40
www.fluxim.com 1 AC, DC and Transient Characterization of OLEDs M.T. Neukom 1 , S. Züfle 2 , J. Sastre 1 , A. Gentsch 1 , S. Altazin 1 , B. Ruhstaller 1,2 1 Fluxim AG, Winterthur, Switzerland 2 Zurich University of Applied Sciences, Institute of Computational Physics, Winterthur, Switzerland TADF OLED Summer School, May 2017, Krutyn, Poland

AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

  • Upload
    hadat

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

1

AC, DC and Transient Characterization of OLEDs

M.T. Neukom1, S. Züfle2, J. Sastre1, A. Gentsch1, S. Altazin1, B. Ruhstaller1,2

1Fluxim AG, Winterthur, Switzerland2Zurich University of Applied Sciences, Institute of Computational Physics, Winterthur, Switzerland

TADF OLED Summer School, May 2017, Krutyn, Poland

Page 2: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

• Easy-to-use simulation software setfos able to simulate OLEDs and thin film PVs on the small scale/cell level.

• Easy-to-use all-in-one characterization platform paios to extract device and material parameters by dynamic characterization.

• Easy-to-use large-area simulation software laoss able to simulate OLEDs and solar cells up to the module scale.

laoss

R&D Tools for OLEDs & Next Gen PV

Page 3: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comContent Talk 2

• All‐in‐one measurement platform• Overview of AC, DC and transient measurement techniques for OLEDs

• Case studies with simulation or fitting(polar OLED, MIS‐CELIV, pip)

3

Page 4: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comPaios Research Cycle

4

Measured fully automated within a few minutes…

Page 5: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.compaios Measurement Techniques

5

Impedance Spectroscopy Capacitance‐Voltage Dark Injection Transients

Transient Photocurrent

Photo‐CELIV

Transient Photovoltage Transient ELIV‐CurvesCharge Extraction

IMPS IMVS

Page 6: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

Basic postprocessing (1) in Paios GUI: Simple IV Curve Analysis

6

Charge Carrier Mobility from Mott‐Gurney Fit One‐Diode Model Fit

(+ Fitting with equivalent circuits)

Page 7: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

Basic postprocessing (2):CELIV mobility

7

Use various post-processing routines to extract parameters

Example shown:Extraction of hole-mobility from CELIV

Page 8: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comsetfos‐paios‐integration

8

• Drift-diffusion modeling for direct comparison with experimental data.

• Parameter extraction with global fitting!

SimulationMeasurement

setfos

paios

Page 9: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

setfos‐paios‐integration:Global Parameter Fitting

9

Use parameter fitting to extract

material and device parameters

from your experiments.

Page 10: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

OPV Application Example: Global Fitting of Multiple Curves!

M.T. Neukom, S. Züfle, B. Ruhstaller, Organic Electronics 13 (2012)

IV curves Light pulse

Dark CELIV Photo‐CELIV

Extracted Parameters:(setfos Drift‐diffusion)

Page 11: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

Reduced Parameter Correlation: more curves => more info!

Basic fit ofIV-curves

Improved fit involving JV, light pulse andphoto-CELIV

M.T. Neukom, S. Züfle, B. Ruhstaller, Organic Electronics 13 (2012)

Page 12: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

Capacitance Voltage

12

• Paios screenshot• Charge density 5e23 m‐3 (too low)

measured

simulated

Parameter sliders

Page 13: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

13

Capacitance Voltage• Matching simulation:Charge density 7e23 m‐3

• Measurement – simulation fit 

C (nF/cm

2)V (V)

Page 14: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comImpedance Spectroscopy

t

Voltage

t

Current

V(t) V0 Vac eit

Applying small oscillating voltage with frequency ω

Phase

Y 1Z Jac

Vac

Measure current and calculate admittance

Y G i CConductance Capacitance

E. Knapp and B. Ruhstaller,  Appl. Phys. Lett. 99, 093304 (2011)E. Knapp and B. Ruhstaller,  J. Appl. Phys. (2012)

Page 15: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

New: Modulated EL Spectroscopy(MELS)

• Vary the voltage pulse frequency applied to theOLED, detect the light output

Characteristic (inflection) frequency is related to EL turn‐on delaytime and thus carrier mobility

15

Page 16: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comCapacitance‐Voltage C‐V

Offset-Voltage

CapacitanceConstant frequency –varied offset voltage

Cgeom

0

Vpeak

Mott-Shottky1/C2

PV: Extracting doping density (only for thick and highly doped devices)

Negative capacitance due to recombination

Vpeak is sensitive on barriers and Vbi

Page 17: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

Aging study: S1: fresh L=100 %, S2: aged L=90 %, S3: aged L=75%)

Capacitance C(f) Capacitance C(V)

OLED Degradation: Impedance Spectra

C(f) is in agreement with OLED aging study of Nowy et al. J. Appl. Phys. 2010

Voltage shift and peak reduction in C(V) indicates reduced charge injection

unpublished

Page 18: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comDark Injection Transients DIT

t

Voltage

t

Current

tmax

• Performed on mono‐polardevices in space charge limited regime (sometimes OLEDs or solar cells work)

• Ohmic contacts required

0.786 d2

tmax (V Vbi )

Page 19: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

• Zoomed DIT currents

• Peak shifts to shorter times a higher voltages

• Mobility‐dependence on electric field

Dark‐injection Transients

tmax

tmax

tmax

inc voltage

Page 20: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comDIT: Measurement and Simulation

MTR model with slow trapping reproduces measurement features of hole‐only device

high bias

low bias

(Simulation, E. Knapp, ZHAW)

a-NPD single layer hole-only device

Page 21: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comEL turn‐on

t

Voltage

• Determine mobilities with onset delay

• Determine both charge carrier mobilities at EL rise

t

ELrise τ

onset delay td

2

( )hbi d

LV V t

Page 22: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comTEL Rise

Increasing V

Time (us)

Intensity

 (norm.)

Page 23: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

«basic post‐processing» of TEL for mobility estimation

Basic Postprocessing (3): Carrier mobility from TEL delay time

Page 24: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comEL turn‐off

t

Voltage

• Decay rate extraction• Exciton dynamics‐IQE‐Roll‐off mechanisms‐emitter orientation

t

ELrise τ

onset delay

Page 25: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comEL Decay

Exponential decayΤ=~2μs

Page 26: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comEL Turn‐off

• Exponential decay ->phosphorescence lifetime• Decay time varies with optical cavity (Purcell factor)

< 36

Mladenowski, Reineke, Neyts (2009)Penninck, Steinbacher, Krause, Neyts (2012)

1

r nrk k

OLED degradation state (LT 100, 90 75)

Page 27: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comTEL Decay Temperature Dependent

OLED 2  (T: 247 K – 322 K)Temperature dependent decay

IncreasingTemperature

OLED 1  (T: 230 K – 300 K)Temperature independent decay

Page 28: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comMotivation: Polar OLED Materials• Decreasing the operating voltage in OLEDs is of primary importance.• This requires high mobility/conductivity ETL layers and well‐matched

energy levels.• Many ETL materials are known to be polar and exhibit spontaneous

molecular dipole orientation1,2,3: Bphen, BCP, Alq3 ... • This leads to charged layer boundaries in the device:

Questions: • Can we determine this 

interfacial charge density?• How are the electrical

properties impacted?

1T. D. Schmidt et al., JAP 117, 215502 (2015)2T. Miyamae et al., Chem. Phys. Lett. 616‐617,  86‐90 (2014)3S. Nowy et al., Proc. of SPIE, 7415 (2009)

Page 29: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comExperiment vs. Simulation

45

-10 -8 -6 -4 -2 0 20.5

1

1.5

2

2.5

-10 -8 -6 -4 -2 0 20.5

1

1.5

2

2.5

Voltage (V)

Nor

mal

ized

cap

acita

nce

: 60 nm

: 120 nm

: 240 nm

Alq thickness:

Voltage (V)

Nor

mal

ized

cap

acita

nce

: 60 nm

: 120 nm

: 240 nm

Alq thickness:

SimulationExperiments from [2](a) (b)

CAlq3

Cgeo

CAlq3CAlq3

CAlq3

CAlq3CAlq3

Cgeo

[2] Brütting, W., Berleb, S., Mückl, A. G., “Device physics of organic light‐emitting diodes based on molecular materials”, Org. Elec., 2 (1), 1‐36 (2001). 

setfos

S. Altazin et al., Organic Electronics. 39 244‐249 (2016)

Page 30: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comSimulated OLED Band Diagram

47

V<Vt Vt<V<Vbi V>Vbi

setfos

Page 31: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comStability of (Polar) OLEDs• C‐V responses of polar OLEDs evolve during degradation.• A similar trend can be observed with setfos simulations

diminishing the interface charges.

Interpretation: Orientation polarization isreduced during degradation!

Degradation

C-V measured with PAIOS (TPD/Alq3 bilayer OLED)

C-V simulated with SETFOSfor varying interface charges

Reduction of orientationpolarization

Interfacial charge:

Page 32: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comStress‐Testing for Degradation Analysis

49

Cell C

urre

nt (I

) (m

A/cm

2)

1.4

-17.3-16

-14

-12

-10

-8

-6

-4

-2

0

Time (t) (us)90.3-6.83 0 10 20 30 40 50 60 70 80

Capa

citan

ce (C

) (F)

2.97E-9

7.81E-10

1E-9

1.2E-9

1.4E-9

1.6E-9

1.8E-9

2E-9

2.2E-9

2.4E-9

2.6E-9

2.8E-9

Offset Voltage (V_offset) (V)2.14-1.15 -1 -0.5 0 0.5 1 1.5 2

Perform automated systematic degradation studiesUse current-stress or light-stress

degradation

degradation

S. Züfle et al. Adv. En. Materials (2015) “Areal degradation of OPV cells – experiment & modeling”

photocurrent response to light pulse 

un‐encapsulated OPV placed in climate chamber at high T, repeated Paios measurements

Page 33: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comMobility extraction using CELIV

62

t

Voltage

Vtr<V<Vbi

extraction of holes

holes pile up at the HTL/ETL 

interface

Polar Alq3 layer prevents electron injection in some voltage range

Using CELIV we are able to determine thehole mobility of the HTL material!

S. Züfle et al., J. Appl. Phys., 2017

Page 34: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

63

t

Voltage

t

Current

Extract charges with a voltage ramp

Measure mobility, and charge concentration

Mobility extraction using CELIV

tmax: related to the mobility

Extracted charges

0

2

max

2

36.011

32

jjtAd

available with the                platform

Page 35: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.com

Hole Mobility from CELIV withpolar OLED

64

S. Züfle et al., J. Appl. Phys., 2017“The use of charge extraction by linearly increasing voltage in polar organic light‐emitting diodes”

Consistent with simulation

Determine sheet charge Q

CELIV formulafor Bilayer OLED

Page 36: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comCELIV with polar layer vs. MIS‐CELIV

65

S. Züfle et al., J. Appl. Phys., 2017“The use of charge extraction by linearly increasing voltage in polar organic light‐emitting diodes”

OLED with polar ETL:

MIS structure:

In both cases we have carrier selectivity!

a‐NPD(80 nm)/Alq3(60 nm)

a‐NPD(80 nm)/Ins.(60 nm)

Page 37: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comLow Temperature Module

66

Perform all experiments at temperatures down to 150 Kelvin

Page 38: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comLow Temperature Module

67

Paios Measurement C-V Setfos Calculation C-V

Compare temperature dependent measurement with setfos simulation.

Page 39: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comThermal Activation in C‐f? 

68

setfospaios

fr depends on the temperature, activation energy 0.45eV setfos simulation reproduces the paios measurement Injection + transport in HTL is thermally activated

fr=1/RC1

TPD

Alq3

C2

C1

Page 40: AC, DC and Transient Characterization of OLEDsexcilight.com/sites/excilight.eu/files/uploads/b_ruhstaller_2.pdf · 1 AC, DC and Transient Characterization of OLEDs M.T. 1Neukom ,

www.fluxim.comSummary 

• All‐in‐one comprehensive measurements arepossible and needed for reliable parameterestimation and model validation

Paios Software demo?Next talk: OLED light outcoupling!

Thank you for your attention!

77