  s

,

213max,

***425.0*

  

 

 

Where:

c=0.051m

113.251

25*4.3

25*4.3

3/23/2

3    

  

  

  

 c

k   

Therefore:

mmk k 

ck  seff   p

r    162050.0

)10*16(*5.0*8.0*425.0051.0*113.2

***425.0*

3

,

213max,  

  

  

Calculation of average strain:

41.631187

200000

cm

 se

 E 

 E  

 

44

,

,

,

10*54.5*6,010*88.7200000

)050.0*41.61(*050.0

56.2*4.071.184).1(**

 s

 s

 s

eff   pe

eff   p

eff  ct 

t  s

cm sm  E  E 

 f  k 

    

   

  

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 7.3.4.(2)

Calculation of crack widths:

mm sw cm smr k    128.0)1088.7(*162.0)(*   4

max,        

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 7.3.4.(1)

For an exposure class XD1, using the French national annex, we retained an opening crack of 0.20mm max.

This criterion is satisfied.

Page 455: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 455/682

  ADVANCE VALIDATION GUIDE

455

Finite elements modeling

■  Linear element: S beam,

■  11 nodes,

■  1 linear element.

SLS load combinations (kNm) and stresses (MPa)

Simply supported beam subjected to bending

ULS (reference value: MEd=774kNm)

SLS characteristic (reference value: Mser-cq=540kNm)

SLS quasi-permanent (reference value: Mser-qp=330kNm)

Compressing stresses in concrete section σc-qp 

(reference value: σc-qp =7.96MPa )

Compressing stresses in the steel reinforcement section σs-qp 

(reference value: σs-qp=185MPa)

Page 456: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 456/682

 ADVANCE VALIDATION GUIDE

456 

Maximum cracking space Sr,max

(reference value: Sr,max=162mm)

Maximum crack opening Wk

(reference value: Wk=0.128mm)

5.21.2.3 Reference results

Result name Result description Reference value

MEd My corresponding to 102 combination (ULS) [kNm] 774 kNmMser-cq My corresponding to104 combination (SLS) [kNm] 540 kNm

Mser-qp My corresponding to 108 combination (SLS) [kNm] 330 kNm

σc Compressing stresses in concrete section σc [MPa] 7.96 MPa 

σs Compressing stresses in the steel reinforcement section σs [MPa] 185 Mpa 

Sr,max  Maximum cracking space Sr,max [cm]  16.2 cm

Wk  Maximum crack opening Wk [cm]  0.0128 cm

5.21.3 Calculated results

Result name Result description Value Error

My My ULS -774 kN*m 0.0000 %

My My SLS cq -540 kN*m 0.0000 %

My My SLS qp -330 kN*m 0.0000 %

Sc QP Sc QP 7.76924 MPa 0.0000 %

Ss QP Ss QP -181.698 MPa 0.0001 %

Sr,max Sr,max 16.1577 cm -0.0003 %

wk Wk -0.0125137 cm 0.0000 %

Page 457: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 457/682

  ADVANCE VALIDATION GUIDE

457

5.22 EC2 Test 23: Verifying the shear resistance for a rectangular concrete - Bilinear stress-straindiagram (Class XC1)

Test ID: 5053

Test status: Passed 

5.22.1 Description

Verifies a rectangular cross section beam made from concrete C25/30 to resist simple bending. For this test, theshear force diagram will be generated. The design value of the maximum shear force which can be sustained by themember, limited by crushing of the compression struts (VRd,max) will be determined, along with the cross-sectionalarea of the shear reinforcement (Asw) calculation.

5.22.2 Background

Verifies a rectangular cross section beam made from concrete C25/30 to resist simple bending. For this test, theshear force diagram will be generated. The design value of the maximum shear force which can be sustained by themember, limited by crushing of the compression struts (VRd,max) will be determined, along with the cross-sectionalarea of the shear reinforcement (Asw) calculation.

5.22.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Concrete C25/30

■  Reinforcement steel: S500B

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

The dead load family is be considered from three loads: two point loads of 55kN and 65kN and one linear loadof 25kN/m, placed along the beam as described in the picture:

Page 458: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 458/682

 ADVANCE VALIDATION GUIDE

458 

■  Exploitation loadings:

The live load will consist of three loads: two point loads of 40kN and 35kN and one linear load of 20kN/m,placed along the beam as described in the picture:

■  Structural class: S1

■  Reinforcement steel ductility: Class B

■  The reinforcement will be displayed like in the picture below:

The objective is to verify:

■  The shear stresses results

■  The cross-sectional area of the shear reinforcement, Asw

■  The theoretical reinforcement value

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.70 m,

■  Width: b = 0.30 m,

■  Length: L = 5.30 m,

■  Concrete cover: c=3.5cm

■  Effective height: d=h-(0.06*h+ebz)=0.623m; d’=ehz=0.0335m

■  Stirrup slope: = 90°■  Stirrup slope: 45˚ 

Page 459: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 459/682

  ADVANCE VALIDATION GUIDE

459

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x = 0) restrained in translation along X, Y and Z,

►  Support at end point (x = 5.30) restrained in translation along Y, Z and rotation along X

■  Inner: None.

Loading

The maximum shear stresses from the concrete beam:

Using the software structure calculation the following values were obtained:

x = 0m => KNVEd   406  

x = 0.50m (for the first point load) => KN.VEd   76373  and KN.VEd   51239  

x = 0.95m (for the second point load) => KN.VEd   82210  and KN.VEd   5770  

x = 2.06m the shear force is null => KNVEd   0  

Note: In Advance Design, the shear reduction is not taken into account. These are the values corresponding to an unreducedshear that will be used for further calculations.

Page 460: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 460/682

 ADVANCE VALIDATION GUIDE

460 

5.22.2.2 Reference results in calculating the maximum design shear resistance

 

    

21max,cot1

cotcot*****

  wucd cw Rd    b z  f  V  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 6.2.3.(3)

Where:

1cw  coefficient taking account of the state of the stress in the compression chord and

250

1*6,01ck  f  

v  

When the transverse frames are vertical, the above formula simplifies to:

     cot

***1max,

tg 

b z  f  vV    wucd  Rd 

 

In this case:

 45   and  90   

1v strength reduction factor for concrete cracked in shear

54.0250

251*6.0

2501*6,01  

  ck  f  

v

 

md  z u   561.0623.0*9.0*9.0    

 MN V  Rd    757.02

30.0*561.0*67.16*54.0max,    

 MN V  MN V   Rd  Ed    757.0406.0 max,    

Calculation of transversal reinforcement:

Is determined by considering the transverse reinforcement steels vertical (  = 90°) and connecting rods inclinedat 45 °, at different points of the beam.

Before the first point load:

ml cmtg 

 f   z 

tg V 

 s

 A

 ywd u

 Ed  sw /²65,16

15,1

500*561,0

45*406,0

*

*.

   

 

Between the first and the second point load:

ml cmtg  s A sw /²82,9

15,1

500*561,0

45*23951,0

 

It also calculates the required reinforcement area to the right side of the beam:

ml cmtg 

 s

 A sw /²48,8

15,1

500*561,0

45*20674,0

 

Page 461: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 461/682

  ADVANCE VALIDATION GUIDE

461

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

 Advance Design gives the following results for Atz (cm2 

 /ml)

Note: after the second point load, the minimum transverse reinforcement is set (noted with A tmin in ADVANCE Design)(in cm²/ml):

The reinforcement theoretical value is calculated using the formula:

ml cmb f  

 f  b

 s

 Aw

 yk 

ck 

ww sw /²4.290sin*30.0*

500

25*08,0sin**

*08,0sin**min,         

 

Page 462: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 462/682

 ADVANCE VALIDATION GUIDE

462 

5.22.2.3 Reference results

Result name Result description Reference value

Fz  Fz corresponding to 101 combination (ULS) x=0m [kN] 405.63 kN

Fz  Fz corresponding to 101 combination (ULS) x=0.5m [kN]  373.76 kN

Fz Fz corresponding to 101 combination (ULS) x=0.501m [kN]  239.51 kN

Fz  Fz corresponding to 101 combination (ULS) x=0.95m [kN] 210.82 kN

Fz  Fz corresponding to 101 combination (ULS) x=0.9501m [kN] 70.57 kN

 Atz  Transversal reinforcement area x=0m [cm2/ml]  16,65 cm

2/ml

 Atz  Transversal reinforcement area x=0.501m [cm2/ml] 9.82 cm

2/ml

 Atz  Transversal reinforcement area x=5.3m [cm2/ml] 8.84 cm

2/ml

 At,min,z Theoretical reinforcement area [cm2/ml]  2.40 cm

2/ml

5.22.3 Calculated results

Result name Result description Value Error

Fz Fz,0 -405.633 kN -0.0001 %

Fz Fz,1 -373.758 kN -0.0001 %

Fz Fz,1' -239.445 kN 0.0002 %

Fz Fz,2 -210.821 kN 0.0001 %

Fz Fz,2' -70.5644 kN -0.0001 %

 Atz Atz,0 16.6391 cm² 0.0002 %

 Atz Atz,1 9.82205 cm² 0.0000 %

 Atz Atz,r 8.48058 cm² -0.0000 %

 Atminz At,min,z 2.4 cm² 0.0000 %

Page 463: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 463/682

  ADVANCE VALIDATION GUIDE

463

5.23 EC2 Test 10: Verifying a T concrete section, without compressed reinforcement - Inclinedstress-strain diagram

Test ID: 4984

Test status: Passed 

5.23.1 Description

Simple Bending Design for Ultimate Limit State - The purpose of this test is to verify the My resulted stresses for theULS load combination, the results of the theoretical reinforcement area, "Az" and the minimum reinforcementpercentage, "Amin".

This test performs the verification of the theoretical reinforcement area for the T concrete beam subjected to thedefined loads. The test confirms the absence of the compressed reinforcement for this model.

5.23.2 Background

Verifies the theoretical reinforcement area for the T concrete beam subjected to the defined loads. The test confirmsthe absence of the compressed reinforcement for this model.

5.23.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 500 kN/m

■  Exploitation loadings (category A): Q = 300kN/m,

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.3 x Q

■  30ψ2   ,  

■  Reinforcement steel ductility: Class B

■  The calculation is performed considering inclined stress-strain diagram

The objective is to verify:

■  The stresses results

■  The theoretical reinforcement area

■  The reinforcement minimum percentage area

Simply supported beam

Page 464: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 464/682

 ADVANCE VALIDATION GUIDE

464 

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Beam length: 6m

■  Concrete cover: c=4.00 cm■  Effective height: d=h-(0.6*h+ebz)=0.900 m; d’=ebz=0.04m

Materials properties

Rectangular solid concrete C30/37 and S500B reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XC2

■  Reinforcement steel ductility: Class B

■  The calculation is made considering the inclined stress-strain diagram

■  Concrete C16/20:

MPa

,

f f 

c

ckcd   20

51

30

γ

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.6(1); 4.4.2.4(1); Table 2.1.N

MPa.*.f *.f  //ckctm   90230300300   3232

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

■  Steel S400B :

MPa.,

f f 

s

ykyd   78434

151

500

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.2

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x = 0) restrained in translation along X, Y and Z,

►  Support at end point (x = 7) restrained in translation along Y and Z, and restrained rotationalong X.

■  Inner: None.

Page 465: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 465/682

  ADVANCE VALIDATION GUIDE

465

Loading

The beam is subjected to the following load combinations:

Load combinations:

The ultimate limit state (ULS) combination is:

Cmax = 1.35 x G + 1.5 x Q=1.35*500+1.5*300=1125 kN/m

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=500+300=800 kN/m

Quasi-permanent combination of actions

CQP = 1.0 x G + 0.3 x Q=500+0.3*300=590 kN/m

Load calculations:

kNm.²*

MEd   550628

61125  

kNm²*

MEcq   36008

6800  

kNm²*

MEqp   26558

6590  

5.23.2.2 Reference results in calculating the concrete beam moment

 At first it will be determined the moment resistance of the concrete section only:

kNm*.*,

,*,*.f *h

d*h*bM cdf 

f eff btu3

104804202

20090200401

2

 

  

 

 

  

   

Comparing Mbtu with MEd:

Therefore the concrete section is not entirely compressed;

There are required calculations considering the T section.

Reference reinforcement calculation:

For those calculations, the beam section will be divided in two theoretical section:

Section 1: For the calculation of the concrete only

Section 2: For the calculation of the compressed reinforcement

Theoretical section 2:

The moment corresponding to this section is:

kNm*.

..**.*)..(

hd*f *h*)bb(M f 

cdf weff Ed

3

2

1023

2

20090020200400401

2

 

  

 

 

  

 

 

Stress from the compressed steel reinforcement considering a steel grade S500B:

MPa*,, susu   466ε2772771432σ    

In order to determine the suε , the neutral axis position must be determined:

kNm*.*)..(MMM EdEdEd33

21   1086311020030635    

28702090400

8631

μ  1

.*².*.

.

F*²d*b

M

cdw

Edcu    

kNm*.MkNm*.M Edbtu33 1006255104804  

Page 466: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 466/682

 ADVANCE VALIDATION GUIDE

466 

  43502870211251μ211251α ..**.)*(*. cuu    

Depending of uα  , the neutral axis position can be established:

5545034350

43501ε

α

α1ε 2 ..*

.

.* cu

u

usu  

Then we calculate the stress in the tensioned steel reinforcement:

MPaMPa,.,,su   466024360045502772771432σ    

 According to those above, the theoretical reinforcement can be calculated:

²cm.

.*.

.

.

F*h

d

M A

ydf 

Ed 7491

024362

20090

2003

2

22  

 

  

 

 

  

 

 

Theoretical section 1:

The theoretical section 1 corresponds to a calculation for a rectangular shape beam section

kNm*.*)..(MMM EdEdEd 3321   1086311020030635    

3720μ28702090400

8631μ   1 ..

*².*.

.

F*²d*b

Mlu

cdw

Edcu    

For a S500B reinforcement and for a XC2 exposure class, there will be a: 3720μ2870μ .. lucu   , therefore there will be

no compressed reinforcement.

There will be a calculation without compressed reinforcement:

  43502870211251μ211251α ..**.)*(*. cuu    

m.).*.(*.)*.(*dz uc   74304350400190α4011    

²cm..*.

.

f *z

M A

ydcEd 4657024367430

8631

111    

Theoretical section 1:

In conclusion the entire reinforcement steel area is A=A1+A2=91.74+57.46=149.20cm2

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

d*b*.

d*b*f 

f *.

Max A

w

wyk

eff ,ct

min,s

00130

260 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2

Where:

MPa.f f  ctmeff ,ct   902  from cracking conditions

Therefore:

²cm.

²m*..*.*.

²m*..*.*.

*.max A min,s   425

1068490040000130

10425900400500

902260

4

4

 

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Page 467: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 467/682

  ADVANCE VALIDATION GUIDE

467

ULS and SLS load combinations (kNm)

Simply supported beam subjected to bending

ULS (reference value: 5062.5kNm)

Theoretical reinforcement area(cm2  )

For Class B reinforcement steel ductility (reference value: A=149.20cm2)

Minimum reinforcement area(cm2  )

(reference value: 5.42cm2)

5.23.2.3 Reference results

Result name Result description Reference value

My,ULS My corresponding to the 101 combination (ULS) [kNm] 5062.5 kNm

 Az (Class B) Theoretical reinforcement area [cm2] 149.20 cm

2

 Amin  Minimum reinforcement area [cm2] 5.42 cm

2

5.23.3 Calculated results

Result name Result description Value Error

My My USL -5062.5 kN*m 0.0000 %

 Az Az -149.031 cm² 0.0001 %

 Amin Amin -5.42219 cm² 0.0000 %

Page 468: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 468/682

 ADVANCE VALIDATION GUIDE

468 

5.24 EC2 Test 15: Verifying a T concrete section, without compressed reinforcement- Bilinearstress-strain diagram

Test ID: 4998

Test status: Passed 

5.24.1 Description

Simple Bending Design for Service Limit State

The purpose of this test is to verify the My resulted stresses for the SLS load combination and the results of thetheoretical reinforcement area Az and of the minimum reinforcement percentage.

5.24.2 Background

This test performs the verification of the theoretical reinforcement area for a T concrete beam subjected to thedefined loads. The test confirms the absence of the compressed reinforcement for this model.

5.24.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 20 kN/m (including the dead load)

■  Exploitation loadings (category A): Q = 10kN/m,

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.3 x Q

■  Reinforcement steel ductility: Class A

■  The calculation is performed considering bilinear stress-strain diagram

The objective is to verify:■  The stresses results

■  The theoretical reinforcement area

■  The minimum reinforcement percentage

Simply supported beam

Page 469: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 469/682

  ADVANCE VALIDATION GUIDE

469

Units

Metric System

Geometry

Beam cross section characteristics:

■  Beam length: 8m

■  Beam height: h=0.76m■  Concrete cover: c=4.50 cm

■  Effective height: d=h-(0.6*h+ebz)=0.669 m; d’=ebz=0.045m

Materials properties

Rectangular solid concrete C20/25 and S500A reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XD1

■  Concrete density: 16kN/m3 

■  Reinforcement steel ductility: Class A

■  The calculation is performed considering bilinear stress-strain diagram

■  The concrete age t0=28 days

■  Humidity RH=50%

■  Concrete: f ck = 20MPa

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 7) restrained in translation along Y and Z, and restrained rotationalong X.

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=20+10=30kN/ml

Quasi-permanent combination of actions:

CQP = 1.0 x G + 0.3 x Q=20+0.3*10=23kN/ml

■  Load calculations:

Page 470: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 470/682

 ADVANCE VALIDATION GUIDE

470 

kNm M  cq ser    240

8

²8*1020,  

 

kNm M  qp ser    184

8

²8*10*3.020,  

 

5.24.2.2 Reference results in calculating the concrete final value of the creep coefficient

)()(),( 00   t  f  t  cm RH             

Where:

 MPa f  

 f  cm

cm   17.3820

8.168.16)(  

  

 

488.0281.0

1

1.0

1)(

20.020.0

0

0  

t     

t0 : concrete age t0=28days

21

0

3  **

*1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

121     if  Mpa f  cm   35  

If not

7.0

1

35

 

  

 

cm f    and

2.0

2

35

 

  

 

cm f     

In this case  Mpa Mpa Mpa f   f   ck cm   35288    therefore

121      

In this case:

Humidity RH=50 %

mmu

 Ach   24.162

3920

318000*220    

97.2488.0*17.3*92.1)(*)(*),(92.124.162*1.0

100

50

11 003   t  f  t  cm RH  RH          

 

Calculating the equivalence coefficient:

The coefficient of equivalence is determined by the following formula:

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

*),(1 0

 

   

Page 471: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 471/682

  ADVANCE VALIDATION GUIDE

471

Where:

 MPa f  

 E    ck cm   29962

10

820*22

10

8*22

3.03.0

 

  

   

 

  

     

 MPa E  s   200000  

28.3240

184*97.21*),(1 0  

 Ecar 

 Eqp

 M 

 M t  

 

89.21

240

184*97.21

2962

200000

*),(1 0

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

 

   

Material characteristics:

The maximum compression on the concrete is: Mpa f  ck bc   1220*6,0*6,0    

 

For the maximum stress on the steel taut, we consider the constraint limit  Mpa f   yk  s   400*8,0      

Neutral axis position calculation; Calculation of Mtser :

 MNmhbhd 

hd 

 M   f  eff  

 f  

 f  

e

 stser    122,010,0*20,1*

10,0669,0

3

10,0669,0

*77.43

400**3*

*2

22

 

 

 

kNm M kNm M  tser  ser    122240   the neutral axes is on the beam body

Concrete compressive stresses

 MPah

d hb

 M 

 f  

 f  eff  

 ser m   23,3

)2

10,0669,0(*10,0*20,1

240,0

)2

(**

   

 MPah

d e

 s

 f  

e

 sm

c   96,489.21

400

2

10,0669,0

89.21

40023,3

*669,0

2

*  

 

 

 

 

 

 

 

 

 

  

  

   

 MPa MPa cc   1296.4         => there is no compressed reinforcement

Page 472: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 472/682

 ADVANCE VALIDATION GUIDE

472 

The calculation of the tension reinforcement theoretical section As1 

cmd  x sce

ce 30.14669,0*40096,4*89.21

96,4*89.21

*

*1  

   

   

 MN  xb N    ceff  c   426,0

296,4*1430,0*20,1

2** 11  

   

 

m.MN,,*,z*NM cc   265062204260111    and m,,

,zc   62203

1430066901    

²65,10400*622,0

265,0

*1

11   cm

 z 

 M  A

 sc

 s    

 

Calculation of the steel compressed reinforcement As2 :

m,,,hxx f    043001001430012    

MPa,,

,*,x

x*cc   49114300

04300964σσ1

22    

MN,,

*,*),,(x*)bb(N cweff c   0290

2

4910430030201

2

σ 222    

MNm,,*,z*NM cc   016055500290222    

with m,,

,,zc   55503

0430010066902    

²cm,*,

,

*z

M A

sc

s   7204005550

0160

σ2

22    

Notions of serviceability moment M 0  :

²cm... A A A sss   9397206510210    

m.MN,,,MMM   249001602650210    

Theoretical steel reinforcement section :

²cm,,

,*,

M

M* A A ser s

s   5892490

2400939

0

0  

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

d*b*.

d*b*f 

f *.

Max A

w

wyk

eff ,ct

min,s

00130

260 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2

Where:

MPa.f f  ctmeff ,ct   212  from cracking conditions

Therefore:

²cm.

²m*..*.*.

²m*..*.*.

*.max A min,s   612

10612669030000130

103126690300500

212260

4

4

 

Page 473: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 473/682

  ADVANCE VALIDATION GUIDE

473

Finite elements modeling

■  Linear element: S beam,

■  9 nodes,

■  1 linear element.

SLS load combinations(kNm)

Simply supported beam subjected to bending

SLS (reference value: 240kNm)

Theoretical reinforcement area (cm2  )

(reference value: As=9.58cm2)

Minimum reinforcement area (cm2 

 )

(reference value: 2.57cm2)

Page 474: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 474/682

 ADVANCE VALIDATION GUIDE

474 

5.24.2.3 Reference results

Result name Result description Reference value

My,SLS My corresponding to the 102 combination (SLS) [kNm] 240 kNm

 Az Theoretical reinforcement area [cm2] 9.58 cm

2

 Amin Minimum reinforcement area [cm2] 2.57 cm2

5.24.3 Calculated results

Result name Result description Value Error

My My SLS -240 kN*m 0.0000 %

 Az Az -9.64217 cm² -0.6490 %

 Amin Amin -2.574 cm² -0.0000 %

Page 475: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 475/682

  ADVANCE VALIDATION GUIDE

475

5.25 EC2 Test 19: Verifying the crack openings for a rectangular concrete beam subjected to auniformly distributed load, without compressed reinforcement - Bilinear stress-strain diagram(Class XD1)

Test ID: 5033Test status: Passed 

5.25.1 Description

Simple Bending Design for Serviceability State Limit

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the determination of stresses is made along with the determination of compressing stresses in concrete sectionand compressing stresses in the steel reinforcement section; the maximum spacing of cracks and the crack openingsare verified.

5.25.2 Background

Simple Bending Design for Serviceability State Limit

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the calculation of stresses will be made along with the calculation of compressing stresses in concrete section σc and compressing stresses in the steel reinforcement section σs; maximum spacing of cracks and the crack openings.

5.25.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 15 kN/m + dead load,

■  Exploitation loadings (category A): Q = 20 kN/m,

■  Structural class: S4

■  Reinforcement steel ductility: Class B

The objective is to verify:

■  The stresses results

■  The compressing stresses in concrete section σc

■  The compressing stresses in the steel reinforcement section σs.

■  The maximum spacing of cracks

■  The crack opening

Simply supported beam

Page 476: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 476/682

 ADVANCE VALIDATION GUIDE

476 

Units

Metric System

Geometry

Beam cross section characteristics:

■  Height: h = 0.60 m,

■  Width: b = 0.20 m,

■  Length: L = 5.80 m,

■  Section area: A = 0.12 m2 ,

■  Concrete cover: c=4.5cm

■  Effective height: d=53cm;

Materials properties

Rectangular solid concrete C25/30 is used. The following characteristics are used in relation to this material:

■  Exposure class XD1

■  Stress-strain law for reinforcement: Bilinear stress-strain diagram■  The concrete age t0=28 days

■  Humidity RH=50%

■  Characteristic compressive cylinder strength of concrete at 28 days: Mpaf ck   25  

■  Characteristic yield strength of reinforcement: Mpaf yk   500  

■  ²cm. Ast   4615  for 3 HA20+3 HA16

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x = 0) restrained in translation along X, Y and Z,

►  Support at end point (x = 8) restrained in translation along Y and Z

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Load calculations:

►  M0Ed = 228 kNm

►  Mcar  = 160 kNm

►  Mfq = 118 kNm

►  Mqp = 101 kNm

Page 477: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 477/682

  ADVANCE VALIDATION GUIDE

477

5.25.2.2 Reference results in calculating the concrete final value of creep coefficient

)()(),( 00   t  f  t  cm RH             

Where:

 MPa f   f  cm

cm   92.2825

8.168.16

)(      

488.0281.0

1

1.0

1)(

20.020.0

0

0  

t     

t0 : concrete age t0=28days

21

0

3  **

*1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

121     if  Mpa f  cm   35  

If not

7.0

1

35

 

  

 

cm f   

and

2.0

2

35

 

  

 

cm f   

 

In this case,

, therefore:

In this case:

Humidity RH=50 %

  mm

u

 Ach   150

600200*2

600*200*220  

 

77.2488.0*92.2*94.1)(*)(*),(94.1150*1.0

100

501

1 003

  t  f  t  cm RH  RH          

 

The coefficient of equivalence is determined by the following formula:

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

*),(1 0

 

   

Page 478: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 478/682

 ADVANCE VALIDATION GUIDE

478 

Where:

 MPa f  

 E    ck cm   31476

10

825*22

10

8*22

3.03.0

 

  

   

 

  

     

MPaEs   200000  

75.2160

101*77.21*),(1 0  

 Ecar 

 Eqp

 M 

 M t  

 

75.2

160

101*77.21

31476

200000

*),(1 0

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

 

   

Material characteristics:

The maximum compression on the concrete is:  Mpa f  ck bc   1525*6,06,0      

For the maximum stress on the steel taut, we consider the constraint limit  Mpa f   yk  s   320*8,0      

Neutral axis position calculation:

Neutral axis equation: 0αα2

1111   )'dx(** A)xd(** A²x*b* escestw  

w

stscewstscestsce

b

) A*d A'*d(**b*)² A A(*) A A(*x

  α2αα   2

1  

By simplifying the previous equation, by considering   0 sc A  , it will be obtained:

cm..**.**².*²..*.

b

) A*d**b*² A* A*x

stewsteste

672620

46155347172024615471746154717

α2αα  2

1

 

Calculating the second moment:

443

11

31

003140267053047171046153

267020

αα3

m.)²..(*.**,

.*.

)²'dx(** A)²xd(** Ax*b

I escestw

 

Stresses calculation:

 Mpa x I 

 M  ser c   59.8267,0*

00314,0

101,0* 1    

 

 Mpa Mpa x

 xd  sce st    40082.147

267,0

267,053,0*59.8*47.17**

1

1

        

Page 479: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 479/682

  ADVANCE VALIDATION GUIDE

479

Maximum spacing of cracks:

Bottom reinforcement 3HA20+3HA16=15.46cm2

2

,   0222.0111.0*2.0

3.02

6.0

111.03

)267.06.0(175.0)53.06.0(*5.2

min*20.0

2

3

)()(*5.2

min*   m

h

 xhd h

b A eff  c  

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 7.3.4.(2); Figure 7.1

070.00222.0

10*46.15   4

,

,  

eff  c

 seff   p

 A

 A  

 

mmnn

nneq   22.18

**

**

2211

2

22

2

11

  

   

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 7.3.4.(3)

eff   p

k k ck  s

,

213max,

***425.0*

  

 

 

Where:

c=0.051m

114.251

25*4.3

25*4.3

3/23/2

3     

  

  

  c

 

Therefore:

mmk k 

ck  seff   p

r    15207.0

)10*22.18(*5.0*8.0*425.0051.0*114.2

***425.0*

3

,

213max,  

  

 

 

Calculation of average strain:

35.631476

200000

cm

 se

 E 

 E  

 

44

,

,

,

10*43.4*6,010*33.6

200000

)07.0*35.61(*07.0

56.2*4.082.147).1(**

 s

 s

 s

eff   pe

eff   p

eff  ct 

t  s

cm sm

 E  E 

 f  k 

    

   

  

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 7.3.4.(2)

Calculation of crack widths:

mm sw cm smr k    096.0)1033.6(*152)(*   4

max,        

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 7.3.4.(1)

For an exposure class XD1, using the French national annex, we retained an opening crack of 0.20mm max.This criterion is satisfied.

Page 480: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 480/682

 ADVANCE VALIDATION GUIDE

480 

Finite elements modeling

■  Linear element: S beam,

■  11 nodes,

■  1 linear element.

SLS load combinations (kNm) and stresses (MPa)

Simply supported beam subjected to bending

SLS (reference value: Mscq=160kNm)

Compressing stresses in concrete section σc 

(reference value: σc =8.59MPa )

Compressing stresses in the steel reinforcement section σs 

(reference value: σs=148MPa)

Maximum cracking space Sr,max

(reference value: Sr,max=152mm)

Maximum crack opening Wk

(reference value: Wk=0.096mm)

Page 481: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 481/682

  ADVANCE VALIDATION GUIDE

481

5.25.2.3 Reference results

Result name Result description Reference value

Mser-cq My corresponding to the 104 combination (SLS) [kNm] 160 kNm

σc Compressing stresses in concrete section σc [MPa] 8.50 MPa 

σs Compressing stresses in the steel reinforcement section σs [MPa] 148 MPa 

Sr,max  Maximum cracking space Sr,max [cm]  15.2 cm

Wk  Maximum crack opening Wk [cm]  0.0096 cm

5.25.3 Calculated results

Result name Result description Value Error

My My SLS cq -159.546 kN*m -0.0001 %

Sc QP Sc QP 8.50328 MPa -0.0000 %

Ss QP Ss QP -147.055 MPa 0.0003 %

Sr,max Sr,max 15.3633 cm 0.9139 %

wk Wk -0.00966483 cm -0.9138 %

Page 482: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 482/682

 ADVANCE VALIDATION GUIDE

482 

5.26 EC2 Test 11: Verifying a rectangular concrete beam subjected to a uniformly distributed load,without compressed reinforcement- Bilinear stress-strain diagram (Class XD1)

Test ID: 4983

Test status: Passed 

5.26.1 Description

Simple Bending Design for Service State Limit

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the calculation of stresses is made along with the calculation of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

5.26.2 Background

Simple Bending Design for Service State Limit

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During this

test, the calculation of stresses is made along with the calculation of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

5.26.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 15 kN/m + dead load,

■  Exploitation loadings (category A): Q = 20kN/m,

■ 

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.3 x Q

Simply supported beam

Units

Metric System

Page 483: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 483/682

  ADVANCE VALIDATION GUIDE

483

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.60 m,

■  Width: b = 0.25 m,

■  Length: L = 5.80 m,

■  Section area: A = 0.15 m2 ,

■  Concrete cover: c=4.5cm

■  Effective height: d=h-(0.6*h+ebz)=0.519m; d’=ebz=0.045m

Materials properties

Rectangular solid concrete C25/30 and S500A reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XD1

■  Concrete density: 25kN/m3 

■  Stress-strain law for reinforcement: Bilinear stress-strain diagram

■  The concrete age t0 =28 days

■  Cracking calculation required

■  Concrete C25/30:

MPa,,

f f 

c

ckcd   6716

51

25

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.6(1); 4.4.2.4(1); Table 2.1.N

MPa.*.f *.f  //ckctm   56225300300   3232

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

■  Steel S500 :

MPa,,

f f 

s

yk

yd  78434151

500

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.2

 MPa f  

 E    ck cm   31476

10

825*22000

10

8*22000

3.03.0

 

  

   

 

  

   

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x = 0) restrained in translation along X, Y and Z,►  Support at end point (x = 5.80) restrained in translation along Y, Z and restrained in rotation

along X.

■  Inner: None.

Page 484: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 484/682

 ADVANCE VALIDATION GUIDE

484 

Loading

The beam is subjected to the following load combinations:

■  Permanent loads:

G’=0.25*0.6*2.5=3.75kN/ml

■  Load combinations:Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=15+3.75+20=38.75kN/ml

Quasi-permanent combination of actions:

CQP = 1.0 x G + 0.3 x Q=15+3.75+0.3*20=24.75kN/ml

■  Load calculations:

kNm M  Ecq   94,1628

²80,5*75,38

 

kNm M  Eqp   7.104

8

²80,5*75.24

 

Page 485: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 485/682

  ADVANCE VALIDATION GUIDE

485

5.26.2.2 Reference results in calculating the concrete final value of creep coefficient

)()(),( 00   t  f  t  cm RH             

Where:

MPa..

.)f (

cmcm

  9252825

816816β  

 

488.0281.0

1

1.0

1)(

20.020.0

0

0  

t     

t0 : concrete age t0 = 28days

21

0

3  **

*1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

1αα 21    if Mpaf cm   35  

If not,

70

135

α

.

cmf     

  

  and

20

235

α

.

cmf     

  

   

In this case,

, therefore 1αα 21    

In this case,

Humidity RH=50 %

mm.

*

**

u

 Ach   47176

6002502

600250220  

 

70248809252891ββ8914717610

100

501

1 003..*.*.)t(*)f (*)t,(.

.*.cmRHRH  

 

Therefore:

73.2163

104*70.21*),(1 0  

 Ecar 

 Eqp

 M 

 M t  

 

The coefficient of equivalence is determined by the following formula:

32.17

163

104*70.21

31476

200000

*),(1 0

 Ecar 

 Eqp

cm

 s

e

 M 

 M t 

 E 

 E 

 

   

Material characteristics:

The maximum compression on the concrete is:  Mpa f  ck bc   1525*6,06,0      

For the maximum stress on the steel taut, we consider the constraint limit  Mpa f   yk  s   400*8,0      

Page 486: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 486/682

 ADVANCE VALIDATION GUIDE

486 

Neutral axis position calculation:

The position of the neutral axis must be determined by calculating 1  (position corresponding to the state of

maximum stress on the concrete and reinforcement):

394.040015*32.17

15*32.17

*

*1    sce

ce

   

  

  

Moment resistance calculation:

Knowing the 1    value, it can be determined the moment resistance of the concrete section, using the following

formulas:

204051903940α11 ..*.d*x   m

MNm..

.**.*.*.)x

d(**x*b*M cwrb   17303

2040519015204025050

2

1   11  

 

  

   

Where:

Utile height : d = h – (0.06h + ebz) = 0.519m

The moment resistance Mrb = 173KNm

Because kNm M kNm M  rb Ecq   17394.162    the supposition of having no compressed reinforcement is

correct.

Calculation of reinforcement area with max constraint on steel and concrete

The reinforcement area is calculated using the SLS load combination

Neutral axis position: 394,01    

Lever arm: m..

*.*dzc   45103

394015190

3

α1   1

  

  

 

 

 

   

Reinforcement section: ²03.9400*451.0

163.0

*,1   cm

 z 

 M  A

 sc

 ser  ser  s  

  

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

d b

d b f  

 f  

 Max A

w

w

 yk 

eff  ct 

 s

**0013.0

***26.0  ,

min,

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2

Where:

 MPa f   f   ctmeff  ct    56.2,   from cracking conditions

Therefore:

²73.1

²10*69.1519.0*25.0*0013.0

²10*73.1519.0*25.0*500

56.226.0

max4

4

min,   cm

m

m A s

 

Page 487: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 487/682

  ADVANCE VALIDATION GUIDE

487

Finite elements modeling

■  Linear element: S beam,

■  11 nodes,

■  1 linear element.

ULS and SLS load combinations (kNm)

Simply supported beam subjected to bending

SLS (reference value: 162.94kNm)

Theoretical reinforcement area(cm2  )

(reference value: 9.03cm2)

Minimum reinforcement area(cm2  )

(reference value: 1.73cm2)

Page 488: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 488/682

 ADVANCE VALIDATION GUIDE

488 

5.26.2.3 Reference results

Result name Result description Reference value

My,SLS My corresponding to the 102 combination (SLS) [kNm] 162.94 kNm

 Az Theoretical reinforcement area [cm2] 9.03 cm

2

 Amin Minimum reinforcement area [cm2] 1.73 cm2

5.26.3 Calculated results

Result name Result description Value Error

My My USL -162.936 kN*m 0.0001 %

 Az Az -9.02822 cm² -0.0000 %

 Amin Amin -1.73058 cm² -0.0001 %

Page 489: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 489/682

  ADVANCE VALIDATION GUIDE

489

5.27 EC2 Test 14: Verifying a rectangular concrete beam subjected to a uniformly distributed load,with compressed reinforcement- Bilinear stress-strain diagram (Class XD1)

Test ID: 4987

Test status: Passed 

5.27.1 Description

Simple Bending Design for Service State Limit - Verifies the adequacy of a rectangular cross section made fromconcrete C25/30 to resist simple bending.

During this test, the determination of stresses is made along with the determination of the longitudinal reinforcementand the verification of the minimum reinforcement percentage.

The verification of the bending stresses at service limit state is performed.

5.27.2 Background

Simple Bending Design for Service State Limit

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the calculation of stresses is made along with the calculation of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

5.27.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Linear loads:

Loadings from the structure: G = 50 kN/m + dead load,

Exploitation loadings (category A): Q = 60kN/m,

■  Punctual loads

G=30kN

Q=25kN

3,02   

Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

Quasi-permanent combination of actions: CQP = 1.0 x G + 0.3 x Q

Simply supported beam

Page 490: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 490/682

 ADVANCE VALIDATION GUIDE

490 

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.80 m,

■  Width: b = 0.40 m,

■  Length: L = 6.30 m,

■  Section area: A = 0.320 m2 ,

■  Concrete cover: c=4.5cm

■  Effective height: d=h-(0.6*h+ebz)=0.707m; d’=ebz=0.045m

Materials properties

Rectangular solid concrete C25/30 and S500A reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XD1

■  Concrete density: 25kN/m3 

■  Stress-strain law for reinforcement: Bilinear stress-strain diagram

■  The concrete age t0=28 days

■  Humidity RH=50%

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 5.80) restrained in translation along Y, Z and restrained in rotationalong X.

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Dead load:

0.40*0.80*25 = 8kN/ml

■  Load combinations:

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=8+50+60=118kN/ml

Quasi-permanent combination of actions:

CQP = 1.0 x G + 0.3 x Q=8+50+0.3*60=76kN/ml

■  Load calculations:

mkN  M  cq ser    .05.672

8

²3.6*60508

4

3.6*2530,  

 

mkN  M  qp ser    .11.436

8

²3.660*3.0508

4

3.6*25*3.030,  

 

Page 491: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 491/682

  ADVANCE VALIDATION GUIDE

491

5.27.2.2 Reference results in calculating the concrete final value of creep coefficient

)()(),( 00   t  f  t  cm RH             

Where:

 MPa f   f  cm

cm   92.2825

8.168.16

)(      

488.0281.0

1

1.0

1)(

20.020.0

0

0  

t     

t0 : concrete age t0=28days

21

0

3  **

*1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

121     if  Mpa f  cm   35  

If not

7.0

1

35

 

  

 

cm f    and

2.0

2

35

 

  

 

cm f     

In this case therefore

121      

In this case:

Humidity RH=50 %

  mm

u

 Ach   267

800400*2

800*400*220  

 

54.2488.0*92.2*78.1)(*)(*),(78.1267*1.0

100

501

1 003

  t  f  t  cm RH  RH          

 

Calculating the equivalence coefficient:

The coefficient of equivalence is determined by the following formula:

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

*),(1 0

 

   

Where:

 MPa f  

 E    ck cm   31476

10

825*22

10

8*22

3.03.0

 

  

   

 

  

     

 MPa E  s   200000 

Page 492: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 492/682

 ADVANCE VALIDATION GUIDE

492 

65.2672

435*54.21*),(1 0  

 Ecar 

 Eqp

 M 

 M t  

 

82.16

672

435*54.21

31476

200000

*),(1 0

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

 

   

Material characteristics:

The maximum compression on the concrete is: Mpa f  ck bc   1515*6,0*6,0    

 

For the maximum stress on the steel taut, we consider the constraint limit  Mpa f   yk  s   400*8,0      

Neutral axis position calculation:

The position of the neutral axis must be determined by calculating (position corresponding to the state ofmaximum stress on the concrete and reinforcement):

387.040018*82.16

15*82.16

*

*1  

 sce

ce

   

   

 

Moment resistance calculation:

Knowing the 1α   value, it can be determined the moment resistance of the concrete section, using the following

formulas:

273.0707.0*387.0*11     d  x    m

 MNm x

d  xb M  cwrb   505.03

273.0707.0*15*273.0*4.0*5.0)

3(****

2

1 11  

 

  

       

Where:

Utile height : d = h – (0.06h + ebz) = 0.707m

The moment resistance Mrb = 505KNm

Because kNm M kNm M  rb Ecq   505672   , the supposition of having no compressed reinforcement is

incorrect.

The calculation of the tension reinforcement theoretical section A1

m x

d  z c   616.03

273.0707.0

31

 

²51.20400*616.0

505.0

*1   cm

 z 

 M  A

 sc

rb  

 

Page 493: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 493/682

  ADVANCE VALIDATION GUIDE

493

Stress calculation for steel reinforcement σ sc :

064.0707.0

045.0''  

d  

 

 MPace sc   78.210387.0

067.0387.0*15*82.16

'**

1

1

 

       

Calculation of the steel compressed reinforcement A’:

²96.1178.210*)045.0707.0(

505.0672.0

*)'('   cm

d d 

 M  M  A

 sc

rb ser 

 

 

Calculation of the steel tensioned reinforcement A2 :

²30.6400

78.210*96.11'*2   cm A A

 s

 sc  

 

 

Calculation of the steel reinforcement :

²81.2630.651.2021   cm A A A    

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

d b

d b f  

 f  

 Max A

w

w

 yk 

eff  ct 

 s

**0013.0

***26.0  ,

min,

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2

Where:

 MPa f   f   ctmeff  ct    56.2,    from cracking conditions

Therefore:

²76.3

²10*68.3707.0*40.0*0013.0

²10*76.3707.0*40.0*500

56.2*26.0

max4

4

min,   cm

m

m A s

 

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Page 494: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 494/682

 ADVANCE VALIDATION GUIDE

494 

ULS and SLS load combinations (kNm)

Simply supported beam subjected to bending

SLS (reference value: 672kNm)

Theoretical reinforcement area (cm2)

(reference value: As=26.81cm2; A’=11.96cm

2)

Minimum reinforcement area (cm2  )

(reference value: 3.76cm2)

5.27.2.3 Reference results

Result name Result description Reference value

My,SLS My corresponding to the 102 combination (SLS) [kNm] 672 kNm

 Az Theoretical reinforcement area [cm2] 26.81 cm

2

 Amin Minimum reinforcement area [cm2] 3.77 cm2

5.27.3 Calculated results

Result name Result description Value Error

My My SLS -672.032 kN*m -0.0001 %

 Az Az -26.8086 cm² -0.0001 %

 Amin Amin -3.77193 cm² -0.0001 %

Page 495: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 495/682

  ADVANCE VALIDATION GUIDE

495

5.28 EC2 Test 18: Verifying a rectangular concrete beam subjected to a uniformly distributed load,with compressed reinforcement - Bilinear stress-strain diagram (Class XD1)

Test ID: 5011

Test status: Passed 

5.28.1 Description

Simple Bending Design for Serviceability State Limit - Verifies the adequacy of a rectangular cross section made fromconcrete C25/30 to resist simple bending.

During this test, the determination of stresses is made along with the determination of compressing stresses inconcrete section and compressing stresses in the steel reinforcement section.

5.28.2 Background

Simple Bending Design for Serviceability State Limit

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During this

test, the calculation of stresses is made along with the calculation of compressing stresses in concrete section σc andcompressing stresses in the steel reinforcement section σs.

5.28.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 37.5 kN/m (including the dead load),

■  Exploitation loadings (category A): Q = 37.5 kN/m,

■  Structural class: S4

■  Reinforcement steel ductility: Class A

■  For the stress calculation the French annexes was used

The objective is to verify:

■  The stresses results

■  The compressing stresses in concrete section σc

■  The compressing stresses in the steel reinforcement section σs.

Simply supported beam

Units

Metric System

Page 496: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 496/682

 ADVANCE VALIDATION GUIDE

496 

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.80 m,

■  Width: b = 0.35 m,

■  Length: L = 8.00 m,

■  Section area: A = 0.28 m2 ,

■  Concrete cover: c=4 cm

■  Effective height: d=72cm;

Materials properties

Rectangular solid concrete C25/30 is used. The following characteristics are used in relation to this material:

■  Exposure class XD1

■  Stress-strain law for reinforcement: Bilinear stress-strain diagram

■  The concrete age t0=28 days

■  Humidity RH=50%

■  Characteristic compressive cylinder strength of concrete at 28 days: Mpaf ck   25  ■  Characteristic yield strength of reinforcement: Mpaf yk   500  

■  ²cm. Ast   7037  for 3 HA20

■  ²cm. Asc   286  for 2 HA10

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 8) restrained in translation along Y and Z

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

►  Characteristic combination of actions:

CCQ = 1.0*G+1.0*Q =75 kN/ml

■  Load calculations:

►  M0Ed = 855 kNm

►  Mcar = 600 kNm

►  Mqp = 390 kNm

Page 497: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 497/682

  ADVANCE VALIDATION GUIDE

497

5.28.2.2 Reference results in calculating the concrete final value of creep coefficient

)()(),( 00   t  f  t  cm RH             

Where:

 MPa f   f  cm

cm   92.2825

8.168.16

)(      

488.0281.0

1

1.0

1)(

20.020.0

0

0  

t     

t0 : concrete age t0=28days

21

0

3  **

*1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

if

If not,

7.0

1

35

 

  

 

cm f    and

2.0

2

35

 

  

 

cm f     

In this case,

, therefore121     

 

In this case,

Humidity RH=50 %

  mm

u

 Ach   48.243

800350*2

800*350*220  

 

56.2488.0*92.2*80.1)(*)(*),(80.148.243*1.0

100

501

1 003

  t  f  t  cm RH  RH            

The coefficient of equivalence is determined by the following formula:

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

*),(1 0

 

   

Page 498: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 498/682

 ADVANCE VALIDATION GUIDE

498 

Where:

 MPa f  

 E    ck cm   31476

10

825*22

10

8*22

3.03.0

 

  

   

 

  

     

 MPa E  s   200000  

664.2600

390*56.21*),(1 0  

 Ecar 

 Eqp

 M 

 M t  

 

90.16

664.2

31476

200000

*),(1 0

 Ecar 

 Eqp

cm

 se

 M 

 M t 

 E 

 E 

 

   

Material characteristics:

The maximum compression on the concrete is:  Mpa f  ck bc   1525*6,06,0      

For the maximum stress on the steel taut, we consider the constraint limit  Mpa f   yk  s   320*8,0      

Neutral axis position calculation:

Neutral axis equation: 0αα2

1111   )'dx(** A)xd(** A²x*b* escestw  

cm,).*.*(*.**)²..(*².)..(*.

b

) A'*d A*d(**b*)² A A(*²) A A(*x

scstewscstescste

413435

286470377290163522867037901628670379016

α2αα1

 

Calculating the second moment:

443

11

31

0147201472097445349016286453472901670373

413435

αα3

m.cm)².(*.*,)²,(.*,,*

)²'dx(** A)²xd(** Ax*b

I escestw

 

Stresses calculation:

 Mpa Mpa x I 

 M 

c

 ser 

c   12143441,0*01472,0

600,0

* 1         

 Mpa Mpa x

 xd  sce st    400259

3441,0

3441,072,0*14*90.16**

1

1

      

 

Finite elements modeling

■  Linear element: S beam,

■  9 nodes,

■  1 linear element.

Page 499: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 499/682

  ADVANCE VALIDATION GUIDE

499

SLS load combinations (kNm) and stresses (MPa)

Simply supported beam subjected to bending

SLS (reference value: Mscq=600kNm)

Compressing stresses in concrete section σc 

(reference value: σc =14MPa )

Compressing stresses in the steel reinforcement section σs 

(reference value: σs=260.15MPa)

5.28.2.3 Reference results

Result name Result description Reference value

My,SLS My corresponding to the 104 combination (SLS) [kNm] 600 kNm

σc Compressing stresses in concrete section σc (MPa) 14 MPa 

σs Compressing stresses in the steel reinforcement section σs (MPa) 260.15 MPa 

5.28.3 Calculated results

Result name Result description Value Error

My My SLS -600 kN*m 0.0000 %

Sc CQ Sc CQ 14.122 MPa 0.0142 %

Ss CQ Ss CQ -260.116 MPa 0.0014 %

Page 500: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 500/682

 ADVANCE VALIDATION GUIDE

500 

5.29 EC2 Test 26: Verifying the shear resistance for a rectangular concrete beam with verticaltransversal reinforcement - Bilinear stress-strain diagram (Class XC1)

Test ID: 5072

Test status: Passed 

5.29.1 Description

Verifies a rectangular cross section beam made from concrete C25/30 to resist simple bending. For this test, theshear force diagram will be generated. The design value of the maximum shear force which can be sustained by themember, limited by crushing of the compression struts, VRd,max, will be calculated, along with the cross-sectionalarea of the shear reinforcement, Asw. For the calculation, the reduced shear force values will be used.

5.29.2 Background

Verifies a rectangular cross section beam made from concrete C25/30 to resist simple bending. For this test, theshear force diagram will be generated. The design value of the maximum shear force which can be sustained by themember, limited by crushing of the compression struts, VRd,max, will be calculated, along with the cross-sectional areaof the shear reinforcement, Asw. For the calculation, the reduced shear force values will be used.

5.29.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Concrete C25/30

■  Reinforcement steel: S500B

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

The dead load will be represented by a linear load of 40kN/m

■  Exploitation loadings:The live load will be considered from one linear load of 25kN

■  Structural class: S1

■  Reinforcement steel ductility: Class B

■  The reinforcement will be displayed like in the picture below:

The objective is to verify:

■  The shear stresses results

■  The cross-sectional area of the shear reinforcement, Asw

Page 501: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 501/682

  ADVANCE VALIDATION GUIDE

501

Units

Metric System

Geometry

Beam cross section characteristics:

■  Height: h = 0.70 m,■  Width: b = 0.35 m,

■  Length: L = 5.75 m,

■  Concrete cover: c=3.5cm

■  Effective height: d=h-(0.06*h+ebz)=0.623m; d’=ehz=0.035m

■  Stirrup slope: = 90°

■  Strut slope: θ=45˚ 

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,►  Support at end point (x = 5.30) restrained in translation along Y, Z and rotation along X

■  Inner: None.

Loading:

For a beam subjected to a point load, Pu, the shear stresses are defined by the formula below:

2

* l  P V    u Ed    

 According to EC2 the Pu point load is defined by the next formula:

Pu = 1,35*Pg + 1,50*Pq=1.35*40kN+1.50*25kN=91.5kN

In this case :

 KN V  Ed    2632

5.91*75.5  

Page 502: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 502/682

 ADVANCE VALIDATION GUIDE

502 

5.29.2.2 Reference results in calculating the lever arm zc:

The lever arm will be calculated from the design formula for pure bending:

ml kN  P u   /5.91 

kNm M  Ed    15.3788

²75.5*5.91

 

167.067.16*²623.0*35.0

378.0

*²*

cd w

 Ed cu

 f  d b

 M    

  230.0167.0*211*25.1*211*25.1     cuu       

  md  z  uc   566.0230.0*4.01*623.0*4.01*       

Calculation of reduced shear force

When the shear force curve has no discontinuities, the EC2 allows to consider, as a reduction, the shear force to a

horizontal axis

In case of a member subjected to a distributed load, the equation of the shear force is:

2

**)(  l  P  x P  xV    u

u    

Therefore:

m z  x   566.045cot*566.0cot*        

kN V  red  Ed    211263566.0*5.91,   

Warning: Advance Design does not apply the reduction of shear force corresponding to the distributed loads (cutting

edge at x = d).

Calculation of maximum design shear resistance:

θ1

θα να 1 2wucdcwmax,Rd

cot

cotcot*b*z*f **V

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 6.2.3.(3)

Where:

1cw    coefficient taking account of the state of the stress in the compression chord and

250

1*6,01

ck  f  v  

When the transverse frames are vertical, the above formula simplifies to:

θθ

1

cottg

b*z*f *vV wucd

max,Rd

 In this case:

 45   and  90   

1v strength reduction factor for concrete cracked in shear

54.0250

25

1*6.02501*6,01  

  ck  f  

v  

Page 503: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 503/682

  ADVANCE VALIDATION GUIDE

503

md  z u   56.0623.0*9.0*9.0    

kN  MN V  Rd    891891.02

35.0*566.0*67.16*54.0max,  

 

kN V kN V  Rd  Ed 

  891236max,

   

Calculation of transversal reinforcement:

Given the vertical transversal reinforcement ( = 90°), the following formula is used:

ml cmtg 

 f   z 

tg V 

 s

 A

 ywd u

 Ed  sw /²67,8

15,1

500*566,0

45*211,0

*

*.    

 

Finite elements modeling

■  Linear element: S beam,

■  3 nodes,■  1 linear element.

 Advance Design gives the following results for Atz (cm2/ml)

5.29.2.3 Reference results

Result name Result description Reference value

Fz Fz corresponding to the 101 combination (ULS) [kNm] 263 kN

 At,z  Theoretical reinforcement area [cm2/ml]  8.67 cm

2/ml

5.29.3 Calculated results

Result name Result description Value Error

Fz Fz -263.062 kN -0.0002 % Atz Atz 8.68636 cm² 0.0000 %

Page 504: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 504/682

 ADVANCE VALIDATION GUIDE

504 

5.30 EC2 Test 27: Verifying the shear resistance for a rectangular concrete beam with verticaltransversal reinforcement - Bilinear stress-strain diagram (Class XC1)

Test ID: 5076

Test status: Passed 

5.30.1 Description

Verifies a rectangular cross section beam made from concrete C25/30 to resist simple bending. For this test, theshear force diagram is generated. The design value of the maximum shear force which can be sustained by themember, limited by crushing of the compression struts, VRd,max., will be calculated, along with the cross-sectionalarea of the shear reinforcement, Asw, and the theoretical reinforcement. For the calculation, the reduced shear forcevalues will be used.

5.30.2 Background

Description: Verifies a rectangular cross section beam made from concrete C25/30 to resist simple bending. For thistest, the shear force diagram is generated. The design value of the maximum shear force which can be sustained bythe member, limited by crushing of the compression struts, VRd,max. will be calculated, along with the cross-sectionalarea of the shear reinforcement, Asw, and the theoretical reinforcement.

5.30.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Concrete C25/30

■  Reinforcement steel: S500B

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

The dead load will be represented by a linear load of 40kN/m

■  Exploitation loadings:

The live load will be considered from one linear load of 25kN

■  Structural class: S1

■  Reinforcement steel ductility: Class B

■  The reinforcement will be displayed like in the picture below:

The objective is to verify:

■  The shear stresses results

■  The theoretical reinforcement value

Page 505: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 505/682

  ADVANCE VALIDATION GUIDE

505

Units

Metric System

Geometry

Beam cross section characteristics:

■  Height: h = 0.70 m,■  Width: b = 0.35 m,

■  Length: L = 5.75 m,

■  Concrete cover: c=3.5cm

■  Effective height: d=h-(0.06*h+ebz)=0.623m; d’=ehz=0.035m

■  Stirrup slope: = 90°

■  Strut slope: θ=45˚ 

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,►  Support at end point (x = 5.30) restrained in translation along Y, Z and rotation along X

■  Inner: None.

Loading:

For a beam subjected to a point load, Pu, the shear stresses are defined by the formula below:

2

* l  P V    u Ed    

 According to EC2 the Pu point load is defined by the next formula:

Pu = 1,35*Pg + 1,50*Pq=1.35*40kN+1.50*25kN=91.5kN

In this case :

 KN V  Ed    2632

5.91*75.5  

Page 506: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 506/682

 ADVANCE VALIDATION GUIDE

506 

5.30.2.2 Reference results in calculating the lever arm zc:

The lever arm is calculated using the design formula for pure bending:

ml kN  P u   /5.91  

kNm M  Ed    15.3788

²75.5*5.91

 

167.067.16*²623.0*35.0

378.0

*²*

cd w

 Ed cu

 f  d b

 M    

  230.0167.0*211*25.1*211*25.1     cuu       

  md  z  uc   566.0230.0*4.01*623.0*4.01*        

Calculation of reduced shear force

When the shear force curve has no discontinuities, the EC2 allows to consider, as a reduction, the shear force to a

horizontal axis    cot. z  x  .

In the case of a member subjected to a distributed load, the equation of the shear force is:

2

**)(  l  P  x P  xV    u

u    

Therefore:

m z  x   566.045cot*566.0cot*        

kN V  red  Ed    211263566.0*5.91,    

Warning: Advance Design does not apply the reduction of shear force corresponding to the distributed loads (cutting

edge at x = d).

Calculation of maximum design shear resistance:

θ1

θα να 1 2wucdcwmax,Rd

cot

cotcot*b*z*f **V

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 6.2.3.(3)

Where:

1cw  coefficient taking account of the state of the stress in the compression chord and

250

1*6,01ck  f  

v  

When the transverse frames are vertical, the above formula simplifies to:

     cot

***1max,

tg 

b z  f  vV    wucd  Rd 

 

In this case:

 45   and  90   

1v strength reduction factor for concrete cracked in shear

54.0

250

251*6.0

250

1*6,01  

  ck  f  v  

Page 507: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 507/682

  ADVANCE VALIDATION GUIDE

507

md  z u   56.0623.0*9.0*9.0    

kN  MN V  Rd    891891.02

35.0*566.0*67.16*54.0max,  

 

kN V kN V  Rd  Ed 

  891236max,

   

Calculation of transversal reinforcement:

Given the vertical transversal reinforcement ( = 90°), the transverse reinforcement is calculated using the followingformula:

ml cmtg 

 f   z 

tg V 

 s

 A

 ywd u

 Ed  sw /²67,8

15,1

500*566,0

45*211,0

*

*.    

 

Calculation of theoretical reinforcement value:

The French national annex indicates the formula:

      sin**min,   ww sw b s

 A

 

With:

4

min,   1015.7500

20*08,0*08,0  yk 

ck 

w f  

 f      

ml cmb s

 Aww

 sw /²43.190sin*2.0*10*15.7sin**   4

min,         

Finite elements modeling

■  Linear element: S beam,

■  3 nodes,

■  1 linear element.

 Advance Design gives the following results for At,min,z (cm2/ml)

Page 508: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 508/682

 ADVANCE VALIDATION GUIDE

508 

5.30.2.3 Reference results

Result name Result description Reference value

Fz Fz corresponding to the 101 combination (ULS) [kNm] 263 kN

 At,min,z  Theoretical reinforcement area [cm2/ml]  1.43 cm

2/ml

5.30.3 Calculated results

Result name Result description Value Error

Fz Fz -168.937 kN -0.0003 %

 Atminz Atmin,z 1.43108 cm² 0.0002 %

Page 509: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 509/682

  ADVANCE VALIDATION GUIDE

509

5.31 EC2 Test29: Verifying the shear resistance for a T concrete beam with inclined transversalreinforcement - Inclined stress-strain diagram (Class XC1)

Test ID: 5092

Test status: Passed 

5.31.1 Description

Verifies a T cross section beam made from concrete C35/40 to resist simple bending. For this test, the shear forcediagram and the moment diagram will be generated. The design value of the maximum shear force which can besustained by the member, limited by crushing of the compression struts, VRd,max., will be determined, along with thecross-sectional area of the shear reinforcement, Asw, calculation. The test will not use the reduced shear force value.

The beam model was provided by Bouygues.

5.31.2 Background

Verifies a T cross section beam made from concrete C35/40 to resist simple bending. For this test, the shear forcediagram and the moment diagram will be generated. The design value of the maximum shear force which can be

sustained by the member, limited by crushing of the compression struts, V Rd,max, will be determined, along with thecross-sectional area of the shear reinforcement, Asw. The test will not use the reduced shear force value.

The beam model was provided by Bouygues.

5.31.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Concrete: C35/40

■  Reinforcement steel: S500B

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

The dead load will be represented by two linear loads of 22.63kN/m and 47.38kN/m

■  Exploitation loadings:

The live load will be considered from one linear load of 80.00kN/m

■  Structural class: S3

■  Reinforcement steel ductility: Class B

■  Exposure class: XC1

■  Characteristic compressive cylinder strength of concrete at 28 days:

■  Partial factor for concrete:

Page 510: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 510/682

 ADVANCE VALIDATION GUIDE

510 

■  Relative humidity: RH=50%

■  Concrete age: t0=28days

■  Design value of concrete compressive strength: fcd=23 MPa

■  Secant modulus of elasticity of concrete: Ecm=34000 MPa

■  Concrete density:

■  Mean value of axial tensile strength of concrete: fctm=3.2 MPa

■  Final value of creep coefficient:

■  Characteristic yield strength of reinforcement:

■  Steel ductility: Class B

■  K coefficient: k=1.08

■  Design yield strength of reinforcement:

■  Design value of modulus of elasticity of reinforcing steel: Es=200000MPa

■  Steel density:

■  Characteristic strain of reinforcement or prestressing steel at maximum load:

■  Strain of reinforcement or prestressing steel at maximum load:

■  Slenderness ratio: 80.0   

The objective is to verify:

■  The of shear stresses results

■  The longitudinal reinforcement corresponding to a 5cm concrete cover

■  The transverse reinforcement corresponding to a 2.7cm concrete cover

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Length: L = 10.00 m,

■  Stirrup slope: = 90°

■  Strut slope: θ=29.74˚ 

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 10.00) restrained in translation along Y, Z and rotation along X

■  Inner: None.

Page 511: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 511/682

  ADVANCE VALIDATION GUIDE

511

Loading:

Note: In Advance Design, the shear reduction is not taken into account. These are the values corresponding to an unreducedshear that will be used for further calculations.

5.31.2.2 Reference results in calculating the longitudinal reinforcement

For a 5 cm concrete cover and dinit=1.125m, the reference value will be 108.3 cm2:

For a 2.7 cm concrete cover and dinit=1.148m, the reference value will be 105.7 cm2:

5.31.2.3 Reference results in calculating the transversal reinforcement

 ywd u

 Ed  sw

 f   z 

tg V 

 s

 A

*

*.      

Where:

md  z u   0125.1125.1*9.0*9.0    

  74.2975.1cot       

 90   

ml cmtg 

 f   z 

tg V 

 s

 A

 ywd u

 Ed  sw /²50.19

15,1

500*0125.1

74.29*502.1

*

*.

   

 

Page 512: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 512/682

 ADVANCE VALIDATION GUIDE

512 

The minimum reinforcement percentage calculation:

ml cmb f  

 f  b

 s

 Aw

 yk 

ck 

ww sw /²21.590sin*55.0*

500

35*08,0sin**

*08,0sin**min,         

 

Finite elements modeling

■  Linear element: S beam,

■  15 nodes,

■  1 linear element.

 Advance Design gives the following results for Atz (cm2/ml)

5.31.2.4 Reference results

Result name Result description Reference value

My My corresponding to the 101 combination (ULS) [kNm] 5255.58 kNm

Fz  Fz  corresponding to the 101 combination (ULS) [kNm] 1501.59 kN

 Az(5cm cover)  Az  longitudinal reinforcement corresp. to a 5cm cover [cm2/ml] 108.30 cm

2/ml

 Az(2.7cm cover)  Az  longitudinal reinforcement corresp. to a 2.7cm cover [cm2/ml] 105.69 cm

2/ml

 At,z,1   At,z  transversal reinforcement for the beam end [cm2/ml] 19.10 cm

2/ml

 At,z,2   At,z  transversal reinforcement for the middle of the beam [cm2/ml] 5.21 cm

2/ml

5.31.3 Calculated results

Result name Result description Value Error

My My -5255.58 kN*m -0.0000 %

Fz Fz -1501.59 kN -0.0003 %

 Az Az 5cm -105.694 cm² 2.4071 %

 Az Az 2.7cm -105.694 cm² -0.0000 %

 Atz Atz end 19.0973 cm² 0.0000 %

 Atz Atz middle 5.20615 cm² 0.0000 %

Page 513: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 513/682

  ADVANCE VALIDATION GUIDE

513

5.32 EC2 Test30: Verifying the shear resistance for a T concrete beam with inclined transversalreinforcement - Bilinear stress-strain diagram (Class XC1)

Test ID: 5098

Test status: Passed 

5.32.1 Description

Verifies a T cross section beam made from concrete C30/37 to resist simple bending. For this test, the shear forcediagram and the moment diagram will be generated. The design value of the maximum shear force which can besustained by the member, limited by crushing of the compression struts, VRd,max, will be determined, along with thecross-sectional area of the shear reinforcement, Asw. The test will not use the reduced shear force value.

The beam model was provided by Bouygues.

5.32.2 Background

Verifies a T cross section beam made from concrete C30/37 to resist simple bending. For this test, the shear forcediagram and the moment diagram will be generated. The design value of the maximum shear force which can be

sustained by the member, limited by crushing of the compression struts, V Rd,max, will be determined, along with thecross-sectional area of the shear reinforcement, Asw. The test will not use the reduced shear force value.

The beam model was provided by Bouygues.

5.32.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Concrete: C35/40

■  Reinforcement steel: S500B

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

The dead load will be represented by two linear loads of 23.50kN/m and 43.50kN/m

■  Exploitation loadings:

The live load will be considered from one linear load of 25.00kN/m

■  Structural class: S3

■  Reinforcement steel ductility: Class B

■  Exposure class: XC1

■  Characteristic compressive cylinder strength of concrete at 28 days:

■  Partial factor for concrete:

Page 514: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 514/682

 ADVANCE VALIDATION GUIDE

514 

■  Relative humidity: RH=50%

■  Concrete age: t0=28days

■  Design value of concrete compressive strength: fcd=20 MPa

■  Secant modulus of elasticity of concrete: Ecm=33000 MPa

■  Concrete density:

■  Mean value of axial tensile strength of concrete: fctm=2.9 MPa

■  Final value of creep coefficient:

■  Characteristic yield strength of reinforcement:

■  Steel ductility: Class B

■  K coefficient: k=1.08

■  Design yield strength of reinforcement:

■  Design value of modulus of elasticity of reinforcing steel: Es=200000MPa

■  Steel density:

■  Characteristic strain of reinforcement or prestressing steel at maximum load:

■  Strain of reinforcement or prestressing steel at maximum load:

■  Slenderness ratio:

The objective is to verify:

■  The shear stresses results

■  The longitudinal reinforcement corresponding to a 6.4cm concrete cover

■  The transverse reinforcement corresponding to a 4.3cm concrete cover

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Length: L = 8.10 m,

■  Stirrup slope: = 90°

■  Strut slope: θ=22.00˚ 

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x = 0) restrained in translation along X, Y and Z,

►  Support at end point (x = 10.00) restrained in translation along Y, Z and rotation along X

■  Inner: None.

Page 515: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 515/682

  ADVANCE VALIDATION GUIDE

515

Loading:

Note: In Advance Design, the shear reduction is not taken into account. These are the values corresponding to an unreducedshear that will be used for further calculations.

5.32.2.2 Reference results in calculating the longitudinal reinforcement

For a 6.4 cm concrete cover and dinit=0.50m, the reference value will be 57.1 cm2:

For a 4.3 cm concrete cover and dinit=0.521, the reference value will be 54.3 cm2:

5.32.2.3 Reference results in calculating the transversal reinforcement

 ywd u

 Ed  sw

 f   z 

tg V 

 s

 A

*

*.      

Where:

md  z u   469.0521.0*9.0*9.0    

  225.2cot       

 90   

ml cmtg 

 f   z 

tg V 

 s

 A

 ywd u

 Ed  sw /²67.11

15,1500*469.0

22*589.0

*

*.

   

 

Page 516: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 516/682

 ADVANCE VALIDATION GUIDE

516 

The minimum reinforcement percentage calculation:

ml cmb f  

 f  b

 s

 Aw

 yk 

ck 

ww sw /²01.790sin*80.0*

500

30*08,0sin**

*08,0sin**min,         

 

Finite elements modeling

■  Linear element: S beam,

■  9 nodes,

■  1 linear element.

 Advance Design gives the following results for Atz (cm2/ml)

5.32.2.4 Reference results

Result name Result description Reference value

My My corresponding to the 101 combination (ULS) [kNm] 1193.28 kNm

Fz  Fz  corresponding to the 101 combination (ULS) [kNm] 589.28 kN

 Az(6.4cm cover)  Az  longitudinal reinforcement corresp. to a 6.4cm cover [cm2/ml] 57.07 cm

2/ml

 Az(4.3cm cover)  Az  longitudinal reinforcement corresp. to a 4.3cm cover [cm2/ml] 54.28 cm

2/ml

 At,z,1  At,z  transversal reinforcement for the beam end [cm2/ml] 11.68 cm

2/ml

 At,z,2  At,z  transversal reinforcement for the middle of the beam [cm2/ml] 7.01 cm

2/ml

5.32.3 Calculated results

Result name Result description Value Error

My My -1193.28 kN*m -0.0002 %

Fz Fz -589.275 kN -0.0000 %

 Az Az 4.3cm cover -54.2801 cm² 0.0000 %

 Atz Atz beam end 11.6782 cm² -0.0002 %

 Atz Atz middle 7.01085 cm² -0.0000 %

Page 517: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 517/682

  ADVANCE VALIDATION GUIDE

517

5.33 EC2 Test 25: Verifying the shear resistance for a rectangular concrete beam with inclinedtransversal reinforcement - Bilinear stress-strain diagram (Class XC1)

Test ID: 5065

Test status: Passed 

5.33.1 Description

Verifies the shear resistance for a rectangular concrete beam C20/25 with inclined transversal reinforcement -Bilinear stress-strain diagram (Class XC1).

For this test, the shear force diagram will be generated. The design value of the maximum shear force which can besustained by the member, limited by crushing of the compression struts (VRd,max) is calculated, along with thecross-sectional area of the shear reinforcement (Asw).

5.33.2 Background

Verifies a rectangular cross section beam made from concrete C20/25 to resist simple bending. For this test, theshear force diagram will be generated. The design value of the maximum shear force which can be sustained by the

member, limited by crushing of the compression struts (VRd,max) is calculated, along with the cross-sectional area ofthe shear reinforcement (Asw).

5.33.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Concrete C20/25

■  Reinforcement steel: S500B

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

The dead load will be represented by a punctual load of 105kN

■  Exploitation loadings:

The live load will be considered from one point load of 95kN

■  Structural class: S1

■  Reinforcement steel ductility: Class B

■  The reinforcement will be displayed like in the picture below:

Page 518: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 518/682

 ADVANCE VALIDATION GUIDE

518 

The objective is to verify:

■  The shear stresses results

■  The cross-sectional area of the shear reinforcement, Asw

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.50 m,

■  Width: b = 0.20 m,

■  Length: L = 3.00 m,

■  Concrete cover: c=3.5cm

■  Effective height: d=h-(0.06*h+ebz)=0.435m; d’=ehz=0.035m

■  Stirrup slope: = 45°

■  Strut slope: θ=30˚ 

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 5.30) restrained in translation along Y, Z and rotation along X

■  Inner: None.

Loading:

For a beam subjected to a point load, Pu, the shear stresses are defined by the formula below:

 

 

 

 

a

 P V  u Ed    1 

 According to EC2 the Pu point load is defined by the next formula:

Pu = 1,35*Pg + 1,50*Pq=1.35*105kN=1.50*95kN=284.25kN

In this case (a=1m; l=3m):

 KN V  Ed    5,1893

11*25,284  

 

  

   

Note: In Advance Design, the shear reduction is not taken into account. These are the values corresponding to an unreducedshear that will be used for further calculations.

Page 519: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 519/682

  ADVANCE VALIDATION GUIDE

519

5.33.2.2 Reference results in calculating the maximum design shear resistance

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 6.2.3.(3)

Where:

1cw  coefficient taking account of the state of the stress in the compression chord and

2501*6,01

ck  f  v  

In this case,

 30   and  45   

1v strength reduction factor for concrete cracked in shear

55.0250

201*6.0

2501*6,01  

  ck  f  

v  

md  z u   392.0435.0*9.0*9.0    

3940

301

3420039203313540 .

cot

0cot5cot*.*.*.*.V

2max,Rd  

 

 MN V  MN V   Rd  Ed    394.01895.0 max,    

Calculation of transverse reinforcement:

The transverse reinforcement is calculated using the following formula:

ml cm f   z 

 s

 A

 ywd u

 Ed  sw /²76.545sin*)45cot30(cot*78.434*392.0

18950.0

sin*)cot(cot**

     

Beyond the point load, the shear force is constant and equal to Rb, therefore,

it also calculates the required reinforcement area to the right side of the beam:

ml cm s

 A sw /²88.245sin*)45cot30(cot*78.434*392.0

09475.0

 

Finite elements modeling

■  Linear element: S beam,

■  3 nodes,

■  1 linear element.

 Advance Design gives the following results for Atz (cm2/ml)

Page 520: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 520/682

 ADVANCE VALIDATION GUIDE

520 

5.33.2.3 Reference results

Result name Result description Reference value

Fz,1 Fz corresponding to the 101 combination (ULS) x=1.0m [kN] 189.5 kN

Fz,2 Fz corresponding to the 101 combination (ULS) x=1.01m [kN] 94.75 kN

 At,z,1Theoretical reinforcement area at x=1.0m [cm

2/ml]

5.76 cm2/ml At,z,2 Theoretical reinforcement area at x=1.01m [cm

2/ml] 2.88 cm2/ml

5.33.3 Calculated results

Result name Result description Value Error

Fz Fz,1 -189.5 kN -0.0000 %

Fz Fz,2 94.75 kN 0.0000 %

 Atz Atz,1 5.76277 cm² 0.0001 %

 Atz Atz,2 2.88139 cm² -0.0001 %

Page 521: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 521/682

  ADVANCE VALIDATION GUIDE

521

5.34 EC2 Test 46 I: Verifying a square concrete beam subjected to a normal force of traction -Inclined stress-strain diagram (Class X0)

Test ID: 5232

Test status: Passed 

5.34.1 Description

Verifies a square cross section beam made of concrete C20/25 subjected to a normal force of traction - Inclinedstress-strain diagram (Class X0).

Tie sizing

Inclined stress-strain diagram

Determines the armature of a pulling reinforced concrete, subjected to a normal force of traction.

The load combinations will produce the following efforts:

NEd=1.35*233.3+1.5+56.67=400kN

The boundary conditions are described below:

- Support at start point (x=0) fixed connection

- Support at end point (x = 5.00) translation along the Z axis is blocked

5.34.2 Background

Tie sizing

Bilinear stress-strain diagram / Inclined stress-strain diagram

Verifies the armature of a pulling reinforced concrete, C20/25, subjected to a normal force of traction.

5.34.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;■  Analysis type: static linear (plane workspace);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: Fx,G = 233.33 kN

The dead load is neglected

■  Exploitation loadings (category A): Fx,Q = 56.67kN

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

Units

Metric System

Page 522: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 522/682

 ADVANCE VALIDATION GUIDE

522 

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.15 m,

■  Width: b = 0.15 m,

■  Length: L = 5.00 m,

■  Section area: A = 0.0225 m2 ,

■  Concrete cover: c=3cm

■  Reinforcement S400, Class: B, ss=400MPa

■  Fck=20MPa

■  The load combinations will produce the following efforts:

NEd=1.35*233.3+1.5+56.67=400kN

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) fixed connection,

►  Support at end point (x = 5.00) translation along the Z axis is blocked

■  Inner: None.

5.34.2.2 Reference results in calculating the concrete beam

There will be two successive calculations, considering a bilinear stress-strain diagram constitutive law and then ainclined stress-strain diagram constitutive law.

Calculations according a bilinear stress-strain diagram

²50,11²10*50,11

15.1

400

400.0   4

,

,   cmm N 

 AU  s

 Ed U  s    

  

It will be used a 4HA20=A=12.57cm2

Calculations according a inclined stress-strain diagram

 MPaClassBS  U  s   373400 ,       

²70,10²10*72,10373

400.0   4

,

,   cmm N 

 AU  s

 Ed U  s    

  

It can be seen that the gain is not negligible (about 7%).

Checking the condition of non-fragility:

 yk 

ctmc s

 f  

 f   A A   *

 

 MPa f   f   ck ctm   21,220*30.0*30.0  3/23/2

 

²0225.015.0*15.0   m Ac    

²24.1400

21.2*0225.0*   cm

 f  

 f   A A

 yk 

ctmc s    

Page 523: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 523/682

  ADVANCE VALIDATION GUIDE

523

Finite elements modeling

■  Linear element: S beam,

■  6 nodes,

■  1 linear element.

ULS load combinations (kNm)

In case of using the bilinear stress-strain diagram, the reinforcement will result: (Az=11.50cm2=2*5.75

 cm

2)

In case of using the inclined stress-strain diagram, the reinforcement will result: (Az=10.70cm2=2*5.35 cm2)

5.34.2.3 Reference results

Result name Result description Reference value

 Az,1  Longitudinal reinforcement obtained using the bilinear stress-straindiagram [cm

2]

5.75 cm2

 Az,2  Longitudinal reinforcement obtained using the inclined stress-straindiagram [cm

2]

5.37 cm2

5.34.3 Calculated results

Result name Result description Value Error Az Az-ii -5.36526 cm² 0.0001 %

Page 524: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 524/682

 ADVANCE VALIDATION GUIDE

524 

5.35 EC2 Test 1: Verifying a rectangular cross section beam made from concrete C25/30 to resistsimple bending - Bilinear stress-strain diagram

Test ID: 4969

Test status: Passed 

5.35.1 Description

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending.

During this test, the determination of stresses will be made along with the determination of the longitudinalreinforcement and the verification of the minimum reinforcement percentage.

5.35.2 Background

Simple Bending Design for Ultimate Limit State

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the calculation of stresses is made along with the calculation of the longitudinal reinforcement and the

verification of the minimum reinforcement percentage.

5.35.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 15 kN/m + dead load,

■  Exploitation loadings (category A): Q = 20kN/m,

■ 

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.3 x Q

Simply supported beam

Units

Metric System

Geometry

Beam cross section characteristics:

■  Height: h = 0.60 m,

■  Width: b = 0.25 m,

■  Length: L = 5.80 m,

■  Section area: A = 0.15 m2 ,

■  Concrete cover: c=4cm

■  Effective height: d=h-(0.6*h+ebz)=0.524m; d’=ebz=0.04m

Page 525: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 525/682

  ADVANCE VALIDATION GUIDE

525

Materials properties

Rectangular solid concrete C25/30 and S500A reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XC1

■  Concrete density: 25kN/m3 

■  Stress-strain law for reinforcement: Bilinear stress-strain diagram■  Cracking calculation required

■  Concrete C25/30: MPa,,

f f 

c

ckcd   6716

51

25

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.6(1); 4.4.2.4(1); Table 2.1.N

■  MPa.*.f *.f  //ckctm   56225300300   3232  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

■  Steel S500 : MPa,,

f f 

s

ykyd   78434

151

500

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.2

■  MPa*f 

*E

..ck

cm   3147610

82522000

10

822000

3030

 

  

   

 

  

     

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 5.83) restrained in translation along Y, Z and restrained in rotationalong X.

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

■  Permanent loads:

G’=0.25*0.6*2.5=3.75kN/ml

■  Load combinations:

The ultimate limit state (ULS) combination is:

Cmax = 1.35 x G + 1.5 x Q=1.35*(15+3.75)+1.5*20=55.31kN/ml

Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=15+3.75+20=38.75kN/ml

Quasi-permanent combination of actions:

CQP = 1.0 x G + 0.3 x Q=15+3.75+0.3*20=24.75kN/ml

■  Load calculations:

mkN  M  Ed    .59,2328

²80,5*31,55

 

mkN  M  Ecq   .94,1628

²80,5*75,38

 

Page 526: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 526/682

 ADVANCE VALIDATION GUIDE

526 

5.35.2.2 Reference results in calculating the concrete beam reduced moment limit

Due to exposure class XC1, and 500Mpa steel resistance, we will consider a moment limit:

Calculating the reduced moment we will consider ULS moment:

■ 

■  because there is no compressed reinforcement

Reference reinforcement calculation:

The calculation of the reinforcement is detailed below:

■  Effective height: d=h-(0.6*h+ebz)=0.524m

■  Calculation of reduced moment:

203,067,16*²524,0*25,0

233,0

*²*

cd w

 Ed cu

 f  d b

 M  

 

285.0203.0     lucu  

■  Calculation of the lever arm zc:

md  z  uc   464,0)287,0*4,01(*524,0)4,01(*       

■  Calculation of the reinforcement area:

²55,11²10*55,1178,434*464,0

233,0

*

4cmm

 f   z 

 M  A

 yd c

 Ed u    

 

Reference solution for minimal reinforcement area

The minimum percentage for a rectangular beam in pure bending is:

d*b*.

d*b*f 

f *.

Max A

w

wyk

eff ,ct

min,s

00130

260 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 9.2.1.1(1); Note 2

Where:

MPa.f f  ctmeff ,ct   562  from cracking conditions

Therefore:

²cm.

²m...*.*.

²m...*.*.

.Max A min,s   761

10701524025000130

107615240250500

562260

4

4

 

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Page 527: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 527/682

  ADVANCE VALIDATION GUIDE

527

ULS and SLS load combinations(kNm)

Simply supported beam subjected to bending

ULS (reference value: 232.59kNm)

SLS (reference value: 162.94kNm)

Theoretical reinforcement area(cm2  )

(reference value: 11.55cm2)

Minimum reinforcement area(cm2  )

(reference value: 1.76cm2)

Page 528: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 528/682

 ADVANCE VALIDATION GUIDE

528 

5.35.2.3 Reference results

Result name Result description Reference value

My,ULS My corresponding to the 101 combination (ULS) [kNm] 232.59 kNm

My,SLS My corresponding to the 102 combination (SLS) [kNm] 162.94 kNm

 Az Theoretical reinforcement area [cm2] 11.55 cm2

 Amin Minimum reinforcement area [cm2] 1.76 cm

2

5.35.3 Calculated results

Result name Result description Value Error

My My USL -232.578 kN*m -0.0001 %

My My SLS cq -162.936 kN*m 0.0001 %

 Az Az -11.5329 cm² -0.0003 %

 Amin Amin -1.74725 cm² -0.0002 %

Page 529: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 529/682

  ADVANCE VALIDATION GUIDE

529

5.36 EC2 Test33: Verifying a square concrete column subjected to compression by nominal rigiditymethod- Bilinear stress-strain diagram (Class XC1)

Test ID: 5109

Test status: Passed 

5.36.1 Description

Verifies a square concrete column subjected to compression by nominal rigidity method- Bilinear stress-straindiagram (Class XC1).

The column is made of concrete C30/37. The verification of the axial force, applied on top, at ultimate limit state isperformed.

Nominal rigidity method.

The purpose of this test is to determine the second order effects by applying the method of nominal rigidity, and thencalculate the frames by considering a section symmetrically reinforced.

The column is considered connected to the ground by a fixed connection (all the translations and rotations are

blocked) and to the top part, the translations along X and Y axis are also blocked.

This test is based on the example from "Applications of Eurocode 2" (J. & JA Calgaro Cortade).

5.36.2 Background

Nominal rigidity method.

Verify the adequacy of a square cross section made from concrete C30/37.

The purpose of this test is to determine the second order effects by applying the method of nominal rigidity, and thencalculate the frames by considering a section symmetrically reinforced.

5.36.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  1260kN axial force

►  The self-weight is neglected

■  Concrete cover 5cm

■  Concrete C30/37

■  Steel reinforcement S500B

■  Concrete age 28 days

■  Relative humidity 50%

■  Buckling length: L0=0.7*4.47=3.32mm

Page 530: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 530/682

 ADVANCE VALIDATION GUIDE

530 

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.30 m,

■  Width: b = 0.30 m,

■  Length: L = 4.74 m,

■  Concrete cover: c=5cm

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a fixed connection (all the translations and rotations areblocked) and to the top part, the translations along X and Y axis are also blocked.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

NEd =1260kN

■  Proposed reinforcement:

2*6.28cm2

=12.56cm2

Page 531: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 531/682

  ADVANCE VALIDATION GUIDE

531

5.36.2.2 Reference results in calculating the concrete column

Load calculation:

NEd= 1.35*NG = 1700 KN

Initial eccentricity: cm M 

 M e

u

u 07.1

0

0   

 Additional eccentricity due to geometric imperfections:

  cmcmcmcm L

cmei   2805.0;2max400

322;2max

400;2max   0

 

  

  

  

   

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.2(7)

The first order eccentricity : meee i   02.001    

The necessity of buckling calculation (second order effect):

For an isolated column, the slenderness limit check is done using the next formula:

n

C  B A   ***20lim  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.1(1)

Where:

944.020*²30.0

7.1

*

cd c

 Ed 

 f   A

 N n

 

7.0 A  if ef    is not known, if it is,

ef  

 A *2,01

1

 

1.1 B  if ω (reinforcement ratio) is not known, if it is, cd c

 yd  s

 f   A

 f   A B

*

**21*21      

 

In this case   27.120*²3.0

78.434*10*56.12*21

4

 B  

70.0C   if r m is not known, if it is, mr C      7,1  

In this case:

81.12944.0

7.0*27.1*7.0*20***20lim  

n

C  B A 

 

34.383.0

12*32.312*0 h

 L   

81.1234.38 lim        

Therefore, the second order effects most be considered

Page 532: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 532/682

 ADVANCE VALIDATION GUIDE

532 

Effective creep coefficient calculation:

The creep coefficient is calculated using the next formula:

 Ed 

 EQP 

ef   M 

 M t   ., 0

  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

Where:

0,t  creep coefficient

 EQP  M   serviceability firs order moment under quasi-permanent load combination

 Ed  M  ULS first order moment (including the geometric imperfections)

The ratio of the moment is in this case:

74.0

7.1

26.1

*

*

1

1

0

0 ed 

eqp

ed 

eqp

 Ed 

 Eqp

 N 

 N 

e N 

e N 

 M 

 M  

),( 0t is the final value of the creep:

)(*)(*),( 00   t  f  t  cm RH        

With:

t0 is the concrete age

213

0

***1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

121     if

 MPa f  cm   35 if not

7.0

1

35

 

  

 

cm f   

 and

2.0

2

35

 

  

 

cm f   

 

RH relative humidity: RH=50%

h0= mean radius of the element in mm

  mm

u

 Ach   150

300300*2

300*300*2*20  

 

u=column section perimeter

  MPa MPa f  cm   3538944.0

38

35  7.0

1    

  

  

and

984.038

35  2.0

2    

  

  

 

Page 533: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 533/682

  ADVANCE VALIDATION GUIDE

533

86.1984.0*944.0*150*1.0

100

501

1***1.0

1001

1321

30

 

 

 

 

 

 

 

       

h

 RH 

 RH   

48.2488.0*73.2*86.1)(*)(*),( 00     t  f  t  cm RH           

835.174.0*48.2*),(0

0

0    Ed 

 Eqp

ef   M 

 M t   

 

835.2835.111     ef     

Calculation of nominal rigidity:

The nominal rigidity of a post or frame member, it is estimated from the following formula:

 s s sccd c   I  E  K  I  E  K  EI    ****    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.7.2 (1)

e

c

k k  K 

 

1

* 21

 

835.21     ef    

22.120

30

201     ck  f  

k  

170

*2

 nk  

 

944.020*²3.0

7.1

*

cd c

 Ed 

 f   A

 N n

 

34.38   

20.0213.0170

34.38*944.0

170

*22     k 

nk 

   

 

086.0835.2

20.022.1

1

21

e

c

k k  K 

  

CE 

cmcd 

 E  E  

 

 MPa f  

 E    ck cm   32837

10

825*22

10

8*22

3.03.0

  

    

  

    

 

 MPa E 

 E CE 

cmcd    27364

2.1

32837

  

433

000675.012

3.0*3.0

12

*m

hb I c  

 

Ks=1

Page 534: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 534/682

 ADVANCE VALIDATION GUIDE

534 

Es = 200 Gpa

45

242

10*256.12

05.025.0*

2

10*56.12*2

2

'*

2*2   m

d d  A I    theo s

  

    

  

    

 

²1.410*256.1*200000*1000675.0*27364*086.0   5  MNm EI       

 MN  L

 EI  N 

 f  

 B   67.3²32.3

10.4*²

²

    

 

234.18

²²

0

    

  c

 

 MNm

 N 

 N  M  M 

 Ed 

 B Ed  Ed    070.0

17.1

67.3

234.11*034.0

1

1*0  

    

The calculation made with flexural:

 MN  N  Ed    7.1and

 MNm M  Ed    070.0,

Therefore, a 2*6.64cm2 reinforcement area is obtained.

The calculated reinforcement is very close to the initial assumption (2*6.28cm2)

It is not necessary to continue the calculations; it retains a section of 2*6.64cm2

It sets up 4HA20 (2*6.28=12.57cm2)

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Page 535: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 535/682

  ADVANCE VALIDATION GUIDE

535

Theoretical reinforcement area(cm2  )

(reference value: 6.54cm2)

Theoretical value (cm2  )

(reference value: 13.08 cm2)

5.36.2.3 Reference results

Result name Result description Reference value

 Az Reinforcement area [cm2] 6.54 cm

2

5.36.3 Calculated results

Result name Result description Value Error

 Az Az -6.53808 cm² 0.0001 %

Page 536: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 536/682

 ADVANCE VALIDATION GUIDE

536 

5.37 EC2 Test34: Verifying a rectangular concrete column subjected to compression on the top –Method based on nominal stiffness - Bilinear stress-strain diagram (Class XC1)

Test ID: 5114

Test status: Passed 

5.37.1 Description

Verifies the adequacy of a rectangular cross section column made of concrete C30/37. The verification of the axialstresses applied on top, at ultimate limit state is performed.

Method based on nominal stiffness - The purpose of this test is to determine the second order effects by applying themethod of nominal stiffness, and then calculate the frames by considering a section symmetrically reinforced.

The column is considered connected to the ground by a fixed connection and free at the top part.

5.37.2 Background

Method based on nominal stiffness

Verifies the adequacy of a rectangular cross section made of concrete C30/37.

The purpose of this test is to determine the second order effects by applying the method of nominal stiffness, andthen calculate the frames by considering a section symmetrically reinforced.

5.37.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  300kN axial force

►  The self-weight is neglected

■  Exploitation loadings:

►  500kN axial force

■  3,02   

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Concrete cover 5cm

■  Transversal reinforcement spacing a=30cm

■  Concrete C30/37

■  Steel reinforcement S500B

■  The column is considered isolated and braced

Page 537: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 537/682

  ADVANCE VALIDATION GUIDE

537

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.40 m,

■  Width: b = 0.60 m,

■  Length: L = 4.00 m,

■  Concrete cover: c = 5 cm along the long section edge and 3cm along the short section edge

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a fixed connection and free to the top part.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

NEd =1.35*0.30+1.5*0.50=1.155MN

NQP=1.35*0.30+0.30*0.50=0.450MN

■ 

Page 538: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 538/682

 ADVANCE VALIDATION GUIDE

538 

5.37.2.2 Reference results in calculating the concrete column

Geometric characteristics of the column:

The column has a fixed connection on the bottom end and is free on the top end, therefore, the buckling length isconsidered to be:

ml l    84*2*20    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.2(1); Figure 5.7 b)

Calculating the slenderness of the column:

28.6940.0

8*32*32 0 a

l  

 

Effective creep coefficient calculation:

The creep coefficient is calculated using the next formula:

 Ed 

 EQP 

ef  

 M 

 M t   ., 0

  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

Where:

0,t    creep coefficient

 EQP  M    serviceability first order moment under quasi-permanent load combination

 Ed  M   ULS first order moment (including the geometric imperfections)

The ratio between moments becomes:

39.0155.1450.0

**

1

1

0

0 ed 

eqp

ed 

eqp

 Ed 

 Eqp

 N  N 

e N e N 

 M  M 

 

The creep coefficient 0,t    is defined as:

)(*)(*),( 00   t  f  t  cm RH        

 MPa f  

 f  cm

cm   73.2830

8.168.16)(  

  

 

488.0

281.0

1

1.0

1)(

20.020.0

0

0  

t     (for t0= 28 days concrete age).

213

0

***1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

RH = relative humidity; RH=50%

Where   121       if  MPa f  cm   35  if not

7.0

1

35

 

  

 

cm f      and

2.0

2

35

 

  

 

cm f     

Page 539: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 539/682

  ADVANCE VALIDATION GUIDE

539

  mm

u

 Ach   240

600400*2

600*400*2*20  

 

 MPa MPa f  cm   3538   ,

Therefore:

944.038

3535  7.07.0

1     

  

 

  

 

cm f    and 984.0

38

3535  2.02.0

2     

  

 

  

 

cm f     

73.1984.0*944.0*240*1.0

100

501

1***1.0

1001

1321

30

 

 

 

 

 

 

 

       

h

 RH 

 RH   

30.2488.0*73.2*73.1)(*)(*),( 00     t  f  t  cm RH           

The effective creep coefficient calculation:

  90.039.0*30.2*, 0    Ed 

 EQP 

ef   M 

 M t   

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

The necessity of buckling calculation (second order effect):

For an isolated column, the slenderness limit check is done using the next formula:

n

C  B A   ***20lim  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.1(1)

Where:

241.020*60.0*40.0

155.1

*

cd c

 Ed 

 f   A

 N n  

  85.0

90.0*2.01

1

*2,01

1

ef  

 A 

 

1.1*21       B   because the reinforcement ratio in not yet known

70.07,1     mr C   because the ratio of the first order moment is not known

66.26112.0

7.0*1.1*85.0*20lim    

 

66.2628.69 lim        

Therefore, the second order effects must be considered.

Page 540: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 540/682

 ADVANCE VALIDATION GUIDE

540 

5.37.2.3 The eccentricity calculation and the corrected loads on ULS:

Initial eccentricity:

No initial eccentricity because the post is subjected only in simple compression.

 Additional eccentricity:

ml 

ei   02.0400

8

400

0  

First order eccentricity- stresses correction:

  mmmm

mmmmmm

hmm

e   203.13

20max

30

40020

max

30

20max0

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 6.1.(4)

The corrected solicitations which are taken into account when calculating the column under combined bending effortand compression are:

NEd= 1.155MN

MEd= 1.155*0.02=0.0231MNm

Reinforcement calculation in the first order situation:

When using the nominal stiffness method, a starting section frame is needed. For this it will be used a concretesection considering only the first order effects.

 Advance Design iterates as many time as necessary.

The needed frames will be determined assuming a compound bending with compressive stress. All the results abovewere obtained in the center of gravity for the concrete section alone. The stresses must be reduced in the centroid ofthe tensioned steel.

First order moment in the centroid of the tensioned reinforcement is:

 MNmh

d  N  M  M  Gua   196.02

40.035.0*155.10231.0)

2(*0  

  

  

 

Verification if the section is partially compressed:

496,0)35,0

40,0*4,01(*

35,0

40,0*8,0)*4,01(**8,0  

h

h BC  

 

133.020*²35.0*60.0

196.0

*²*

cd w

uacu

 f  d b

 M    

 BC cu          496.0133.0  therefore the section is partially compressed.

Page 541: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 541/682

  ADVANCE VALIDATION GUIDE

541

Calculations of steel reinforcement in pure bending:

133.0cu  

179,0)133,0*21(1*25,1   u   

md  z  uc   325,0)179,0*4,01(*35,0)*4,01(*       

²87.1378,434*325,0

196,0

*cm

 f   z 

 M  A

 yd c

ua  

Calculations of steel reinforcement in combined bending:

For the combined bending:

24 69.1278.434

155.110*87.13'   cm

 f  

 N  A A

 yd 

   

The minimum reinforcement percentage:

2

min,   80.4*002.0²66.278.434

155.1*10.0*10,0cm Acm

 f  

 N  A c

 yd 

 Ed  s    

The reinforcement will be 4HA12 + 2HA10 representing 6.09cm2.

The second order effects calculation:

The second order effect will be determined by applying the method of nominal stiffness:

Calculation of nominal stiffness:

It is estimated nominal stiffness of a post or frame member from the following formula:

 s s sccd c   I  E  K  I  E  K  EI    ****    

With:

2.1

cmcd 

 E  E   

 

 MPa MPa f   f   ck cm   388    

 MPa f  

 E    cmcm   32837

10

38*22000

10*22000

3.03.0

 

  

  

  

   

 MPa E  E    cmcd    27364

2.132837

2.1

 

410.2,312

40.0*60.0

12

*   333

mhb

 I c

 (concrete only inertia)

 MPa E  s   200000  

 s I   : Inertia of the steel rebars

00254.0

40.0*60.0

10.09,6  4

c

 s

 A

 A    

Page 542: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 542/682

 ADVANCE VALIDATION GUIDE

542 

01.0002.0   c

 s

 A

 A    

 Mpa f  

k    ck  22.120

30

201    

241.020*60.0*40.0

155.1

.

cd c

 Ed 

 f   A

 N n  

20.0098.0170

28.69*241.0

170*2      

nk  

410.37,105.02

40.0*

2

10.09,6*2

2*

2*2   5

242

mch A

 I    s s

 

  

   

  

   

1 s K   and 063.0

90.01

098.0*22.1

1

* 21

ef  

c

k k  K 

 

 

Therefore:

²2566.810*37,1*200000*110*2,3*27364*063.0  53

 MNm EI       

Stresses correction:

The total moment, including second order effects, is defined as a value plus the time of the first order:

1

1*0

 Ed 

 B Ed  Ed 

 N 

 N  M  M 

    

 MNm M   Ed    0231.00   (moment of first order (ULS) taking into account geometric imperfections)

(normal force acting at ULS).

0

²

c

       and 80 c  the moment is constant (no horizontal force at the top of post).

234.18

²

      

 MN l 

 EI  N  B   27327.1

²8

2566.8*²*²

2

0

      

The second order efforts are:

 MN  N  Ed    155.12   

m MN  M  Ed    .3015.02   

The reinforcement calculations considering the second order effect:

The reinforcement calculations for the combined flexural, under the second order effect, are done using the GraitecEC2 tools. The obtained section is null, therefore the minimum reinforcement area defined above is sufficient for the

defined efforts.

Page 543: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 543/682

  ADVANCE VALIDATION GUIDE

543

Finite elements modeling

■  Linear element: S beam,

■  5 nodes,

■  1 linear element.

Theoretical reinforcement area (cm2  ) and minimum reinforcement area (cm

2  )

(reference value: 2.66cm2and 4.8cm

2)

Theoretical value (cm2  )

(reference value: 5.32 cm2)

5.37.2.4 Reference results

Result name Result description Reference value

 Ay Reinforcement area [cm2] 2.66 cm

2

 Amin  Minimum reinforcement area [cm2] 4.80 cm

2

5.37.3 Calculated results

Result name Result description Value Error

 Ay Ay -2.66 cm² -0.0000 %

 Amin Amin 4.8 cm² 0.0000 %

Page 544: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 544/682

 ADVANCE VALIDATION GUIDE

544 

5.38 EC2 Test32: Verifying a square concrete column subjected to compression and rotationmoment to the top – Method based on nominal curvature- Bilinear stress-strain diagram (ClassXC1)

Test ID: 5102Test status: Passed 

5.38.1 Description

Verifies a square concrete column subjected to compression and rotation moment to the top – Method based onnominal curvature- Bilinear stress-strain diagram (Class XC1).

The column made of concrete C25/30. The verification of the axial stresses and rotation moment, applied on top, atultimate limit state is performed.

The purpose of this test is to determine the second order effects by applying the method of nominal curvature, andthen calculate the frames by considering a section symmetrically reinforced.

5.38.2 Background

Method based on nominal curvature

Verifies the adequacy of a square cross section made from concrete C25/30.

5.38.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  15t axial force

►  1.5tm rotation moment applied to the column top►  The self-weight is neglected

■  Exploitation loadings:

►  6.5t axial force

►  0.7tm rotation moment applied to the column top

►  3,02   

►  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

►  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

►  Concrete cover 5cm

►  Transversal reinforcement spacing a=30cm

►  Concrete C25/30

►  Steel reinforcement S500B

►  The column is considered isolated and braced

Page 545: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 545/682

  ADVANCE VALIDATION GUIDE

545

Units

Metric System

Geometry

Beam cross section characteristics:

■  Height: h = 0.40 m,

■  Width: b = 0.40 m,

■  Length: L = 6.00 m,

■  Concrete cover: c = 5 cm

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a fixed connection and free at the top.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

NEd =1.35*15+1.5*6.5=30t=0.300MN

MEd=1.35*1.50+1.5*0.7=3.075t=0.31MNm

■  m..

.

N

M

eEd

Ed

1003000

03100    

Page 546: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 546/682

 ADVANCE VALIDATION GUIDE

546 

5.38.2.2 Reference results in calculating the concrete column

Geometric characteristics of the column:

The column has a fixed connection on the bottom end and is free on the top end, therefore, the buckling length isconsidered to be:

ml l    12*20    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.2(1); Figure 5.7 b)

Calculating the slenderness of the column:

10440.0

12*32*32 0 a

l  

 

Effective creep coefficient calculation:

The creep coefficient is calculated using the next formula:

 Ed 

 EQP 

ef    M 

 M 

t   ., 0   

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

Where:

0,t   creep coefficient

 EQP  M   serviceability firs order moment under quasi-permanent load combination

 Ed  M    ULS first order moment (including the geometric imperfections)

First order eccentricity evaluation:

ieee     01  

mei   03.0 

The first order moment provided by the quasi-permanent loads:

me N 

 M eee i

 Eqp

 Eqp

i   13.030.065.0*30.015

70.0*30.050.1

0

0

01  

 

t  N  Eqp   95.1670.0*30.050.11    

 MNmtme N  M   Eqp Eqp   022.020.213.0*95.16* 111    

The first order ULS moment is defined latter in this example:

The creep coefficient 0,t    is defined as follows:

)(*)(*),( 00   t  f  t  cm RH        

92.2825

8.168.16)(  

cm

cm f  

 f    

 

488.0281.0

11.0

1)(20.020.0

0

0  

t     (for t0= 28 days concrete age).

Page 547: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 547/682

  ADVANCE VALIDATION GUIDE

547

30*1.0

1001

1h

 RH 

 RH 

   

  85.1

200*1.0

100

50

11200400400*2400*400*2*2

30  

  RH mmu Ach    

 

64.2488.0*92.2*85.1)(*)(*),( 00     t  f  t  cm RH          

The effective creep coefficient calculation:

  49.1039.0

022.0*64.2*, 0  

 Ed 

 EQP 

ef   M 

 M t   

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

The necessity of buckling calculation (second order effect):

For an isolated column, the slenderness limit verification is done using the next formula:

n

C  B A   ***20lim  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.1(1)

Where:

112.067.16*²40.0

300.0

*

cd c

 Ed 

 f   A

 N n

 

  77.049.1*2.01

1

*2,01

1

ef   A    

1.1*21       B   because the reinforcement ratio in not yet known

70.07,1     mr C   because the ratio of the first order moment is unknown

43.35112.0

7.0*1.1*77.0*20lim      

43.35104 lim        

Therefore, the second order effects most be considered.

The second order effects; The buckling calculation:

The stresses for the ULS load combination are:

NEd= 1.35*15 + 1.50*6.50= 30 t = 0,300MN

MEd= 1.35*1.50 + 1.50*0.7= 3.075 t = 0,031MNm

Therefore, it must be determined:

■  The eccentricity of the first order ULS moment, due to the stresses applied

■  The additional eccentricity considered for the geometrical imperfections

Page 548: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 548/682

 ADVANCE VALIDATION GUIDE

548 

Initial eccentricity:

m N 

 M e

 Ed 

 Ed  10.0300.0

031.00  

 

 Additional eccentricity:

ml ei   03.0400

12

400

0  

The first order eccentricity: stresses correction:

The forces correction, used for the combined flexural calculations:

 MN  N  Ed    300.0  

meee i   13.001    

 MNm N e M   Ed  Ed    039.0300.0*)03.010.0(*1    

0*e N  M   Ed   

  mmmm

mmmmmm

hmm

e   203.13

20max

30

40020

max

30

20max0  

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 6.1.(4)

Reinforcement calculation in the first order situation:

To play the nominal rigidity method a starting section frame is needed. For this it will be used a concrete sectionconsidering only the first order effects.

 Advance Design iterates as many time as necessary.

The needed frames will be determined assuming a compound bending with compressive stress. All the results abovewere obtained in the center of gravity for the concrete section alone. The stresses must be reduced in the centroid ofthe tensioned steel.

 MNmh

d  N  M  M  Gua   084.02

40.035.0*300.0039.0)

2(*0  

 

  

   

Verification if the section is partially compressed:

496,0)35,0

40,0*4,01(*

35,0

40,0*8,0)*4,01(**8,0  

h

h BC  

 

103.067.16*²35.0*40.0

084.0

*²*

cd w

uacu

 f  d b

 M    

 BC cu          496.0103.0  therefore the section is partially compressed.

Page 549: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 549/682

  ADVANCE VALIDATION GUIDE

549

Calculations of steel reinforcement in pure bending:

Calculations of steel reinforcement in combined bending:

For the combined bending:

24 06.178.434

300.010*84.5'   cm

 f  

 N  A A

 yd 

   

The minimum reinforcement percentage:

2

min,   02.3*002.0²69.078.434

300.0*10.0*10,0cm Acm

 f  

 N  A c

 yd 

 Ed  s    

The reinforcement will be 4HA10 representing a 3.14cm2 section

The second order effects calculation:

The second order effect will be determined by applying the method of nominal curvature:

Calculation of nominal curvature:

Considering a symmetrical reinforcement 4HA10 (3.14cm ²), the curvature can be determined by the followingformula:

0

1**

1

r  K  K 

r   r     

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.8.3 (1)

With:

1

0

0138.035.0*45.0

200000

78.434

*45,0*45,0

1     md 

 E 

 f  

d r  s

 yd 

 yd  

 

r  K   : is a correction factor depending on axial load,=> 1

bal u

u

r  nn

nn

 K   

112.067.16*²40.0

300.0

*

cd c

 Ed 

 f   A

 N n

 

0512.067.16*²40.0

78.434*10.14,3

*

*   4

cd c

 yd  s

 f   A

 f   A 

 

0512.10512.011      un  

4,0bal n  

Page 550: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 550/682

 ADVANCE VALIDATION GUIDE

550 

1144.140.00512.1

112.00512.1

  r r    K  K  

  K   : is a factor for taking account of creep=> 1*1     ef   K         

218.0150

104

200

2535.015020035,0  

        ck 

 f  

 

11675.049.1*218.01*1                K  K  ef    

Therefore the curvature becomes:

1

0

0138.01

**1     m

r  K  K 

r   r     

 

Calculation moment:

20   M  M  M   Ed  Ed     

Where:

 Ed  M 0  : first order moment including the geometrical imperfections.

2 M   : second order moment

The second order moment must be calculated from the curvature:

22   *e N  M   Ed  

mc

r e   199.0

10

²12*0138.0*

1   2

02    

 MNme N  M   Ed    0597.0199.0*300.0* 22    

 MNm M  M  M   Ed  Ed    099.00597.0039.020    

The frame must be sized corresponding the demands of the second order effects:

 MN  N  Ed    300.0  

 MNm M  Ed    099.0  

Reinforcement calculation corresponding to the second order:

The input parameters in the diagram are:

093.067.16*²40.0*40.0

099.0**   2

  cd 

 Ed 

 f  hb M  

 

112.067.16*40.0*40.0

300.0

**

cd 

 Ed 

 f  hb

 N v

 

Page 551: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 551/682

  ADVANCE VALIDATION GUIDE

551

150ω . ; =>   ²cm..

.*².*.

f *h*b* A

yd

cds   209

78434

6716400150ω; which means 4.60cm2 per side.

Buckling checking

The verification will be made considering the reinforcement found previously (9.20cm2)

The curvature evaluation:

The frames have an influence on the r  K   parameter only:

1

0

0138.01     m

r   

1

bal u

ur 

nn

nn K 

 

112.0n  

15.067.16*²40.0

78.434*10*20,9

*

*   4

cd c

 yd  s

 f   A

 f   A   

15.115.011      un  

4,0bal n  

11384.140.015.1

112.015.1

  r r    K  K  

1  K   : coefficient that takes account of the creep => 1*1   ef   K         

The curvature becomes:

1

0

0138.01

**1     m

r  K  K 

r   r     

 

It was obtained the same curvature and therefore the same second order moment, which validates the sectionreinforcement found.

Page 552: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 552/682

 ADVANCE VALIDATION GUIDE

552 

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Theoretical reinforcement area (cm2 

 )

(reference value: 9.20cm2 = 2 x 4.64 cm

2)

Theoretical value (cm2  )

(reference value: 9.28 cm

2

)

5.38.2.3 Reference results

Result name Result description Reference value

 Az  Reinforcement area [cm2] 4.64 cm

2

5.38.3 Calculated results

Result name Result description Value Error

 Az Az -4.64 cm² -0.0000 %

Page 553: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 553/682

  ADVANCE VALIDATION GUIDE

553

5.39 EC2 Test 24: Verifying the shear resistance for a rectangular concrete beam with verticaltransversal reinforcement - Bilinear stress-strain diagram (Class XC1)

Test ID: 5058

Test status: Passed 

5.39.1 Description

Verifies a rectangular cross section beam made from concrete C20/25 to resist simple bending. For this test, theshear force diagram will be generated. The design value of the maximum shear force which can be sustained by themember, limited by crushing of the compression struts (VRd,max) will be determined, along with the cross-sectionalarea of the shear reinforcement (Asw) calculation.

5.39.2 Background

Verifies a rectangular cross section beam made from concrete C20/25 to resist simple bending. For this test, theshear force diagram will be generated. The design value of the maximum shear force which can be sustained by themember, limited by crushing of the compression struts (VRd,max) will be determined, along with the cross-sectionalarea of the shear reinforcement (Asw) calculation.

5.39.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Concrete C20/25

■  Reinforcement steel: S500B

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

The dead load will be represented by a punctual load of 105kN

■  Exploitation loadings:The live load will be considered from one point load of 95kN

■  Structural class: S1

■  Reinforcement steel ductility: Class B

■  The reinforcement will be displayed like in the picture below:

The objective is to verify:

■  The shear stresses results

■  The cross-sectional area of the shear reinforcement, Asw

Page 554: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 554/682

 ADVANCE VALIDATION GUIDE

554 

Units

Metric System

Geometry

Beam cross section characteristics:

■  Height: h = 0.50 m,■  Width: b = 0.20 m,

■  Length: L = 3.00 m,

■  Concrete cover: c=3.5cm

■  Effective height: d=h-(0.06*h+ebz)=0.435m; d’=ehz=0.035m

■  Stirrup slope: = 90°

■  Strut slope: θ=30˚ 

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x = 0) restrained in translation along X, Y and Z,►  Support at end point (x = 5.30) restrained in translation along Y, Z and rotation along X

■  Inner: None.

Loading:

For a beam subjected to a point load, Pu, the shear stresses are defined by the formula below:

 

  

  l 

a P V  u Ed    1

 

 According to EC2 the Pu point load is defined by the next formula:

Pu = 1,35*Pg + 1,50*Pq=1.35*105kN=1.50*95kN=284.25kN

In this case, (a = 1 m; l = 3 m):

 KN V  Ed    5,1893

11*25,284  

 

  

   

Note:  In Advance Design, the shear reduction is not taken into account. These are the values corresponding to an unreducedshear that will be used for further calculations.

Page 555: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 555/682

  ADVANCE VALIDATION GUIDE

555

5.39.2.2 Reference results in calculating the maximum design shear resistance

θ1

θα να 1 2wucdcwmax,Rd

cot

cotcot*b*z*f **V

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 6.2.3.(3)

Where:

1α   cw  coefficient taking account of the state of the stress in the compression chord and

2501601

ckf *,v  

When the transverse frames are vertical, the above formula simplifies to:

θθ

1

cottg

b*z*f *vV wucd

max,Rd  

In this case,

 45   and  90   

1v strength reduction factor for concrete cracked in shear

55.0250

201*6.0

2501*6,01  

  ck  f  

v

 

md  z u   392.0435.0*9.0*9.0    

 MN V  Rd    288.02

20.0*392.0*33.13*55.0max,  

 

 MN V  MN V   Rd  Ed    288.01895.0 max,    

Calculation of transversal reinforcement:■  is determined by considering the transverse reinforcement steel vertical (=90°) and connecting rods inclined

at 45 °, at different points of the beam

■  before the first point load: ml cmtg 

 f   z 

tg V 

 s

 A

 ywd u

 Ed  sw /²13.11

15,1

500*392,0

45*18950,0

*

*.

   

 

■  beyond the point load, the shear force is constant and equal to Rb, therefore:

 KN l 

a P V  uu   75,94

3

1*25,284*  

 

■  it also calculates the required reinforcement area to the right side of the beam:

Finite elements modeling

■  Linear element: S beam,

■  3 nodes,

■  1 linear element.

Page 556: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 556/682

 ADVANCE VALIDATION GUIDE

556 

 Advance Design gives the following results for Atz (cm2  /ml)

5.39.2.3 Reference results

Result name Result description Reference value

Fz,1 Fz corresponding to the 101 combination (ULS) x=1m [kNm] 189.5 kN

Fz,2 Fz corresponding to the 101 combination (ULS) x=1.01m [kNm] 94.75 kN At,z,1  Theoretical reinforcement area x=1m [cm

2/ml]  11.13 cm

2/ml

 At,z,2  Theoretical reinforcement area x=1.01m [cm2/ml]  5.57 cm

2/ml

5.39.3 Calculated results

Result name Result description Value Error

Fz Fz,1 -189.5 kN -0.0000 %

Fz Fz,2 94.75 kN 0.0000 % Atz Atz,1 11.1328 cm² 0.0002 %

 Atz Atz,2 5.56641 cm² 0.0000 %

Page 557: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 557/682

  ADVANCE VALIDATION GUIDE

557

5.40 EC2 Test28: Verifying the shear resistance for a T concrete beam with inclined transversalreinforcement - Bilinear stress-strain diagram (Class X0)

Test ID: 5083

Test status: Passed 

5.40.1 Description

Verifies a T cross section beam made from concrete C25/30 to resist simple bending. For this test, the shear forcediagram will be generated. The design value of the maximum shear force which can be sustained by the member,limited by crushing of the compression struts, VRd,max. will be calculated, along with the cross-sectional area of theshear reinforcement, Asw, calculation.

The test will not use the reduced shear force value.

5.40.2 Background

Verifies a T cross section beam made from concrete C25/30 to resist simple bending. For this test, the shear forcediagram will be generated. The design value of the maximum shear force which can be sustained by the member,

limited by crushing of the compression struts, VRd,max, will be calculated, along with the cross-sectional area of theshear reinforcement, Asw, calculation. The test will not use the reduced shear force value.

5.40.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Concrete: C25/30

■  Reinforcement steel: S500B

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

The dead load will be represented by a linear load of 13.83kN/m

■  Exploitation loadings:

The live load will be considered from one linear load of 26.60kN/m

■  Structural class: S1

■  Reinforcement steel ductility: Class B

■  Exposure class: X0

■  Concrete density: 25kN/m3

■  The reinforcement will be displayed like in the picture below:

Page 558: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 558/682

 ADVANCE VALIDATION GUIDE

558 

The objective is to:

■  Verify the shear stresses results

■  Verify the transverse reinforcement

■  Verify the transverse reinforcement distribution by the Caqout method

■  Identify the steel sewing

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Length: L = 10.00 m,

■  Concrete cover: c=3.5cm

■  Effective height: d=h-(0.06*h+ebz)=0.764m; d’=ehz=0.035m

■  Stirrup slope: = 90°

■  Strut slope: θ=30˚ 

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 10.00) restrained in translation along Y, Z and rotation along X

■  Inner: None.

Page 559: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 559/682

  ADVANCE VALIDATION GUIDE

559

Loading:

For a beam under a uniformly distributed load Pu, the shear force is defined by the following equation:

2

**)(  l  P  x P  xV    u

u    

For the beam end, (x=0) the shear force will be:

kN l  P 

V    u Ed    9,292

2

10*57,58

2

*

 

In the following calculations, the negative sign of the shear will be neglected, as this has no effect in the calculations.

Note:  In Advance Design, the shear reduction is not taken into account. These are the values corresponding to an unreduced

shear that will be used for further calculations.

5.40.2.2 Reference results in calculating the maximum design shear resistance

     cot

***1max,

tg 

b z  f  vV    wucd  Rd 

 

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 6.2.3.(3)In this case:

 30   and  90   

1v strength reduction factor for concrete cracked in shear

54.0250

251*6.0

2501*6,01  

  ck  f  

v  

md  z u   688.0764.0*9.0*9.0    

 MN tg V  Rd    590.030cot30

22.0*688.0*67.16*54.0max,  

 

 MN V  MN V   Rd  Ed    590.0293.0 max,    

Calculation of transverse reinforcement:

The transverse reinforcement is calculated using the following formula:

ml cmtg 

 f   z 

tg V 

 s

 A

 ywd u

 Ed  sw /²66.5

15,1

500*688.0

30*293.0

*

*.

   

 

Page 560: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 560/682

 ADVANCE VALIDATION GUIDE

560 

Finite elements modeling

■  Linear element: S beam,

■  11 nodes,

■  1 linear element.

 Advance Design gives the following results for Atz (cm2 

 /ml)

5.40.2.3 Reference results

Result name Result description Reference value

Fz Fz corresponding to the 101 combination (ULS) [kNm] 292.9 kN

 At,z  Theoretical reinforcement area [cm2/ml]  5.66 cm

2/ml

5.40.3 Calculated results

Result name Result description Value Error

Fz Fz -292.852 kN -0.0002 %

 Atz Atz 5.65562 cm² 0.0000 %

Page 561: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 561/682

  ADVANCE VALIDATION GUIDE

561

5.41 EC2 Test31: Verifying a square concrete column subjected to compression and rotationmoment to the top - Bilinear stress-strain diagram (Class XC1)

Test ID: 5101

Test status: Passed 

5.41.1 Description

Nominal rigidity method.

Verifies the adequacy of a rectangular cross section column made from concrete C25/30.

The purpose of this test is to determine the second order effects by applying the method of nominal rigidity, and thencalculate the frames by considering a section symmetrically reinforced. Verifies the column to resist simple bending.The verification of the axial stresses and rotation moment, applied on top, at ultimate limit state is performed.

The column is considered connected to the ground by a fixed connection and free to the top part.

5.41.2 Background

Nominal rigidity method.

Verifies the adequacy of a rectangular cross section made from concrete C25/30.

The purpose of this test is to determine the second order effects by applying the method of nominal rigidity, and thencalculate the frames by considering a section symmetrically reinforced.

5.41.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  15t axial force

►  1.5tm rotation moment applied to the column top

►  The self-weight is neglected

■  Exploitation loadings:

►  6.5t axial force

►  0.7tm rotation moment applied to the column top

■  3,02   

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Concrete cover 5cm

■  Transversal reinforcement spacing a=30cm■  Concrete C25/30

■  Steel reinforcement S500B

■  The column is considered isolated and braced

Page 562: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 562/682

 ADVANCE VALIDATION GUIDE

562 

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.40 m,

■  Width: b = 0.40 m,

■  Length: L = 6.00 m,

■  Concrete cover: c=5cm

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a fixed connection and free to the top part.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

NEd =1.35*15+150*6.5=30t=0.300MN

MEd=1.35*1.50+1.5*0.7=3.075t=0.31MNm

■  m..

.

N

Me

Ed

Ed 1003000

03100    

Page 563: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 563/682

  ADVANCE VALIDATION GUIDE

563

5.41.2.2 Reference results in calculating the concrete column

Geometric characteristics of the column:

The column has a fixed connection on the bottom end and is free on the top end, therefore, the buckling length isconsidered to be:

ml l    12*20    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.2(1); Figure 5.7 b)

Calculating the slenderness of the column:

10440.0

12*32*32 0 a

l  

 

Effective creep coefficient calculation:

The creep coefficient is calculated using the next formula:

 Ed 

 EQP 

ef  

 M 

 M t   ., 0

  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

Where:

0,t    creep coefficient

serviceability first order moment under quasi-permanent load combination

ULS first order moment (including the geometric imperfections)

First order eccentricity evaluation:

ieee     01  

mei   03.0 

The first order moment provided by the quasi-permanent loads:

me N 

 M eee i

 Eqp

 Eqp

i   13.030.065.0*30.015

70.0*30.050.1

0

0

01  

 

t  N  Eqp   95.1670.0*30.050.11    

 MNmtme N  M   Eqp Eqp   022.020.213.0*95.16* 111    

The first order ULS moment is defined latter in this example:

)(*)(*),( 00   t  f  t  cm RH             

92.2825

8.168.16)(  

cm

cm f  

 f    

 

488.0281.0

1

1.0

1)(

20.020.0

0

0  

t   

 (for t0= 28 days concrete age).

Page 564: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 564/682

 ADVANCE VALIDATION GUIDE

564 

30*1.0

1001

1h

 RH 

 RH 

   

  85.1

200*1.0

100

50

11200400400*2400*400*2*2

30  

  RH mmu Ach      

64.2488.0*92.2*85.1)(*)(*),( 00     t  f  t  cm RH        

The effective creep coefficient calculation:

  49.1039.0

022.0*64.2*, 0  

 Ed 

 EQP 

ef   M 

 M t   

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

The second order effects; The buckling calculation:

For an isolated column, the slenderness limit check is done using the next formula:

n

C  B A   ***20lim    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.1(1)

Where:

112.067.16*²40.0

300.0

*

cd c

 Ed 

 f   A

 N n

 

  77.0

49.1*2.01

1

*2,01

1

ef  

 A 

 

1.1*21       B   because the reinforcement ratio in not yet known

70.07,1     mr C   because the ratio of the first order moment is not known

43.35112.0

7.0*1.1*77.0*20lim      

43.35104 lim        

Therefore, the second order effects most be considered.

The second order effects; The buckling calculation:

The stresses for the ULS load combination are:

NEd= 1.35*15 + 1.50*6.50= 30 t = 0,300MN

MEd= 1.35*1.50 + 1.50*0.7= 3.075 t = 0,031MNm

Therefore it must be determined:

■  The eccentricity of the first order ULS moment, due to the stresses applied

■  The additional eccentricity considered for the geometrical imperfections

Page 565: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 565/682

  ADVANCE VALIDATION GUIDE

565

Initial eccentricity:

m N 

 M e

 Ed 

 Ed  10.0300.0

031.00  

 

 Additional eccentricity:

ml ei   03.0400

12

400

0  

The first order eccentricity: stresses correction:

The forces correction, used for the combined flexural calculations:

 MN  N  Ed    300.0  

meee i   13.001    

 MNm N e M   Ed  Ed    039.0300.0*)03.010.0(*1    

0*e N  M   Ed   

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 6.1.(4)

Reinforcement calculation in the first order situation:

To play the nominal rigidity method a starting section frame is needed. For this it will be used a concrete sectionconsidering only the first order effects.

 Advance Design iterates as many time as necessary.

The needed frames will be determined assuming a compound bending with compressive stress. All the results abovewere obtained in the center of gravity for the concrete section alone. The stresses must be reduced in the centroid ofthe tensioned steel.

 MNmh

d  N  M  M  Gua   084.02

40.035.0*300.0039.0)

2(*0  

 

  

   

Verification if the section is partially compressed:

496,0)35,0

40,0*4,01(*

35,0

40,0*8,0)*4,01(**8,0  

h

h BC  

 

103.067.16*²35.0*40.0

084.0

*²*

cd w

uacu

 f  d b

 M    

 BC cu     496.0103.0  therefore the section is partially compressed.

Page 566: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 566/682

 ADVANCE VALIDATION GUIDE

566 

Calculations of steel reinforcement in pure bending:

103.0cu  

136,0)103,0*21(1*25,1   u   

md  z  uc   331,0)136,0*4,01(*35,0)*4,01(*        

Calculations of steel reinforcement in combined bending:

For the combined bending:

24 06.178.434

300.010*84.5'   cm

 f  

 N  A A

 yd 

   

The minimum reinforcement percentage:

2

min,   02.3*002.0²69.078.434

300.0*10.0*10,0cm Acm

 f  

 N  A c

 yd 

 Ed  s    

The reinforcement will be 4HA10 representing a 3.14cm2 section

The second order effects calculation:

The second order effect will be determined by applying the method of nominal rigidity:

Calculation of nominal rigidity:

The nominal rigidity of a post or frame member, it is estimated from the following formula:

 s s sccd c   I  E  K  I  E  K  EI    ****    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.7.2 (1)

With:

2.1

cmcd 

 E  E   

 

 Mpa Mpa f   f   ck cm   338    

 Mpa f  

 E    cmcm   31476

10

33*22000

10*22000

3.03.0

 

  

  

  

   

 Mpa E 

 E    cmcd    26230

2.1

31476

2.1

 

410.133,212

40.0

12

*   343

mhb

 I c

  (cross section inertia)

 Mpa E  s   200000  

 s I  : Inertia

002.040.040.0

10.14,3   4

c

 s

 A

 A

   

Page 567: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 567/682

  ADVANCE VALIDATION GUIDE

567

01.0002.0   c

 s

 A

 A  

 

 Mpa f  

k    ck  12.120

25

201    

112.067.16*²40.0

300.0

*

cd c

 Ed 

 f   A

 N n

 

20.0069.0170

104*112.0

170*2      

nk   

410*06,705.02

40.0*

2

10*14,3*2

2*

2*2   6

242

mch A

 I    s s

 

  

   

  

   

1 s K   and

031.0

49.11

069.0*12.1

1

* 21

ef  

c

k k  K 

   

Therefore:

²15.310*06,7*200000*110*133,2*26230*031.0   63  MNm EI     

 

Corrected stresses:

The total moment, including the second order effects is defined as a value and is added to the first order momentvalue:

11*0

 Ed 

 B Ed  Ed 

 N  N  M  M 

   

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.7.3 (1)

 MNm M   Ed    039.00     (time of first order (ULS) taking into account the geometric imperfections, relative to the

center of gravity of concrete).

 MN  N  Ed    300.0 (normal force acting at ULS).

 And:

0

²

c

      with 8

0

 c  because the moment is constant (no horizontal force at the top of post).

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.7.3 (2)

234.18

²

    

 

 MN l 

 EI  N  B   216.0

²12

15.3*²*²

2

0

    

 

Page 568: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 568/682

 ADVANCE VALIDATION GUIDE

568 

Therefore the second order moment is:

 MNm M  Ed    133.0

1300.0

216.0

234.11*039.0  

 There is a second order moment that is negative because it was critical that the normal force, N B, is less than theapplied normal force => instability.

 A section corresponding to a ratio of 5 ‰ will be considered and the corresponding equivalent stiffness isrecalculated.

 s s sccd c   I  E  K  I  E  K  EI    ****    

With:

 Mpa E cd    26230 ;

410.133,2   3m I c

 

 Mpa E  s   200000 

 s I   : Inertia

²8²40,0*005,0*005,0005,0   cm A A c s      

It sets up : 4HA16 =>²04,8005,0   cm A s   

 

01.0002.0   c

 s

 A

 A    

45

242

10*81,105.0

2

40.0*

2

10*04,8*2

2

*

2

*2   mch A

 I    s s

 

 

 

 

 

 

 

   

1 s K   and

031.049.11

069.0*12.1

1

* 21

ef  

c

k k  K 

  

Therefore:

²35.510.81,1*200000*110.133,2*26230*031.0  53

 MNm EI     

 

The second order effects must be recalculated:

11*0

 Ed 

 B Ed  Ed 

 N 

 N  M  M    

 

234.1   

 MN l 

 EI  N  B   367.0

²12

35.5*²*²

2

0

      

 MNm M  Ed    254.0

1300.0

367.0

234.11*039.0  

 

Page 569: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 569/682

  ADVANCE VALIDATION GUIDE

569

There is thus a second order moment of 0.254MNm.

This moment is expressed relative to the center of gravity.

Reinforcement calculation for combined bending

The necessary frames for the second order stresses can now be determined.

 A column frames can be calculated from the diagram below:

The input parameters in the diagram are:

238.067.16*²40.0*40.0

254.0

**   2 

cd 

 Ed 

 f  hb

 M    

112.067.16*40.0*40.0

300.0

**

cd 

 Ed 

 f  hb

 N v  

485.0  is obtained, which gives:     ²75.2978.434

67.16*²40.0*485.0***cm

 f  

 f  hb A

 yd 

cd  s

  

Therefore set up a section 14.87cm ² per side must be set, or 3HA32 per side (by excess)

Buckling checking

The column in place will be verified without buckling. The new reinforcement area must be considered for theprevious calculations: 6HA32 provides As=48.25cm

2

The normal rigidity evaluation:

It is estimated nominal rigidity of a post or frame member from the following formula:

 s s sccd c   I  E  K  I  E  K  EI    ....    

With:

 s I   : Inertia

03.040.0*40.0

10*25,48  4

c

 s

 A A  

 

Page 570: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 570/682

 ADVANCE VALIDATION GUIDE

570 

44

242

10.086,105.02

40.0*

2

10*25,48*2

2*

2*2   mc

h A I    s s

 

  

   

  

   

12.11 k   

069.02 k   

1 s K   and

031.049.11

069.0*12.1

1

* 21

ef  

c

k k  K 

  

The following conditions are not implemented in Advance Design:

If:

01.0c

 s

 A

 A  

 

ef  

c K  *5,01

3,0

 

Then:

²45.2310*086,1*20000010*133,2*26230*031.0  43

 MNm EI     

 

Corrected stresses

The total moment, including second order effects, is defined as a value plus the moment of the first order:

1

1*0

 Ed 

 B Ed  Ed 

 N 

 N  M  M 

   

 

 MNm M   Ed    039.00    

 MN  N  Ed    300.0 (normal force acting at ULS)

234.1    

 MN l 

 EI  N  B   607.1

²12

45.23*²*²

2

0

      

It was therefore a moment of second order which is:

 MNm M  Ed    05.0

1300.0

607.1

234.11*039.0  

 

Reinforcement calculation:

047.067.16*²40.0*40.0

05.0

**05.0

cd 

 Ed  Ed 

 f  hb

 M  MNm M     

 

112.0

67.16*40.0*40.0

300.0

**

300.0   cd 

 Ed  Ed 

 f  hb

 N v MN  N 

 

Page 571: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 571/682

  ADVANCE VALIDATION GUIDE

571

The minimum reinforcement percentage conditions are not satisfied therefore there will be one more iteration.

 Additional iteration:

The additional iteration will be made for a section corresponding to 1%; A s=0.009*0.40=14.4cm2, which is 7.2cm

2 per

side. A 3HA16 reinforcement will be chosen by either side (6HA16 for the entire column), which will give As=12.03cm

2.

Nominal rigidity evaluation:

 s s sccd c   I  E  K  I  E  K  EI    ....   .

 s I   : Inertia

00754.040.0*40.0

10*06,12   4

c

 s

 A

 A  

 

if

01.0002.0   c

 s

 A

 A  

 

45

242

10.71,205.0240.0*

210*06,12*2

2*

2*2   mch A I    s

 s

  

  

  

    

1 s K   and

031.049.11

069.0*12.1

1

* 21

ef  

c

k k  K 

  

Therefore:

²15.710*71,2*200000*110*133,2*26230*031.0  53

 MNm EI     

 

Page 572: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 572/682

 ADVANCE VALIDATION GUIDE

572 

Second order loads calculation:

1

1*0

 Ed 

 B Ed  Ed 

 N 

 N  M  M 

   

 

 MNm M   Ed    039.00    

 MN  N  Ed    300.0  (normal force acting at ULS).

234.1    

 MN l 

 EI  N  B   49.0

²12

15.7*²*²

2

0

      

 MNm M  Ed    115.0

1300.0

49.0234.11*039.0  

 

Reinforcement calculation:

Frames are calculated again from the interaction diagram:

108.067.16*²40.0*40.0

115.0

**   2 

cd 

 Ed 

 f  hb

 M    

112.0

67.16*40.0*40.0

300.0

**

cd 

 Ed 

 f  hb

 N v  

18.0  is obtained, which gives:     ²04.1178.434

67.16*²40.0*18.0***cm

 f  

 f  hb A

 yd 

cd  s

  

Therefore set up a section 5.52cm ² per side must be set; this will be the final column reinforcement

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Page 573: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 573/682

  ADVANCE VALIDATION GUIDE

573

Theoretical reinforcement area(cm2  )

(reference value: 11.04cm2)

Theoretical value (cm2 

 )

(reference value: 11.16 cm2 = 2 x 5.58 cm

2)

Page 574: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 574/682

 ADVANCE VALIDATION GUIDE

574 

5.41.2.3 Reference results

Result name Result description Reference value

 Az Reinforcement area [cm2] 5.58 cm

2

5.41.3 Calculated results

Result name Result description Value Error

 Az Az -5.58 cm² -0.0000 %

Page 575: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 575/682

  ADVANCE VALIDATION GUIDE

575

5.42 EC2 Test 37: Verifying a square concrete column using the simplified method – Professionalrules - Bilinear stress-strain diagram (Class XC1)

Test ID: 5126

Test status: Passed 

5.42.1 Description

Verifies the adequacy of a square concrete column made of concrete C25/30, using the simplified method –Professional rules - Bilinear stress-strain diagram (Class XC1).

Simplified Method

The column is considered connected to the ground by a fixed connection (all the translations and rotations areblocked) and to the top part the translations along X and Y axis are blocked and the rotation along Z axis is alsoblocked.

5.42.2 Background

Simplified MethodVerifies the adequacy of a square cross section made from concrete C25/30.

5.42.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  800kN axial force

►  The self-weight is neglected

■  Exploitation loadings:►  800kN axial force

■  Concrete cover 5cm

■  Concrete C25/30

■  Steel reinforcement S500B

■  Relative humidity RH=50%

■  Buckling length L0=0.70*4=2.80m

Page 576: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 576/682

 ADVANCE VALIDATION GUIDE

576 

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.40 m,

■  Width: b = 0.400 m,

■  Length: L = 4.00 m,

■  Concrete cover: c=5cm

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a fixed connection (all the translations and rotations areblocked) and to the top part the translations along X and Y axis are blocked and the rotation along Z axis is alsoblocked.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

kN  N  ED   2280800*5.1800*35.1    

Page 577: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 577/682

  ADVANCE VALIDATION GUIDE

577

5.42.2.2 Reference results in calculating the concrete column

Scope of the method:

25.244.0

12*8.212*

121212

00

2

0

2

4

000 a

 L

a

 L

a

 L

a

a

 L

 A

 I 

 L

i

 L   

 According to Eurocode 2 EN 1992-1-1 (2004) Chapter 5.8.3.2(1)

The method of professional rules can be applied as:

120   

 MPa f  ck    5020    

mh   15.0  

Reinforcement calculation:

6025.24     , therefore:

746.0

62

25.241

86.0

621

86.022

 

 

  

 

 

  

 

 

 

 

 According to “Conception Et Calcul Des Structures De Batiment”, by Henry Thonier, page 283

Not knowing the values for  and  , we can considered 93.0hk   

1500

500*6.06.1

500*6.06.1     yk 

 s

 f  k   

²24,1467.16*4.0*4.0746.0*1*93.0

280.2*

78.434

1**

***

1cm f  hb

k k 

 N 

 f   A cd 

 sh

ed 

 yd 

 s    

  

   

  

 

  

 According to “Conception Et Calcul Des Structures De Batiment”, by Henry Thonier, page 283

Finite elements modeling

■  Linear element: S beam,

■  5 nodes,

■  1 linear element.

Page 578: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 578/682

 ADVANCE VALIDATION GUIDE

578 

Theoretical reinforcement area(cm2)

(reference value: 14.24cm2=4*3.56cm

2)

5.42.2.3 Reference results

Result name Result description Reference value

 Ay Reinforcement area [cm2] 3.57cm

2

5.42.3 Calculated results

Result name Result description Value Error

 Ay Az -3.56562 cm² 0.0001 %

Page 579: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 579/682

  ADVANCE VALIDATION GUIDE

579

5.43 EC2 Test 38: Verifying a rectangular concrete column using the simplified method –Professional rules - Bilinear stress-strain diagram (Class XC1)

Test ID: 5127

Test status: Passed 

5.43.1 Description

Verifies a rectangular cross section concrete C25/30 column using the simplified method –Professional rules -Bilinear stress-strain diagram (Class XC1).

The column is considered connected to the ground by an articulated connection (all the translations are blocked). Atthe top part, the translations along X and Y axis are blocked and the rotation along the Z axis is also blocked.

5.43.2 Background

Simplified Method

Verifies the adequacy of a rectangular cross section made from concrete C25/30.

5.43.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  800kN axial force

►  The self-weight is neglected

■  Concrete cover 5cm

■  Concrete C25/30

■  Steel reinforcement S500B■  Relative humidity RH=50%

■  Buckling length L0=6.50m

Units

Metric System

Page 580: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 580/682

 ADVANCE VALIDATION GUIDE

580 

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.30 m,

■  Width: b = 0.50 m,

■  Length: L = 6.50 m,

■  Concrete cover: c=5cm

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a articulated connection (all the translations are blocked) andto the top part the translations along X and Y axis are blocked and the rotation along Z axis is also blocked.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

kN  N  ED   1080800*35.1    

5.43.2.2 Reference results in calculating the concrete column

Scope of the method:

06.753.0

12*5.612*

121212

00

2

0

2

4

000 a

 L

a

 L

a

 L

a

a

 L

 A

 I 

 L

i

 L   

 According to Eurocode 2 EN 1992-1-1 (2004) Chapter 5.8.3.2(1)

The method of professional rules can be applied as:

120   

 MPa f  ck    5020    

mh   15.0  

Reinforcement calculation:

12006.7560      

33.0

06.75

3232  3.13.1

 

 

 

 

 

 

 

 

 

   

 According to “Conception Et Calcul Des Structures De Batiment”, by Henry Thonier, page 283

93.0)**61(*)*5.075.0(        hk h  

1500

500*6.06.1

500*6.06.1     yk 

 s

 f  k 

 

²43.2367.16*5.0*3.033.0*1*93.0

08.1*

78.434

1**

***

1cm f  hb

k k 

 N 

 f   A cd 

 sh

ed 

 yd 

 s    

  

   

  

 

  

Page 581: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 581/682

  ADVANCE VALIDATION GUIDE

581

Finite elements modeling

■  Linear element: S beam,

■  8 nodes,

■  1 linear element.

Theoretical reinforcement area(cm2 

 )

(reference value: 23.43cm2=4*5.86cm

2)

5.43.2.3 Reference results

Result name Result description Reference value

 Ay Reinforcement area [cm2] 5.85cm2

5.43.3 Calculated results

Result name Result description Value Error

 Ay Ay -5.85106 cm² 0.0001 %

Page 582: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 582/682

 ADVANCE VALIDATION GUIDE

582 

5.44 EC2 Test 41: Verifying a square concrete column subjected to a significant compression forceand small rotation moment to the top - Bilinear stress-strain diagram (Class XC1)

Test ID: 5195

Test status: Passed 

5.44.1 Description

Verifies a square cross section concrete column made of concrete C30/37 subjected to a significant compressionforce and small rotation moment to the top - Bilinear stress-strain diagram (Class XC1)

Nominal rigidity method.

The purpose of this test is to determine the second order effects by applying the method of nominal rigidity and thencalculate the frames by considering a symmetrically reinforced section.

The column is considered connected to the ground by a fixed connection and free to the top part.

5.44.2 Background

Nominal rigidity method.

Verifies the adequacy of a rectangular cross section made from concrete C30/37.

The purpose of this test is to determine the second order effects by applying the method of nominal rigidity, and thencalculate the frames by considering a section symmetrically reinforced.

5.44.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  150kN axial force

►  15kMm rotation moment applied to the column top

►  The self-weight is neglected

■  Exploitation loadings:

►  100kN axial force

►  7kNm rotation moment applied to the column top

■  3,02   

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Concrete cover 3cm and 5cm

■  Transversal reinforcement spacing a=40cm

■  Concrete C30/37■  Steel reinforcement S500B

■  The column is considered isolated and braced

Page 583: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 583/682

  ADVANCE VALIDATION GUIDE

583

Units

Metric System

Geometry

Beam cross section characteristics:

■  Height: h = 0.50 m,

■  Width: b = 0.50 m,

■  Length: L = 5.80 m,

■  Concrete cover: c = 5cm

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a fixed connection and free to the top part.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

NEd = 1.35*150+1.50*100 = 352.50kN = 0.035MN

MEd = 1.35*15+1.50*7 = 30.75kNm = 0.03075MNm

■  m..

.

N

Me

Ed

Ed 08703530

0370500    

Page 584: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 584/682

 ADVANCE VALIDATION GUIDE

584 

5.44.2.2 Reference results in calculating the concrete column

Geometric characteristics of the column:

The column has a fixed connection on the bottom end and is free on the top end, therefore, the buckling length isconsidered to be:

ml l    60.11*20    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.2(1); Figure 5.7 b)

Calculating the slenderness of the column:

37.8050.0

60.11*32*32 0 a

l  

 

Effective creep coefficient calculation:

The creep coefficient is calculated using the next formula:

 Ed 

 EQP 

ef  

 M 

 M t   ., 0

  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

Where:

0,t    creep coefficient

 EQP  M    serviceability firs order moment under quasi-permanent load combination

 Ed  M    ULS first order moment (including the geometric imperfections)

First order eccentricity evaluation:

ieee     01  

mei   03.0 

The first order moment provided by the quasi-permanent loads:

me N 

 M eee i

 Eqp

 Eqp

i   125.030.0100*30.0150

7*30.015

0

0

01  

 

kN  N  Eqp   180100*30.01501    

 MNmkNme N  M   Eqp Eqp   0225.050.22125.0*180* 111    

The first order ULS moment is defined latter in this example:

 MNm M  Ed    041.01   

The creep coefficient 0,t    is defined as follows:

)(*)(*),( 00   t  f  t  cm RH        

72.2830

8.168.16)(  

cm

cm f  

 f    

 

488.0281.0

1

1.0

1

)( 20.020.00

0   t t     (for t0= 28 days concrete age).

Page 585: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 585/682

  ADVANCE VALIDATION GUIDE

585

213

0

***1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

 MPa f  cm   35 therefore: 944.038

3535   7.07.0

1     

  

  

  

cm f     and 984.0

38

3535   2.02.0

2     

  

  

  

cm f     

  72.1984.0*944.0*

250*1.0

100

501

1250500500*2

500*500*2*230  

 

 

 

 

  RH mm

u

 Ach      

28.2488.0*72.2*72.1)(*)(*),( 00     t  f  t  cm RH          

The effective creep coefficient calculation:

  25.1041.0

0225.0*28.2*, 0  

 Ed 

 EQP 

ef   M 

 M t   

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

The second order effects; The buckling calculation:

For an isolated column, the slenderness limit verification is done using the next formula:

n

C  B A   ***20lim  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.1(1)

Where:

071.020*²50.0

353.0

*

cd c

 Ed 

 f   A

 N n  

  80.0

25.1*2.01

1

*2,01

1

ef  

 A 

 

1.1*21       B   because the reinforcement ratio in not yet known

70.07,1     mr C   because the ratio of the first order moment is not known

24.46071.0

7.0*1.1*80.0*20lim    

 

24.4637.80 lim       

Therefore, the second order effects must be taken into account.

Calculation of the eccentricities and solicitations corrected for ULS:

The stresses for the ULS load combination are:

■  NEd= 1.35*150 + 1.50*100= 352.5kN = 0,3525 MN

■  MEd= 1.35*15 + 1.50*7= 352.5kN= 0.03075MNm

Therefore, we must calculate:

■  The eccentricity of the first order ULS moment, due to the stresses applied

■  The additional eccentricity considered for the geometrical imperfections

Page 586: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 586/682

 ADVANCE VALIDATION GUIDE

586 

Initial eccentricity:

m N 

 M e

 Ed 

 Ed  087.0353.0

03075.00  

 

 Additional eccentricity:

ml ei   03.0400

6.11

4000

 

The first order eccentricity: stresses correction:

The forces correction, used for the combined flexural calculations:

 MN  N  Ed    353.0  

meee i   117.001    

 MNm N e M   Ed  Ed    041.0353.0*117.0*1    

0*e N  M   Ed   

  mmmm

mmmmmm

hmm

e   207.16

20max

30

50020

max

30

20max0

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 6.1.(4)

Reinforcement calculation in the first order situation:

To apply the nominal rigidity method, we need an initial reinforcement area to start from. For this, the concretesection will be sized considering only the first order effect.

The Advance Design calculation is different: it is iterating as many time as necessary starting from the minimum

percentage area.

The reinforcement will be determined using a compound bending with compressive stress. The determinedsolicitations were calculated from the center of gravity of the concrete section alone. Those stresses must be reducedto the centroid of tensioned steel:

 MNmh

d  N  M  M  Gua   112.02

50.045.0*353.0041.0)

2(*0  

  

  

 

Verification about the partially compressed section:

494,0)45,0

50,0*4,01(*

45,0

50,0*8,0)*4,01(**8,0  

h

h BC  

 

055.020*²45.0*50.0

112.0

*²*

cd w

uacu

 f  d b

 M  

 

494.0055.0     BC cu  therefore the section is partially compressed

Page 587: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 587/682

  ADVANCE VALIDATION GUIDE

587

The calculation for the tensioned steel in pure bending:

055.0cu  

071,0)055,0*21(1*25,1   u   

md  z  uc   437,0)071,0*4,01(*45,0)*4,01(*        

²89,578,434*437,0

112,0

*cm

 f   z 

 M  A

 yd c

ua  

The calculation for the compressed steel in bending:

For the compound bending:

2423.2

78.434

353.010*89.5   cm

 F 

 N  A A

 yd 

 

 

The minimum column percentage reinforcement must be considered:

²81.078.434

353.0*10.0*10,0min,   cm

 F 

 N  A

 yd 

 Ed  s    

Therefore, a 5cm2reinforcement area will be considered.

Page 588: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 588/682

 ADVANCE VALIDATION GUIDE

588 

5.44.2.3 Calculation of the second order effects:

Estimation of the nominal rigidity:

It is estimated the nominal rigidity of a post or frame member from the following formula:

 s s sccd c   I  E  K  I  E  K  EI    ****    

Where:

2.1

cmcd 

 E  E   

 

 Mpa Mpa f   f   ck cm   388    

 Mpa f  

 E    cmcm   57.32836

10

38*22000

10*22000

3.03.0

 

  

  

  

  

 Mpa E 

 E    cmcd    27364

2.1

32837

2.1

 

4343

10.208,512

50.0

12

*m

hb I c

inertia of the concrete section only

 Mpa E  s   200000 

 s I   : Inertia

002.050.0*50.0

10.5   4

c

 s

 A

 A  

 

01.0002.0   c

 s

 A

 A  

 

22.120

30

201     ck  f  k 

 

071.020*²50.0

353.0

*

cd c

 Ed 

 f   A

 N n

 

20.00336.0170

37.80*071.0

170*2      

nk 

 

45

242

10.205.02

50.0*

2

10*5*2

2*

2*2   mc

h A I    s s

  

  

  

  

 

1 s K   and 018.0

25.11

0336.0*22.1

1

* 21

ef  

c

k k  K 

  

Therefore:

²56.610*2*200000*110*208,5*27364*018.0   53  MNm EI     

 

Page 589: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 589/682

  ADVANCE VALIDATION GUIDE

589

Stress correction:

The total moment, including second order effects, is defined as a value plus the moment of the first order:

11*0

 Ed 

 B Ed  Ed 

 N  N  M  M 

   

 

 MNm M   Ed    041.00    (moment of first order (ULS) taking into account geometric imperfections)

 MN  N  Ed    353.0 (normal force acting at ULS).

In addition:

0

²

c

    

 and 80 c  because the moment is constant (no horizontal force at the top of post).

234.18

²      

 MN l 

 EI  N  B   48.0

²60.11

56.6*²*²

2

0

    

 

It was therefore a moment of 2nd order which is:

 MNm M  Ed    182.0

1

353.0

48.0

234.11*041.0  

 There is thus a second order moment of 0.182MNm

Page 590: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 590/682

 ADVANCE VALIDATION GUIDE

590 

Calculation of the flexural combined reinforcement

The theoretical reinforcement will be determined by the following diagram:

 MNm M  Ed    182.0 

 MN  N  Ed    353.0 

The input parameters of the diagram are:

073.020*50.0*50.0

182.0

**   22 

cd 

 Ed 

 f  hb

 M    

071.020*5.0*5.0

353.0

**

cd 

 Ed 

 f  hb

 N    

Therefore:

11.0   

The reinforcement area will be:

    22

65.1278.434

20*50.0*11.0***cm

 f  

 f  hb A

 yd 

cd  s

  

This means a total of 12.65cm2

The initial calculations must be repeated by increasing the section; a 6cm2 reinforcement section will be considered.

 Additional iteration:

One more iteration by considering an initial section of 6.5cm ²

Page 591: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 591/682

  ADVANCE VALIDATION GUIDE

591

Estimation of the nominal rigidity:

 s s sccd c   I  E  K  I  E  K  EI    ****    

Where:

2.1cmcd 

 E  E   

 

 Mpa Mpa f   f   ck cm   388    

 Mpa f  

 E    cmcm   57.32836

10

38*22000

10*22000

3.03.0

  

  

  

  

 

 Mpa E 

 E    cmcd    27364

2.1

32837

2.1

 

4343

10.208,512

50.0

12

*

m

hb

 I c

 considering only the concrete section only

 Mpa E  s   200000 

 s I   : Inertia

0026.050.0*50.0

10*5.6  4

c

 s

 A

 A    

01.0002.0   c

 s

 A

 A  

 

22.120

30

201     ck  f  k 

 

071.020*²50.0

353.0

*

cd c

 Ed 

 f   A

 N n

 

20.00336.0170

37.80*071.0

170*2      

nk  

45

242

106.205.0

2

50.0

2

10*5.6*2

2

*

2

*2   mch A

 I    s s

 

 

 

 

 

 

 

   

1 s K  and 018.0

25.11

0336.0*22.1

1

* 21

ef  

c

k k  K 

  

Therefore:

²78.710*6.2*200000*110*208,5*27364*018.0   53  MNm EI       

Page 592: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 592/682

 ADVANCE VALIDATION GUIDE

592 

Stress correction:

The total moment, including second order effects, is defined as a value plus the moment of the first order:

11*0

 Ed 

 B Ed  Ed 

 N  N  M  M 

   

 

 MNm M   Ed    041.00    (moment of first order (ULS) taking into account geometric imperfections)

 MN  N  Ed    353.0 (normal force acting at ULS).

In addition:

0

²

c

    

 and 80 c  because the moment is constant (no horizontal force at the top of post).

234.18

²      

 MN l 

 EI  N  B   57.0

²60.11

78.7*²*²

2

0

    

 

It was therefore a moment of 2nd order which is:

 MNm M  Ed    123.0

1

353.0

57.0

234.11*041.0  

 There is thus a second order moment of 0.123MNm

Calculation of the flexural compound reinforcement

The theoretical reinforcement will be determined, from the following diagram:

 MNm M  Ed    123.0 

 MN  N  Ed    353.0 

Page 593: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 593/682

  ADVANCE VALIDATION GUIDE

593

The input parameters of the diagram are:

049.020*50.0*50.0

123.0

**   22 

cd 

 Ed 

 f  hb

 M    

071.020*5.0*5.0

353.0

** cd 

 Ed 

 f  hb

 N 

   

Therefore:

05.0  

The reinforcement area will be:

    22

75.578.434

20*50.0*05.0***cm

 f  

 f  hb A

 yd 

cd  s

  

This means a total of 5.75cm2

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Page 594: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 594/682

 ADVANCE VALIDATION GUIDE

594 

Theoretical reinforcement area(cm2  )

(reference value: 5.75cm2=2*2.88cm

2)

Theoretical value (cm2  )

(reference value: 6.02 cm2)

5.44.2.4 Reference results

Result name Result description Reference value

 Az Reinforcement area [cm2

] 2.88 cm2

5.44.3 Calculated results

Result name Result description Value Error

 Az Az -3.01 cm² -0.0000 %

Page 595: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 595/682

  ADVANCE VALIDATION GUIDE

595

5.45 EC2 Test 42: Verifying a square concrete column subjected to a significant rotation momentand small compression force to the top with Nominal Curvature Method - Bilinear stress-straindiagram (Class XC1)

Test ID: 5205Test status: Passed 

5.45.1 Description

Verifies a square cross section column made of concrete C30/37 subjected to a significant rotation moment and smallcompression force to the top with Nominal Curvature Method - Bilinear stress-strain diagram (Class XC1).

The verification of the axial stresses and rotation moment, applied on top, at ultimate limit state is performed.

Nominal curvature method.

The purpose of this test is to determine the second order effects by applying the method of nominal rigidity, and thencalculate the frames by considering a section symmetrically reinforced.

The column is considered connected to the ground by a fixed connection and free to the top part.

5.45.2 Background

Nominal curvature method.

Verifies the adequacy of a square cross section made from concrete C30/37.

The purpose of this test is to determine the second order effects by applying the method of nominal rigidity, and thencalculate the frames by considering a section symmetrically reinforced.

5.45.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  15kN axial force

►  150kMm rotation moment applied to the column top

►  The self-weight is neglected

■  Exploitation loadings:

►  7kN axial force

►  100kNm rotation moment applied to the column top

■  3,02   

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Concrete cover 3cm and 5cm■  Transversal reinforcement spacing a=40cm

■  Concrete C30/37

■  Steel reinforcement S500B

■  The column is considered isolated and braced

Page 596: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 596/682

 ADVANCE VALIDATION GUIDE

596 

Units

Metric System

Geometry

Beam cross section characteristics:

■  Height: h = 0.50 m,

■  Width: b = 0.50 m,

■  Length: L = 5.80 m,

■  Concrete cover: c=5cm

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a fixed connection and free to the top part.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

►  NEd =1.35*15+1.50*7=30.75kN=0.03075MN

►  MEd=1.35*150+1.50*100=352.50kNm=0.352MNm

■  m..

.

N

Me

Ed

Ed 4511030750

35200    

Page 597: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 597/682

  ADVANCE VALIDATION GUIDE

597

5.45.2.2 Reference results in calculating the concrete column

Geometric characteristics of the column:

The column has a fixed connection on the bottom end and is free on the top end, therefore, the buckling length isconsidered to be:

ml l    60.11*20    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.2(1); Figure 5.7 b)

Calculating the slenderness of the column:

37.8050.0

60.11*32*32 0 a

l  

 

Effective creep coefficient calculation:

The creep coefficient is calculated using the next formula:

 Ed 

 EQP 

ef  

 M 

 M t   ., 0

  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

Where:

0,t    creep coefficient

 EQP  M    serviceability firs order moment under quasi-permanent load combination

 Ed  M   ULS first order moment (including the geometric imperfections)

First order eccentricity evaluation:

ieee     01  

mei   03.0 

The first order moment provided by the quasi-permanent loads:

me N 

 M eee i

 Eqp

 Eqp

i   56.1030.07*30.015

100*30.0150

0

0

01  

 

kN  N  Eqp   10.177*30.0151    

 MNmkNme N  M   Eqp Eqp   181.058.18056.10*10.17* 111    

The first order ULS moment is defined latter in this example:

 MNm M  Ed    3523.01   

The creep coefficient 0,t   is defined as follows:

)(*)(*),( 00   t  f  t  cm RH             

72.2830

8.168.16)(  

cm

cm f  

 f      

488.0281.0

1

1.0

1)( 20.020.0

0

0   t t     (for t0= 28 days concrete age).

Page 598: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 598/682

 ADVANCE VALIDATION GUIDE

598 

213

0

***1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

 MPa f  cm   35 therefore: 944.038

3535   7.07.0

1     

  

  

  

cm f     and 984.0

38

3535   2.02.0

2     

  

  

  

cm f     

  72.1984.0*944.0*

250*1.0

100

501

1250500500*2

500*500*2*230  

 

 

 

 

  RH mm

u

 Ach      

28.2488.0*72.2*72.1)(*)(*),( 00     t  f  t  cm RH         

The effective creep coefficient calculation:

  17.1352.0

181.0*28.2*, 0  

 Ed 

 EQP 

ef   M 

 M t     

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

The second order effects; The buckling calculation:

For an isolated column, the slenderness limit check is done using the next formula:

n

C  B A   ***20lim  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.1(1)

Where:

0062.020*²50.0

031.0

*

cd c

 Ed 

 f   A

 N n

 

  81.0

17.1*2.01

1

*2,01

1

ef  

 A 

 

1.1*21       B   because the reinforcement ratio in not yet known

70.07,1     mr C   because the ratio of the first order moment is not known

42.1580062.0

7.0*1.1*81.0*20lim      

42.15837.80 lim        

Therefore, the second order effects can be neglected.

Page 599: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 599/682

  ADVANCE VALIDATION GUIDE

599

Calculation of the eccentricities and solicitations corrected for ULS:

The stresses for the ULS load combination are:

■  NEd= 1.35*15 + 1.50*7= 30.75kN = 0,03075 MN

■  MEd= 1.35*150 + 1.50*100= 352.5kN= 0.3525 MNm

Therefore it must be determined:

■  The eccentricity of the first order ULS moment, due to the stresses applied

■  The additional eccentricity considered for the geometrical imperfections

Initial eccentricity:

m N 

 M e

 Ed 

 Ed  46.1103075.0

3525.00    

 Additional eccentricity:

ml 

ei   03.0400

6.11

4000  

The first order eccentricity: stresses correction:The forces correction, used for the combined flexural calculations:

 MN  N  Ed    03075.0  

meee i   49.1101    

 MNm N e M   Ed  Ed    353.003075.0*49.11*1    

0*e N  M   Ed  

mm)mm.;mmmax(mm

;mmmaxh

;mmmaxe   207162030

50020

30200  

 

  

 

 

  

   

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 6.1.(4)

Page 600: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 600/682

 ADVANCE VALIDATION GUIDE

600 

Reinforcement calculation in the first order situation:

The theoretical reinforcement will be determined by the following diagram:

The input parameters of the diagram are:

141.020*50.0*50.0

353.0

**   22 

cd 

 Ed 

 f  hb

 M    

00615.020*5.0*5.0

03075.0**

cd 

 Ed 

 f  hb N    

Therefore:

35.0  

The reinforcement area will be:

    22

25.4078.434

20*50.0*cm A s

 

 which means 20.13cm2 per face.

The total area will be 40.25cm2.

Page 601: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 601/682

  ADVANCE VALIDATION GUIDE

601

The nominal curvature methods (second order effect):

The curvature calculation:

Considering a reinforcement of 40.25cm² (considered symmetric), one can determine the curvature from the followingformula:

0

1

**

1

r  K  K r    r       

 According to Eurocode 2 – EN 1992-1-1(2004): Chapter 5.8.8.3(1)

1

0

0107.045.0*45,0

1000

78.434

)*45,0()*45,0(

1     md 

 E 

 f  

d r 

 s

 yd 

 yd  

 

Kr is the correction coefficient depending of the normal force:

1

bal u

ur 

nn

nn K 

 

 According to Eurocode 2 – EN 1992-1-1(2004): Chapter 5.8.8.3(3)

00615.020*²50.0

03075.0

*

cd c

 Ed 

 f   A

 N n

 

350.020*²50.0

78.434*10*25.40

*

*   4

cd c

 yd  s

 f   A

 f   A 

 

350.1350.011   un  

4,0bal n 

41.140.0350.1

00615.0350.1

r  K  

Condition:   1r  K  , therefore it will be considered: 1r  K   

  K creep coefficient:

1*1     ef   K          

 According to Eurocode 2 – EN 1992-1-1(2004): Chapter 5.8.8.3(4)

therefore

Calculation moment:

The moment of calculation is estimated from the formula:

20   M  M  M   Ed  Ed     

Where:

 Ed  M 0  is moment of the first order including geometric imperfections.

Page 602: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 602/682

 ADVANCE VALIDATION GUIDE

602 

2 M   is nominal moment of second order.

The 2nd order moment is calculated from the curvature:

22   *e N  M   Ed   

mcl 

r e   144.0

10²60.11*0107.0*1

  2

02    

 MNme N  M   Ed    00443.0144.0*03075.0* 22    

 MNm M  M  M   Ed  Ed    357.000443.0353.020    

The reinforcement must be sized considering the demands of the second degree effects, as follows:

 MN  N  Ed    03075.0  

 MNm M  Ed    357.0  

Reinforcement calculation according the second order effects:

The interaction diagram will be used.

The input parameters in the diagram are:

35.0   will be obtained, which gives:     ²25.40078.434

20*²50.0*35.0***cm

 f  

 f  hb A

 yd 

cd  s  

Meaning a 20.13 cm2 per side (which confirms the initial section)

Page 603: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 603/682

  ADVANCE VALIDATION GUIDE

603

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Theoretical reinforcement area(cm2 

 )

(reference value: 40.25cm2=2*20.13cm

2)

Theoretical value (cm2  )

(reference value: 38.64 cm2 = 2 x 19.32cm

2)

Page 604: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 604/682

 ADVANCE VALIDATION GUIDE

604 

5.45.2.3 Reference results

Result name Result description Reference value

 Az Reinforcement area [cm2] 19.32 cm

2

5.45.3 Calculated results

Result name Result description Value Error

 Az Az -19.32 cm² 0.0000 %

Page 605: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 605/682

  ADVANCE VALIDATION GUIDE

605

5.46 EC2 Test36: Verifying a rectangular concrete column using the method based on nominalcurvature- Bilinear stress-strain diagram (Class XC1)

Test ID: 5125

Test status: Passed 

5.46.1 Description

Verifying a rectangular concrete column using the method based on nominal curvature - Bilinear stress-straindiagram (Class XC1)

Verifies the adequacy of a rectangular cross section column made from concrete C30/37.

Method based on nominal curvature

The purpose of this test is to determine the second order effects by applying the method of nominal curvature, andthen calculate the frames by considering a section symmetrically reinforced.

The column is considered connected to the ground by an articulated connection (all the translations are blocked andall the rotations are permitted) and to the top part the translations along X and Y axis are blocked and the rotation

along Z axis is also blocked.

This example is provided by the “Calcul des Structures en beton” book, by Jean-Marie Paille, edition Eyrolles.

5.46.2 Background

Method based on nominal curvature

Verifies the adequacy of a rectangular cross section made from concrete C30/37.

The purpose of this test is to determine the second order effects by applying the method of nominal curvature, andthen calculate the frames by considering a section symmetrically reinforced.

5.46.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  400kN axial force

►  The self-weight is neglected

■  Exploitation loadings:

►  300kN axial force

►  The quasi permanent coefficient 3,02   

■  Wind loads:

►  250kN axial force►  The wind loads are applied horizontally on the middle of the column to the wider face (against the

positive sense of the Y local axis)

►  The quasi permanent coefficients 10   and02   

■  Concrete cover 5cm

■  Concrete C30/37

■  Steel reinforcement S500B

■  Relative humidity RH=50%

■  Concrete age t0=30days

■  The reinforcement is set to 8HA16 (16.08cm2)

Page 606: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 606/682

 ADVANCE VALIDATION GUIDE

606 

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.35 m,

■  Width: b = 0.60 m,

■  Length: L = 5.00 m,

■  Concrete cover: c = 5 cm

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a articulated connection (all the translations are blocked andall the rotations are permitted) and to the top part the translations along X and Y axis are blocked and the rotationalong Z axis is also blocked.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

 MN  N  ED   99.03.0*5.14.0*35.1    

cmN

M

eu

u

00    

cm;cmmaxl

;cmmaxei   2400

5002

4002   0

 

First order eccentricity: m.cmeee i   020201    

Page 607: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 607/682

  ADVANCE VALIDATION GUIDE

607

5.46.2.2 Reference results in calculating the concrete column

Geometric characteristics of the column:

The column has a fixed connection on the bottom end and is free on the top end, therefore, the buckling length isconsidered to be:

ml l    50    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.2(1); Figure 5.7 b)

Calculating the slenderness of the column:

5.4935.0

5*32*32 0 a

l  

 

Effective creep coefficient calculation:

The creep coefficient is determined by the next formula:

 Ed 

 EQP 

ef  

 M 

 M t   ., 0

  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

Where:

0,t    creep coefficient

 EQP  M   serviceability firs order moment under quasi-permanent load combination

The  EQP  M  value is calculated using the

W QG M  EQP    *03.0    

 MNme N  M  qp Eqp   0098.002.0*)3.0*3.04.0(* 10    

 Ed  M    ULS first order moment (including the geometric imperfections)

The ED M 0  value is calculated using the W QG M oED   *5.1*5.135.1    

 MNm L

 H e N  M  W ed  Eqp   48855.04

5*25.0*5.102.0*99.0

4**5.1* 10    

The moment report becomes:

02.048855.0

0098.0

0

0  Ed 

 Eqp

 M 

 M 

 

The creep coefficient 0,t   is:

)(*)(*),( 00   t  f  t  cm RH             

 MPa f  

 f  cm

cm   73.2830

8.168.16)(  

  

 

482.0301.0

1

1.0

1)(

20.020.0

0

0  

t     (for t0= 30 days concrete age).

Page 608: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 608/682

 ADVANCE VALIDATION GUIDE

608 

213

0

***1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

RH = relative humidity; RH = 50%

Where   121       if  MPa f  cm   35  if not

7.0

1

35

 

  

 

cm f      and

2.0

2

35

 

  

 

cm f     

  mm

u

 Ach   221

600350*2

600*350*2*20  

 

 MPa MPa f  cm   3538     therefore 944.038

3535  7.07.0

1     

  

 

  

 

cm f    and

984.0383535

  2.02.0

2         

  

cm f     

752.1984.0*944.0*221*1.0

100

501

1***1.0

1001

1321

30

 

 

 

 

 

 

 

       

h

 RH 

 RH   

30.2482.0*73.2*752.1)(*)(*),( 00     t  f  t  cm RH        

The effective creep coefficient calculation:

  046.002.0*30.2*, 0    Ed 

 EQP 

ef   M 

 M t     

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

046.1046.011     ef     

The necessity of buckling calculation (second order effect):

The M2 moment is calculated from the curvature formula:22   * e N  M   Ed   

c

r e

2

02   *

1

 

l0 is the buckling length: l0=l=5m

“c” is a factor depending on the curvature distribution. Because the cross section is constant, c = 10.

0

1**

1

r  K  K 

r   r     

 

 According to Eurocode 2 – EN 1992-1-1(2004): Chapter 5.8.8.3(1)

).45,0(

1

0   d r 

 yd  

and1000

1739.2

200000

78.434

 s

 yd 

 yd  E 

 f   

 

Page 609: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 609/682

  ADVANCE VALIDATION GUIDE

609

1

0

0161.0)30.0*45,0(

1000

1739.2

)*45,0(

1     md r 

 yd  

 

Kr is the correction coefficient depending of the normal force:

1

bal u

ur 

nnnn K 

 

 According to Eurocode 2 – EN 1992-1-1(2004): Chapter 5.8.8.3(3)

236.020*35.0*6.0

99.0

*

cd c

 Ed 

 f   A

 N n

 

1un  

166.020*35.0*6.0

78.434*10*08.16   4

cd c

 yd  s

 f   A

 f   A 

 

166.1166.0.11      un  

4,0bal n  

214.14.0166.1

236.0166.1

bal u

ur 

nn

nn K 

 

Condition:   1r  K  , therefore it will be considered: 1r  K   

  K  creep coefficient: 1*1     ef   K         

 According to Eurocode 2 – EN 1992-1-1(2004): Chapter 5.8.8.3(4)

15020035,0

          ck  f  

 

5.4935.0

125120 h

l  

 

17.0150

5.49

200

3035.0

15020035,0  

        ck  f  

 

008.1046.0*17.01*1     ef   K         

Therefore:

0162.00161.0*008.1*11

**1

0

 K  K r 

  r     

 

mc

r e   04057.0

10

²5*0162.0*

1  2

02    

 MNme N  M   Ed    04017.004057.0*990.0* 22    

 MNm M  M  M   Ed  Ed    5287.004017.048855.020    

The frames must be sized considering the demands of the second degree effects, as follows:

 MN  N  Ed    990.0 

Page 610: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 610/682

 ADVANCE VALIDATION GUIDE

610 

 MNm M  Ed    5287.0  

Reinforcement calculation according the second order effects:

The calculations are made using the following values:

 MN  N  Ed    990.0 

 MNm M  Ed    5287.0  

The calculations resulted in 38.02cm2 tensioned reinforcement and a 20cm

2 compressed reinforcement, meaning a

total of 58.02cm2 reinforcement area.

Buckling checking:

The calculation is performed considering the reinforcement found previously (58.02cm2):

Curvature calculation:

The reinforcement area has an influence only over the Kr  parameter:

1

00161.0

1  

  mr  

1

bal u

ur 

nn

nn K 

 

112.0n  

60.020*35.0*60.0

78.434*10*02,58

*

*   4

cd c

 yd  s

 f   A

 f   A 

 

60.160.011      un  

4,0bal n 

1124.140.060.1

112.060.1

  r r    K  K  

1  K   the creep coefficient

1.1     ef   K          

Therefore the curvature becomes:

1

0

0161.01

**1     m

r  K  K 

r   r       

Considering this result, the same curvature is obtained, which means that the second order moment is the same. Thereinforcement section is correctly chosen.

Finite elements modeling

■  Linear element: S beam,

■  5 nodes,

■  1 linear element.

Page 611: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 611/682

  ADVANCE VALIDATION GUIDE

611

Theoretical reinforcement area (cm2  )

(reference value: 38.01cm2)

Theoretical value (cm2  )

(reference value: 76.02 cm2)

5.46.2.3 Reference results

Result name Result description Reference value

 Ay Reinforcement area [cm2] 38.02cm

2

5.46.3 Calculated results

Result name Result description Value Error

 Ay Ay -38.01 cm² -0.0000 %

Page 612: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 612/682

 ADVANCE VALIDATION GUIDE

612 

5.47 EC2 Test 40: Verifying a square concrete column subjected to a small compression force andsignificant rotation moment to the top - Bilinear stress-strain diagram (Class XC1)

Test ID: 5153

Test status: Passed 

5.47.1 Description

Verifies a square cross section column made of concrete C30/37 subjected to a small compression force andsignificant rotation moment to the top - Bilinear stress-strain diagram (Class XC1)

Nominal rigidity method - The purpose of this test is to determine the second order effects by applying the method ofnominal rigidity, and then calculate the frames by considering a symmetrically reinforced section.

The column is considered connected to the ground by a fixed connection and free to the top part.

5.47.2 Background

Nominal rigidity method.

Verifies the adequacy of a rectangular cross section made from concrete C30/37.

The purpose of this test is to determine the second order effects by applying the method of nominal rigidity, and thencalculate the frames by considering a section symmetrically reinforced.

5.47.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  15kN axial force

►  150kMm rotation moment applied to the column top

►  The self-weight is neglected

■  Exploitation loadings:

►  7kN axial force

►  100kNm rotation moment applied to the column top

■ 

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Concrete cover 5cm

■  Transversal reinforcement spacing a = 40cm

■  Concrete C30/37■  Steel reinforcement S500B

■  The column is considered isolated and braced

Page 613: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 613/682

  ADVANCE VALIDATION GUIDE

613

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.50 m,

■  Width: b = 0.50 m,

■  Length: L = 5.80 m,

■  Concrete cover: c = 5cm

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a fixed connection and free to the top part.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

NEd =1.35*15+150*7=30.75kN=0.03075MN

MEd=1.35*150+1.50*100=352.50kNm=0.352MNm

■  m..

.

N

Me

Ed

Ed 4511030750

35200    

Page 614: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 614/682

 ADVANCE VALIDATION GUIDE

614 

5.47.2.2 Reference results in calculating the concrete column

Geometric characteristics of the column:

The column has a fixed connection on the bottom end and is free on the top end, therefore, the buckling length isconsidered to be:

ml l    60.11*20    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.2(1); Figure 5.7 b)

Calculating the slenderness of the column:

37.8050.0

60.11*32*32 0 a

l  

 

Effective creep coefficient calculation:

The creep coefficient is calculated using the next formula:

 Ed 

 EQP 

ef  

 M 

 M t   ., 0

  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

Where:

0,t   creep coefficient

 EQP  M    serviceability firs order moment under quasi-permanent load combination

 Ed  M    ULS first order moment (including the geometric imperfections)

First order eccentricity evaluation:

ieee     01  

mei   03.0 

The first order moment provided by the quasi-permanent loads:

kN  N  Eqp   10.177*30.0151    

 MNmkNme N  M   Eqp Eqp   181.058.18056.10*10.17* 111    

The first order ULS moment is defined latter in this example:

The creep coefficient 0,t    is defined as follows:

)(*)(*),( 00   t  f  t  cm RH        

72.2830

8.168.16)(  

cm

cm f  

 f    

 

488.0281.0

1

1.0

1

)( 20.020.0

0

0   t t     (for t0= 28 days concrete age).

Page 615: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 615/682

  ADVANCE VALIDATION GUIDE

615

213

0

***1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

 MPa f  cm   35 therefore:

944.038

3535   7.07.0

1     

  

  

  

cm f   

 and

984.038

3535   2.02.0

2     

  

  

  

cm f   

 

  72.1984.0*944.0*

250*1.0

100

501

1250500500*2

500*500*2*230  

 

 

 

 

  RH mm

u

 Ach    

 

28.2488.0*72.2*72.1)(*)(*),( 00     t  f  t  cm RH          

The effective creep coefficient calculation:

  17.1352.0

181.0*28.2*, 0  

 Ed 

 EQP 

ef   M 

 M t   

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

The second order effects; The buckling calculation:

For an isolated column, the slenderness limit check is done using the next formula:

n

C  B A   ***20lim  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.1(1)

Where:

0062.020*²50.0

031.0

*

cd c

 Ed 

 f   A

 N n

 

  81.0

17.1*2.01

1

*2,01

1

ef  

 A 

 

1.1*21       B   because the reinforcement ratio in not yet known

70.07,1     mr C   because the ratio of the first order moment is not known

42.1580062.0

7.0*1.1*81.0*20lim    

 

42.15837.80 lim       

Therefore, the second order effects can be neglected.

Calculation of the eccentricities and solicitations corrected for ULS:

The stresses for the ULS load combination are:

NEd= 1.35*15 + 1.50*7= 30.75kN = 0,03075 MN

MEd= 1.35*150 + 1.50*100= 352.5kN= 0.3525MNm

Page 616: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 616/682

 ADVANCE VALIDATION GUIDE

616 

Therefore, we must calculate:

■  The eccentricity of the first order ULS moment, due to the stresses applied

■  The additional eccentricity considered for the geometrical imperfections

Initial eccentricity:

m N 

 M 

e Ed 

 Ed 

46.1103075.0

3525.00    

 Additional eccentricity:

ml 

ei   03.0400

6.11

400

0  

The first order eccentricity: stresses correction:

The forces correction, used for the combined flexural calculations:

 MN  N  Ed    03075.0  

meee i   49.1101    

 MNm N e M   Ed  Ed    353.003075.0*49.11*1    

0*e N  M   Ed   

  mmmm

mmmmmm

hmm

e   207.16

20max

30

50020

max

30

20max0  

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 6.1.(4)

Page 617: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 617/682

  ADVANCE VALIDATION GUIDE

617

Reinforcement calculation in the first order situation:

The theoretical reinforcement will be determined by the following diagram

The input parameters of the diagram are:

141.020*50.0*50.0

353.0

**   22 

cd 

 Ed 

 f  hb

 M    

00615.020*5.0*5.0

03075.0

**

cd 

 Ed 

 f  hb

 N    

Therefore:

35.0  

The reinforcement area will be:

    22

25.4078.434

20*50.0*cm A s

 

 which means 20.13cm2 per face.

The total area will be 40.25cm2.

Finite elements modeling

■  Linear element: S beam,■  7 nodes,

■  1 linear element.

Page 618: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 618/682

 ADVANCE VALIDATION GUIDE

618 

Theoretical reinforcement area(cm2  )

(reference value: 19.32cm2)

Theoretical value (cm2  )

(reference value: 38.64 cm2

= 2 x 19.32cm2

)

Page 619: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 619/682

  ADVANCE VALIDATION GUIDE

619

5.47.2.3 Reference results

Result name Result description Reference value

 Az Reinforcement area [cm2] 19.32 cm

2

5.47.3 Calculated results

Result name Result description Value Error

 Az Az -19.32 cm² 0.0000 %

Page 620: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 620/682

 ADVANCE VALIDATION GUIDE

620 

5.48 EC2 Test 45: Verifying a rectangular concrete beam supporting a balcony - Bilinear stress-strain diagram (Class XC1)

Test ID: 5225

Test status: Passed 

5.48.1 Description

Verifies the adequacy of a rectangular cross section beam made of concrete C25/30 supporting a balcony - Bilinearstress-strain diagram (Class XC1).

Simple Bending Design for Ultimate Limit State

Verifies the column resistance to rotation moment along its length. During this test, the determination of stresses ismade along with the determination of the longitudinal and transversal reinforcement.

5.48.2 Background

Simple Bending Design for Ultimate Limit State

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist rotation moment along itslength. During this test, the calculation of stresses is performed, along with the calculation of the longitudinal andtransversal reinforcement.

5.48.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

■  The geometric dimension of the beam are:

The following load cases and load combination are used:

■  Concrete type: C25/30

■  Reinforcement type: S500B

■  Exposure class: XC1

■  Balcony load: 1kN/m2

■  The weight of the beam will be considered in calculation

■  Concrete density: 25kN/m3

■  The beam is considered fixed at both ends

■  Concrete cover: 40mm

■  Beam length: 4.00m

Page 621: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 621/682

  ADVANCE VALIDATION GUIDE

621

Units

Metric System

Geometry

Beam cross section characteristics:

■  Height: h = 0.75 m,■  Width: b = 0.25 m,

■  Length: L = 4.00 m,

■  Section area: A = 0.1875 m2 ,

■  Concrete cover: c=4cm

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) fixed connection,

►  Support at end point (x = 4.00) fixed connection

■  Inner: None.

5.48.2.2 Reference results in calculating the concrete beam

The ULS load calculation:

The first step of the calculation is to determine charges transmitted to the beam:

■  Vertical loads applied to the beam (kN/ml) from the load distribution over the balcony

■  Rotation moment applied to the beam (kN/ml) from the load distribution over the balcony

Each action (self-weight and distributed load) is determined by summing the resulting vertical loads along the eavesand the torsional moment by multiplying the resultant by the corresponding lever arm.

CAUTION, different lever arm must be considered from the center of the beam (by adding therefore the half-width).

The results are displayed in the table below:

Page 622: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 622/682

 ADVANCE VALIDATION GUIDE

622 

Load calculation:

From previously calculated results, the following stresses can be determined:

■  Shear:  Ed V  

■  Bending moment:  Ed  M   

■  Torque:  Ed T  

Shear and bending moment:

One can determine the load at ULS taken over by the beam:

m KN  P u   /14.212*5,144.13*35,1    

For a beam fixed on both ends, the following values will be obtained:

Maximum shear (ULS):

 MN  KN l  P V    u Ed    042,03,42

24*14,21

2*

 

Bending moment at the supports:

 MNm KNml  P 

 M    u Ed    028,02,28

12

²4*14,21

12

²*

 

Maximum Moment at middle of span:

 MNm KNml  P 

 M    u Ed    014,01,14

24

²4*14,21

24

²*

 

Torsion moment:

For a beam subjected to a torque constant:

m MNmm KNmmtu   /015,0/97,1425,2*5,159,8*35,1    

 MNml 

mT  tu Ed    03,02

4*015,0

2*  

 

Page 623: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 623/682

  ADVANCE VALIDATION GUIDE

623

5.48.2.3 Bending rebar

Span reinforcement (at bottom fiber)

007,067.16*²70.0*25,0

014,0cu 

 

  0088,0007,0*211*25,1   u   

  m z c   697,00088,0*4,01*70.0    

²46.0²10*62.478,434*697,0

014,0   4 cmm Au    

 

Minimum reinforcement percentage verification:

d b

d b f  

 f  

 Max A

w

w

 yk 

eff  ct 

 s

**0013.0

***26.0  ,

min, 

Cracking matrix required (calculation hypothesis):  Mpa f   f   ctmeff  ct    56.2,    

²27.2

²27.270.0*25.0*0013.0**0013.0

²27.270.0*25.0*500

56.2*26.0***26.0

  ,

min,   cm

cmd b

cmd b f  

 f  

 Max A

w

w

 yk 

eff  ct 

 s  

 

Therefore, it retains 2.27 cm ².

Reinforcement on supports (at top fiber)

014,0

67.16*²70.0*25,0

028,0

cu 

 

  018,0014,0*211*25,1   u   

  m z c   695,0018,0*4,01*70.0    

²93.0²10*27.978,434*695,0

028,0   4 cmm Au   

 

It also retains 2.27 cm ² (minimum percentage).

Shear reinforcement

 MN V  Ed    042,0  

The transmission to the support is not direct; it is considered a connecting rod inclined by 45˚, therefore 1cot      

Concrete rod verification:

 

  

²cot1

cotcot****max,

  cd w Rd    f  v z bV 

 

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 6.2.3(4)

m z  z  c   695.0 (from the design in simple bending of support)

Page 624: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 624/682

 ADVANCE VALIDATION GUIDE

624 

Vertical frames:

54.0250

251*6,0  

v

 

 MN tg 

 f  v z b f  v z bV    cd cwcd cw Rd    78.0

2

67.16*54.0*695.0*25.0

cot

***

²cot1

cotcot****max,  

   

  

 

     cot

***1max,

tg 

b z  f  vV    wucd  Rd   

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 6.2.3(3)

 MN V  MN V   Rd  Ed    78.0042.0 max,    

Calculation of transverse reinforcement:

ml cm f   z 

tg V 

 s

 A

 yd u

 Ed  sw /²39.178.434*695.0

042.0

*

*.    

(over shear)

From the minimum reinforcement percentage:

      sin..min,   ww sw b s

 A

 

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 9.2.2(5)

With:

0008.0500

25*08,0*08,0min,    yk 

ck w

 f   f    

 

ml cm s

 A sw /²225.0*0008.0    

Therefore:

ml cm s

 A sw /²2 

Torsion calculation:

Torsion moment was calculated before:  MNmT  Ed    03,0  

Page 625: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 625/682

  ADVANCE VALIDATION GUIDE

625

Torsional shear stress:

k ief  

 Ed it 

 At 

**2 ,

,    

 

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 6.3.2(1)

cmcmu

 Acmc

t  ief     375.9375.9)7525(2

)75*25(8*2

max, 

 

²1025.0²1025)375.975(*)375.925(   mcm Ak     

Mpa..*.*

.

 A*t*

T

ki,ef 

Edi,t   561

102500937502

030

2τ    

Concrete verification:

Calculate the maximum allowable stress in the rods:

      cos*sin******2 ,max,   ief  k cd cw Rd    t  A f  vT     

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 6.3.2(4)

54.0250

1*6,0    

  

    ck  f  v

 

 MN T  Rd    085.070.0*70.0*09375.0*1025.0*67.16*54.0*2max,    

Because of the combined share/moment effect, we must calculate:

0,1max,max,

 Rd 

 Ed 

 Rd 

 Ed 

V V 

T T 

 

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 6.3.2(4)

0,1399.078.0

042.0

085.0

03.0

 

Torsion longitudinal reinforcement

 cot***2

*

 yd k 

k  Ed l 

 f   A

uT  A  

 

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 6.3.2(3)

mcmt ht bu ef  ef  k    625.15.162)]375.975()375.925[(*2)]()[(*2    

²47.578.434*1025.0*2

625.1*03.0cm Al   

 

Page 626: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 626/682

 ADVANCE VALIDATION GUIDE

626 

Torsion transversal reinforcement

ml cm f   A

 s

 A

 yd k 

 Ed 

 swT  /²36.378.434*1025.0*2

03.0

cot***2

  

Therefore ml cm s

 A

 swT  /²36,3 for each face.

Finite elements modeling

■  Linear element: S beam,

■  11 nodes,

■  1 linear element.

ULS load combinations(kNm)

Torsional moment (Ted=29.96kNm)

Longitudinal reinforcement (5.46cm2)

Transversal reinforcement (3.36cm2/ml)

Page 627: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 627/682

  ADVANCE VALIDATION GUIDE

627

5.48.2.4 Reference results

Result name Result description Reference value

Mx Torsional moment [kNm] 29.96 cm2

 Al Longitudinal reinforcement [cm2] 5.46 cm

2

 Ator,y Transversal reinforcement [cm

2

/ml] 3.36 cm

2

/ml

5.48.3 Calculated results

Result name Result description Value Error

Mx Mx 29.9565 kN*m 0.0000 %

 Al Al 5.4595 cm² 0.0000 %

 Ator,y / face Ator,y/face 3.35969 cm² 0.0001 %

Page 628: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 628/682

 ADVANCE VALIDATION GUIDE

628 

5.49 EC2 Test 46 II: Verifying a square concrete beam subjected to a normal force of traction -Bilinear stress-strain diagram (Class X0)

Test ID: 5231

Test status: Passed 

5.49.1 Description

Verifies a square cross section beam made of concrete C20/25 subjected to a normal force of traction - Bilinearstress-strain diagram (Class X0).

Tie sizing

Bilinear stress-strain diagram

Determines the armature of a pulling reinforced concrete, subjected to a normal force of traction.

The load combinations will produce the following rotation efforts:

NEd=1.35*233.3+1.5+56.67=400kNm

The boundary conditions are described below:

- Support at start point (x=0) fixed connection

- Support at end point (x = 5.00) translation along the Z axis is blocked

5.49.2 Background

Tie sizing

Bilinear stress-strain diagram / Inclined stress-strain diagram

Determine the armature of a pulling reinforced concrete, C20/25, subjected to a normal force of traction.

5.49.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: Fx,G = 233.33 kN

The dead load is neglected

■  Exploitation loadings (category A): Fx,Q = 56.67kN

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

Units

Metric System

Page 629: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 629/682

  ADVANCE VALIDATION GUIDE

629

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.15 m,

■  Width: b = 0.15 m,

■  Length: L = 5.00 m,

■  Section area: A = 0.00225 m2 ,

■  Concrete cover: c=3cm

■  Reinforcement S400, Class: B

■  Fck=20MPa

■  The load combinations will produce the following rotation efforts:

NEd=1.35*233.3+1.5+56.67=400kNm

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x = 0) fixed connection,

►  Support at end point (x = 5.00) translation along the Z axis is blocked

■  Inner: None.

5.49.2.2 Reference results in calculating the concrete beam

There will be two successive calculations, considering a bilinear stress-strain diagram constitutive law and then ainclined stress-strain diagram constitutive law.

Calculations according a bilinear stress-strain diagram

²50,11²10*50,11

15.1

400

400.0   4

,

,   cmm N 

 AU  s

 Ed U  s    

  

It will be used a 4HA20=A=12.57cm2

Calculations according a inclined stress-strain diagram

 MPaClassBS  U  s   373400 ,       

²70,10²10*72,10373

400.0   4

,

,   cmm N 

 AU  s

 Ed U  s    

  

It can be seen that the gain is not negligible (about 7%).

Checking the condition of non-fragility:

 yk 

ctmc s

 f  

 f   A A   *

 

 MPa f   f   ck ctm   21,220*30.0*30.0   3/23/2  

²0225.015.0*15.0   m Ac    

²24.1400

21.2*0225.0*   cm

 f  

 f   A A

 yk 

ctmc s  

 

Page 630: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 630/682

 ADVANCE VALIDATION GUIDE

630 

Finite elements modeling

■  Linear element: S beam,

■  6 nodes,

■  1 linear element.

ULS load combinations (kNm)

In case of using the bilinear stress-strain diagram, the reinforcement will result: (Az=11.50cm2=2*5.75

 cm

2)

In case of using the inclined stress-strain diagram, the reinforcement will result: (Az=10.70cm2=2*5.35

 cm

2)

5.49.2.3 Reference results

Result name Result description Reference value

 Az,1  Longitudinal reinforcement obtained using the bilinear stress-straindiagram [cm

2]

5.75 cm2

 Az,2  Longitudinal reinforcement obtained using the inclined stress-straindiagram [cm

2]

5.37 cm2

5.49.3 Calculated results

Result name Result description Value Error

 Az Az-i -5.75001 cm² 0.0000 %

Page 631: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 631/682

  ADVANCE VALIDATION GUIDE

631

5.50 EC2 Test 44: Verifying a rectangular concrete beam subjected to eccentric loading - Bilinearstress-strain diagram (Class X0)

Test ID: 5213

Test status: Passed 

5.50.1 Description

Verifies a rectangular cross section beam made of concrete C30/37 subjected to eccentric loading - Bilinear stress-strain diagram (Class X0).

The verification of the bending stresses at ultimate limit state is performed.

Simple Bending Design for Ultimate Limit State

During this test, the determination of stresses is made along with the determination of the longitudinal and transversalreinforcement.

- Support at start point (x = 0) fixed connection

- Support at end point (x = 5.00) fixed connection

5.50.2 Background

Simple Bending Design for Ultimate Limit State

Verifies the adequacy of a rectangular cross section made from concrete C30/37 to resist eccentric loading. Duringthis test, the calculation of stresses is made along with the calculation of the longitudinal and transversalreinforcement.

5.50.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 12 kN/m

The dead load is neglected

■  Exploitation loadings (category A): Q = 3kN/m,

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

Units

Metric System

Page 632: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 632/682

 ADVANCE VALIDATION GUIDE

632 

Geometry

Beam cross section characteristics:

■  Height: h = 0.30 m,

■  Width: b = 0.18 m,

■  Length: L = 5.00 m,

■  Section area: A = 0.054 m2 ,

■  Concrete cover: c=5cm

■  Effective height: d=h-(0.6*h+ebz)=0.25m; ebz=0.035m

■  The load eccentricity will be considered of 0.50m

■  The load eccentricity will produce the following rotation moments:

Mx,G=6.00kNm

Mx,Q=1.50kNm

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) fixed connection,

►  Support at end point (x = 5.00) fixed connection

■  Inner: None.

Page 633: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 633/682

  ADVANCE VALIDATION GUIDE

633

Reference results in calculating the concrete beam

The moment is defined by the following formulas:

 P  P ba

be P T  A

10

3

5

3**5,0**  

 

 P  P ba

ae P T  B51

52**5,0**  

 

Note: the diagram of bending moment is the same as the shear force multiplied by the eccentricity.

The ULS load calculation:

kN  P u   70.203*5.112*35.1    

Before the point of application of torque, the torque is:

 KNm P T  u Ed    21.67,20*10

3*

10

3

 

 After the point of application of torque, the torque is:

 KNm P 

T    u Ed    14.4

5

7.20

5

 

Result ADVANCE Design 2012 - Moment: (in kNm)

Reference value: 6.21 kNm and -4.14kNm

Page 634: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 634/682

 ADVANCE VALIDATION GUIDE

634 

5.50.2.2 Calculation in pure bending

Bending moment at ULS:

 KN  P u   7,203*5,112*35,1    

 MNm KNm P 

 M    u Ed    0248,084,24

5

7,20*6

5

*6  

Simple bending design:

110,020*²25.0*18,0

0248,0cu 

 

  146,0110,0*211*25,1   u   

  m z c   235,0146,0*4,01*25.0    

²43,2²10*43,278,434*235,0

0248,0   4 cmm Au    

 

5.50.2.3 Torsion reinforcement

Torsion longitudinal reinforcement - Before application of the moment

 cot***2

*

 yd k 

k  Ed l 

 f   A

uT  A  

 

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 6.3.2(3)

))()((*2 ef  ef  k    t ht bu    

)(*)( ef  ef  k    t ht b A    

with:

    m

u

 Act ef     07.005625.0;07.0max

3.018.0*2

30.0*18.0;035.0*2max;*2max  

 

  

 

 

  

   

mcmuk    68.068))730()718((*2    

²0253.0²253)730(*)718(   mcm Ak     

²92.178.434*0253.0*2

68.0*0062.0cm Al     

Torsion longitudinal reinforcement - After application of the moment

²28.178.434*0253.0*2

68.0*00414.0cm Al   

 

Torsion transversal reinforcement - Before application of the moment

ml cm f   A

 s

 A

 yd k 

 Ed 

 swT  /²82.278.434*0253.0*2

0062.0

cot***2

   

Page 635: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 635/682

  ADVANCE VALIDATION GUIDE

635

Torsion transversal reinforcement - After application of the moment

ml cm f   A

 s

 A

 yd k 

 Ed 

 swT  /²88.178.434*0253.0*2

00414.0

cot***2

  

Concrete verification:

Calculation of the maximum allowable stress under torsional moment:

      cos*sin******2 ,max,   ief  k cd cw Rd    t  A f  vT     

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 6.3.2(4)

528.0250

1*6,0    

  

    ck  f  

v  

 MN T  Rd    018.070.0*70.0*07.0*0253.0*20*528.0*2max,    

Calculation of the maximum allowable stress under shear:

 

  

²cot1

cotcot****max,

  cd w Rd    f  v z bV   

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 6.2.3(3)

m z  z  c   235.0  (from the design in simple bending)

Vertical reinforcement: 1cot      

528.0250

301*6,0  

v  

 MN  f  v z bV  cd cw Rd    223.02

1*20*528.0*235.0*18.0

²cot1

cotcot****max,  

 

   

Because of the combined shear/moment effect, it must be calculated:

0,1max,max,

 Rd 

 Ed 

 Rd 

 Ed 

T  

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 6.3.2(4)

0,1400.0

223.0

0124.0

018.0

0062.0  

Finite elements modeling

■  Linear element: S beam,

■  6 nodes,

■  1 linear element.

Page 636: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 636/682

 ADVANCE VALIDATION GUIDE

636 

ULS load combinations(kNm)

Longitudinal reinforcement (Al=1.92cm2and Al=1.28cm

2)

Transversal reinforcement (2.82cm2/ml

 and 1.88cm

2/ml)

5.50.2.4 Reference results

Result name Result description Reference value

 Al,1 Longitudinal reinforcement for the first part [cm2] 1.92 cm

2

 Al,2 Longitudinal reinforcement for the second part [cm2] 1.28 cm

2

 Ator,y,1 Transversal reinforcement for the first part [cm2/ml] 2.82 cm

2/ml

 Ator,y,2  Transversal reinforcement for the second part [cm2/ml] 1.88 cm

2/ml

5.50.3 Calculated results

Result name Result description Value Error

 Al Al,1 1.91945 cm² 0.0002 %

 Al Al,2 1.27964 cm² -0.0003 %

 Ator,y / face Ator,y,1 2.82273 cm² -0.0001 %

 Ator,y / face Ator,y,2 1.88182 cm² -0.0001 %

Page 637: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 637/682

  ADVANCE VALIDATION GUIDE

637

5.51 EC2 Test35: Verifying a rectangular concrete column subjected to compression to top – Basedon nominal rigidity method - Bilinear stress-strain diagram (Class XC1)

Test ID: 5123

Test status: Passed 

5.51.1 Description

Verifies the adequacy of a rectangular concrete column made of concrete C30/37 subjected to compression to top –Based on nominal rigidity method- Bilinear stress-strain diagram (Class XC1).

Based on nominal rigidity method

The purpose of this test is to determine the second order effects by applying the nominal rigidity method, and thencalculate the frames by considering a section symmetrically reinforced.

The column is considered connected to the ground by a fixed connection and free to the top part.

5.51.2 Background

Based on nominal rigidity method

Verify the adequacy of a rectangular cross section made from concrete C30/37.

The purpose of this test is to determine the second order effects by applying the nominal rigidity method, and thencalculate the frames by considering a section symmetrically reinforced.

5.51.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  0.45 MN axial force

►  0.10 MNm rotation moment applied to the column top

►  The self-weight is neglected

■  Exploitation loadings:

►  0.50 MN axial force

►  0.06 MNm rotation moment applied to the column top

■  3,02   

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 0.3 x Q

■  Concrete cover 5cm

■  Concrete C30/37■  Steel reinforcement S500B

■  The column is considered isolated and braced

Page 638: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 638/682

 ADVANCE VALIDATION GUIDE

638 

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.45 m,

■  Width: b = 0.60 m,

■  Length: L = 4.50 m,

■  Concrete cover: c = 5cm along the long section edge and 3cm along the short section edge

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a fixed connection and free to the top part.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

NEd =1.35*0.45+1.5*0.50=1.3575MN

MED=1.35*0.10+0.30*0.06=0.225MNm

■  me   166.0

3575.1

225.00    

Page 639: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 639/682

  ADVANCE VALIDATION GUIDE

639

5.51.2.2 Reference results in calculating the concrete column

Geometric characteristics of the column:

The column has a fixed connection on the bottom end and is free on the top end, therefore, the buckling length isconsidered to be:

ml l    950.4*2*20    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.2(1); Figure 5.7 b)

Calculating the slenderness of the column:

28.6945.0

9*32*32 0 a

l  

 

Effective creep coefficient calculation:

The creep coefficient is calculated using the next formula:

 Ed 

 EQP 

ef  

 M 

 M t   ., 0

  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

Where:

0,t    creep coefficient

 EQP  M    serviceability firs order moment under quasi-permanent load combination

 Ed  M   ULS first order moment (including the geometric imperfections)

 MNm M   Eqp   118.006.0*3.010.00    

 MNm M   Ed    225.00    

The moment report becomes:

524.0225.0

118.0

0

0  Ed 

 Eqp

 M 

 M  

The creep coefficient 0,t 

 is defined as follows:

)(*)(*),( 00   t  f  t  cm RH             

 MPa f   f  cm

cm   73.2830

8.168.16)(     

 

488.0281.0

1

1.0

1)(

20.020.0

0

0  

t     (for t0= 28 days concrete age).

213

0

***1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

RH =relative humidity; RH=50%

Page 640: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 640/682

 ADVANCE VALIDATION GUIDE

640 

Where  121     

 if  MPa f  cm   35  if not

7.0

1

35

 

  

 

cm f      and

2.0

2

35

 

  

 

cm f     

  mm

u

 Ach   274

700450*2

700*450*2*20  

 

 MPa MPa f  cm   3538   ,

Therefore:

944.038

3535  7.07.0

1    

  

  

  

 

cm f     and 984.0

38

3535  2.02.0

2    

  

  

  

 

cm f     

70.1984.0*944.0*274*1.0

100

501

1***1.0

1001

1321

30

 

 

 

 

 

 

 

       

h

 RH 

 RH   

26.2488.0*73.2*70.1)(*)(*),( 00     t  f  t  cm RH        

The effective creep coefficient calculation:

  18.1524.0*26.2*, 0    Ed 

 EQP 

ef   M 

 M t   

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

18.218.111     ef    

The necessity of buckling calculation (second order effect):

For an isolated column, the slenderness limit check is done using the next formula:

n

C  B A   ***20lim    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.1(1)

Where:

215.020*70.0*45.0

3575.1

*

cd c

 Ed 

 f   A

 N n  

  81.0

18.1*2.01

1

*2,01

1

ef  

 A 

 

because the reinforcement ratio in not yet known

because the ratio of the first order moment is not known

90.26215.0

7.0*1.1*85.0*20lim      

90.2628.69 lim       

Therefore, the second order effects most be considered

Page 641: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 641/682

  ADVANCE VALIDATION GUIDE

641

5.51.2.3 The eccentricity calculation and the corrected loads on ULS:

Initial eccentricity:

me   166.03575.1

225.00  

 

 Additional eccentricity:

First order eccentricity- stresses correction:

 MN  N  Ed    3575.1 

cmmeee i   85.181885.001    

 MNm M  Ed    256.0 

Reinforcement calculation in the first order situation:

To play the nominal rigidity method a starting section frame is needed. For this it will be used a concrete sectionconsidering only the first order effects.

 Advance Design iterates as many time as necessary.

The needed frames will be determined assuming a compound bending with compressive stress. All the results abovewere obtained in the center of gravity for the concrete section alone. The stresses must be reduced in the centroid ofthe tensioned steel.

 MNmh

d  N  M  M  Gua   494.02

45.040.0*3575.1256.0)

2(*0  

 

  

   

Verification if the section is partially compressed:

495,0)40,0

45,0*4,01(*

40,0

45,0*8,0)*4,01(**8,0  

h

h BC  

 

220.020*²40.0*70.0

495.0

*²*

cd w

uacu

 f  d b

 M  

 

 BC cu       495.0220.0 therefore the section is partially compressed.

Page 642: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 642/682

 ADVANCE VALIDATION GUIDE

642 

Calculations of steel reinforcement in pure bending:

220.0cu  

315,0)220,0*21(1*25,1   u   

md  z  uc   350,0)315,0*4,01(*40,0)*4,01(*        

²46.3278,434*350,0

495,0

*cm

 f   z 

 M  A

 yd c

ua  

Calculations of steel reinforcement in combined bending:

For the combined bending:

24 24.178.434

3575.110*46.32'   cm

 f  

 N  A A

 yd 

   

The minimum reinforcement percentage:

2

min,   3.6*002.0²12.378.434

3575.1*10.0*10,0cm Acm

 f  

 N  A c

 yd 

 Ed  s    

The reinforcement will be 8HA10 representing a 6.28cm2 section

The second order effects calculation:

The second order effect will be determined by applying the method of nominal rigidity:

Calculation of nominal rigidity:

It is estimated nominal rigidity of a post or frame member from the following formula:

 s s sccd c   I  E  K  I  E  K  EI    ****    

With:

2.1

cmcd 

 E  E   

 

 MPa MPa f   f   ck cm   388    

 MPa f  

 E    cmcm   32837

10

38*22000

10*22000

3.03.0

 

  

  

  

  

 MPa E 

 E    cmcd    273642.1

32837

2.1  

410*316.512

45.0*70.0

12

*   333

mhb

 I c  (concrete only inertia)

 MPa E  s   200000 

 s I   : Inertia

002.040.0*70.0

10*28,6  4

c

 s

 A

 A  

 

Page 643: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 643/682

  ADVANCE VALIDATION GUIDE

643

01.0002.0   c

 s

 A

 A  

 

 Mpa f  

k    ck  22.120

30

201  

 

215.020*70.0*45.0

3575.1

.

cd c

 Ed 

 f   A

 N n

 

20.0088.0170

28.69*215.0

170*2      

nk  

45

242

10.92,105.02

45.0*

2

10.28,6*2

2*

2*2   mc

h A I    s s

 

  

   

  

   

1 s K  and 049.0

18.11

088.0*22.1

1

* 21

ef  

c

k k  K 

 

 

Therefore:

²97.1010*92.1*200000*110*316.5*27364*049.0  53

 MNm EI       

Stresses correction:

The total moment, including second order effects, is defined as a value plus the time of the first order:

1

1*0

 Ed 

 B Ed  Ed 

 N 

 N  M  M 

    

 MNm M   Ed    0256.00   (moment of first order (ULS) taking into account geometric imperfections

 MN  N  Ed    3575.1 (normal force acting at ULS).

0

²

c

       and 80 c  the moment is constant (no horizontal force at the top of post).

234.18

²

      

 MN l  EI  N  B   32.1

²982.10*²*²

2

0

      

The second order moment is:

 MNm M  Ed    18.11

13575.1

32.1

234.11*256.02  

 

 An additional iteration must be made by increasing the ratio of reinforcement.

Page 644: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 644/682

 ADVANCE VALIDATION GUIDE

644 

 Additional iteration:

The iteration is made considering 8HA12 or As=9.05cm2 

Therefore

0029.045.0*70.0

10*05,9   4

   

Is obtained:

Therefore:

 MN  N  Ed    3575.12   

 MNm M  Ed    48.22   

Given the mentioned reports, there must be another reiteration:

The reinforcement section must be increase to 8HA20 or As=25.13cm2

and   008.0   :

Page 645: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 645/682

  ADVANCE VALIDATION GUIDE

645

Is obtained:

Therefore:

 MN  N  Ed    3575.12   

 MNm M  Ed    563.02   

Using the EC2 calculation tools, combined bending analytical calculation, a 28.80cm2 value is found.

There must be another iteration:

The reinforcement section must be increase to As=30cm2and   0095.0   :

Page 646: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 646/682

 ADVANCE VALIDATION GUIDE

646 

Therefore:

 MN  N  Ed    3575.12   

 MNm M  Ed    499.02   

Using the EC2 calculation tools, combined bending analytical calculation, a 22.22cm2 value is found.

The theoretical reinforcement section of 30cm2 will be adopted.

Finite elements modeling

■  Linear element: S beam,

■  6 nodes,

■  1 linear element.

Theoretical reinforcement area(cm2  )

(reference value: 16cm2)

Theoretical value (cm2  )

(reference value: 31.99cm2= 2 x 15.99cm

2)

Page 647: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 647/682

  ADVANCE VALIDATION GUIDE

647

5.51.2.4 Reference results

Result name Result description Reference value

 Az Reinforcement area [cm2] 16 cm

2

5.51.3 Calculated results

Result name Result description Value Error

 Az Az -15.995 cm² 0.0000 %

Page 648: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 648/682

 ADVANCE VALIDATION GUIDE

648 

5.52 EC2 Test 39: Verifying a circular concrete column using the simplified method – Professionalrules - Bilinear stress-strain diagram (Class XC1)

Test ID: 5146

Test status: Passed 

5.52.1 Description

Verifies the adequacy of a concrete (C25/30) column with circular cross section using the simplified method –Professional rules - Bilinear stress-strain diagram (Class XC1).

Simplified Method

The column is considered connected to the ground by an articulated connection (all the translations are blocked). Tothe top part the translations along X and Y axis are blocked and the rotation along the Z axis is also blocked.

5.52.2 Background

Simplified Method

Verifies the adequacy of a circular cross section made from concrete C25/30.

5.52.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  5000kN axial force

►  The self-weight is neglected

■  Concrete cover 5cm

■  Concrete C25/30

■  Steel reinforcement S500B

■  Relative humidity RH=50%

■  Buckling length L0=5.00m

Page 649: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 649/682

  ADVANCE VALIDATION GUIDE

649

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Radius: r = 0.40 m,

■  Length: L = 5.00 m,

■  Concrete cover: c=5cm

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a articulated connection (all the translations are blocked) andto the top part the translations along X and Y axis are blocked and the rotation along Z axis is also blocked.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

kN  N  ED   67505000*35.1    

Page 650: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 650/682

 ADVANCE VALIDATION GUIDE

650 

5.52.2.2 Reference results in calculating the concrete column

Scope of the method:

 According to Eurocode 2 EN 1992-1-1 (2004): Chapter 5.8.3.2(1)

L0 :buckling length L0=L=5m

 According to Eurocode 2 EN 1992-1-1 (2004): Chapter 5.8.3.2(2)

i :the radius of giration of uncraked concrete section

I : second moment of inertia for circular cross sections

 A : cross section area

, therefore:

The method of professional rules can be applied as:

■ 

■ 

■ 

Reinforcement calculation:

6025   , therefore:

722.0

62

251

84.0

621

84.022  

  

  

  

  

 

   

)**81(*)*5.070.0(         Dk h  

Page 651: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 651/682

  ADVANCE VALIDATION GUIDE

651

If the ρ and δ values are unknown, the term will be considered:

95.0)**81(         , therefore:

045.195.0*)8.0*5.070.0()**61(*)*5.070.0(         Dk h  

95.0500

500*65.06.1500*65.06.1     yk  s

 f  k 

 

 MPa f  

 f     ck cd    67.16

5.1

25

5.1

 

 MPa f  

 f    yk 

 yd    33.3335.1

500

5.1

 

²14.3167.16*4.0*722.0*95.0*045.1

750.6*

33.333

1**

***

1   22 cm f  r k k 

 N 

 f   A cd 

 sh

ed 

 yd 

 s    

  

   

  

      

  

Finite elements modeling

■  Linear element: S beam,

■  6 nodes,

■  1 linear element.

Theoretical reinforcement area(cm2  )

(reference value: 17.43cm2)

5.52.2.3 Reference results

Result name Result description Reference value

 Ay Reinforcement area [cm2] 17.43cm

2

5.52.3 Calculated results

Result name Result description Value Error

 Az Az -17.4283 cm² 0.0002 %

Page 652: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 652/682

 ADVANCE VALIDATION GUIDE

652 

5.53 EC2 Test 43: Verifying a square concrete column subjected to a small rotation moment andsignificant compression force to the top with Nominal Curvature Method - Bilinear stress-strain diagram (Class XC1)

Test ID: 5211Test status: Passed 

5.53.1 Description

Verifies the adequacy of a square cross section column made of concrete C30/37 subjected to a small rotationmoment and significant compression force to the top with Nominal Curvature Method - Bilinear stress-strain diagram(Class XC1).

The verification of the axial stresses and rotation moment, applied on top, at ultimate limit state is performed.

Nominal curvature method.

The purpose of this test is to determine the second order effects by applying the method of nominal rigidity, and thencalculate the frames by considering a section symmetrically reinforced.

The column is considered connected to the ground by a fixed connection and free to the top part.

5.53.2 Background

Nominal curvature method.

Verify the adequacy of a rectangular cross section made from concrete C30/37.

The purpose of this test is to determine the second order effects by applying the method of nominal rigidity, and thencalculate the frames by considering a section symmetrically reinforced.

5.53.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure:

►  150 kN axial force

►  15 kMm rotation moment applied to the column top

►  the self-weight is neglected

■  Exploitation loadings:

►  100 kN axial force

►  7 kNm rotation moment applied to the column top

■ 

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q■  Concrete cover 3cm and 5cm

■  Transversal reinforcement spacing a=40cm

■  Concrete C30/37

■  Steel reinforcement S500B

■  The column is considered isolated and braced

Page 653: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 653/682

  ADVANCE VALIDATION GUIDE

653

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.50 m,

■  Width: b = 0.50 m,

■  Length: L = 5.80 m,

■  Concrete cover: c = 5 cm

Boundary conditions

The boundary conditions are described below:

The column is considered connected to the ground by a fixed connection and free to the top part.

Loading

The beam is subjected to the following load combinations:

■  Load combinations:

The ultimate limit state (ULS) combination is:

NEd =1.35*150+1.50*100=352.50kN=0.353MN

MEd=1.35*15+1.50*7=30.75kNm=0.03075MNm

■ 

Page 654: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 654/682

 ADVANCE VALIDATION GUIDE

654 

5.53.2.2 Reference results in calculating the concrete column

Geometric characteristics of the column:

The column has a fixed connection on the bottom end and is free on the top end, therefore, the buckling length isconsidered to be:

ml l    60.11*20    

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.2(1); Figure 5.7 b)

Calculating the slenderness of the column:

37.8050.0

60.11*32*32 0 a

l  

 

Effective creep coefficient calculation:

The creep coefficient is calculated using the next formula:

 Ed 

 EQP 

ef  

 M 

 M t   ., 0

  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.4(2)

Where:

0,t   creep coefficient

 EQP  M    serviceability firs order moment under quasi-permanent load combination

 Ed  M   ULS first order moment (including the geometric imperfections)

First order eccentricity evaluation:

ieee     01  

mei   03.0 

The first order moment provided by the quasi-permanent loads:

me N 

 M eee i

 Eqp

 Eqp

i   125.030.0100*30.0150

7*30.015

0

0

01  

 

kN  N  Eqp   180100*30.01501    

 MNmkNme N  M   Eqp Eqp   0225.050.22125.0*180* 111    

The first order ULS moment is defined latter in this example:

 MNm M  Ed    041.01   

The creep coefficient 0,t  

 is defined as follows:

)(*)(*),( 00   t  f  t  cm RH        

72.2830

8.168.16)(  

cm

cm f  

 f    

 

488.0281.0

1

1.0

1)( 20.020.0

0

0   t t     (for t0= 28 days concrete age).

Page 655: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 655/682

  ADVANCE VALIDATION GUIDE

655

213

0

***1.0

1001

1      

 

 

 

 

h

 RH 

 RH   

 MPa f  cm   35 therefore: 944.038

3535   7.07.0

1     

  

  

  

cm f     and 984.0

38

3535   2.02.0

2     

  

  

  

cm f     

  72.1984.0*944.0*

250*1.0

100

501

1250500500*2

500*500*2*230  

 

 

 

 

  RH mm

u

 Ach      

28.2488.0*72.2*72.1)(*)(*),( 00     t  f  t  cm RH          

The effective creep coefficient calculation:

  25.1041.0

0225.0*28.2*, 0  

 Ed 

 EQP 

ef   M 

 M t   

 

The second order effects; The buckling calculation:

For an isolated column, the slenderness limit check is done using the next formula:

n

C  B A   ***20lim  

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 5.8.3.1(1)

Where:

071.020*²50.0

353.0

*

cd c

 Ed 

 f   A

 N n

 

  80.0

25.1*2.01

1

*2,01

1

ef  

 A 

 

1.1*21       B   because the reinforcement ratio in not yet known

70.07,1     mr C   because the ratio of the first order moment is not known

24.46

071.0

7.0*1.1*80.0*20lim      

24.4637.80 lim        

Therefore, the second order effects cannot be neglected.

Calculation of the eccentricities and solicitations corrected for ULS :

The stresses for the ULS load combination are:

NEd= 1.35*150 + 1.50*100= 352.5kN = 0,3525 MN

MEd= 1.35*15 + 1.50*7= 352.5kN= 0.03075MNm

Therefore it must be determined:

■  The eccentricity of the first order ULS moment, due to the stresses applied

■  The additional eccentricity considered for the geometrical imperfections

Page 656: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 656/682

 ADVANCE VALIDATION GUIDE

656 

Initial eccentricity:

m N 

 M e

 Ed 

 Ed  087.0353.0

03075.00  

 

 Additional eccentricity:

ml ei   03.0400

6.11

400

0  

The first order eccentricity: stresses correction:

The forces correction, used for the combined flexural calculations:

 MN  N  Ed    353.0  

meee i   117.001    

 MNm N e M   Ed  Ed    041.0353.0*117.0*1    

0*e N  M   Ed   

  mmmm

mmmmmm

hmm

e   207.16

20max

30

50020

max

30

20max0

 

 According to Eurocode 2 – EN 1992-1-1 -2004; Chapter 6.1.(4)

Reinforcement calculation in the first order situation:

To apply the nominal rigidity method, we need an initial reinforcement area to start from. For this, the concretesection will be sized considering only the first order effect.

The Advance Design calculation is different: it is iterating as many time as necessary starting from the minimum

percentage area.

The reinforcement is determined using a compound bending with compressive stress. The determined solicitationswere calculated from the center of gravity of the concrete section alone. Those stresses must be reduced to thecentroid of tensioned steel:

 MNmh

d  N  M  M  Gua   112.02

50.045.0*353.0041.0)

2(*0  

  

  

 

Page 657: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 657/682

  ADVANCE VALIDATION GUIDE

657

Verification about the partially compressed section:

494,0)45,0

50,0*4,01(*

45,0

50,0*8,0)*4,01(**8,0  

h

h BC    

055.020*²45.0*50.0

112.0

*²*

cd w

uacu

 f  d b

 M    

494.0055.0     BC cu     therefore the section is partially compressed

The calculation for the tensioned steel in pure bending:

055.0cu  

071,0)055,0*21(1*25,1   u   

md  z  uc   437,0)071,0*4,01(*45,0)*4,01(*       

²89,578,434*437,0

112,0*

cm f   z 

 M  A yd c

ua  

The calculation for the compressed steel in bending:

For the compound bending:

The minimum column percentage reinforcement must be considered:

Therefore a 5cm2 reinforcement area will be considered

Page 658: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 658/682

 ADVANCE VALIDATION GUIDE

658 

5.53.2.3 The nominal curvature method (second order effect):

The curvature calculation:

Considering a reinforcement of 5cm ² (considered symmetric), one can determine the curvature from the followingformula:

0

1**1r 

 K  K r 

  r      

 According to Eurocode 2 – EN 1992-1-1(2004): Chapter 5.8.8.3(1)

1

0

0107.045.0*45,0

200000

78.434

)*45,0()*45,0(

1     md 

 E 

 f  

d r  s

 yd 

 yd   

Kr is the correction coefficient depending of the normal force:

1

bal u

ur 

nn

nn K   

 According to Eurocode 2 – EN 1992-1-1(2004): Chapter 5.8.8.3(3)

0706.020*²50.0

353.0

*

cd c

 Ed 

 f   A

 N n

 

0435.020*²50.0

78.434*10*5

*

*   4

cd c

 yd  s

 f   A

 f   A 

 

0435.10435.011      un  

4,0bal n 

51.140.00435.1

0706.00435.1

r  K  

Condition:   1r  K  , therefore we consider: 1r  K   

  K creep coefficient:

1*1     ef   K          

 According to Eurocode 2 – EN 1992-1-1(2004): Chapter 5.8.8.3(4)

,

Therefore:

1

0

0107.00107.0*1*11

**1     m

r  K  K 

r   r     

 

Calculation moment:

The moment of calculation is defined by the formula:

20   M  M  M   Ed  Ed     

Page 659: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 659/682

  ADVANCE VALIDATION GUIDE

659

Where:

 Ed  M 0  is moment of the first order including geometric imperfections.

2 M   is nominal moment of second order.

The 2nd order moment is calculated from the curvature:

22   *e N  M   Ed  

mc

r e   144.0

10

²60.11*0107.0*

1   2

02  

 

 MNme N  M   Ed    051.0144.0*353.0* 22    

 MNm M  M  M   Ed  Ed    09.0051.0041.020    

The reinforcement must be sized considering the demands of the second degree effects, as follows:

Reinforcement calculation according the second order effects:

The interaction diagram will be used.

The input parameters in the diagram are:

Page 660: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 660/682

 ADVANCE VALIDATION GUIDE

660 

 According to the diagram, it will be obtained a minimal percentage reinforcement:

2

min,   5*002.0²81.078.434

353.0*10.0*10,0cm Acm

 f  

 N  A c

 yd 

 Ed  s    

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Page 661: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 661/682

  ADVANCE VALIDATION GUIDE

661

Theoretical reinforcement area(cm2  )

(reference value: Au=5cm2)

Theoretical value (cm2  )

(reference value: 5 cm2)

5.53.2.4 Reference results

Result name Result description Reference value

 Amin Reinforcement area [cm2] 5 cm

2

5.53.3 Calculated results

Result name Result description Value Error

 Amin Amin 5 cm² 0.0000 %

Page 662: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 662/682

 ADVANCE VALIDATION GUIDE

662 

5.54 Verifying the capacity design results according to Eurocode EC2 and EC8 French standards.(DEV2013 #8.3)

Test ID: 5602

Test status: Passed 

5.54.1 Description

Verifies the capacity design results according to Eurocode EC2 and EC8 French standards.

Page 663: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 663/682

  ADVANCE VALIDATION GUIDE

663

5.55 EC2 Test 47: Verifying a rectangular concrete beam subjected to tension load - Bilinear stress-strain diagram (Class XD2)

Test ID: 5964

Test status: Passed 

5.55.1 Description

Verifies a rectangular cross section beam made from concrete C25/30 to resist simple tension. Verification of thebending stresses at ultimate limit state and serviceability limit state is performed.

Verification is done according to EN 1992-1-1 French annex.

5.55.2 Background

Simple Bending Design for Ultimate and Service State Limit

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple tension. During thistest, the calculation of stresses is made along with the calculation of the longitudinal reinforcement and the

verification of the minimum reinforcement percentage.

5.55.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 135 kN/m (including dead load),

■  Exploitation loadings (category A): Q = 150kN/m,

■ 

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.3 x Q

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.20 m,

■  Width: b = 0.20 m,

■  Length: L = 5.00 m,

■  Section area: A = 0.04 m2 ,

■  Concrete cover: c=5.00cm

Page 664: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 664/682

 ADVANCE VALIDATION GUIDE

664 

Materials properties

Rectangular solid concrete C25/30 and S500, class A reinforcement steel is used. The following characteristics areused in relation to this material:

■  Exposure class XD2

■  Concrete density: 25kN/m3 

■  Stress-strain law for reinforcement: Bilinear stress-strain diagram■  The concrete age t0=28 days

■  Humidity RH=50%

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) , fixed connection,

►  Support at end point (x = 5.80) restrained in translation along Z.

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

Load combinations:

■  Ultimate Limit State:

kN*.*.Q*.G*.NEd   4071505113535151351    

■  Characteristic combination of actions:

KNQGN cq,ser    285150135    

■  Quasi-permanent combination of actions:

KN*.Q*.GN qp,ser    1801503013530    

Page 665: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 665/682

  ADVANCE VALIDATION GUIDE

665

5.55.2.2 Reference results in calculating the longitudinal reinforcement and the crack width

Calculating for ultimate limit state:

²37.9²10*37.9

15.1

500

407.0   4

,

,   cmm N 

 AU  s

 Ed U  s    

  

Calculating for serviceability limit state:

 ser  ser  s

 N  A

 ,

 

 Mpa f   yk  s   400500*8,0*8,0     

²13.7²10*13.7400

285.0   4

,   cmm A  ser  s    

 

Final reinforcement

Is retained the steel section between the maximum theoretical calculation at ULS and calculating the SLS or

 Ath = 9.37 cm ².

Therefore, 4HA20 = A = 12.57 cm ².

Constraint checking to the ELS:

 MPa MPa A

 N  s s

 ser  s

 ser  s   40080.226

001257.0

285.0

,

     

 

Crack opening verification:

It will be checked the openings of cracks by considering 4HA20.

Calculating the maximum spacing between the cracks

The maximum spacing of cracks is given by the formula:

eff   p

k k ck  s

,

213max,

***425.0*

  

   

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 7.3.4(3)

The effective depth “d” must be estimated by considering the real reinforcement of the beam:

cmd    4.13

2

26.0520    

020.0100.0

2

20.0165.0)134.020.0(*5.2

min*20.0

2

)(*5.2min*,  

 

  h

d hb A eff  c

 

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 7.3.4(2); Figure: 7.1

²040.0,   m A eff  c    this value was multiplied by two because the section is fully stretched

031.0040.0

10*57.12   4

,

,  

eff  c

 seff   p

 A

 A  

 

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 7.3.4(2)

Page 666: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 666/682

 ADVANCE VALIDATION GUIDE

666 

mmnn

nneq   20

**

**

2211

2

22

2

11

  

   

 

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 7.3.4(2)

eff   pr 

k k 

ck  s,

21

3max,

***425.0

*   

 

 

Concrete cover of 5cm and HA6 reinforcement, therefore c=5+0.6=5.6cm

801 .k     HA bars

12 k   pure tension sizing

99156

2543

2543

3232

3 .*.c

*.k

//

 

  

 

 

  

   

mmk k 

ck  s

eff   p

r    331

031.0

20*1*8.0*425.056*99.1

***425.0*

,

213max,  

  

 

 

Calculation of average deformations

35.631476

200000

cm

 se

 E 

 E  

 

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 7.3.4(2)

Steel stresses in SLSqp:

 Mpa A

 N 

 ser  s

qp ser 

 s   2.143001257.0

180.0

,

   

 

44 10304σ

6010175

200000

031035610310

56240143ρα1

ρσ

εε

*.E

*,*.

).*.(*.

.*.

E

)*(*f 

*k

s

s

s

eff ,peeff ,p

eff ,ctts

cmsm  

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 7.3.4(2)

Calculation of crack widths:

mm sw cm smr k    171.0)10*17.5(*331)(*   4

max,        

 According to: EC2 Part 1,1 EN 1992-1-1-2004 Chapter 7.3.4(1)

For an exposure class XD2, applying the French national annex, it retained a maximum opening of 0.20mm crack.

This criterion is satisfied.

Page 667: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 667/682

  ADVANCE VALIDATION GUIDE

667

Checking the condition of non-fragility:

In case one control for cracking is required:

 yk 

ctmc s f  

 f   A A   .

 

Because h<0.3m

 Mpa f   f   ck ctm   56,225*30.0*30.0   3/23/2  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2);Table 3.1

²04.020.0*20.0   m Ac    

²05.2500

56.2*04.0*   cm

 f  

 f   A A

 yk 

ctmc s  

 

Finite elements modeling

■  Linear element: S beam,

■  6 nodes,

■  1 linear element.

Page 668: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 668/682

 ADVANCE VALIDATION GUIDE

668 

Longitudinal reinforcement for ULS and SLS load combinations (kNm)

ULS (reference value: Az=9.36 cm2=2*4.68 cm

2)

SLS (reference value: Az=7.12 cm2=2*3.56 cm

2)

Stresses in the steel reinforcement

(reference value: s= 226.80Mpa)

Maximum spacing of cracks S r, max  (m)

(reference value: Sr,max= 0.331m)

Crack width w k  (mm)

(reference value: wk= 0.171mm)

Page 669: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 669/682

  ADVANCE VALIDATION GUIDE

669

5.55.2.3 Reference results

Result name Result description Reference value

 Az,ULS Theoretical reinforcement area for the ULS load combination [cm2] 4.68 cm

2

s Stresses in steel reinforcement [MPa] 226.77 MPa

Sr, max Maximum spacing of cracks [m] 33.1 cm

wk Crack width [mm] 0.017 cm

5.55.3 Calculated results

Result name Result description Value Error

 Az Az,USL -4.68337 cm² -0.0001 %

Ss CQ SigmaS -226.766 MPa 0.0016 %

Sr,max Sr,max 32.7639 cm -0.7155 %

wk wk -0.0170451 cm -0.2650 %

Page 670: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 670/682

 ADVANCE VALIDATION GUIDE

670 

5.56 EC2 Test 4 II: Verifying a rectangular concrete beam subjected to Pivot B efforts – Inclinedstress-strain diagram

Test ID: 5893

Test status: Passed 

5.56.1 Description

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple bending. During thistest, the determination of stresses is made along with the determination of the longitudinal reinforcement.

The purpose of this test is to verify the software results for Pivot B efforts. For these tests, the constitutive law forreinforcement steel, on the inclined stress-strain diagram is applied.

The objective is to verify the longitudinal reinforcement corresponding to Class B reinforcement steel ductility.

5.56.2 Background

This test performs the verification of the  value (hence the position of the neutral axis) to determine the Pivot efforts

(A or B) to be considered for the calculations.The distinction between the Pivot A and Pivot B efforts is from the following diagram:

d d d 

 x

cuud 

cu

ucuud 

cuu  ..x 2

2

2

2

  

  

  

  

 

The limit for  depends of the ductility class:

■  For a Class A steel: 13460α5022ε .. uud    

■  For a Class B steel: 0720α45ε .uud    

■  For a Class C steel: 0490α5067ε .. uud    

The purpose of this test is to verify the software results for Pivot A efforts. For these tests, it will be used theconstitutive law for reinforcement steel, on the inclined stress-strain diagram.

 MPa AS   su su   454.38,95271,432500         

 MPa BS   su su   466.27,72771,432500         

 MPaC S   su su   493.52,89571,432500         

The Pivot efforts types are described below:

■  Pivot A: Simple traction and simple bending or combined

■  Pivot B: Simple or combined bending

■  Pivot C: Combined bending with compression and simple compression

Page 671: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 671/682

  ADVANCE VALIDATION GUIDE

671

5.56.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 25 kN/m+ dead load,

■  Exploitation loadings (category A): Q = 50kN/m,

■  The ultimate limit state (ULS) combination is: Cmax = 1.35 x G + 1.5 x Q

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  There will be considered a Class B reinforcement steel

■  The calculation will be made considering inclined stress-strain diagram

The objective is to verify:

■  The stresses results

■  The longitudinal reinforcement corresponding to Class B reinforcement steel ductility

■  The minimum reinforcement percentage

Page 672: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 672/682

 ADVANCE VALIDATION GUIDE

672 

Simply supported beam

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.90 m,

■  Width: b = 0.50 m,

■  Length: L = 5.80 m,

■  Section area: A = 0.45 m2 ,

■  Concrete cover: c = 4.00 cm

■  Effective height: d = h - (0.6 * h + ebz)=0.806 m; d’ = ebz = 0.040 m

Materials properties

Rectangular solid concrete C25/30 and S500B reinforcement steel is used. The following characteristics are used inrelation to this material:

■  Exposure class XC1

■  Concrete density: 25kN/m3 

■  There will be considered a Class B reinforcement steel ductility

■  The calculation will be made considering inclined stress-strain diagram

■  Cracking calculation required

■  Concrete C25/30: MPa,,

f f 

c

ckcd   6716

51

25

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.6(1); 4.4.2.4(1); Table 2.1.N

■  MPa.*.f *.f  //ckctm   56225300300   3232  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.1.3(2); Table 3.1

■  Steel S500 : MPa,,

f f 

s

ykyd   78434

151

500

γ  

 According to: EC2 Part 1,1 EN 1992-1-1-2002 Chapter 3.2

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) restrained in translation along X, Y and Z,

►  Support at end point (x = 5.8) restrained in translation along Y and Z, and restrained rotationalong X.

■  Inner: None.

Page 673: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 673/682

  ADVANCE VALIDATION GUIDE

673

Loading

The beam is subjected to the following load combinations:

Dead load:

G’=0.9*0.5*2.5=11.25 kN/ml

Load combinations:

■  The ultimate limit state (ULS) combination is:

Cmax = 1.35 x G + 1.5 x Q=1.35*(25+11.25)+1.5*50=123.94 kN/ml

■  Characteristic combination of actions:

CCQ = 1.0 x G + 1.0 x Q=25+11.25+50=86.25kN/ml

■  Load calculations:

kNm M  Ed    16.5218

²80.5*94.123

 

kNm M  Ecq   68.3628

²80.5*25.86

 

5.56.2.2 Reference results in calculating the concrete beam reduced moment limit

For S500B reinforcement steel, we have 372.0lu  (since we consider no limit on the compression concrete to

SLS).

Reference solution for reinforcement from Class B steel ductility

If the Class B reinforcement steel is chosen, the calculations must be done considering the Pivot B efforts.

The calculation of the reinforcement is detailed below:

■  Effective height: d=h-(0.6*h+ebz)=0.806 m

■  Calculation of reduced moment:

096,067,16*²806.0*50,0

10*52116.0*²*

  2

3

 MPamm Nm

 f  d b M 

cd w

 Ed cu 

 

■  The α value:

 A design in simple bending is performed and it will be considered a design stress of concrete equal to cd  f   .

md  z  cuc   765.0)127.0*4.01(*806.0)*4,01(*       

■  Tensioned reinforcement steel elongation :

  1.245.3*

127,0

127,01*

12cu

u

u su    

 

    

■  Reinforcement steel stresses :

 MPa su su   466*27,72771,432        

 MPa Mpa su   46625.4500241,0*27,72771,432     

²13.1525.450*765.0

52116.0

*cm

 f   z 

 M  A

 yd c

 Ed u  

 

Finite elements modeling

■  Linear element: S beam,

■  7 nodes,

■  1 linear element.

Page 674: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 674/682

 ADVANCE VALIDATION GUIDE

674 

ULS and SLS load combinations (kNm)

Simply supported beam subjected to bending

ULS (reference value: 521.16kNm)

SLS (reference value: 362.68kNm)

Theoretical reinforcement area (cm2  )

For Class B reinforcement steel ductility (reference value: A=15.13cm2)

5.56.2.3 Reference results

Result name Result description Reference value

My,ULS My corresponding to 101 combination (ULS) [kNm] 521.16 kNm

My,SLS My corresponding to 102 combination (SLS) [kNm] 362.68 kNm

 Az Theoretical reinforcement area (Class B) [cm2] 15.13 cm

2

5.56.3 Calculated results

Result name Result description Value Error

My My corresponding to 101 combination (ULS) -521.125 kN*m 0.0000 %

My My corresponding to 102 combination (SLS) -362.657 kN*m -0.0001 %

 Az Theoretical reinforcement area (Class B) -15.1105 cm² -0.0002 %

Page 675: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 675/682

  ADVANCE VALIDATION GUIDE

675

5.57 Testing the punching verification and punching reinforcement results on loaded analysismodel (TTAD #14332)

Test ID: 6189

Test status: Passed 

5.57.1 Description

Tests the punching verification and punching reinforcement results on loaded analysis mode and generates thecorresponding report.

5.58 Verifying the peak smoothing influence over mesh, the punching verification and punchingreinforcement results when Z down axis is selected. (TTAD #14963)

Test ID: 6200

Test status: Passed 

5.58.1 Description

Verifies the peak smoothing influence over mesh, the punching verification and punching reinforcement results whenZ down axis is selected.

The model consists in a c25/30 concrete planar element and four concrete columns (with R20/30, IPE400, D40,L60*20 cross-sections) and is subjected to self weight and 1 live load of -100 KN.

5.59 EC2: column design with “Nominal Stiffness method” square section (TTAD #11625)

Test ID: 3001

Test status: Passed 

5.59.1 Description

Verifies and generates the corresponding report for the longitudinal reinforcement bars of a column. The column isdesigned with "Nominal stiffness method", with a square cross section (C40).

5.60 Verifying the longitudinal reinforcement for a horizontal concrete bar with rectangular crosssection

Test ID: 4179

Test status: Passed 

5.60.1 Description

Performs the finite elements calculation and the reinforced concrete calculation according to the Eurocodes 2 -French DAN. Verifies the longitudinal reinforcement and generates the corresponding report: "Longitudinalreinforcement linear elements".

The model consists of a concrete linear element with rectangular cross section (R18*60) with rigid hinge supports atboth ends and two linear vertical loads: -15.40 kN and -9.00 kN.

Page 676: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 676/682

 ADVANCE VALIDATION GUIDE

676 

5.61 Verifying the minimum transverse reinforcement area results for articulated beams (TTAD#11342)

Test ID: 3639

Test status: Passed 

5.61.1 Description

Verifies the minimum transverse reinforcement area for two articulated horizontal beams.

Performs the finite elements calculation and the reinforced concrete calculation and generates the "Transversereinforcement linear elements" report.

Each beam has rectangular cross section (R30*70), B25 material and two hinge rigid supports at both ends.

On each beam there are applied:

- Dead loads: a linear load of -25.00 kN and two punctual loads of -55.00 kN and -65.00 kN

- Live loads: a linear load of -20.00 kN and two punctual loads of -40.00 kN and -35.00 kN.

5.62 Verifying the minimum transverse reinforcement area results for an articulated beam (TTAD#11342)

Test ID: 3638

Test status: Passed 

5.62.1 Description

Verifies the minimum transverse reinforcement area for an articulated horizontal beam.

Performs the finite elements calculation and the reinforced concrete calculation and generates the "Transversereinforcement linear elements" report.

The beam has a rectangular cross section (R20*50), B25 material and two hinge rigid supports at both ends.

5.63 EC2 : calculation of a square column in traction (TTAD #11892)

Test ID: 3509

Test status: Passed 

5.63.1 Description

The test is performed on a single column in tension, according to Eurocodes 2.

The column has a section of 20 cm square and a rigid support. A permanent load (traction of 100 kN) and a live load(40 kN) are applied.

Performs the finite elements calculation and the reinforced concrete calculation. Generates the longitudinalreinforcement report.

Page 677: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 677/682

  ADVANCE VALIDATION GUIDE

677

5.64 Verifying Aty and Atz for a fixed concrete beam (TTAD #11812)

Test ID: 3528

Test status: Passed 

5.64.1 Description

Performs the finite elements calculation and the reinforced concrete calculation of a model with a horizontal concretebeam.

The beam has a R20*50 cross section and two hinge rigid supports.

Verifies Aty and Atz for the fixed concrete beam.

5.65 Verifying the reinforced concrete results on a structure with 375 load cases combinations(TTAD #11683)

Test ID: 3475

Test status: Passed 

5.65.1 Description

Verifies the reinforced concrete results for a model with more than 100 load cases combinations.

On a concrete structure there are applied: dead loads, self weight, live loads, wind loads (according to NV2009) andaccidental loads. A number of 375 combinations are obtained.

Performs the finite elements calculation and the reinforced concrete calculation. Generates the reinforcement areasplanar elements report.

5.66 Verifying the longitudinal reinforcement for linear elements (TTAD #11636)

Test ID: 3545

Test status: Passed 

5.66.1 Description

Verifies the longitudinal reinforcement for a vertical concrete bar.

Performs the finite elements calculation and the reinforced concrete calculation. Verifies the longitudinalreinforcement and generates the reinforcement report.

The bar has a square cross section of 30.00 cm, a rigid fixed support at the base and a support with translationrestraints on X and Y. A vertical punctual load of -1260.00 kN is applied.

5.67 Verifying the longitudinal reinforcement bars for a filled circular column (TTAD #11678)Test ID: 3543

Test status: Passed 

5.67.1 Description

Verifies the longitudinal reinforcement for a vertical concrete bar.

Performs the finite elements calculation and the reinforced concrete calculation. Generates the reinforcement report.

The bar has a circular cross section with a radius of 40.00 cm and a rigid hinge support. A vertical punctual load of -5000.00 kN is applied.

Page 678: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 678/682

 ADVANCE VALIDATION GUIDE

678 

5.68 Verifying concrete results for planar elements (TTAD #11583)

Test ID: 3548

Test status: Passed 

5.68.1 Description

Verifies the reinforcement results on planar elements.

Performs the finite elements calculation and the reinforced concrete calculation. Generates the reinforced concreteanalysis report: data and results.

The model consists of two planar elements (C20/25 material) with rigid fixed linear supports. On each element, apunctual load of 50.00 kN on FX is applied.

5.69 Verifying the reinforced concrete results on a fixed beam (TTAD #11836)

Test ID: 3542

Test status: Passed 

5.69.1 Description

Verifies the concrete results on a fixed horizontal beam.

Performs the finite elements calculation and the reinforced concrete calculation. Generates the reinforced concretecalculation results report.

The beam has a R25*60 cross section, C25/30 material and has a rigid hinge support at one end and a rigid supportwith translation restraints on Y and Z at the other end. A linear dead load (-28.75 kN) and a live load (-50.00 kN) areapplied.

5.70 Verifying the longitudinal reinforcement for a fixed linear element (TTAD #11700)

Test ID: 3547

Test status: Passed 

5.70.1 Description

Verifies the longitudinal reinforcement for a horizontal concrete bar.

Performs the finite elements calculation and the reinforced concrete calculation. Verifies the longitudinalreinforcement and generates the reinforcement report.

The bar has a rectangular cross section R40*80, has a rigid hinge support at one end and a rigid support withtranslation restraints on Y and Z. Four loads are applied: a linear dead load of -50.00 kN on FZ, a punctual dead loadof -30.00 kN on FZ, a linear live load of -60.00 kN on FZ and a punctual live load of -25.00 kN on FZ.

5.71 Verifying concrete results for linear elements (TTAD #11556)

Test ID: 3549

Test status: Passed 

5.71.1 Description

Verifies the reinforcement results for a horizontal concrete bar.

Performs the finite elements calculation and the reinforced concrete calculation. Verifies the reinforcement andgenerates the reinforced concrete analysis report: data and results.

The bar has a rectangular cross section R20*50, a rigid hinge support at one end, a rigid support with translation

restraints on X, Y and Z and rotation restraint on X.

Page 679: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 679/682

  ADVANCE VALIDATION GUIDE

679

5.72 Verifying the reinforcement of concrete columns (TTAD #11635)

Test ID: 3564

Test status: Passed 

5.72.1 Description

Verifies the reinforcement of a concrete column.

Page 680: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 680/682

 

5.73 EC2 Test 47 I: Verifying a rectangular concrete beam subjected to a tension distributed load -Bilinear stress-strain diagram (Class XD2)

Test ID: 5887

Test status: Passed 

5.73.1 Description

Verifies a rectangular cross section beam made of concrete C25/30 subjected to a tension distributed load - Bilinearstress-strain diagram (Class XD2).

During this test, the determination of stresses is made along with the determination of the longitudinal reinforcementarea and the verification of the minimum reinforcement area.

5.73.2 Background

Simple Bending Design for Serviceability Limit State

Verifies the adequacy of a rectangular cross section made from concrete C25/30 to resist simple tension. During this

test, the calculation of stresses is made along with the calculation of the longitudinal reinforcement and theverification of the minimum reinforcement percentage.

5.73.2.1 Model description

■  Reference: Guide de validation Eurocode 2 EN 1992-1-1-2002;

■  Analysis type: static linear (plane problem);

■  Element type: linear.

The following load cases and load combination are used:

■  Loadings from the structure: G = 135 kN/m (including dead load),

■  Exploitation loadings (category A): Q = 150kN/m,

■  Characteristic combination of actions: CCQ = 1.0 x G + 1.0 x Q

■  Quasi-permanent combination of actions: CQP = 1.0 x G + 0.3 x Q

Units

Metric System

Geometry

Below are described the beam cross section characteristics:

■  Height: h = 0.20 m,

■  Width: b = 0.20 m,

■  Length: L = 5.00 m,

■  Section area: A = 0.04 m2 ,

■  Concrete cover: c=5.00cm

Page 681: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 681/682

  ADVANCE VALIDATION GUIDE

681

Materials properties

Rectangular solid concrete C25/30 and S500, class A reinforcement steel is used. The following characteristics areused in relation to this material:

■  Exposure class XD2

■  Concrete density: 25kN/m3 

■  Stress-strain law for reinforcement: Bilinear stress-strain diagram■  The concrete age t0=28 days

■  Humidity RH=50%

Boundary conditions

The boundary conditions are described below:

■  Outer:

►  Support at start point (x=0) , fixed connection,

►  Support at end point (x = 5.80) restrained in translation along Z.

■  Inner: None.

Loading

The beam is subjected to the following load combinations:

Load combinations:

■  Characteristic combination of actions:

KNQGN cq,ser    285150135    

■  Quasi-permanent combination of actions:

KN*.Q*.GN qp,ser    1801503013530    

5.73.2.2 Reference results in calculating the longitudinal and the minimum reinforcement

Calculating the longitudinal reinforcement for serviceability limit state:

 ser  ser  s

 N  A

 ,

 

 Mpa f   yk  s   400500*8,0*8,0     

²13.7²10*13.7400

285.0   4

,   cmm A  ser  s    

 

Calculating the minimum reinforcement:

²04.020.0*20.0   m Ac    

²05.2500

56.2*04.0*   cm

 f  

 f   A A

 yk 

ctmc s  

 

Finite elements modeling

■  Linear element: S beam,

■  6 nodes,

■  1 linear element.

Page 682: AD Validation Guide Vol1 2015 En

8/21/2019 AD Validation Guide Vol1 2015 En

http://slidepdf.com/reader/full/ad-validation-guide-vol1-2015-en 682/682

 ADVANCE VALIDATION GUIDE

Longitudinal reinforcement for SLS load combinations

SLS (reference value: Az=7.12 cm2=2*3.56 cm

2)

Minimum longitudinal reinforcement

(reference value: Amin= 2.05 cm2)

5.73.2.3 Reference results

Result name Result description Reference value

 Az,SLS Theoretical reinforcement area for the SLS load combination [cm2] 3.56 cm

2

 Amin Minimum longitudinal reinforcement [cm2] 2.05 cm

2

5.73.3 Calculated results

Result name Result description Value Error

 Az Theoretical reinforcement area for the SLS load combination -3.5625 cm² 0.0000 %

 Amin Minimum longitudinal reinforcement 2.05197 cm² 0.0001 %