64
AC STEADY-STATE ANALYSIS LEARNING GOALS SINUSOIDS Review basic facts about sinusoidal signals SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits with sinusoidal independent sources and modeling of sinusoids in terms of complex exponentials PHASORS Representation of complex exponentials as vectors. It facilitates steady-state analysis of circuits. IMPEDANCE AND ADMITANCE Generalization of the familiar concepts of resistance and conductance to describe AC steady state circuit operation PHASOR DIAGRAMS Representation of AC voltages and currents as complex vectors BASIC AC ANALYSIS USING KIRCHHOFF LAWS ANALYSIS TECHNIQUES Extension of node, loop, Thevenin and other techniques

AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

  • Upload
    others

  • View
    12

  • Download
    5

Embed Size (px)

Citation preview

Page 1: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

AC STEADY-STATE ANALYSIS LEARNING GOALS

SINUSOIDS Review basic facts about sinusoidal signals

SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits with sinusoidal independent sources and modeling of sinusoids in terms of complex exponentials

PHASORS Representation of complex exponentials as vectors. It facilitates steady-state analysis of circuits.

IMPEDANCE AND ADMITANCE Generalization of the familiar concepts of resistance and conductance to describe AC steady state circuit operation

PHASOR DIAGRAMS Representation of AC voltages and currents as complex vectors

BASIC AC ANALYSIS USING KIRCHHOFF LAWS

ANALYSIS TECHNIQUES Extension of node, loop, Thevenin and other techniques

Page 2: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

SINUSOIDS

tXtx M ωsin)( =

(radians)argument (rads/sec)frequency angular

valuemaximumor amplitude

===

t

X M

ωω

Adimensional plot As function of time

tTtxtxT ∀+=⇒== ),()(2 Period ωπ

)(cycle/sec Hertz infrequency ===πω2

1T

f

fπω 2=

"by leads" θ

"by lags" θ

Page 3: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

BASIC TRIGONOMETRY

)cos(21)cos(

21coscos

)sin(21)sin(

21cossin

sinsincoscos)cos(sincoscossin)sin(

βαβαβα

βαβαβα

βαβαβαβαβαβα

−++=

−++=

+=−−=−

IDENTITIES DERIVED SOMEαααα

βαβαβαβαβαβα

cos)cos(sin)sin(

sinsincoscos)cos(sincoscossin)sin(

=−−=−

−=++=+

IDENTITIES ESSENTIAL

)sin(sin)cos(cos

)2

cos(sin

)2

sin(cos

πωωπωω

πωω

πωω

±−=±−=

−=

+=

tttt

tt

tt

NSAPPLICATIO

)90sin()2

sin( °+=+ tt ωπω

CONVENTION EE ACCEPTED

RADIANS AND DEGREES

(degrees) 180(rads)

degrees 360 radians

θπ

θ

π

=

=2

Page 4: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXAMPLE

)45cos( °+tω

)cos( tω

Leads by 45 degrees

)45cos( °+− tω)18045cos( ±+tω

Leads by 225 or lags by 135

)36045cos( −+tω

Lags by 315

Page 5: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXAMPLE

VOLTAGESBETWEEN ANGLEPHASE ANDFREQUENCY FIND)301000cos(6)(),601000sin(12)( 21 °+−=°+= ttvttv

Frequency in radians per second is the factor of the time variable 1sec1000 −=ω

HzHzf 2.1592

)( ==πω

To find phase angle we must express both sinusoids using the same trigonometric function; either sine or cosine with positive amplitude

)180301000cos(6)301000cos(6 °+°+=°+− tt

)180cos()cos( °±−= αα with sign minus of care take

)90sin()cos( °+= αα with cosine into sine Change

)902101000sin(6)2101000cos(6 °+°+=°+ ttWe like to have the phase shifts less than 180 in absolute value

)601000sin(6)3001000sin(6 °−=°+ tt

)601000sin(6)()601000sin(12)(

2

1

°−=°+=

ttvttv °=°−−°+ 120)601000()601000( tt

°120by leads 21 vv°−=°+−°− 120)601000()601000( tt

°120by lags 12 vv

Page 6: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXTENSION

by_____? leads by_____? leads

31

21

3

2

1

)60377sin(25.0)()10377cos(5.0)(

)45377sin(2)(

iiii

ttitti

tti

°+−=°+=

°+=

)90sin(cos °+= αα)9010377sin(5.0)10377cos(5.0 °+°+=°+ tt

°−=°+−°+ 55)100377()45377( t

°−5521 by leads ii

°16531 by leads ii

)180sin(sin °±−= αα)18060377sin(25.0)60377sin(25.0 °−°+=°+− tt

°=°−−°+ 165)120377()45377( tt

Page 7: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

SINUSOIDAL AND COMPLEX FORCING FUNCTIONS

If the independent sources are sinusoids of the same frequency then for any variable in the linear circuit the steady state response will be sinusoidal and of the same frequency

)sin()()sin()( φωθω +=⇒+= tBtitAtv SS

φ,B parameters the determine to needonly wesolution statesteady the determine To

Learning Example

)()()( tvtRitdtdiL =+ :KVL

tAtAtdtdi

tAtAtitAti

ωωωω

ωωφω

cossin)(

sincos)()cos()(

21

21

+−=

+=+= or , statesteady In

R/*

L/*

tVtRAALtRAAL

M ωωωωω

coscos)(sin)( 1221

==+++−

MVRAALRAAL

=+=+−

12

21 0ωω algebraic problem

222221 )(,

)( LRLVA

LRRVA MM

ωω

ω +=

+=

Determining the steady state solution can be accomplished with only algebraic tools!

Page 8: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

FURTHER ANALYSIS OF THE SOLUTION

)cos()(cos)(

sincos)( 21

φωωωω

+==

+=

tAtitVtv

tAtAti

M

write can one purposes comparisonFor is voltageapplied The

is solution The

φφ sin,cos 21 AAAA −==

222221 )(,

)( LRLVA

LRRVA MM

ωω

ω +=

+=

1

222

21 tan,

AAAAA −=+= φ

RL

LRVA M ωφω

122 tan,

)(−=

+=

)tancos()(

)( 122 R

LtLR

Vti M ωωω

−−+

=

voltagethe lags WAYScurrent AL the For 0≠L

90by voltagethe lagscurrent the inductor) (pure If °= 0R

Page 9: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

SOLVING A SIMPLE ONE LOOP CIRCUIT CAN BE VERY LABORIOUS IF ONE USES SINUSOIDAL EXCITATIONS

TO MAKE ANALYSIS SIMPLER ONE RELATES SINUSOIDAL SIGNALS TO COMPLEX NUMBERS. THE ANALYSIS OF STEADY STATE WILL BE CONVERTED TO SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS ...

… WITH COMPLEX VARIABLES

)(ty

)sin()(sin)()cos()(cos)(

φωωφωω

+=→=+=→=

tAtytVtvtAtytVtv

M

M

identity)(Euler :IDENTITY ESSENTIAL θθθ sincos je j +=

tjjtjtjM eAeAeeV ωθφωω =→ + )(

add) (andj/*

θjM AeV →

If everybody knows the frequency of the sinusoid then one can skip the term exp(jwt)

Page 10: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

Learning Example

tjM eVtv ω=)(

)()( φω += tjM eIti Assume

)()()( tvtRitdtdiL =+ :KVL

)()( φωω += tjM eIjt

dtdi

tjjM

tjM

tjM

tjM

eeIRLj

eIRLj

eRIeLIjtRitdtdiL

ωφ

φω

φωφω

ω

ω

ω

)(

)(

)()(

)(

)()(

+=

+=

+=+

+

++

tjM

tjjM eVeeIRLj ωωφω =+ )(

RLjVeI Mj

M +=

ωφ

LjRLjR

ωω

−−/*

22 )()(

LRLjRVeI Mj

M ωωφ

+−

=

RL

eLRLjRω

ωω1tan22 )(−−

+=−

RL

MjM e

LRVeI

ωφ

ω

1tan

22 )(

−−

+=

RL

LRVI M

Mωφ

ω1

22tan,

)(−−=

+=

)cos(Re)(

Recos)()( φω

ωφω

ω

−==⇒

==− tIeIti

eVtVtv

Mtj

M

tjMM

θθ

θ

θ

sin,cos

tan, 122

ryrxyxyxr

rejyx

PCj

==

=+=

=+

Page 11: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

PHASORS

ESSENTIAL CONDITION ALL INDEPENDENT SOURCES ARE SINUSOIDS OF THE SAME FREQUENCY

BECAUSE OF SOURCE SUPERPOSITION ONE CAN CONSIDER A SINGLE SOURCE )cos()( θω += tUtu M

THE STEADY STATE RESPONSE OF ANY CIRCUIT VARIABLE WILL BE OF THE FORM )cos()( φω += tYty M

SHORTCUT 1 )(

)()( )( φωθω +

=⇒= + tj

eYtyeUtu Mtj

M

ReRe)()( φωθω +

⇒+ tj

eYeU Mtj

M

NEW IDEA: tjjM

tjM eeUeU ωθθω =+ )( φθ j

Mj

M eYyeUu =⇒=

DEGREES IN ANGLES ACCEPTWE AND WRITE WE WRITING OF INSTEAD

NOTATION IN SHORTCUT

...θθ ∠== M

jM UueUu

)cos( θωθ +∠ tUU MM FOR TIONREPRESENTA PHASOR THE IS

)cos(Re)()cos()( φωφθθω +=→∠=⇒∠=→+= tYtyYYUUtUtu MMMM

SHORTCUT 2: DEVELOP EFFICIENT TOOLS TO DETERMINE THE PHASOR OF THE RESPONSE GIVEN THE INPUT PHASOR(S)

Page 12: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

Learning Example

tjM

Vev

VVω=

∠= 0

tjM

Iei

IIω

φ

=

∠=

tjtjtj VeRIeIejL

vtRitdtdiL

ωωωω =+

=+

)(

)()(

LjRVI

VRILIj

ω

ω

+=

=+has one phasors of terms In

The phasor can be obtained using only complex algebra

We will develop a phasor representation for the circuit that will eliminate the need of writing the differential equation

°−±∠↔±±∠↔±

90)sin()cos(

θθωθθω

AtAAtA

It is essential to be able to move from sinusoids to phasor representation

Learning Extensions

↔°−= )425377cos(12)( ttv °−∠ 42512↔°+= )2.42513sin(18)( tty °−∠ 8.8518

↔°∠==2010

400

1VHzf Given

)20800cos(10)(1 °+= ttv π↔°−∠= 60122V )60800cos(12)(2 °−= ttv π

Phasors can be combined using the rules of complex algebra

)())(( 21212211 θθθθ +∠=∠∠ VVVV

)( 212

1

22

11 θθθθ

−∠=∠∠

VV

VV

Page 13: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS

RESISTORS )()(

)()(θωθω ++ =

=tj

Mtj

M eRIeV

tRitv

RIVeRIeV j

Mj

M

== θθ

Phasor representation for a resistor

Phasors are complex numbers. The resistor model has a geometric interpretation

The voltage and current phasors are colineal

In terms of the sinusoidal signals this geometric representation implies that the two sinusoids are “in phase”

Page 14: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

INDUCTORS )( )()( φωθω ++ = tjM

tjM eI

dtdLeV

)( φωω += tjM eLIj

LIjV ω=

The relationship between phasors is algebraic

°=°∠= 90901 jej

For the geometric view use the result

°∠= 90LIV ω

The voltage leads the current by 90 deg The current lags the voltage by 90 deg

φθ ω jM

jM eLIjeV =

Learning Example

)().20377cos(12)(,20 tittvmHL Find °+==

LjVI

V

ω

ω

=

°∠==

2012377

)(902012 A

LI

°∠°∠

)(701020377

123 AI °−∠

××= −

)70377cos(1020377

12)( 3 °−××

= − tti

Relationship between sinusoids

Page 15: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

CAPACITORS )( )()( θωφω ++ = tjM

tjM eV

dtdCeI

θφ ω jjM CejeI =

CVjI ω=

The relationship between phasors is algebraic

°∠= 90CVI ω

In a capacitor the current leads the voltage by 90 deg

The voltage lags the current by 90 deg

CVjIV

ω

ω

=°∠=

=15100

314

°∠×°∠×= 15100901CI ω

)(10510010100314 6 AI °∠×××= −

))(105314cos(14.3)( Atti °+=

Relationship between sinusoids

Learning Example

)().15314cos(100)(,100 tittvFC Find °+== µ

Page 16: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXTENSIONS

inductor the across voltagethe FindHzfAIHL 60),(304,05.0 =°−∠==

ππω 1202 == fLIjV ω=

°−∠×°∠××= 30490105.0120πV°∠= 6024πV

)60120cos(24)( °+= ππtv

inductor the across voltagethe FindHzfIFC 60,1456.3,150 =°−∠== µ

ππω 1202 == f

CjIVCVjIω

ω =⇒=

°∠×××°−∠

= − 901101501201456.3

6πV

°−∠= 235200π

V

)235120cos(200)( °−= ttv ππ

Now an example with capacitors

Page 17: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

IMPEDANCE AND ADMITTANCE

For each of the passive components the relationship between the voltage phasor and the current phasor is algebraic. We now generalize for an arbitrary 2-terminal element

zivM

M

iM

vM ZIV

IV

IVZ θθθ

θθ

∠=−∠=∠∠

== ||)(

(INPUT) IMPEDANCE

(DRIVING POINT IMPEDANCE)

The units of impedance are OHMS CjZ

LjZ

ICj

V

LIjV

CL

RZRIVR

ω

ω

ω

ω11

=

=

=

===

ImpedanceEq.Phasor Element

Impedance is NOT a phasor but a complex number that can be written in polar or Cartesian form. In general its value depends on the frequency

component Reactivecomponent Resistive

==

+=

)()(

)()()(

ωω

ωωω

XR

jXRZ

RX

XRZ

z1

22

tan

||

−=

+=

θ

Page 18: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

KVL AND KCL HOLD FOR PHASOR REPRESENTATIONS

+)(1 tv

+)(3 tv

−+ )(2 tv)(0 ti

)(1 ti )(2 ti )(3 ti

0)()()( 321 =++ tvtvtv :KVL

3,2,1,0,)(

0)()()()()(

3210

==

=+++−+ keIti

titititiktj

Mkkφω

:KCL

3,2,1,)( )( == + ieVtv itjMii

θω

0)( 321321 =++ tjj

Mj

Mj

M eeVeVeV ωθθθ :KVL

0332211 =∠+∠+∠ θθθ MMM VVV

Phasors! 0321 =++ VVV

+

1V−

+

3V

−+ 2V0I

1I 2I 3I

03210 =+++− IIII

The components will be represented by their impedances and the relationships will be entirely algebraic!!

In a similar way, one shows ...

Page 19: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

SPECIAL APPLICATION: IMPEDANCES CAN BE COMBINED USING THE SAME RULES DEVELOPED FOR RESISTORS

I −+ 1V

1Z

−+ 2V

2ZI

21 ZZZs += 1Z 2Z−

+V

I I

+V

21

21

ZZZZZ p +

=

∑= kks ZZ∑=

kk

p ZZ11

LEARNING EXAMPLE current and impedance equivalent Compute

)30cos(50)(,60 °+== ttvHzf ω

63

10501201,1020120

25,3050,120

−−

××=Ω××=

Ω=°∠==

ππ

πω

jZjZ

ZV

CL

R

Ω−=Ω= 05.53,54.7 jZjZ CL

Ω−=++= 51.4525 jZZZZ CLRs

)(51.4525

3050 AjZ

VIs −

°∠== )(

22.6193.513050 A

°−∠°∠

=

))(22.91120cos(96.0)()(22.9196.0 AttiAI °+=⇒°∠= π

RZR =

LjZL ω=

CjZC ω

1=

Page 20: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING ASSESSMENT )(ti FIND

377=ω

°−∠= )9060(120V

Ω= 20RZ

Ω=××= − 08.151040377 3 jjZL

05.531050377 6 jjZC −=

××= −

)(|| LRCeq ZZZZ += °∠== 239.9963.3097144561630 . + j.Zeq

)(924.39876.3239.9963.30

30120 AZVI

eq°−∠=

°∠°−∠

==

Page 21: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

(COMPLEX) ADMITTANCE

eSuceptanc econductanc

(Siemens)

==

+==

BG

jBGZ

Y 1

jXRZ +=

1122 XR

jXRjXRjXR

+−

=−−

×

22

22

XRXB

XRRG

+−

=

+=

CjYCj

Z

LjYLjZ

ICj

V

LIjV

CL

GR

YRZRIVR

ωω

ωω

ω

ω

==

==

=

=

====

1

1

1

1AdmittanceImpedanceEq.Phasor Element

∑=k

kp YYes Admittancof nCombinatio Parallel

∑=k ks YY

11es Admittancof nCombinatio Series

SYR 1.0= )(11

1 Sjj

YC =−

=

)(11.0 SjYp +=

10101.0

11.0

11

jjYs

+=−

+=

SjY

jj

Y

jj

jjY

s

s

s

05.005.0200

10101010

11.01.01.01.0

1.01.0)1.0)(1.0(

−=

−=

+=

++

×−−

=

S1.0

Sj 1.0−

Page 22: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXAMPLE

IYVV

p

S

,)(4560

FIND°∠=

4242

jjZ p +

×= )(25.05.0

842 Sj

jjYp −=

+=

)(4560)25.05.0( AjVYI p °∠×−==

)(4560565.26559.0 AI °∠×°−∠=

)(435.1854.33 AI °∠=

)(5.075.025.015.05.0 SjjjYp +=++−=

)(69.339014.0 SYp °∠=

)(79.53014.9

201069.339014.0

AI

VYI p

°∠=

°∠×°∠==

25.05.0 j

YYY LRp

−=

+=

LEARNING EXTENSION

Page 23: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXAMPLE SERIES-PARALLEL REDUCTIONS

243 jZ +=

4/125.05.025.0

44

4

jYZjjjY

−===+−=

28

24)2(4

4 jjjjjZ =

−−×

=

422622 jjjZ +=−+=

21)2(1

1 jjZ

−−×

=

5.011

1 jZ

+=

2434 jZ −=

342

342234 ZZ

ZZZ+

= 13 j+=

)(1.03.01.02.0

)(2.01.0

234

34

2

SjYjY

SjY

−=+=−=

)(4.08.0)5.0(15.01

1

21

Ω−=+−

=

jZ

jZ

°∠=Ω+=+= 973.8847.36.08.32341 jZZZeq

222 )4()2(42

421

+−

=+

=j

jY

2024

241

34j

jY +

=−

=

1.01.03.0

1.03.011

234234

jjY

Z +=

−==

Page 24: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXTENSION TZ IMPEDANCE THE FIND

24464

1

1

jZjjZ

+=−+=

222 jZ +=

°∠=→ 565.26472.4)( 1ZPR°−∠= 565.26224.01Y

°∠=→ 45828.2)( 2ZPR°−∠= 45354.02Y

100.0200.0)( 1 jYRP −=→

250.0250.0)( 2 jYRP −=→

35.045.02112 jYYY −=+=°−∠=→ 875.37570.0)( 12YPR

°∠= 875.37754.112Z077.1384.1)( 12 jZRP +=→

222 )2()2(22

221

+−

=+

=j

jY

077.1383.3)1077384.1(2 jjZT +=++=221 )2()4(

2424

1+−

=+

=j

jY

325.035.045.0

35.045.011

1212

jjY

Z +=

−==

1212

2112

1Y

Z

YYY

=

+=

Page 25: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXAMPLE SKETCH THE PHASOR DIAGRAM FOR THE CIRCUIT

PHASOR DIAGRAMS

Display all relevant phasors on a common reference frame

Very useful to visualize phase relationships among variables. Especially if some variable, like the frequency, can change

Any one variable can be chosen as reference. For this case select the voltage V

CVjLj

VRVIS ω

ω++= :KCL

|||| CL II >

INDUCTIVE CASE

|||| CL II <

CAPACITIVE CASE

e)(capacitiv↑ω

)(inductive ↑ω

CVjIC ω=

ljVIL ω

=

Page 26: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXAMPLE DO THE PHASOR DIAGRAM FOR THE CIRCUIT

CLRS

C

L

R

VVVV

ICj

V

LIjVRIV

++=

=

==

ω

ω1

It is convenient to select the current as reference

1. DRAW ALL THE PHASORS

)(377 1−= sω 2. PUT KNOWN NUMERICAL VALUES

|||| RCL VVV =−

°∠= 90212SV REFERENCE WITH DIAGRAM

Read values from diagram!

s)(Pythagora)(4512 VVR °∠=)(453 AI °∠=∴

°−∠= 456CV

)(13518 VVL °∠=

|||| CL VV >

Page 27: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING BY DOING PHASE IN ARE

AND WHICH ATFREQUENCY THE FIND )()( titv

+)(tv

lineal-co are for phasors the i.e., )(),( tvti

RILIjICj

V ++= ωω1

C

L

R

I

LIjω

ICjω

1 RI

RILIjICj

V ++= ωω1

PHASOR DIAGRAM

01=+

CjLjIV

ωω iff lineal-co are and

LC12 =⇒ω

)/(10162.3101010

1 4963

2 srad×=⇒=×

= −− ωω

Hzf 310033.52

×==πω

Notice that I was chosen as reference

Page 28: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXTENSION Draw a phasor diagram illustrating all voltages and currents

°∠°−∠

°−∠=

−−

= 454435.63472.4

90442

41 I

jjI

)(435.18578.31 AI °∠=

Current divider

°∠°−∠

°∠=

−= 454

435.63472.402

421

2 Ij

I

°∠= 435.108789.12I 12 III −= thanSimpler

)(435.18156.72 1 VIV °∠==

DRAW PHASORS. ALL ARE KNOWN. NO NEED TO SELECT A REFERENCE

Page 29: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

BASIC ANALYSIS USING KIRCHHOFF’S LAWS

PROBLEM SOLVING STRATEGY

For relatively simple circuits use

divider voltage and CurrentKVL and KCL

and combining for rules The i.e., analysis; AC for law sOhm'YZ

IZV =

For more complex circuits use

theorems sNorton' and sThevenin'tiontransforma Source

ionSuperpositanalysis Loopanalysis Node

Page 30: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXAMPLE COMPUTE ALL THE VOLTAGES AND CURRENTS

)48||6(4 jjZeq −+=

284824832

2848244

jjj

jjZeq +

+++=

++

+=

)(964.30604.9036.14246.845196.79

285656

Ω°∠=°∠

°∠=

++

=jjZeq

)(036.29498.2964.30604.9

60241 A

ZVI

eq

S °∠=°∠

°∠==

)(036.29498.2036.14246.8

90628

613 AI

jjI ∠

∠°∠

=+

=

)(036.29498.2036.14246.8565.26944.8

2848

12 AIjjI °∠

°∠°−∠

=+−

=

3221 904906 IVIV °−∠=°∠=

°∠=°−∠=°∠= 10582.158.1171.206.295.2 321 III

)(1528.7)(42.7826.16

2

1

VVVV

°∠=°∠=

21

32

1

Vfor V law sOhm'IIfor divider current Use

I Compute

,,

Page 31: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXTENSION SO VV COMPUTE , IF °∠= 458

S

12

1

3

VCOMPUTEII COMPUTE

VCOMPUTEI COMPUTE

,

THE PLAN...

)(454)(23 AAVI O °∠==

°∠×°−∠=−= 454458)22( 31 IjV)(0314.111 VV °∠=

)(90657.5902

0314.1121

2 AjVI °−∠=

°∠°∠

==

°∠+°−∠=+= 45490657.5321 III

))(828.2828.2(657.51 AjjI ++−=

)(829.2828.21 AjI −=

°∠+−=+= 0314.11)829.2828.2(22 11 jVIVS

)(658.597.16 VjVS −=

°−∠= 439.18888.17SV

Page 32: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

ANALYSIS TECHNIQUES

PURPOSE: TO REVIEW ALL CIRCUIT ANALYSIS TOOLS DEVELOPED FOR RESISTIVE CIRCUITS; I.E., NODE AND LOOP ANALYSIS, SOURCE SUPERPOSITION, SOURCE TRANSFORMATION, THEVENIN’S AND NORTON’S THEOREMS.

0I COMPUTE

1. NODE ANALYSIS

0111

0211

221 =−

++°∠−+ j

VVj

V

°∠−=− 0621 VV

)(12

0 AVI =

011

0211

06 22

2 =−

++°∠−+

°∠−j

VVj

V

1162

1111

111

2 jjjV

++=

+++

116)11(2

)11)(11()11()11)(11()11(

2 jj

jjjjjjV

+++

=−+

++−++−

281

42 j

jV +=

2)1)(4(

2jjV −+

=

NEXT: LOOP ANALYSIS

)(23

25

0 AjI

−= °−∠= 96.3092.20I

Page 33: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

2. LOOP ANALYSIS

SOURCE IS NOT SHARED AND Io IS DEFINED BY ONE LOOP CURRENT

°∠−= 021I :1 LOOP

0))(1(06))(1( 3221 =+−+°∠−++ IIjIIj :2 LOOP

3I FIND MUST

30 II −=

0))(1( 332 =++− IIIj :3 LOOP

)2)(1(6)1(2 32 −+−=−+ jIjI

0)2()1( 32 =−+− IjIj )2(/*)1(/*

−− j

( ) )28)(1()2(2)1( 32 jjIjj +−=−−−

4610

3 −−

=jI )(

23

25

0 AjI +−=

ONE COULD ALSO USE THE SUPERMESH TECHNIQUE

2I

0)1()(0)(06)1(

02

323

321

21

=−+−=−+°∠++

°∠−=−

IjIIIIIj

II

:3 MESH :SUPERMESH :CONSTRAINT

320 III −=

NEXT: SOURCE SUPERPOSITION

Page 34: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

Circuit with current source set to zero(OPEN)

1LI

1LV

Circuit with voltage source set to zero (SHORT CIRCUITED)

2LI

2LV

SOURCE SUPERPOSITION

= +

The approach will be useful if solving the two circuits is simpler, or more convenient, than solving a circuit with two sources

Due to the linearity of the models we must have 2121

LLLLLL VVVIII +=+= Principle of Source Superposition

We can have any combination of sources. And we can partition any way we find convenient

Page 35: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

3. SOURCE SUPERPOSITION

1)1()1(

)1)(1()1(||)1(' =−−+−+

=−+=jj

jjjjZ

)(01'0 AI °∠=

)1(||1" jZ −=

)(061"

""

1 VjZ

ZV °∠++

= )(061"

""0 A

jZZI °∠

++=

)(61

21

21

"0 A

jjj

jj

I++

−−

−−

=6

3)1(1"

0 jjjI++−

−=

)(46

46"

0 AjI −=

)(23

25"

0'00 AjIII

−=+=

NEXT: SOURCE TRANSFORMATION

"Z

"0I COMPUTE TO

TIONTRANSFORMA SOURCE USE COULD

Page 36: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

Source transformation is a good tool to reduce complexity in a circuit ...

WHEN IT CAN BE APPLIED!!

Source Transformationcan be used to determine the Thevenin or Norton Equivalent...

BUT THERE MAY BE MORE EFFICIENT TECHNIQUES

“ideal sources” are not good models for real behavior of sources

A real battery does not produce infinite current when short-circuited

+-

Improved modelfor voltage source

Improved modelfor current source

SVVR

SIIR

a

b

a

b SS

IV

RIVRRR

===

WHEN SEQUIVALENT AREMODELS THEVZ

IZ

S S

I V

ZI VZ Z Z

== =

Page 37: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

4. SOURCE TRANSFORMATION

jV 28' +=

jjIS +

+=

128

Ω=−+= 1)1(||)1( jjZ

=++

==jjII S

14

20

Now a voltage to current transformation

235

)1)(1()1)(4( j

jjjj −=

−+−+

NEXT: THEVENIN

Page 38: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LINEAR CIRCUITMay contain

independent anddependent sources

with their controllingvariablesPART A

LINEAR CIRCUITMay contain

independent anddependent sources

with their controllingvariablesPART B

a

b_Ov+

i

THEVENIN’S EQUIVALENCE THEOREM

LINEAR CIRCUIT

PART B

a

b_Ov+

i

−+

THR

THv

PART A

Thevenin Equivalent Circuit

for PART A

Resistance Equivalent Thevenin Source Equivalent Thevenin

TH

TH

Rv Impedance

THZ

Phasor

Page 39: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

5. THEVENIN ANALYSIS

2610 j−

Ω=−+= 1)1(||)1( jjZTH

)(235

0 AjI −=

=+−++

−= )28(

)1()1(1 j

jjjVOC

Voltage Divider

j28+

NEXT: NORTON

Page 40: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LINEAR CIRCUITMay contain

independent anddependent sources

with their controllingvariablesPART A

LINEAR CIRCUITMay contain

independent anddependent sources

with their controllingvariablesPART B

a

b_Ov+

i

NORTON’S EQUIVALENCE THEOREM

Resistance Equivalent Thevenin Source Equivalent Thevenin

N

N

Ri

LINEAR CIRCUIT

PART B

a

b_Ov+

i

NRNi

PART A

Norton Equivalent Circuit

for PART A

Phasors

Impedance

NZ

NZ

Page 41: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

6. NORTON ANALYSIS

)(1

281

0602 Ajj

jISC +

+=

+°∠

+°∠=

ONSUPERPOSTIBY

Possible techniques: loops, source transformation, superposition

Ω=−+= 1)1(||)1( jjZTH

=−+

==jjII SC

14

20 235

)1)(1()1)(4( j

jjjj −=

−+−+

Page 42: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

Notice choice of ground

LEARNING EXAMPLE NORTON THEVENIN, LOOPS, NODES, USING FIND 0VWHY SKIP SUPERPOSITION AND TRANSFORMATION?

NODES

°∠=− 01231 VV :constraint Supernode

011

04 3212303 =+−−

+−

+−

+°∠−j

VjVVVVVV

Supernode @KCL

01

2 3212 =−

+−−− VVI

jVV

x

2KCL@V

00411

300 =°∠+−

+VVV

0 VKCL@

103 VVI x

−=

variablegControllin

42 03 +=⇒ VV

16212

01

31

+=+=

VVVV

4003 +=− VVV0)42()4(2)162( 02002 =−−++−−− VVVVVj4)42()4()42()162( 000202 =+−++−−−−−− VjVVVVVj

jjV

2148

0 ++

−= :Adding

Page 43: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LOOP ANALYSIS

xIII

204

3

2

=°∠−=

MESH CURRENTS DETERMINED BY SOURCES

0)(1012 311 =−+°∠+− IIjI :1 MESH

0)(1)(1 34424 =−+×+− IIjIII:4 MESH

24 III x −= : VARIABLEGCONTROLLIN

)(1 40 VIV ×= :INTEREST OF VARIABLE

0))4(2(4 4444 =+−+++ IIjII

)4(2 43 +=⇒ II

jjIjIj

−−

−=⇒−−=−2

84)84()2( 44 jj

×

jjV

2148

0 ++

−=

MESH CURRENTS ARE ACCEPTABLE

Page 44: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

FOR OPEN CIRCUIT VOLTAGE

THEVENIN

°∠= 04'xI

°∠082 xI

)(84 VjVOC +−=

Alternative procedure to compute Thevenin impedance: 1. Set to zero all INDEPENDENT sources 2. Apply an external probe

"x

testTH I

VZ −=

"xI

KVL

)(1"" Ω−=⇒+−= jZjIIV THxxtest

jZTH −=1

))(84(2

10 Vj

jV +−

−=

Page 45: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

NORTON

SCI

4''' −= xSC II

)(13''' AVI x =

USE NODES

°∠=− 01231 VVconstraint Supernode

00411

212333 =°∠−−−

+−

++jVVVV

jVV

Supernode KCL@

01

2: 1232''' =−−

+−

+−jVVVVI X2 VKCL@

13''' VI x = : VariablegControllin

1231 +=⇒ VV

)(/ j−×

0)12()(2 32323 =−−+−− VVVVjjV12)31()1( 32 =−−− VjVj

j×/

jjVVjjVVjVjVVj

4122)1(4)12()1(

32

23233

+=+−=++−−++

jjVjVj

−=⇒=−

144)1( 33 j

jISC −+−

=⇒1

84

jj

jjjjISC +

+−=

−+−

=1

48)1(

)84(

Now we can draw the Norton Equivalent circuit ...

Page 46: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

THZ

SCI

)(1

4821)()1( 00 V

jj

jjVIV

++

−−−

== Current Divider

jj

×

)1)(21()1)(48(

jjjj

−+−+

−=jjV

+−

−=3

4120

jjV

2148

0 ++

−=

jjV

−+−

=2

840

Using Norton’s method

Using Thevenin’s

Using Node and Loop methods

EQUIVALENCE OF SOLUTIONS

NORTON’S EQUIVALENT CIRCUIT

Page 47: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXTENSION

USE NODAL ANALYSIS

0V COMPUTE

1V

0212

3012 01111 =−−

+++°∠−

jVV

jVVV

01010 =+

−− V

jVV

01 )1( VjV −=⇒

0)(22)3012( 01111 =−−++°∠− VVVjVVj

j2/×

°∠=−++−+ 3012)1)(221(2 00 jVjjjV°∠×°∠=−+−+ 3012901))1)(31(2( 0Vjj

jV

4412012

0 +°∠

= )(7512.24566.5

12012 V°∠=°∠°∠

=

USE THEVENIN

232

34

2||1||2j

jjZTH

+==

jj62

4+

=

°∠+

= 3012)2||1(2

2||1j

jVOC °∠++

= 30122)21(2

2jj

j

40)62(4 jj −

=

jjVOC 31

1201262

12024+

°∠=

+°∠

=

+-OCV

THZ 1j−

Ω1−

+

0V

OCTH

VjZ

V−+

=1

10

Page 48: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXTENSION ANALYSISMESH USING COMPUTE 0V

°∠=+− 90221 IICONSTRAINT

0222024 221 =+−+°∠− IjIISUPERMESH

jII 221 −=⇒

24)22()2(2 22 =−+− IjjI jIj 424)24( 2 +=−⇒

°∠=°−∠°∠

=−+

== 03.3686.1057.2624.2

46.933.242

4242 20 jjIV

USING NODES 1V

022

9022

024 11 =−

+°∠−°∠−

jVV

10 222 V

jV

−=

°∠−+

= 024222

20 j

V V

USING SOURCE SUPERPOSITION

°∠−

×= 90224

220 jV I

IV VVV 000 +=

Page 49: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXTENSION 0V COMPUTE

1. USING SUPERPOSITION

'0V

"0V

"0

'00 VVV +=

1V

)012()22||2(2

)22(||21 °∠−

−+−

=jj

jV

1'

0 222 V

jV

−=

2 V

°∠−+−

= 024)22(||2(2

)22(||)2(2 jj

jjV

2"

0 222 V

jV

−=

)22(||2 j−

Page 50: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

2. USE SOURCE TRANSFORMATION

°∠012 Ω2 °−∠ 906

Ω− 2j

Ω2

+

0V1I

Ω2j

2||2 jZ =

eqIZ

j2−

2−

+

0V1I

eqIjZ

ZI221 −+

=

10 2IV =

jIeq 612906012 +=°−∠−°∠=

Page 51: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

USE NORTON’S THEOREM

2||2 jZTH =

SCI

°∠012

°−∠− 906

SCI THZ

2j−

2−

+

0V1I

SCTH

TH IjZ

ZI221 −+

=

10 2IV =

Page 52: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

Frequency domain

LEARNING EXAMPLE Find the current i(t) in steady state

The sources have different frequencies! For phasor analysis MUST use source superpositio

SOURCE 2: FREQUENCY 20r/s

Principle of superposition

Page 53: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

USING MATLAB

Unless previously re-defined, MATLAB recognizes “i” or “j” as imaginary units

» z2=3+4j z2 = 3.0000 + 4.0000i » z1=4+6i z1 = 4.0000 + 6.0000i

In its output MATLAB always uses “i” for the imaginary unit

MATLAB recognizes complex numbers in rectangular representation. It does NOT recognize Phasors

» a=45; % angle in degrees » ar=a*pi/180, %convert degrees to radians ar = 0.7854 » m=10; %define magnitude » x=m*cos(ar); %real part x = 7.0711 » y=m*sin(ar); %imaginary part y = 7.0711 » z=x+i*y z = 7.0711 + 7.0711i

°∠= 4510zrRectangulaPhasors ↔

z = 7.0711 + 7.0711i; » mp=abs(z); %compute magnitude mp = 10 » arr=angle(z); %compute angle in RADIANS arr = 0.7854 » adeg=arr*180/pi; %convert to degres adeg = 45 x=real(z) x= 7.0711 y=imag(z) y= 7.70711

Page 54: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXAMPLE COMPUTE ALL NODE VOLTAGES

°∠= 30121V

0211

523212 =−

+−−

+−

jVV

jVVVV

012135323 =+

−+

−− VVVjVV

0112

45414 =−

+−

+−

jVVVVV

01221

452 5352545 =−

+−

+−

+−

+°∠−j

VVVj

VVVV

05.0)5.01(3012

5321

1

=−−−++−°∠=

jVjVVjjVV

°∠=++−+−−=−+++−=−+++−

452)5.05.01(5.05.00)15.0(5.0

05.0)15.0(

5432

541

532

VjjVVjVVVjV

VVjjV

°∠

°∠

=

+−−+

−−

−+−−+−

4520003012

5.05.11115.1

5.00

5.00

05.0

5.0015.1105.0015.011

00001

5

4

3

2

1

VVVVV

jj

j

jjjjj

RIYV =

RIYV 1−=

Page 55: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

%example8p18 %define the RHS vector. ir=zeros(5,1); %initialize and define non zero values ir(1)=12*cos(30*pi/180)+j*12*sin(30*pi/180); ir(5)=2*cos(pi/4)+j*2*sin(pi/4), %echo the vector %now define the matrix y=[1,0,0,0,0; %first row -1,1+0.5j,-j,0,0.5j; %second row 0,-j,1.5+j,0,-0.5; %third row -0.5,0,0,1.5+j,-1; %fourth row 0,0.5i,-0.5,-1,1.5+0.5i] %last row and do echo v=y\ir %solve equations and echo the answer

Echo of RHS

ir = 10.3923 + 6.0000i 0 0 0 1.4142 + 1.4142i y = Columns 1 through 4 1.0000 0 0 0 -1.0000 1.0000 + 0.5000i 0 - 1.0000i 0 0 0 - 1.0000i 1.5000 + 1.0000i 0 -0.5000 0 0 1.5000 + 1.0000i 0 0 + 0.5000i -0.5000 -1.0000 Column 5 0 0 + 0.5000i -0.5000 -1.0000 1.5000 + 0.5000i

Echo of Matrix

v = 10.3923 + 6.0000i 7.0766 + 2.1580i 1.4038 + 2.5561i 3.7661 - 2.9621i 3.4151 - 3.6771i

Echo of Answer

Page 56: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING EXAMPLE FIND THE CURRENT I_o

6 meshes and two current sources 5 non-reference nodes and two voltage sources… slight advantage for nodes

Page 57: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

NODE EQUATIONS MATRIX FORM

Page 58: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

MATLAB COMMANDS

LINEAR EQUATION

ANSWER

Page 59: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

AC PSPICE ANALYSIS

Select and place components

Wire and set correct attributes

Circuit ready to be simulated

Ground set, meters specified

VAC

R L

C

Page 60: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

**** AC ANALYSIS TEMPERATURE = 27.000 DEG C ****************************************************************************** FREQ VM($N_0003) VP($N_0003) 6.000E+01 2.651E+00 -3.854E+01 **** 05/20/01 09:03:41 *********** Evaluation PSpice (Nov 1999) ************** * C:\ECEWork\IrwinPPT\ACSteadyStateAnalysis\Sec7p9Demo.sch **** AC ANALYSIS TEMPERATURE = 27.000 DEG C ****************************************************************************** FREQ IM(V_PRINT2)IP(V_PRINT2) 6.000E+01 2.998E-03 5.146E+01

Results in output file

Page 61: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING APPLICATION NOISE REJECTION

Noise has much higher frequency (700kHz) than signal. Find a way to ‘block’ high frequencies

Reduce amplitude of noise by 10

Impedance X should have low (zero) value at low frequencies and very high at noise frequency

Page 62: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

EXAMPLE A GENERAL IMPEDANCE CONVERTER (GIC)

(ideal OpAmp)A C INV V V= =

@A:

@C:

@E:

Suitable choices of impedances Permit to create any desired equivale

A 1kOhm resistor coverts to 1 H equivalent inductance!!

Page 63: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

LEARNING BY DESIGN

USING PASSIVE COMPONENTS TO CREATE GAINS LARGER THAN ONE

PRODUCE A GAIN=10 AT 1KhZ WHEN R=100

2 1LCω = ⇒ 15.9C Fµ⇒ =

1.59L mH⇒ =

Page 64: AC STEADY-STATE ANALYSIScontents.kocw.net/KOCW/document/2015/pusan/leejangmyung/... · 2016-09-09 · AC STEADY-STATE ANALYSIS . LEARNING GOALS . SINUSOIDS . Review basic facts about

PROPOSED SOLUTION

LEARNING BY DESIGN PASSIVE SUMMING CIRCUIT - BIAS T NETWORK

( ) 2.5 2.5cos , 2 ; 1Ov t t f f GHzω ω π= + = =

B should have zero impedance for DC and block high frequencie

A should block DC and have very low impedance at 1GHz

91; 10 ; 2 10C L kω ω ω π= = Ω = ×PROPOSE

JUST MAKE THE IMPEDANCES VERY DIFFERENT

[ ]9( ) 2.5 2.50025cos 2 10Ov t tπ= +

AT DC THE CAPACITOR IS ALWAYS OPEN CIRCUIT BUT AT 1GHz ONE WOULD NEED INFINITE INDUCTANCE.