23
1 Active Clamp Flyback (Part I) Pei-Hsin Liu

Active Clamp Flyback (Part I) - TI Training (part 1)_Ver 9...• Active clamp flyback (ACF) eliminates clamping and switching losses in tradeoff with conduction loss and transformer

Embed Size (px)

Citation preview

1

Active Clamp Flyback (Part I) Pei-Hsin Liu

What will I get out of this session?

• Purpose: • Relevant End Equipments:

1. Demo TI’s knowledge base on high- density adapter 2. Fundamental of ACF operation and challenge on ZVS control

1. High Density AC Adapter or Charger 2. USB Power Delivery Chargers 3. AC/DC or DC/DC Auxiliary Power Supply

Agenda

• Introduction of Active Clamp Flyback (ACF)

• Impact of Nonlinear Capacitance of switching device on ACF

1) Impact on ZVS Voltage Transition

2) Impact on Resonance Clamp Current

• Summary

65W Adapter

Topology Power

Density fsw

(kHz) Primary Switches

High-side drivers

Switching Devices

A Passive-clamp Flyback (PCF) 11W/in3 150~260 1 pcs 0 pcs Si

B Active-clamp Flyback (ACF) 14W/in3 120~165 2 pcs 1 pcs SiC/Si

C Three-level LLC 17W/in3 300~500 4 pcs 3 pcs Si

Soft

switching

Adapter Density and Eff Comparison

Flyback: PCF or ACF Three-level LLC

Vac

ᵑ ACF (B)

3-Level LLC (A)

ACF (B)

PCF(A)

3-level LLC (C)

(V)

Ca

ble

-en

d E

ff. (%

) 20V/65W output

Issues of DCM Flyback + Passive Clamp

Vbulk NVo

NVo Vclamp

fsw

im(+)

2

( )

1

2

clamp

clamp k m sw

clamp o

VP L i f

V NV

Clamp Loss:

RM6 XFMR (N=3.25, Lk=3uH), 650V/650mΩ Silicon FET

Vclamp=130V, 20V/30W, Vbulk=230 2V

100k 200k 300k 1

2

3

4

5

6

7

Pe

rcen

tage (

%)

fsw (Hz)

PSwitching/30W

PClamp/30W

21

2Switching sw bulk swP C V fSwitching Loss:

C ≈0 (to output) ≈0 (ZVS) Middle Higher

Transition Mode (TM) + Active Clamp

(A) Passive-clamp + DCM (B) Passive-clamp + TM

PClamp PSwitching PCore PWinding

A High Higher Higher Mid

B High Mid Lower Lower

Vbulk

(C) Active-clamp + TM

Due to higher im(-) and iclamp

I VI

V IV

II III

Operation of Active Clamp Flyback (ACF)

I

im

Vgs(QH)

Vsw

iclamp

iQL

isec

Vgs(QL)

Region II : After QL off, im charges Coss(QL) and discharge Coss(QH)

so Vsw rises to Vbulk+Vclamp before QH turns on

Region I : As QL on, im peak increases and Lm stores energy

Region I Region II VII

Operation of ACF: (III to IV)

Region IV : After QH on, N·Vo demagnetizes Lm, so im decades.

Cclamp resonating with Lk stores Lk energy.

Lm releases energy to output, isec = (im-iclamp)N

Region III : im forces QH body diode on, so Vclamp charges to N·Vo

Region III Region IV

I VI

V IV

II III

I

im

Vgs(QH)

Vsw

iclamp

iQL

isec

Vgs(QL)

VII

Region V

Operation of ACF: (V to VI)

Region VI : Output diode switches off as isec resonating to 0A (ZCS).

Vclamp demagnetizes Lm, so im decades more negatively.

Region V : Cclamp resonating with Lk releases Lk energy to output.

Region VI

I VI

V IV

II III

I

im

Vgs(QH)

Vsw

iclamp

iQL

isec

Vgs(QL)

VII

Region I

Operation of ACF: (VII to I)

Region I : QL turns on as Vsw close to 0V (zero voltage switching, ZVS)

Region VII : After QH off, im(-) discharges Coss(QL) and charges Coss(QH)

so Vsw falls from Vbulk+Vclamp to 0V

I VI

V IV

II III

I

im

Vgs(QH)

Vsw

iclamp

iQL

isec

Vgs(QL)

VII Region VII

2 2

( )

1 1

2 2m m sw swL i C V

ZVS criteria:

im(-)

For GaN: Linear scaling between Rds(on) and Coss

Effect on Coss Nonlinearity:

Vds (V)

Co

ss (

pF

)

Junction Capacitance of Si and GaN

ipri

iclamp

+1.8A

-0.5A

+1.44A

-0.3A

ipri

iclamp

Coss = 47pF (680mΩ Si FET)

Coss = 15pF (500mΩ GaN FET)

iclamp(RMS)=686mA

iclamp(RMS)=530mA

im(pk-pk)=2.25A

im(pk-pk)=1.74A

For Si: lower Rds(on) → more Coss nonlinearity

GaN FET 500mΩ

GaN FET 150mΩ

Si FET 680mΩ

Si FET 180mΩ

2 2

( )

1 1

2 2m m sw dsL i C V ZVS criteria:

ipri(RMS)=810mA

ipri(RMS)=612mA

+1.8A

Agenda

• Introduction of Active Clamp Flyback (ACF)

• Impact of Nonlinear Capacitance of switching device on ACF

1) Impact on ZVS Voltage Transition

2) Impact on Resonance Clamp Current

• Summary

Vds (V) C

oss (

pF

)

GaN FET

(500mΩ)

Si FET

(680mΩ)

1000

100

10

1 1 10 100

(1) Impact on ZVS Voltage Transition

Si FET (680mΩ)

GaN FET (500mΩ)

From QH

From QL

Affect:

(1) Longer dead time → fsw limitation

(QH off to QL on)

(2) Virtual short as gate off→ Higher im(-)

Vsw

Cclamp design to Reduce Upper Flat Area

(Cclamp=100nF) Vgs(QH)

Vsw

iclamp

im

im(-) -0.9A

340ns

Improve: Resonance > QH on time to reduce its nonlinear cap effect

2 2

( )

1 1

2 2m m sw dsL i C V

ZVS

Criteria: 2 2 2

( ) ( )

1 1 1

2 2 2m m k clamp sw dsL i L i C V

ZVS

Criteria:

0.8

0

-0.8

Cu

rre

nt (A

)

0

200

400

Vo

lta

ge

(V

)

(180mΩ Si FET)

(Cclamp=600nF)

Vgs(QH)

Vsw

iclamp

im

340ns

0.8

0

-0.8 Curr

en

t (A

)

0

200

400

Vo

lta

ge

(V

)

iclamp(-)

im(-) -0.8A

(180mΩ Si FET)

Partial ZVS to Reduce Lower Flat Area

ipri

(RMS=0.717A)

Vsw

Full

ZVS

Vds (V)

Co

ss (

pF

)

Si FET

680mΩ

1.5nF

Vsw

Partial

ZVS

ipri

(RMS=0.626A)

26.2% less

conduction loss !!

263pF

Condition: 20V/30W, RM6, C3/C3 (SPP02N60C3), Secondary SR (BSC360N15NS3)

Vbulk (V) DC

/DC

Eff

icie

ncy

Full ZVS

Partial ZVS 0.93

0.92

0.91 70 170 270 370

1000

100

10

1 1 10 100

Trade-off of Partial ZVS for Si FET

Lo

ss

Re

du

cti

on

(W

)

ZVS point (V)

Condition: 20V/30W, RM6, C3/C3 (SPP02N60C3),

Secondary SR (BSC360N15NS3)

Vbulk=375V

Vsw

Vsw

For Si, larger loss reduction at 10V; Peak at 20V

For GaN, full ZVS gives best efficiency

0.14

0.1

0.06

0.02

0 10 20 30 40 50 60

(gain) Conduction

loss reduction

i pri

(RM

S) (A

)

ZVS

point (V)

0.75

0.69

0.63

0.57 0 10 20 30 40 50 60

(Lost) Turn-on

loss increasing PS

wit

ch

ing

(W

)

ZVS

point (V)

0.42

0.28

0.14

0 0 10 20 30 40 50 60

GaN FET

(500mΩ)

Silicon FET

(650mΩ)

Primary Switch

Secondary Rectifier

Schottky diode Sync. Rectifier (SR)

(2) Impact on Resonance Clamp Current

-0.3A

ipri

iclamp

iclamp(RMS)=530mA

Observation:

Loss Coss on primary (GaN) +

Higher Coss on secondary (SR)

Significant less

Primary RMS current

Condition: Vbulk=325V, Vo=20V/30W

-0.5A

ipri

iclamp

iclamp(RMS)=686mA

ipri

-0.35A

iclamp(RMS)=349mA

iclamp

-0.55A

iclamp(RMS)=600mA

Silicon

vs.

GaN

vs.

SR

Schottky

Coss(SR)/N2

(V)

Coss(QH): Si

Co

ss (

pF

)

1000

100

10 1 10 100

ipri

im

(A)

Voltage polarity change on Lk

eliminates the current dip.

1.6

1.2

0.8

Si FET: Slower dVsw/dt, Less dipri/dt

Silicon

Vpri

NVsec (low Coss(QH))

(high Coss(QH))

(high Coss(SR))

10ns/div

Vpri < N·Vsec as

higher Coss(QH)

(V) 60

20

-20

sec

1[ ]

pri

pri

k

diN V V

dt L

ipri

iclamp

1μs/div 1

A/d

iv

GaN FET: Faster dVsw/dt, Larger dipri/dt

sec

1[ ]

pri

pri

k

diN V V

dt L

GaN

Coss(SR)/N2

(V)

Coss(QH): GaN

Co

ss (

pF

)

1000

100

10 1 10 100

Vpri NVsec

(high Coss(SR))

10ns/div

Vpri > N·Vsec

as Vsw rising

(V)

0

-100

-200

-300

ipri

iclamp

1μs/div 1

A/d

iv

ipri

im

(A)

Negative di/dt reduces iclamp, so

more im is delivered to output.

1.3

1.1

0.9

0.7

Vac

SR1

Schottky

SR2

0.95

0.93

0.91

0.89 85 110 235 60 135 160 185 210

AC

/DC

Eff

icie

ncy

Trade-off of Coss(SR) to GaN-based ACF

SR1

Schottky

Condition: Vo=20V/30W, RM6, 650V/500mΩ GaN Rds(on) Coss(SR) Qg

SR1 36mΩ 106pF (@75V) 12nC

SR2 16mΩ 214pF (@75V) 23nC

SR2

Higher Coss(SR): (Pros) Less resonance energy for less RMS current

(Cons) - Larger ZVS energy results in higher im(pk-pk), higher core loss

- Larger driving loss from higher Qg

+1.32A

ipri

ipri(RMS)=443mA

im(pk-pk)=1.67A

SR1 (Vbulk=325V)

-0.35A

+1.4A

-0.4A

ipri

SR2 (Vbulk=325V)

ipri(RMS)=432mA

im(pk-pk)=1.8A

Full-Load Eff Comparison: GaN vs. Si

Vbulk (V)

i pri(R

MS

) (A

)

Vbulk (V)

DC

/DC

Effic

ien

cy (

%)

600V Si +

Partial ZVS

650V GaN+

Full ZVS

3% 2%

600V Si+

Partial ZVS

Condition: 20V/30W, RM6, SR (BSC360N15NS3), Si FET(600V, 680mΩ) ; GaN (650V, 500mΩ)

Eff difference at low line will >2% as including input stage !

650V GaN+

Full ZVS

600V Si+

Partial ZVS

Conclusion

• Clamping and switching losses are the limitation of passive clamp flyback converter.

• Active clamp flyback (ACF) eliminates clamping and switching losses in tradeoff with

conduction loss and transformer core loss.

• GaN-based ACF has advantage over silicon due to less winding loss and core loss.

• Coss nonlinearity impact and potential solutions using Si FET are addressed.

(a) Clamp cap design to overcome high Coss on the high-side switch

(b) Partial ZVS to overcome high Coss on the low-side switch