5
Biochemical Engineering Journal 93 (2015) 137–141 Contents lists available at ScienceDirect Biochemical Engineering Journal jo ur nal home page: www.elsevier.com/locate/bej Short communication Active site titration of immobilized beta-galactosidase for the determination of active enzymes Peter Jochems a,b,c , Tobias Mueller c , Yamini Satyawali a , Ludo Diels a,b , Winnie Dejonghe a,, Ulf Hanefeld c a Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium b Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium c Biocatalysis and Organic Chemistry, Biotechnology, Gebouw voor Scheikunde, Technische Universiteit Delft, Julianalaan 136, 2628 BL Delft, The Netherlands a r t i c l e i n f o Article history: Received 16 May 2014 Received in revised form 7 October 2014 Accepted 9 October 2014 Available online 23 October 2014 Keywords: Active site titration Enzyme Beta-galactosidase Immobilization Beads Membrane a b s t r a c t In the present study, an active site titration method is demonstrated, to determine the amount of active enzyme (-galactosidase), immobilized on a support. Two types of supports were investigated, viz. amino acrylic resin and a mixed matrix membrane. Furthermore, 2 ,4 -dinitrophenyl 2-deoxy-2-fluoro--d- galactopyranoside was used as an inhibitor for the active site titration of immobilized -galactosidase obtained from Kluyveromyces lactis. Using the active site titration, approximately 8.3 mg of active enzyme was found on 1 g of dried commercially available SPRIN imibond, which is an amino acrylic resin with covalently bound -galactosidase obtained from K. lactis. However, this method, in its present form, was not effective on the mixed matrix membranes due to the irreversible partial adsorption of the leav- ing group (2 ,4 -dinitrophenolate) by the membrane. This observation implied that it is important to investigate interactions between the support and the used inhibitor and leaving group. © 2014 Elsevier B.V. All rights reserved. 1. Introduction -Galactosidase (lactase, EC 3.2.1.23) is a hydrolase, which cat- alyzes the hydrolysis and transgalactosylation reactions of lactose and other -d-galactopyranosides, such as 2-nitrophenyl -d- galactopyranoside. Industrially lactose is hydrolyzed to increase the digestibility of milk or to improve the functional properties of dairy products. Furthermore, -galactosidase is used in another large industrial process: the synthesis of galacto-oligosaccharides (GOS), which makes use of the transferase activity of the enzyme [1]. Like many other enzymes, -galactosidase can also be immobi- lized to extract technical and economic benefits and enable its long time reuse in industrial reactors [2,3]. In case of enzyme immobilization, it is important to know the amount of (active) enzymes immobilized on the support. In most cases, the amount of immobilized enzymes is determined by indirect methods, mostly by calculating the difference between the amount of enzymes added to the support and the amount of remaining un-immobilized enzymes [4]. Immobilization yields on the other hand are calculated as a ratio between immobilized Corresponding author. Tel.: +32 14 336907; fax: +32 14 321186. E-mail address: [email protected] (W. Dejonghe). activity and the starting activity of the enzyme solution [5]. EFB Section on Applied Biocatalysis also recommends to report the amount of active enzyme in a given preparation, because it allows to normalize the activity of different enzyme preparations and make a fair comparison between them [6]. There have been only a few studies where the possibility to visualize the enzyme and detect its activity, in situ, has been explored. The use of fluores- cence labelling of proteins (BSA, -lactoglobulin and -globulin) was used to monitor protein fractionation by ultrafiltration and to control membrane fouling by Crespo et al. [7]. Later, Mazzuca et al. [8] developed a new combined method merged from the classical in situ detection of enzyme activity and western blot. This method was used for enzyme -glucosidase (from olive greens) in a capillary asymmetric polysulphone membrane reactor to deter- mine simultaneously the enzyme spatial distribution through the membrane thickness and along the membrane module. Moreover, this method was also used to determine enzyme activity after the immobilization through the observation in the light microscopy both at low and high magnification [8]. Active site titration is a powerful tool, which allows the direct measurement of the molar concentration of active enzyme in a given preparation. This technique makes use of a suicidal sub- strate, meaning that the substrate blocks the active site rendering it inactive. Thus, the enzyme can only react with one substrate http://dx.doi.org/10.1016/j.bej.2014.10.007 1369-703X/© 2014 Elsevier B.V. All rights reserved.

Active site titration of immobilized beta-galactosidase for the determination of active enzymes

Embed Size (px)

DESCRIPTION

Paper científico referido a la inmovilización de B-galactosidasas

Citation preview

  • S

    Ad

    PWa

    b

    c

    N

    a

    ARRAA

    KAEBIBM

    1

    aagtol([lt

    tmitro

    h1

    Biochemical Engineering Journal 93 (2015) 137141

    Contents lists available at ScienceDirect

    Biochemical Engineering Journal

    jo ur nal home page: www.elsev ier .com/ locate /be j

    hort communication

    ctive site titration of immobilized beta-galactosidase for theetermination of active enzymes

    eter Jochemsa,b,c, Tobias Muellerc, Yamini Satyawali a, Ludo Dielsa,b,innie Dejonghea,, Ulf Hanefeldc

    Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, BelgiumDepartment of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, BelgiumBiocatalysis and Organic Chemistry, Biotechnology, Gebouw voor Scheikunde, Technische Universiteit Delft, Julianalaan 136, 2628 BL Delft, Theetherlands

    r t i c l e i n f o

    rticle history:eceived 16 May 2014eceived in revised form 7 October 2014ccepted 9 October 2014vailable online 23 October 2014

    a b s t r a c t

    In the present study, an active site titration method is demonstrated, to determine the amount of activeenzyme (-galactosidase), immobilized on a support. Two types of supports were investigated, viz. aminoacrylic resin and a mixed matrix membrane. Furthermore, 2,4-dinitrophenyl 2-deoxy-2-fluoro--d-galactopyranoside was used as an inhibitor for the active site titration of immobilized -galactosidaseobtained from Kluyveromyces lactis. Using the active site titration, approximately 8.3 mg of active enzyme

    eywords:ctive site titrationnzymeeta-galactosidase

    mmobilizationeads

    was found on 1 g of dried commercially available SPRIN imibond, which is an amino acrylic resin withcovalently bound -galactosidase obtained from K. lactis. However, this method, in its present form,was not effective on the mixed matrix membranes due to the irreversible partial adsorption of the leav-ing group (2,4-dinitrophenolate) by the membrane. This observation implied that it is important toinvestigate interactions between the support and the used inhibitor and leaving group.

    2014 Elsevier B.V. All rights reserved.

    embrane

    . Introduction

    -Galactosidase (lactase, EC 3.2.1.23) is a hydrolase, which cat-lyzes the hydrolysis and transgalactosylation reactions of lactosend other -d-galactopyranosides, such as 2-nitrophenyl -d-alactopyranoside. Industrially lactose is hydrolyzed to increasehe digestibility of milk or to improve the functional propertiesf dairy products. Furthermore, -galactosidase is used in anotherarge industrial process: the synthesis of galacto-oligosaccharidesGOS), which makes use of the transferase activity of the enzyme1]. Like many other enzymes, -galactosidase can also be immobi-ized to extract technical and economic benefits and enable its longime reuse in industrial reactors [2,3].

    In case of enzyme immobilization, it is important to knowhe amount of (active) enzymes immobilized on the support. In

    ost cases, the amount of immobilized enzymes is determined byndirect methods, mostly by calculating the difference between

    he amount of enzymes added to the support and the amount ofemaining un-immobilized enzymes [4]. Immobilization yieldsn the other hand are calculated as a ratio between immobilized

    Corresponding author. Tel.: +32 14 336907; fax: +32 14 321186.E-mail address: [email protected] (W. Dejonghe).

    ttp://dx.doi.org/10.1016/j.bej.2014.10.007369-703X/ 2014 Elsevier B.V. All rights reserved.

    activity and the starting activity of the enzyme solution [5]. EFBSection on Applied Biocatalysis also recommends to report theamount of active enzyme in a given preparation, because it allowsto normalize the activity of different enzyme preparations andmake a fair comparison between them [6]. There have been onlya few studies where the possibility to visualize the enzyme anddetect its activity, in situ, has been explored. The use of fluores-cence labelling of proteins (BSA, -lactoglobulin and -globulin)was used to monitor protein fractionation by ultrafiltration andto control membrane fouling by Crespo et al. [7]. Later, Mazzucaet al. [8] developed a new combined method merged from theclassical in situ detection of enzyme activity and western blot. Thismethod was used for enzyme -glucosidase (from olive greens) ina capillary asymmetric polysulphone membrane reactor to deter-mine simultaneously the enzyme spatial distribution through themembrane thickness and along the membrane module. Moreover,this method was also used to determine enzyme activity after theimmobilization through the observation in the light microscopyboth at low and high magnification [8].

    Active site titration is a powerful tool, which allows the direct

    measurement of the molar concentration of active enzyme in agiven preparation. This technique makes use of a suicidal sub-strate, meaning that the substrate blocks the active site renderingit inactive. Thus, the enzyme can only react with one substratedx.doi.org/10.1016/j.bej.2014.10.007http://www.sciencedirect.com/science/journal/1369703Xhttp://www.elsevier.com/locate/bejhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.bej.2014.10.007&domain=pdfmailto:[email protected]/10.1016/j.bej.2014.10.007
  • 138 P. Jochems et al. / Biochemical Engineering Journal 93 (2015) 137141

    sed fo

    miaspii

    flisTbTtilt2ai[

    io

    2

    2

    ocwTMdaSwbcw

    Fig. 1. Methodology u

    olecule. This substrate can contain a leaving group, which is eas-ly detected by for example spectroscopy; or for higher sensitivities

    fluorescent leaving group [9]. Active site titration has been useduccessfully for several free and immobilized enzymes (e.g. lipases,enicillin G acylase) [10,11]. To the best of our knowledge, there

    s no active site titration method available for the quantification ofmmobilized -galactosidase.

    In case of -galactosidase, 2,4-dinitrophenyl 2-deoxy-2-uoro--d-galactopyranoside is an irreversible inhibitor. This

    nhibitor is a 2-deoxy-2-fluoroglycoside and this class of glyco-ides is known for its enzyme inhibitors with good leaving groups.he 2-deoxy-2-fluoroglycosyl enzyme complex gets accumulated,ecause the rate of hydrolysis of this complex is extremely slow.his accumulation is due to the fluorine at C-2, that destabilizeshe transition state for the (de)glycosylation, while the good leav-ng group accelerates the glycosylation [12,13]. Moreover, thiseaving group is very easily detected and quantified by UV spec-roscopy, making it suitable for active site titration. The inhibitor,4-dinitrophenyl 2-deoxy-2-fluoro--d-galactopyranoside waslready used in several mechanism studies, but to our knowledget has not yet been used for studying immobilized -galactosidase1217].

    This study investigates the possibilities of employing thisnhibitor for active site titration using -galactosidase immobilizedn two different carriers, beads and mixed matrix membranes.

    . Materials and methods

    .1. Enzymes and reagents

    -Galactosidase from Kluyveromyces lactis (with an activityf 75,000 mol ortho-nitrophenol released min1 g1) was pur-hased from SigmaAldrich NV/SA (Bornem, Belgium). The enzymeas stored at 4 C and was used without further processing.

    risHCl buffer (50 mM) pH 7 containing 50 mM NaCl and 50 mMgCl2 was used in the experiments. SPRIN imibond galactosi-

    ase (covalently bound -galactosidase from K. lactis on aminocrylic resin, particle size: 0.200.50 mm) was kindly donated byPRIN S.p.A. (Trieste, Italy). The SPRIN imibond galactosidase was

    ashed 3 times using 4 mL of the TrisHCl buffer per gram of wet

    eads. All the other chemicals used in the study were of analyti-al grade. The membrane used for -galactosidase immobilizationas a flat-sheet mixed-matrix membrane containing polysulphone

    r active-site titration.

    and zirconium dioxide. The water permeability and molecularweight cut-off of this membrane was 296 L/h m2 bar and 13.8 kDa,respectively. Enzyme immobilization on the membrane was con-ducted on 1 cm2 membrane piece by submerging it in 0.6 mLenzyme solution. Details of the immobilization have been reportedpreviously [3]. The inhibitor 2,4-dinitrophenyl 2-deoxy-2-fluoro--d-galactopyranoside, used in this study, was synthesized asdescribed before and spectra were in accordance with the literature[13,18,19].

    2.2. Active site titration

    The methodology used for active site titration, in this study,is depicted in Fig. 1. The inhibitor 2,4-dinitrophenyl 2-deoxy-2-fluoro--d-galactopyranoside (15 mg) was dissolved in 15 mLof Tris buffer. Three sets of Eppendorf scale tests were prepared(each in quadruplicate). First set of Eppendorf tubes were filledwith 100 L of diluted enzyme solution, second set with a definedamount of imibond beads and the third set with 1 cm2 piece ofmembrane. From each of the 3 sets, three tubes (out of each quadru-plicate) were incubated with 600 L (or 500 L in case of the freeenzyme) of the inhibitor solution at 20 C for 6 h. After these 6 h,260 L of methanol was added to the samples and they were incu-bated for another hour at 20 C. The enzymes of the three remainingtubes of each quadruplicate were directly inactivated by adding260 L of methanol. After 1 h at 20 C, 600 L (or 500 L in case ofthe free enzyme) of the inhibitor solution was added to these sam-ples, which were used as blank. These blanks were incubated foranother 6 h at 20 C. All incubations were performed on a rotator toobtain a well-mixed system. After incubation, 120 L 2 M Na2CO3was added to each Eppendorf tube to enhance the colour devel-opment and all tubes were vortexed and centrifuged (15,000 g).From each of these tubes, 3 times 200 L supernatants of each sam-ple or blank was transferred to a multiwell-plate. The absorbanceof each well was measured at 9 different places (to reduce varia-tions) using a microplate reader (Infinite M200 PRO, Tecan GroupLtd., Switzerland) at 400 nm.

    2.3. Protein determination

    Protein determination was performed using the Bradfordmethod as previously described [3].

  • P. Jochems et al. / Biochemical Engineering Journal 93 (2015) 137141 139

    F omycg due to

    2

    ett6be

    3

    gkinmaaa2faotamwfb

    the mixed matrix membranes can be easily scaled up by adapta-tion of the membrane surface [3]. One issue encountered duringthe active site titration in case of both beads and membranes waspartial adsorption of the leaving group 2,4-dinitrophenolate by

    y = 0,0077x + 0,5164R = 0,9759

    0

    2

    4

    6

    8

    10

    12

    14

    nmol

    2,4

    -din

    itrop

    heno

    l rel

    ease

    d

    ig. 2. Schematic mechanism of the active site titration of -galactosidase of Kluyveralactosyl complex; 3: the stable enzyme2-deoxy-2-fluoro galactosyl complex

    .4. Dry weight of beads

    Before each test, the Eppendorf tubes were weighed and afterach test the Eppendorf tubes containing the samples were cen-rifuged (15,000 g) and supernatants were removed. Afterwardshe beads were dried by placing the open tubes in an oven at0 C for 72 h. Finally the tubes were weighed again. The differenceetween both measurements is the amount of dry immobilizednzyme in each tube.

    . Results and discussion

    The inhibitor 2,4-dinitrophenyl 2-deoxy-2-fluoro--d-alactopyranoside was used previously, as a part of theinetic study for the active site titration of non-immobilized-galactosidase of Escherichia coli [17]. Also analogues of this

    nhibitor were used for performing active site titration on otheron-immobilized -glycosidases, e.g. -glucosidase [12]. Theechanism of active site titration method is shown in Fig. 2. The

    ctive site of -galactosidase of K. lactis contains two glutamiccid residues (Glu482 and Glu551) that act as proton donornd nucleophile site [20]. As the enzyme acts on the inhibitor,,4-dinitrophenyl 2-deoxy-2-fluoro--d-galactopyranoside, itorms a stable enzyme2-deoxy-2-fluoro galactosyl complexnd liberates 2,4-dinitrophenolate [12,13]. The concentrationf the liberated 2,4-dinitrophenolate can be measured spec-rophotometrically at 400 nm and corresponds with the amount ofctive enzymes. The amount of active enzyme was calculated by

    ultiplying the liberated molar amount of 2,4-dinitrophenolateith the molecular weight of the enzyme (119 kDa). As revealed

    rom Fig. 3, in case of free enzyme, there is a good correspondenceetween the protein concentration measured using the Bradford

    es lactis. 1: the empty active site; 2: the formation of the enzyme2-deoxy-2-fluoro the fluorine at C-2 and the liberated 2 ,4-dinitrophenolate.

    method and the enzyme concentration found using active sitetitration. These results confirm that active site titration is indeed areliable method with the free enzyme.

    Similar experiments were performed on the two differentimmobilized enzyme preparations, SPRIN beads and mixed matrixmembranes. The SPRIN beads are commercially available aminoacrylic resin beads and were chosen due to their easy commercialavailability. The mixed matrix membranes were made in house andwere chosen because they can be easily loaded with enzymes andoperated with almost no mass transfer limitations. Furthermore,

    0 500 1000 1500 2000g of BSA equ ivalent s

    Fig. 3. The relation between the amount of free enzyme (in BSA equivalents) addedand the released 2 ,4-dinitrophenolate.

  • 140 P. Jochems et al. / Biochemical Enginee

    y = 0,0691x + 0,3638R = 0,945

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    0 50 100 150 200 250

    nmol

    2,4-

    dini

    trop

    heno

    lrel

    eas e

    d

    mg of dry beads

    Fd

    td(bSbaemfbpamHbi4Hg

    btpelooRAbwC

    TA

    a

    Hc

    1

    ig. 4. The relation between the amount of SPRIN imibond galactosidase (in mg ofry resin) added and the released 2 ,4-dinitrophenolate.

    he supports. The leaving group 2,4-dinitrophenolate is releaseduring the hydrolysis of the inhibitor. In case of the SPRIN beadsFig. 4), this problem of leaving group adsorption could be solvedy desorbing the 2,4-dinitrophenol compound using methanol.uch adsorption of the leaving group (p-nitrophenolate) has alsoeen observed previously by Rotticci et al., where toluene was useds a desorbing agent [10]. Eventually 8.3 mg/g (dry support) activenzymes were found on the beads (Table 1). However, in case of theixed matrix membrane using methanol as a desorbent was inef-

    ective. A plausible explanation for this observation could be theulkiness of the membrane and the limited amount of enzymesresent on the membranes (Table 1), which resulted in very lowmounts (

  • ginee

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    P. Jochems et al. / Biochemical En

    12] S. Withers, K. Rupitz, I. Street, 2-Deoxy-2-fluoro-d-glycosyl fluorides. A newclass of specific mechanism-based glycosidase inhibitors, J. Biol. Chem. 263(1988) 79297932.

    13] J.C. Gebler, R. Aebersold, S.G. Withers, Glu-537, not Glu-461, is the nucleophilein the active site of (lac Z) beta-galactosidase from Escherichia coli, J. Biol. Chem.267 (1992) 1112611130.

    14] J.D. McCarter, D.L. Burgoyne, S. Miao, S. Zhang, J.W. Callahan, S.G. Withers,Identification of Glu-268 as the catalytic nucleophile of human lysosomalbeta-galactosidase precursor by mass spectrometry, J. Biol. Chem. 272 (1997)396400.

    15] S. Zhang, J.D. McCarter, Y. Okamura-Oho, F. Yaghi, A. Hinek, S.G. Withers,J.W. Callahan, Kinetic mechanism and characterization of human beta-galactosidase precursor secreted by permanently transfected Chinese hamsterovary cells, Biochem. J. 304 (1994) 281288.

    16] J.E. Blanchard, L. Gal, S. He, J. Foisy, R.A.J. Warren, S.G. Withers, The identificationof the catalytic nucleophiles of two -galactosidases from glycoside hydrolasefamily 35, Carbohydr. Res. 333 (2001) 717.

    17] S.V. Calugaru, S. Krishnan, C.J. Chany, B.G. Hall, M.L. Sinnott, Larger increasesin sensitivity to paracatalytic inactivation than in catalytic competence dur-

    ing experimental evolution of the second beta-galactosidase of Escherichia coli,Biochem. J. 325 (1997) 117221.

    18] F. Ballardie, B. Capon, J.D.G. Sutherland, D. Cocker, M. Sinnott, A simple generalsynthesis of 2,4-dinitrophenyl glycopyranosides, J. Chem. Soc., Perkin Trans. 1(1973) 24182419.

    [

    ring Journal 93 (2015) 137141 141

    19] M. Albert, K. Dax, J. Ortner, A novel direct route to 2-deoxy-2-fluoro-aldosesand their corresponding derivatives, Tetrahedron 54 (1998) 48394848.

    20] Q.Z. Zhou, X.D. Chen, Effects of temperature and pH on the catalytic activity ofthe immobilized -galactosidase from Kluyveromyces lactis, Biochem. Eng. J. 9(2001) 3340.

    21] A. Pereira-Rodrguez, R. Fernndez-Leiro, M.I. Gonzlez-Siso, M.E.Cerdn, M. Becerra, J. Sanz-Aparicio, Structural basis of specificity intetrameric Kluyveromyces lactis -galactosidase, J. Struct. Biol. 177 (2012)392401.

    22] C. Hedfors, K. Hult, M. Martinelle, Lipase chemoselectivity towards alcohol andthiol acyl acceptors in a transacylation reaction, J. Mol. Catal. B: Enzym. 66(2010) 120123.

    23] C. Bernal, M. Marciello, M. Mesa, L. Sierra, G. Fernandez-Lorente, C.Mateo, J.M. Guisan, Immobilisation and stabilisation of -galactosidasefrom Kluyveromyces lactis using a glyoxyl support, Int. Dairy J. 28 (2013)7682.

    24] M. Becerra, M.E. Cerdan, M. Gonzalez Siso, Micro-scale purification of -galactosidase from Kluyveromyces lactis reveals that dimeric and tetramericforms are active, Biotechnol. Tech. 12 (1998) 253256.

    25] J. Pedroche, M. Del Mar Yust, C. Mateo, R. Fernndez-Lafuente, J. Girn-Calle, M.Alaiz, J. Vioquea, J.M. Guisn, F. Milln, Effect of the support and experimentalconditions in the intensity of the multipoint covalent attachment of proteins onglyoxyl-agarose supports: correlation between enzyme-support linkages andthermal stability, Enzyme Microb. Technol. 40 (2007) 11601166.

    http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0060http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0065http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0070http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0075http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0080http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0085http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0090http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0095http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0100http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0105http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0110http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0115http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0120http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125http://refhub.elsevier.com/S1369-703X(14)00291-5/sbref0125Active site titration of immobilized beta-galactosidase for the determination of active enzymes1 Introduction2 Materials and methods2.1 Enzymes and reagents2.2 Active site titration2.3 Protein determination2.4 Dry weight of beads3 Results and discussion4 ConclusionsAcknowledgementsReferences