24
Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne Centre for Astrophysics & G.W. Gray Centre for Advanced Materials Chemistry Building School of Physical and Mathematical Sciences The University of Hull, Cottingham Road, Kingston upon Hull HU6 7RX, UK [email protected] @dbenoit1

Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne Centre for Astrophysics & G.W. Gray Centre for Advanced Materials Chemistry Building School of Physical and Mathematical Sciences The University of Hull, Cottingham Road, Kingston upon Hull HU6 7RX, UK [email protected] @dbenoit1

Page 2: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

VIPER @ Hull

Page 3: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

HPC @ Hull – Implications for the institution

• No previous institutional experience in HPC • Research-community driven process

that convinced University management • £2.1M capital investment • Strong partnerships with: – Red Oak for project management – Clustervision for hardware

• HPC@Hull focussing on future HPC technologies

Page 4: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

Building VIPER in 50 days

Computenodesarrived!

Omni-Path installed

Firstcomputerack

VIPER!

Factorytes>ng@Clustervision

ShippingtoHullNewcooling installa>onEmptyroom…

Page 5: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

Making it work…

• Project management is vital • Delivery @ Hull: 13 May 2016 • Go live: 28 June 2016 • Time from delivery

to first job: 47 days

Page 6: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

VIPER technical profile

• 5040 Intel Broadwell E5-2860v4 (2.4 GHz) cores in 180 compute nodes • Intel X16 100Gb/s Omni-Path

interconnect • 4 x 1 TB high memory nodes • 2 x Visualisation nodes (2 x Nvidia

GeForce GTX 980 Ti per node) • 4 x Accelerator nodes (4 x Nvidia Tesla

K40M GPUs per node) • 500 TB of user storage running BeeGFS

Page 7: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

VIPER uses Broadwell-based compute nodes

• Memory: 128 GB RAM • Internal storage: 120GB SSD • Form factor: 2U chassis with 4 Intel compute modules • Node performance (28 cores): –Theoretical performance: 1075.2 GF –Observed average performance (HPL): 1017.6 GF

• Memory bandwidth: –HPCC EP-STREAM triad: 17.2 GB/s

• Full system performance (180 nodes): –Theoretical (100% efficiency): 194 TF –Observed average performance (SAT-HPL): 172 TF

Page 8: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

VIPER runs containerised HPC

• Docker containers on each node • Improves resilience • Greater flexibility • Potential to spin up/store containers

for different configurations or applications • Performance vs bare metal (1 node) –HPL in docker: 992.5 GF –HPL bare metal: 993.5 GF

Page 9: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

VIPER use Omni-Path as its communication fabric

• HPCC Random ring latency is low –Omni-Path (4 nodes) performance: 0.92 µs –100Gbps Infiniband performance is: ~1.25 µs

• Application performance equal or better than 100Gbps Infiniband • Network capacity (HPCC, 4 nodes) –Average G-PTRANS: 35 Gb/s –Average Random Access test: 1.10 GUPS

• Still a very “new” fabric which is likelyunder-utilised by current applications

Page 10: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

VIPER’s 500TB parallel filesystem runs on BeeGFS

• Parallel filesystem focussing on performance, similar to Lustre • Simplicity of filesystem makes it easy to manage • VIPER implements a high-resilience design: –2 BeeGFS storage server nodes –multiple JBOD RAID6 arrays with multiple global hot

spares per file server –each node can mount storage attached to the other node

• Performance (IOZONE): –Average read: 8.89 GB/s –Average write: 9.16 GB/s

Page 11: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

[email protected] our HPC support team

Page 12: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

VIPER stats so far…

5 months

150,0005.6 Mio

78% 90

Live operation Completed jobs CPU hours Jobs started within 1 min Users

Page 13: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Accelerators & quantum chemistry

Page 14: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

• Identification of organic molecules in the interstellar medium relies on recognising their vibrational signatures • This requires both on lab-based

measurements and theoretical models • Accurate spectral models require large-

scale quantum chemical calculations • Pyrene model would need

half a million energy evaluations • A high-throughput

approach is crucial

Looking for organic molecules in space

RedRectangleNebula(HD44179)

Halley’sComet(1P/Halley)

Page 15: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

Quantum chemistry as an HPC application

• Quantum chemistry codes use linear algebra to solve the electronic Schrödinger equation • Solutions of this equation lead to

knowledge of the electronic wave function (molecular orbitals) and total energy of the system • Computationally intense problem that

grows quickly with problem size and required accuracy • Typical workloads require several GB

of memory and runtimes of hours/days Anunoccupiedmolecularorbitalofpyrene

Page 16: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

CalDSu: requested number of processors reduced to: 28 ShMem 1 Linda.

PrsmSu: requested number of processors reduced to: 7 ShMem 1 Linda.

DoSDTr: NPSUse= 13

JobTyp=1 Pass 1: I= 1 to 5 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T.

� Erreurs sur %Mem

� %Mem trop élevé

�Plantage immédiat avec le message :

Insuffisant virtual memory

� %Mem faible ou pas adapté au type de calcul

�Plantage au bout d’une phase de calcul, avec un message explicite de type :

Insufficient memory for …

�Réduction du nombre de cœurs utilisés pour les calculs, par le message :

GetIJB would need an additional 45990731 words of memory to use all 32 processors.

4. Utilisation spécifique

Dans de rares cas, l’utilisation des nœuds à mémoire large peut être nécessaire. Ces nœuds sont

accessibles avec la directive Loadleveller :

# @ as_limit = x Gb, avec x = 7,0 Gb × n

Dans la formule calculant %Mem, il faut alors remplacer la valeur 3,5 par 7.

5. Performances

Les graphiques suivants présentent les performances de deux systèmes en fonction du nombre de

cœurs utilisés sur la machine Ada :

Test Gaussian n°397 Supercellule de zéolithe (MOR)

Le système traité et le type de calcul ont une incidence directe sur les performances. Ainsi, il est

recommandé de faire des tests de performances pour connaitre le nombre de cœurs maximal à

utiliser (efficacité > 50%).

0

8

16

24

32

0 8 16 24 32

Acc

éré

lati

on

Nombre de cœurs

idéal

50% eff.

mesuré

0

8

16

24

32

0 8 16 24 32

Acc

élé

rati

on

Nombre de cœurs Numberofcores

Speedu

p

Quantum chemistry on HPC…

• Codebase mainly single core retrofitted to be parallel • Computational scaling far from ideal • Memory requirements often cause bottleneck

Gaussian09

0

4

8

12

16

20

24

28

0 4 8 12 16 20 24 28

Speedup ideal speedup 50% efficiency

RI-TPSS-D3/def2-tzvpp energy calculation

ORCASpeedu

p

Numberofcores

Page 17: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

Leading scalable option for large HPC: NWChem

• Open-source quantum chemistry program • Implements a number of

very accurate wave function solvers • Proven scalable parallel

performance • Hardware acceleration for

both GPU or Xeon Phi • nwchem-sw.org

Page 18: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

Timings of pyrene CCSD(T)/cc-pVDZ total energyTo

tal C

PU t

ime

0m

40m

80m

120m

160m

200m

240m

280m

24 CPU 24 CPU+1xGPU

24 CPU+4xGPU

24 CPU+XeonPhi

Iden – Hartree (Ivy [email protected]) Viper – Hull ([email protected])

21%fa

ster

35%fa

ster

21%fa

ster

KNC

Page 19: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

Accelerator-enabled part of CCSD(T) calculationN

on-it

erat

ive

(T)

CPU

tim

e

0m

40m

80m

120m

160m

200m

240m

24 CPU 24 CPU+1xGPU

24 CPU+4xGPU

24 CPU+XeonPhi

Iden – Hartree (Ivy [email protected]) Viper – Hull ([email protected])

25%fa

ster

42%fa

ster

28%fa

ster

KNC

Page 20: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCFN

on-it

erat

ive

(T) C

PU s

peed

up

0

2

4

6

8

10

12

14

CPU cores (1 Phi / 24 cores)0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

CPU speedupIdeal speedup

Computational scaling of CCSD(T) on Xeon Phi

Iden – Hartree (Ivy [email protected])

Page 21: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCFN

on-it

erat

ive

(T) C

PU s

peed

up

0

1

2

3

3

4

5

CPU cores0 24 48 72 96

1xK40m / 24 cores4xK40m / 24 coresideal speedup

Computational scaling of CCSD(T) on Nvidia K40m

Viper – Hull ([email protected])

Page 22: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

Conclusions

• VIPER is a unique 172TF containerised HPC system that combines Broadwell cores, Omni-Path interconnect and BeeGFS filesystem

• Containers do not significantly impact HPC performance

• Accelerator cards show excellent computational scaling properties and significantly speed up quantum chemistry codes (20% – 40% in our tests)

Page 23: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

Computing Insight UK 2016 | Manchester | 14th December 2016

PVSCF

Acknowledgements

• Generous time allocation on Iden at the Hartree Centre (SFTC) in the framework of the Xeon Phi access programmes

• VIPER HPC support team

• The University of Hull for funding

• Technical queries about VIPER: [email protected]

Page 24: Accelerator-enabled quantum chemistry193.62.125.70/CIUK-2016/DavidBenoit.pdf · Accelerator-enabled quantum chemistry: a viable path to high-throughput HPC? David M. Benoit E.A. Milne

THANK YOU FOR YOUR ATTENTION