32
ACTIVATED SLUDGE MODELS Hydromantis, Inc.

ACTIVATED SLUDGE MODELS - Biblioteca IDEAM catalogdocumentacion.ideam.gov.co/openbiblio/bvirtual/018834/...ACTIVATED SLUDGE MODELS Hydromantis, Inc. Objective A model to predict performance

  • Upload
    others

  • View
    9

  • Download
    1

Embed Size (px)

Citation preview

  • ACTIVATED SLUDGE MODELS

    Hydromantis, Inc.

  • Objective● A model to predict performance of the

    activated sludge process:biomass growthuptake/conversion of key components (carbon, nitrogen, phosphorus, oxygen)hydraulics

  • Key Model Features

    ● Mass Balance● Variables● Reactor Hydraulics● Biological Model

  • Mass Balance

    Inputs OutputsReaction

    Change = Inputs - Outputs ± Reactions

  • Mass Balance

    Inputs OutputsReaction

    Change = Inputs - Outputs ± Reactions

    Inert: dSidt

    V = Q (Siin - Si)

  • Mass Balance

    Inputs OutputsReaction

    Change = Inputs - Outputs ± Reactions

    dSodt

    V = Q (Soin - So) + KLa (Sost - So)V-our VOxygen:

  • Variables● State Variables

    fundamental variablesimportant for modelling (mass balance)

    ● Composite Variables (HI term)measurableknowable

  • IWA Nomenclature● S - Soluble Components● X - Particulate Components

    ● SubscriptsB - biomassS - substrateO - oxygenN, BH, BA, NO, ND, etc

  • ASM1 State VariablesSi Soluble inert organics g COD/m3Ss Readily biodegradable (soluble) substrate g COD/m3Xi Particulate inert organics g COD/m3Xs Slowly biodegradable (particulate) substrate g COD/m3Xbh Active heterotrophic biomass g COD/m3Xba Active autotrophic biomass g COD/m3Xu Unbiodegrad. particulates from cell decay g COD/m3So Dissolved oxygen g O2/m3Sno Nitrate and nitrite g N/m3Snh Free and ionized ammonia g N/m3Snd Soluble biodegradable organic nitrogen (in ss) g N/m3Xnd Particulate biodegradable organic N (in xs) gN/m3

  • CNP State Variables12 CN State Variables +

    Slf Readily biodegradable VFA substrate g COD/m3Xbt Stored poly-beta-hydroxy-alkanoates g COD/m3Xbp Active polyP heterotrophic biomass g COD/m3Xpp Stored poly phosphate g P/m3Sp Soluble phosphorus g P/m3

  • Composite VariablesSi

    Ss

    Xs

    Xbh

    Xba

    Xu

    Xi

    SBODu

    XBODuBODu

    fbod

    BOD5

    TSS

    SCOD

    XCOD

    COD

    VSS

    icvivt

  • Typical Influent COD

    non-denit. het.

    inertReality ASM1

    soluble

    particulate

    COD

    readily biodeg.

    rapidhydrolysis

    slow hydrolysis

    denit. het.

    autotrophsinert

    1060

    100

    110

    20

    591

    40

    400 total

    inert

    inert

    readily biodeg.

    slowly biodeg.

    Si

    Ss

    Xs

    Xi

  • Measurement Fractions

    soluble inert

    readily biodegradable

    rapid hydrolysis

    slow hydrolysis

    biomass

    particulate inert organic

    TSS VSS BOD5 BODu COD OUR

    particulate inert inorganic

  • Nitrogen Composite Variables

    sTKN

    Sno

    SnhSnd or N in soluble organic matter

    Xnd or N in particulate organic matter

    TKN

    Total N

  • Typical Influent NTypical Influent N

    Sni

    nitrateReality ASM1 Model

    solubleinorg.

    ammonia

    inert

    Snh

    urea or ammonia

    ammonia

    Soluble Org.

    Suspended

    Inert Sol.

    readilybiodeg. Rapid hydrolysis

    Slow hydrolysisBiomassinert

    suspended

    Sndslowly biodeg.

    inert

    readily biodeg.

    Xnd

    Xni

  • Petersen Matrix

    Kinetic Parameters

    Continuity

    Component ij Process

    1Xb

    2Ss

    3So

    process rate, ρ[ML-3T-1]

    1 Growth

    2 DecayObserved Rates r = ∑νρ

    Biom

    ass

    [M(C

    OD

    )L-3

    ]

    Subs

    trate

    [M(C

    OD

    )L-3

    ]

    Oxy

    gen

    [M(-C

    OD

    )L-3

    ]

    1 -1/Y -(1-Y)

    -1 -1Y

    µSsk+Ss Xb

    b Xb

    µ = maximumspecific growth

    K = half saturationconstant

    b = decay rate

    StoichiometricParameters:

    Y = true growthyield

    mas

    s ba

    lanc

    e

  • Equation System

    µ Ss

    K+SsXb

    rSs =

    Biomass

    Substrate

    rXb = - b Xb

    -1

    Y

    µ Ss

    K+SsXb

    Oxygen

    rSo = -(1-Y)

    Y

    µ Ss

    K+SsXb - bXb

  • ASM1 Processes1. Aerobic growth of heterotrophs2. Anoxic growth of heterotrophs3. Aerobic growth of autotrophs4. Decay of heterotrophs5. Decay of autotrophs6. Ammonification of soluble organic N7. Hydrolysis of entrapped organics8. Hydrolysis of entrapped organic N

  • ASM1 Processes1. Aerobic growth of heterotrophs

    conversion of soluble substrate (carbonaceous) to biomassprocess rate - needs substrate and oxygen

    – saturation function = Sx/(Ksx + Sx)uses some ammonia uses alkalinity

  • ASM1 Processes2. Anoxic growth of heterotrophs

    similar to aerobic growth of heterotrophs except nitrate nitrogen is used as an electron acceptor (versus oxygen for aerobic growth)switching function = Koh/(Koh + So)adds alkalinity

  • ASM1 Processes3. Aerobic growth of autotrophs

    nitrification (growth of nitrifiers)growth of biomass using soluble ammonia as an energy sourcerequires oxygen and ammonia-nitrogenalso produces nitrate-nitrogenlargest impact on alkalinity

  • ASM1 Processes4. Decay of heterotrophs

    “death” of biomass (predation, lysis)converts heterotrophic biomass to slowly biodegradable substrate and inert particulate materialalso adds particulate organic nitrogen

  • ASM1 Processes5. Decay of autotrophs

    similar to modelling of decay of heterotrophs

  • ASM1 Processes6. Ammonification of sol. organic N

    conversion of soluble organic nitrogen to ammonia

  • IWA ASM1 Processes7. Hydrolysis of entrapped organics

    conversion of slowly biodegradable substrate to readily biodegradable substatefirst order with respect to heterotrophsrequires electron donor (oxygen and/or nitrate)

  • IWA ASM1 Processes8. Hydrolysis of entrapped organic N

    conversion of particulate organic nitrogen to soluble organic nitrogen (which is then converted to ammonia - process 6)similar to hydrolysis of entrapped organics

  • Death-Regeneration (ASM1) – COD Flow Diagram

    SSS S readily biodegrreadily biodegr..

    substratesubstrate

    XXS S slowly biodegrslowly biodegr..

    substratesubstrate

    XXS S entrapped slowly entrapped slowly biodegrbiodegr. . substratesubstrate

    XXP P (X(XUU))Inerts from Inerts from

    decaydecay

    XXB,H B,H heterotrophic heterotrophic

    biomassbiomass

    floc phasefloc phasefluidfluid phasephase

    entrapmententrapment((instantaneousinstantaneous))

    hydrolysishydrolysis((regenerationregeneration))

    decaydecay((deathdeath))

    synthesissynthesis

    OO22

    SSII & X& XI I inertsinerts of of inflinfl..(not (not biologically biologically

    transformedtransformed))

  • Death-Regeneration (ASM1) – Organic Nitrogen Flow Diagram

    SSNH NH ammoniaammonia

    floc phasefloc phasefluidfluid phasephase

    ammonificationammonification

    ffnn(X(XB,HB,H) = ) = iiXBXBheterotrophic heterotrophic

    biomassbiomassdecaydecay((deathdeath))

    XXND ND part. part. biodegrbiodegr..

    nitrogennitrogen

    hydrolysishydrolysis((regenerationregeneration))

    SSNDNDsol. sol. biodegrbiodegr. .

    nitrogennitrogen

    XXND ND part. part. biodegrbiodegr..

    nitrogennitrogen

    SSNDNDsol. sol. biodegrbiodegr. .

    nitrogennitrogen

  • ASM1 Modifications● Mantis Model

    NO3 - Uptake for N requirementSimultaneous nitrification/denitrification

    ● TwoStepMantis (CN2lib)Two Step Nitrification

    ● ASM2d , New Generalbio-P modelling, Chemical P precipitation

    ● ASM3Storage compounds

    ● See comparative table on p.129 of the Tech.Ref.

  • Ammonia tracking

    Alkalinity tracking

    NO3 as N source for growthAmmonia limiting growth

    2 step Nitrification

    Substrate Storage

    Aerobic Denitrification

    Nitrification/Denitrification

    2stepMantis

    ASM3MantisASM1

  • BPRFermentation

    Precipitation of P with MeOH

    Alkalinity as factor limiting growthAlkalinity trackingNO3 as N source for growth

    Ammonia limiting growth

    Ammonia trackingCOD “Loss”

    Nitrification / Denitrification

    New GeneralASM2d

  • Temperature Dependency

    µ

    T10 30

    µT= µ20 • K (T-20)

    K = 1.072

    Arrhenius Equation

    (20oC=68oF)