AC Circuits - Ek

Embed Size (px)

Citation preview

  • 8/10/2019 AC Circuits - Ek

    1/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 1

    METU

    AC Circuits

    by

    Prof. Dr. Osman SEVAOLU

    Electrical and Electronics Engineering Department

    Alternating Current AC) Circuits

  • 8/10/2019 AC Circuits - Ek

    2/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 2

    METU

    AC Circuits

    What is Direct Current DC) ?

    Direct Current (DC) is a current with aconstant time characteristics

    Definition

    Current, I

    +

    R1= 5 Ohms

    Vs=600 V

    Switch

    R2= 5 Ohms

    Switch is turned on at: t = 1 sec

    1 2 3 4 5 6

    80

    0

    Current(A

    mp)

    7

    20

    40

    60

    I = 60 A

    DC (Constant) Current

    Time (Sec)

  • 8/10/2019 AC Circuits - Ek

    3/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 3

    METU

    AC Circuits

    What is Alternating Current AC) ?

    Alternating Current (AC) is a current with

    time varying characteristics

    Definition

    Sinusoidal AC

    Non - Sinusoidal AC

    0,0

    1,0

    2,0

    3,0

    4,0

    5,0

    0,0 1,0 2,0 3,0 4,0 5,0 6,0t (sec)

    Current(Am

    p)

    10

    - 10

    0

    Angle (Radians)Current(Am

    p)

    /2 3

    /2 2

  • 8/10/2019 AC Circuits - Ek

    4/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 4

    METU

    AC Circuits

    Basic Parameters of a Sinusoidal Waveform

    Sinusoidal voltage is a voltagewith waveform as shown on theRHS

    Definition

    Sinusoidal Voltage

    V(t) = V sin ( wt + )^

    where

    V(t) is the voltage waveform,

    V is the peak value (amplitude),

    w is the angular frequency, is the phase shift, i.e. angle of the

    voltage at t = 0, (phase angle)

    ^

    w = 2 f

    f = 50 Hz

    100

    0

    Angle (Radians)

    Voltage (Volt)

    /2 3/2 2

    200

    300

    312

    Amplitude

    Phase angle

  • 8/10/2019 AC Circuits - Ek

    5/98

  • 8/10/2019 AC Circuits - Ek

    6/98

  • 8/10/2019 AC Circuits - Ek

    7/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 7

    METU

    AC Circuits

    AC Alternating Current) Circuit

    Positive half cycle

    Negative half cycle

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    0 0,005

    Load

    +

    Load0,015

    I (Amp)

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    0 0,005 0,01

    I (Amp)

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    0,01 0,015 0,02

    +V(t)

    I(t)

    V(t)

    I(t)

    Time (Sec) Time (Sec)

  • 8/10/2019 AC Circuits - Ek

    8/98

  • 8/10/2019 AC Circuits - Ek

    9/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 9

    METU

    AC Circuits

    Capacitance

    Capacitors store electrical charge

    Definition

    Storage capacity of a capacitor is

    called capacitance +

    _

    +

    _

    Small Capacitance Large Capacitance

    Water (hydroulic) example

    Capacitance = C1 Capacitance = C2C1 < C2

    _

  • 8/10/2019 AC Circuits - Ek

    10/98

  • 8/10/2019 AC Circuits - Ek

    11/98

  • 8/10/2019 AC Circuits - Ek

    12/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 12

    METU

    AC Circuits

    Geometry

    Control relay

    Capacitor banks

    Capacitor-Practical Configuration

  • 8/10/2019 AC Circuits - Ek

    13/98

  • 8/10/2019 AC Circuits - Ek

    14/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 14

    METU

    AC Circuits

    MV Medium Voltage) Shunt Capacitor Banks

  • 8/10/2019 AC Circuits - Ek

    15/98

  • 8/10/2019 AC Circuits - Ek

    16/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 16

    METU

    AC Circuits

    MV Medium Voltage) Shunt Capacitor Banks

  • 8/10/2019 AC Circuits - Ek

    17/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 17

    METU

    AC Circuits

    Electronic Capacitors in a Motherboard

  • 8/10/2019 AC Circuits - Ek

    18/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 18

    METU

    AC Circuits

    Basic Relation

    Charge stored in a capacitor is

    proportional to the capacitance C,Charge stored in a capacitor is

    proportional to the voltage Vapplied

    Basic Principle

    or

    Q = C Vwhere, Q is charge stored (Coulombs),

    V is voltage (Volts),C is capacitance (Farads) +

    _

    +

    1 Volt

    Symbolic Representation

    C = 1 Farad

    +

    _

    +

    VC

    Q = 1 Coulomb1 Farad is the capacitance with a

    charge of 1 Coulomb at a voltage 1 Volt

    between the plates

    Capacitance CVoltage Source V

  • 8/10/2019 AC Circuits - Ek

    19/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 19

    METU

    AC Circuits

    Voltage - Current Relation for a Capacitor

    Definition

    Q = C V

    The relation;

    may be written in time domain as;

    Q(t) = C V(t)

    or differentiating both sides with respect to time

    dQ(t)/dt = C dV(t)/dt

    or remembering thatdQ(t)/dt = I(t)

    Hence,

    I(t) = C dV(t) / dt

    +

    _

    C

    I(t)

    V(t)

    +

  • 8/10/2019 AC Circuits - Ek

    20/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 20

    METU

    AC Circuits

    Definition

    The above equation may be integratedwith respect to time, yielding the

    following Voltage - Current Relation for a

    Capacitor

    V(t) = (1/C) I(t)dt + V(0)

    where V(0) is the initial voltage across

    the capacitor, representing the initialvoltage due to the initial charge stored in

    the capacitor

    I(t)

    +

    _

    + C

    V(t)

    Switch

    Switch is turned on at: t = 0 sec

    Vc (0)

    Voltage - Current Relation for a Capacitor

  • 8/10/2019 AC Circuits - Ek

    21/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 21

    METU

    AC Circuits

    Example - 1

    Problem

    Calculate the time waveform of the current flowingin the circuit shown on the RHS by assuming that

    the capacitor is charged by the exponential

    voltage V(t) shown in the figure

    V(t) = 5 (1 - e-t/)

    where is known as the time constant of the

    circuit and given as = 10 -6sec = 1.0 sec

    C = 0.1 F

    +

    _

    +

    t (sec)

    V(t) = 5 (1 - e-t/

    )

    0,0

    1,0

    2,0

    3,0

    4,0

    5,0

    0,0 1,0 2,0 3,0 4,0 5,0 6,0

    C

    I(t)

    V(t)

    Vmax = Maximum voltage that can be reached = 5 Volts

    Qmax = C x Vmax = Maximum charge that can be stored

  • 8/10/2019 AC Circuits - Ek

    22/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 22

    METU

    AC Circuits

    Example - 1

    Solution

    0,0

    1,0

    2,0

    3,0

    4,0

    5,0

    0,0 1,0 2,0 3,0 4,0 5,0 6,0

    t (sec)

    I(t) = C dV(t)/dt

    V(t) = 5 (1 - e-t/)

    Hence,

    I(t) = C d V(t) / dt

    = C d 5(1 e -t/)/dt

    = 0.1 x10-6( 5 /

    ) xe -t/

    = 0.1 x10-6x5 x106x e -t/

    = 0.5 xe -t/ Ampers

    0,00,0 1,0 2,0 3,0 4,0 5,0 6,0

    t (sec)

    0,5

    0,1

    0,2

    0,3

    0,4

    I(t)

    +

    _

    + C

    I(t)

    V(t)

    V(t) = 5 (1 - e-t/ )

  • 8/10/2019 AC Circuits - Ek

    23/98

  • 8/10/2019 AC Circuits - Ek

    24/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 24

    METU

    AC Circuits

    Example - 2

    Problem

    Current source shown in the circuit onthe RHS provides a 10 mA constant

    current within the time interval;

    Capacitor is initially charged to 2 Volts

    voltage

    t [0, 1]

    Determine the voltage across thecapacitor within the time interval;

    t [0, 1]

    I(t) (mA)

    10,0

    0,0 0,2 0,4 0,6 0,8 1,0 1,2

    t (sec)

    8,0

    6,0

    4,0

    2,0

    12,0

    14,0

    C = 1000 F Vc(0) = 2 Volts

    +

    _

    I(t)

    I(t)C

    Switch

    Switch is turned on at: t = 0 sec,off at: t = 1.0 sec.

  • 8/10/2019 AC Circuits - Ek

    25/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 25

    METU

    AC Circuits

    Example - 2

    Solution

    Voltage across the capacitance isexpressed as

    t [0, 1]

    V(t) = (1/C) I(t)dt + V(0)where,

    V(0) = 2 Voltsis the initial voltage across thecapacitorHence;

    C = 1000 F

    Vc(0) = 2 Volts

    I(t) (mA)

    +

    _

    I(t)

    I(t)C

    0,0

    10,0

    0,0 0,2 0,4 0,6 0,8 1,0 1,2

    t (sec)

    8,0

    6,0

    4,0

    2,0

    12,0

    14,0

    V(t) (Volts)

    0,0

    10,0

    0,0 0,2 0,4 0,6 0,8 1,0 1,2

    t (sec)

    8,0

    6,0

    4,0

    2,0

    12,0

    14,0

    1

    V(t) = (1/C)

    I(t)dt + 20

    1

    V(t) = (1/10-3) 10-2 dt + 20

    = 10 t + 2 Volts

  • 8/10/2019 AC Circuits - Ek

    26/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 26

    METU

    AC Circuits

    R-C Circuits

    Problem

    Solve the RC circuit shown on the RHS

    for current I(t) flowing in the circuit whenthe switch is closed at t = 0

    Differentiating both sides wrt time once;

    dV(t) / dt = R dI(t) / dt + (1/C) I(t)or

    d/dt I(t) + (1/RC) I(t) = (1/R) dV(t) / dt

    A first order ordinary differential equation

    V(t) = R I(t) + VC(t)

    = R I(t) + (1/C) I(t)dt + V(0)

    Writing down KVL for the circuit

    Solution R

    C

    +

    _

    +

    I(t)

    V(0)=V0

    V(t) = V sinwt^

    Switch is turned on at: t = 0 sec

    Switch

  • 8/10/2019 AC Circuits - Ek

    27/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 27

    METU

    AC Circuits

    Solution of the resulting First Order Ordinary Differential Equation

    Solve the resulting first order ordinary differential equation (ODE)

    Solution

    dI(t) / dt + (1/RC) I(t) = (1/R) dV(t) / dt

    dI(t) / dt + (1/RC) I(t) = (1/R) d/dt (V sin ( wt + ))

    dI(t) / dt + (1/RC) I(t) = (V/R) w cos ( wt + ) V( t ) = V sin ( wt + )dV( t ) / dt = V w cos wt

    ^^

    100

    0

    Voltage (Volt)

    Angle (Radians)

    /2 3/2 2

    200

    300

    312

    Amplitude

    Phase angle

    ^

    ^

    R

    C

    +

    _

    + V(0)=V0

    V(t) = V sinwt^

  • 8/10/2019 AC Circuits - Ek

    28/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 28

    METU

    AC Circuits

    Solve the resulting first order ordinary differential equation (ODE)

    Solution

    (t) dI(t)/dt+ I(t) (1/RC)(t) = (t) ( V/R ) w cos ( wt + )

    (t) dI(t)/dt+ I(t) d/dt (t) = ( V/R ) (t) w cos ( wt + )

    d/dt [(t) I(t)] = ( V/R ) (t) w cos ( wt + )

    d/dt [(t) I(t)] dt = ( V/R ) (t) w cos ( wt + ) dt + I(0)

    (t) I(t) = ( V/R ) (t) w cos ( wt + ) dt + I(0)

    I(t) = I (t) -1

    (t) w cos(wt + ) dt + (t)-1I(0)

    ^

    ^

    ^

    ^

    ^

    ^

    Define an integration factor(t) = e t / R C

    Multiply both sides of the above ODE by this factor;

    V( t ) = V sin ( wt + )dV( t ) / dt = V w cos wt

    ^

    ^

    100

    0

    Voltage (Volt)

    Angle (Radians)

    /2 3/2 2

    200

    300

    312

    Amplitude

    Phase angle

    dI(t) / dt + (1/RC) I(t) = (V/R) w cos ( wt + )^

    Solution of the resulting First Order Ordinary Differential Equation

    R

    C

    +

    _

    + V(0)=V0

    V(t) = V sinwt^

  • 8/10/2019 AC Circuits - Ek

    29/98

  • 8/10/2019 AC Circuits - Ek

    30/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 30

    METU

    AC Circuits

    Solution of the resulting First Order Ordinary Differential Equation

    Solution Continued)

    Subsituting the above term into the solution;I(t)

    V( t ) = V sin wt

    dV( t ) / dt = V w cos wt

    ^

    ^

    Switch is turned on at: t = 0 sec

    R

    C

    +

    _

    + V(0)=V0

    V(t) = V sinwt^

    w sinwt + (1/RC) coswtI(t) = I e - t/RCwe t/RC ---------------------------------- + e - t/RCI(0)

    (1/RC)2+ w 2

    ^

    sinwt + (1/wRC) coswtI(t) = I w2----------------------------------- + e - t/RCI(0)

    (1/RC)2+ w 2

    ^

    II(t) = -------------------(sinwt + (1/wRC) coswt) + e - t/RCI(0)

    (1/wRC)2+ 1

    ^

    Steady-State Term Transient Term

    Switch

  • 8/10/2019 AC Circuits - Ek

    31/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 31

    METU

    AC Circuits

    Numerical Example

    Now assume that the parameters of the circuit on

    the RHS are as follows;

    V(t) = 312 sin wt Volts

    R = 10 Ohms

    C = 10 Farads

    I(t)

    R

    C

    +

    _

    + V(0)=V0

    V(t) = V sinwt^

    V( t ) = V sin wt

    dV( t ) / dt = V w cos wt

    ^

    ^

    Switch

    Switch is turned on at: t = 0 sec

    I

    I(t) = -------------------(sinwt + (1/wRC) coswt) + e - t/RCI(0)(1/wRC)2+ 1

    ^

    Steady-State Term Transient Term

    Solution of the resulting First Order Ordinary Differential Equation

  • 8/10/2019 AC Circuits - Ek

    32/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 32

    METU

    AC Circuits

    Numerical Example

    I

    I(t) = -------------------(sinwt + (1/wRC) coswt) + e - t/RCI(0)(1/wRC)2+ 1

    ^

    Steady-State Term Transient Term

    -20-20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    0.5 1 1.5 2 2.5 3 3.5

    5

    10

    15

    20

    25

    0 0.5 1 1.5 2 2.5 3 3.5 4

    -30

    -20

    -10

    0

    10

    20

    30

    40

    0.5 1 1.5 2 2.5 3 3.5 4

    Solution of the resulting First Order Ordinary Differential Equation

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    33/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 33

    METU

    Solution for DC Voltage Source - Two Simple Rules

    Rule - 1

    A capacitor acts as a DC voltage source

    initially due to its initial charge

    I(0) = ( V V0) / R

    The current waveform will then be;

    I(t) = I() + [ I(0) - I() ] e -t/

    = RC = Time Constant: The time required a for

    capacitor to reach 63 % of its full charge

    = 2 x 1000 F = 2 x 1000 x 10-6 = 0.002 sec

    Then the initial value of current will be;

    I(0) = ( VDC V0) / R

    C =1000 F+

    _

    +

    I(t)VDC

    R = 2

    V(0)=V0V = VDC-V0

    R

    +

    _

    +

    I(0) SC

    0

    V(t) = (1 / C) I(t)dt = V(0) = V0-

    Please note that anuncharged capacitoracts effectively as a

    short circuit,i.e. V0= 0

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    34/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 34

    METU

    Solution for DC Voltage Source - Two Simple Rules

    Rule - 2

    A capacitor acts as an open circuit finally

    to a DC voltage (or current)

    The current waveform will then be;

    I(t) = I() + [ I(0) - I() ] e -t/

    I() = 0

    I(t) = C d/dt V(t) = C d/dt (constant) = 0 (OC)

    +

    _

    +

    I(t)VDC

    V(0)=V0

    OC

    +

    I() = 0

    R

    VDC

    Then the final value of current will be;

    I() = 0

    C =1000 F

    R = 2

    = RC = Time Constant: The time required for

    a capacitor to reach 63 % of its full charge

    = 2 x 1000 F = 2 x 1000 x 10-6 = 0.002 sec

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    35/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 35

    METU

    Solution for DC Voltage Source - Two Simple Rules

    Solution

    Substituting the above expressions into

    the current expression

    The current waveform will then be;

    I(t) = I() + [ I(0) - I() ] e -t/

    I(t) = [( VDC V0) / R ] e-t/

    The initial value of current will be;

    I(0) = ( VDC V0) / R

    C =1000 F+

    _

    +

    I(t)VDC

    R = 2

    V(0)=V0

    The final value of current will be;

    I() = 0

    I(t) (Amp)

    0

    4.0

    8.0

    12.0

    16.0

    20.0

    24.0

    0 0,002 0,004 0,006 0,008 0,01

    % 63 of the initial value

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    36/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 36

    METU

    Meaning of Time Constant

    Definition

    Time constant of a electric circuit is

    the duration for the current to getreduced by 63 % of its initial value

    Time constant

    of an RC circuit issimply expressed as:

    = RC

    The Effect of

    0

    0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6

    t (sec)

    1

    2

    3

    4

    5

    % 63 of the initial value

    % 63 of the inital value

    1

    2

    2 >

    1

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    37/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 37

    METU

    Example

    Problem

    Find the voltage waveform across the 1 mF

    capacitor shown on the RHS, when it has aninitial charge of 6 Volts and charged by a 24Volts DC voltage source through a wire with 2Ohm resistance

    C = 1 mF

    R= 2 Ohm

    +

    _

    +

    I(t)

    VDC= 24 Volts V(0)=V0 = 6 V

    The voltage waveform will then be;

    V(t) = V() + [V(0) - V()] e -t/

    V(t) = 24 + ( 6 24 ) e-t/0.002

    = 24 -18 e-t/0.002

    Volts

    Capacitor will behave as a DC source at thebeginning and as OC at the end, hence;

    V(0) = V0= 6 Volts

    V() = VS= 24 Voltst (sec)

    V(t)(Volts)

    0

    4.0

    8.0

    12.0

    16.0

    20.0

    24.0

    0 0,002 0,004 0,006 0,008 0,01

    % 63 of the final value

    = RC = Time Constant: The time required

    for a capacitor to reach 63 % of full charge

    = 2 x 1000 F = 2 x 0.001 = 0.002 sec

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    38/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 38

    METU

    Energy Stored in a Capacitor

    Problem

    Calculate the instantaneous energy

    stored in a capacitor with a capacitanceC and an instantaneous voltage VC(t)

    P(t) = VC(t) I(t)

    WC(t) = P(t) dt

    =

    VC(t) I(t) dt

    = VC(t) C dVC(t) / dt dt

    = C

    VC(t) dVC(t)

    WC(t) = (1/2) C VC2

    (t)

    or

    Example

    A 10 F capacitor fully charged with a 12

    Volts DC voltage stores an energy;(1/2) 10 x10-6x122 = 720 x10-6Joule

    C+

    _

    +

    I(t)

    V(t) Vc

    (t)

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    39/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 39

    METU

    Example

    Problem

    Find the instantaneous energy in thecapacitor for the voltage shown in the

    figure

    Wc(t) = (1/2) 10 x 10-6 V 2sin 2wt

    = 0,000005 x 3122sin2wt

    = 0,4867 sin2wt= 0,4867 ( cos 2x )

    V (t) = V sin wt

    WC(t) = (1/2) C VC2(t)

    ^

    ^

    V( t ) = V sin wt^

    312

    - 312

    Angle (Radians)

    0/2 3/2 2

    Wc(t)

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0/2 3/2 2

    Voltage (Volts)

    Angle (Radians)

    C +

    _

    +

    I(t)

    C = 10 F

    V(t) = 312 sin wt

    Mean of Wc(t) > 0sin2wt = 1 cos2wt = 1 ( 1 + cos2wt ) / 2

    = cos2wt

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    40/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 40

    METU

    Series Connected Capacitances

    V1(t) = (1/C

    1) I(t)dt

    V2(t) = (1/C2) I(t)dt

    ----------- = ----------------------

    V (t) = [ (1/C1) + (1/C2) ]

    I(t)dt= (1/Ctot) I(t)dt

    Hence,

    Series connected capacitances

    +

    I(t)

    C1

    C2

    V1 (t)

    V2 (t)

    +

    +

    + +

    1Ctot = ----------------------

    (1/C1) + (1/C2)

    Series connected capacitancesare combined in the same way asfor shunt connected resistances

    V(t)

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    41/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 41

    METU

    Series and Shunt Connected Capacitances

    Where,C tot= C1 + C2

    is the total capacitance

    Shunt connected capacitances aresimply added

    Shunt connected capacitances

    +

    I(t)

    V(t)C2C1

    I2I1

    Vc(t)

    I1(t) = C1 d V(t) / dtI2(t) = C2d V(t) / dt

    ----------- = ----------------------------

    I (t) = (C1 + C2) d V(t) / dt= Ctot d V(t) / dt

    + +

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    42/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 42

    METU

    Inductance

    Inductance is a winding or

    coil of wire around a core

    Definition

    Coil Core Toroidal Coil Toroidal Core

    Core may be either insulator

    or a ferromagnetic material

    +

    _

    Symbolic representation

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    43/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 43

    METU

    Ferrite Core Toroidal Inductor

    Ferriet core inductor has a

    toroidal ferrit core inside

    Definition

    II

    Toroidal coil

    Ferrite core

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    44/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 44

    U

    Air Core Inductor

    Configuration Air core inductor has no core inside

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    45/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 45

    Basic Relation

    Voltage across an inductor isproportional to the rate of change ofcurrent

    Definition

    V(t) = L d I(t) / dt

    where, V(t) is the voltage across theinductance,I(t) is the current flowingthrough,L is the inductance (Henry)

    1 Henry is a value of inductance defined as

    1 Henry = 1 Voltx1 second / 1 Amp

    Voltage Source V(t)

    I(t)

    Inductance L

    +

    +

    _

    V(t)L

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    46/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 46

    Current in an Inductance

    The equation;

    Definition

    V(t) = L d I(t) / dt

    can be written in inverse form as

    I(t) = (1/L)

    V(t)dt + I(0)

    where I(0) is the current initially flowingin the inductor

    Voltage Source V(t)

    ++

    Inductance L

    _

    I(t)

    V(t) L

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    47/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 47

    I (Amp)

    V(t)

    I(t)

    Inductance+

    Phase Shift between Current and Voltage Waveforms

    I(t) = (1/L) V(t) dt

    = (1/L)

    Vmaxsin wt dt= - (Vmax/ wL) coswt

    = - Imaxcoswt

    +

    -25

    -20

    -15-10

    -5

    0

    5

    10

    15

    20

    Time (Sec)

    25

    0.005 0.010 0.015 0.020

    V (Volts), I (Amp)

    VmaxImax

    Current in an Inductance

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    48/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 48

    Series and Shunt Connected Inductors

    Series connected inductors are added

    V1

    (t) = L1

    d I(t) / dt

    V2(t) = L2d I(t) / dt

    ----------- --------------------------

    V(t) = (L1

    + L2

    ) d I(t) / dt

    = L tot d I(t) / dt

    where

    Ltot

    = L1

    + L2

    is the total inductance

    + + +

    I(t)

    V(t)

    L2

    L1

    V2 (t)

    V1 (t)+

    +

    Series connected inductances

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    49/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 49

    Series and Shunt Connected Inductors

    I1(t) = (1/L1) V(t)dt

    I2(t) = (1/L2) V(t)dt

    -------- --------------------I(t) = [ (1/L1) + (1/L2) ] V(t)dt

    = (1/Ltot) V(t)dt

    +

    Shunt connected inductances

    +

    I(t)

    V(t)L

    2

    L1

    I2I1

    Vc(t)

    1Ltot = ----------------------

    (1/L1) + (1/L2)

    Hence,

    +

    Shunt connected inductances arecombined in the same way as for shuntconnected resistances

    +

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    50/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 50

    Example - 3

    Problem

    Calculate the voltage across the 10 mHinductor with the current shown in the figure

    on the RHS

    0,0 2,0 4,0 6,0

    t (msec)8,0 10,0 12,0 14,0

    0,0

    0,5

    1,0

    I(t) = 0 t < 1 ms

    I(t) = 1/((5-1)x10-3) (t 10-3) 1 t 5 msI(t) = 1 5 t 9 msI(t) = -1/((5-1)x10-3) (t 12 x10-3) 9 t 13 msV(t) = 0 t 13 ms

    I(t) (Amp)

    L = 10 mH

    +

    I(t)

    I(t)

    +

    L

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    51/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 51

    Example - 3

    Solution

    V(t) = L d I(t) / dt

    V(t) (Volts)

    0,0

    0,0 2,0 4,0 6,0

    t (msec)

    8,0 10,0 12,0 14,0

    -2,5

    2,5

    V(t) = 0 t < 1 msV(t) = 0.01x1/((5-1)x10-3) = 2.5 V 1 t 5 msV(t) = 0 5 t 9 msV(t) = 0.01x(-1)/((5-1) x10-3) = -2.5 V 9 t 13 ms

    V(t) = 0 t 13 ms

    Differentiating the current waveform and

    multiplying by L (L = 10-2H);

    L = 10 mH

    +

    I(t)

    I(t)

    +

    L

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    52/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 52

    Example - 4

    Problem

    Assume that the inductor shown on the RHS

    is connected to a voltage source of the form

    shown in the figure

    Find out the inductor current waveform

    assuming that the initial current in the

    inductor is zero

    V(t) = 0 t < 0 s

    V(t) = -10 V 0 t 1 s

    V(t) = 0 t 1 s

    t (sec)

    0,0

    0,0

    -10

    0,5 1,0

    V(t)

    +

    I(t)

    +

    L L = 10 mH

    V(t) (mV)

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    53/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 53

    Example - 4

    Solution

    I(t) = (1/L) V(t) dt + I(0)

    I(t) = 0 t < 0 s

    I(t) = 1/(10x10-3)x V(t) dt= 100 x V(t) dt

    = 100 x (-10 x 10-3

    ) t = - t 0 t 1 sI(t) = -1 A t 1 s

    t (sec)

    I(t) (A)

    0,0

    0,0

    -1

    0,5 1,0

    V(t)

    +

    I(t)

    +

    L L = 10 mH

    I(t) = (1/L) V(t) dt + I(0)

    = 1/(10 x 10-3)

    V(t) dt

    Integrating the voltage expression;

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    54/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 54

    Energy Stored in an Inductor

    Problem

    Calculate the instantaneous energy

    stored in an inductor with an inductanceL and an instantaneous voltage VL(t)

    P(t) = VL(t) I(t)

    WL(t) = P(t) dt

    =

    VL(t) I(t) dt

    = I(t) L dI(t) / dt dt

    = L

    I(t) dI(t)

    WL(t) = L I 2

    (t)

    or

    +

    L

    _

    I(t)

    I(t) VL(t)

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    55/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 55

    Example 5

    Problem

    Find the instantaneous energy in theinductor for the current shown in the figure

    I (t) = 0 t < 1 ms

    I (t) = 1/(4x10-3) (t-10-3) Amp 1 t 5 msI (t) = 1 Amp 5 t 9 ms

    I (t) = 1/(4x10-3) (t - 13x 10-3) Amp 9 t 13 msI (t) = 0 t 13 ms I(t) (Amp)

    0,0

    0,5

    1,0

    0,0 2,0 4,0 6,0

    t (msec)

    8,0 10,0 12,0 14,0

    V(t)

    +

    I(t)

    +

    L

    L = 10 mH

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    56/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 56

    Example 5

    Solution

    By using the above formula

    WL(t) = L I2(t)

    W(t) = 0 Joule t < 1 ms

    W(t) = 312.5 (t-10-3)2 Joules 1 t 5 ms

    W(t) = 0.01 /2 x 12 = 0.005 Joules 5 t 9 msW(t) = 312.5 (t-13x10-3)2 Joules 9 t 13 msW(t) = 0 t 13 ms

    W(t) (Joule)

    0,001

    0,002

    0,003

    0,004

    0,005

    0,006

    0,0 2,0 4,0 6,0

    t (msec)

    8,0 10,0 12,0 14,0

    V(t)

    +

    I(t)

    +

    L

    L = 10 mH

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    57/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 57

    R-L Circuits

    Problem

    Solve the R-L circuit shown on the RHS

    which consists of a resistance in serieswith an inductance for current waveformwhen the switch is turned on at time:t = 0 sec

    A first order ordinary differential equation

    V(t) = R I(t) + L dI(t) / dt

    or

    dI(t) / dt + (R/L) I(t) = (1/L) V(t)

    Writing down KVL for the circuit

    SolutionL

    +

    _

    +

    I(t)

    V(t)

    R

    I(0)=I0

    Switch

    Switch is turned on at: t = 0 sec

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    58/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 58

    Solution of the resulting First Order Ordinary Differential Equation

    Solve the resulting first order ordinary differential equation (ODE)

    Solution

    dI(t) / dt + (R/L) I(t) = (1/L) V(t)

    dI(t) / dt + (R/L) I(t) = (1/L) V sin ( wt + )

    V( t ) = V sin ( wt + )

    ^

    100

    0

    Voltage (Volt)

    Angle (Radians)

    /2 3/2 2

    200

    300

    312

    Amplitude

    Phase angle

    ^

    L

    +

    _

    +

    I(t)

    V(t)

    R

    I(0)=I0

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    59/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 59

    Solve the resulting first order ordinary differential equation (ODE)

    Solution

    (t) dI(t)/dt+ I(t) (1/RC)(t) = (t) ( V / L ) sin ( wt + )

    (t) dI(t)/dt+ I(t) d/dt (t) = ( V / L ) (t) sin ( wt + )

    d/dt [(t) I(t)] = ( V / L ) (t) sin ( wt + )

    d/dt [(t) I(t)] dt = ( V / L ) (t) sin ( wt + ) dt + I(0)

    (t) I(t) = ( V / L ) (t) sin ( wt + ) dt + I(0)

    I(t) = I (t)-1

    (t) sin (wt + ) dt + (t)-1

    I(0)

    ^

    ^

    ^

    ^

    ^

    ^

    Define an integration factor(t) = e t R/L

    Multiply both sides of the above ODE by this factor;

    ^

    100

    0

    Voltage (Volt)

    Angle (Radians)

    /2 3/2 2

    200

    300

    312

    Amplitude

    Phase angle

    dI(t) / dt + (R/L) I(t) = (V/L) sin ( wt + )^

    Solution of the resulting First Order Ordinary Differential Equation

    L

    +

    _

    +

    I(t)

    V(t)

    R

    I(0)=I0

    V( t ) = V sin ( wt + )

    ^

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    60/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 60

    Solution Continued)

    Subsituting the integration factor(t) = e t R/L into

    the above solution;

    I(t) = I e t R/L

    e t R/L sin (wt+ ) dt + e t R/L I(0)^

    Switch is turned on at: t = 0 sec

    Let = 0 (for simplicity)(R/L) sinwt - w coswt

    e t R/L sin wt dt = e t R/L ----------------------------------

    (R/L)2+ w 2

    Taken from the book : Calculus and Analytic Geometry,

    Thomas,Addison Wesley, Third Ed. 1965, pp. 369

    Solution of the resulting First Order Ordinary Differential Equation

    Switch

    L

    +

    _

    +

    I(t)

    V(t)

    R

    I(0)=I0

    V( t ) = V sin ( wt + )^

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    61/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 61

    Solution of the resulting First Order Ordinary Differential Equation

    Solution Continued)

    Subsituting the above term into the solution;

    Switch is turned on at: t = 0 sec

    (R/L) sinwt - w coswtI(t) = I e t R/L e t R/L ---------------------------------- + e t R/L I(0)

    (R/L)2+ w 2

    ^

    (R/L) sinwt - w coswtI(t) = I ----------------------------------- + e t R/L I(0)

    (R/L)2+ w 2

    ^

    I

    I(t) = -------------------(sinwt - (wL/R) coswt) + e t R/L I(0)(wL/R)2+ 1

    ^

    Steady-State Term Transient Term

    Switch

    L

    +

    _

    +

    I(t)

    V(t)

    R

    I(0)=I0

    V( t ) = V sin ( wt + )^

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    62/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 62

    Numerical Example

    Now assume that the parameters of the circuit on

    the RHS are as follows;

    V(t) = 312 sin wt Volts

    R = 1 Ohms

    L = 10 milli Henry

    Switch

    Switch is turned on at: t = 0 sec

    I

    I(t) = -------------------(sinwt - (wL/R) coswt) + e t R/L

    I(0)(wL/R)2+ 1

    ^

    Steady-State Term Transient Term

    Solution of the resulting First Order Ordinary Differential Equation

    L

    +

    _

    +

    I(t)

    V(t)

    R

    I(0)=I0

    V( t ) = V sin ( wt + )^

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    63/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 63

    Numerical Example

    ^

    Steady-State Term Transient Term

    Solution of the resulting First Order Ordinary Differential Equation

    I

    I(t) = -------------------(sinwt - (wL/R) coswt) + e t R/L I(0)(wL/R)2+ 1

    ^

    -250

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    250

    0.5 1 1.5 2 2.5 3 3.5 4

    5

    10

    15

    20

    25

    0 0.5 1 1.5 2 2.5 3 3.5 4

    -300

    -200

    -100

    0

    100

    200

    300

    400

    0.5 1 1.5 2 2.5 3 3.5 4

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    64/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 64

    Solution for DC Voltage - Two Simple Rules

    Rule - 1

    An inductor with no initial current acts asan open circuit to a DC voltage sourceinitially

    Then, the initial value of current will be;

    I(0) = 0

    The current waveform will then be;

    I(t) = I() + [I(0) - I()] e-t/

    I(0) = 0

    = L / R = Time Constant: The time required foran inductor to reach 63 % of full current

    = 1 x 2 mH = 1 x 0.002 = 0.002 Sec

    L=0.002 H

    OC

    + I(0) = 0

    R

    VDC

    R = 1

    +

    _

    +

    I(t)

    VDC0

    I(0) = (1 / L)

    V(t) dt = I0= 0 (OC)-

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    65/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 65

    Rule - 2

    An inductor acts as a short circuit to a

    DC current (or voltage) finally

    Then, the final value of current will be;

    I() = V / R

    I() = V / R

    R

    +

    _

    +

    I()VDC

    +

    _

    + I(t)

    VDC

    SC

    V(t) = L d/dt I(t) = L d/dt (ct) = 0 (SC)

    Solution for DC Voltage - Two Simple Rules

    The current waveform will then be;

    I(t) = I() + [I(0) - I()] e-t/

    L=0.002 H

    R = 1

    = L / R = Time Constant: The time required foran inductor to reach 63 % of full current

    = 1 x 2 mH = 1 x 0.002 = 0.002 Sec

    METU

    AC Circuits

    D fi iti f th Ti C t t

  • 8/10/2019 AC Circuits - Ek

    66/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 66

    Definition of the Time Constant:

    The current waveform will then be;

    I(t) = I() + [I(0) - I()] e -t/

    0

    4.0

    8.0

    12.0

    16.0

    20.0

    24.0

    0 0,002 0,004 0,006 0,008 0,01

    I(t)(Amps

    )

    t (sec)

    % 63 of peak (24 V)

    L = 2mH

    +

    _

    +I(t)

    V= 24 Volts

    R = 1 Ohms

    = L / R = Time Constant: The time required foran inductor to reach 63 % of full current= 1 x 2 mH = 1x 0.002 H = 0.002 Sec

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    67/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 67

    Example - 6

    Problem

    Find the current waveform in the 2 mHinductor shown on the RHS when it has aninitial current of 6 Amps and connected to a24 Volt DC voltage source through a wire with1 Ohm resistance

    The current waveform will then be;

    I(t) = I() + [I(0) - I()] e t /

    I(t) = 24 + (6 - 24) e-t / 0.002= 24 - 18 e-t / 0.002 Amps

    Inductor has 6 Amp initial current;

    I(0) = I0= 6 Amp

    Inductor will be SC at the end, hence;

    I() = V / R = 24 / 1 = 24 Amps

    0

    4.0

    8.0

    12.0

    16.0

    20.0

    24.0

    0 0,002 0,004 0,006 0,008 0,01

    I(t)(Amps)

    t (sec)

    I()

    I(0)

    L = 2mH

    +

    _

    +I(t)

    V= 24 Volts

    R = 1 Ohms

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    68/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 68

    Example - 7

    Problem

    Solve the circuit shown on the RHS for

    current waveform flowing in the inductor

    +

    _

    L = 0.4 H+

    I(t)V= 24 V

    R1 = 10 Ohms

    A

    R2 = 5 Ohms

    B

    First take out the branch containing inductor,

    and derive the Thevenin Equivalent of the LHScircuit seen from the terminals A and B

    Solution

    Kill the voltage source, and find Req.

    R1 = 10 Ohms

    +

    V= 24 V R2 = 5 Ohms

    AA

    L = 0.4 H

    B B

    A

    B

    L = 0.4 H

    R1 = 10 OhmsReq = 10 // 5

    = 10 x 5 /(10 + 5)

    = 10 / 3 Ohms

    A

    R2 = 5 Ohms

    B

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    69/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 69

    Example 7 Continued)

    Solution Continued)

    Open circuit terminals A B and find VAB

    Form the resulting Thevenin equivalentCircuit,

    Connect the inductance to the resultingThevenin equivalent circuit,

    Solve the resulting circuit by using thestraightforward method described inExample 6

    R1 = 10 Ohms

    +

    V= 24 V

    L = 0.4 H+

    V= 24 / 3 = 8 V

    R eq= 10 // 5 = 10 x 5 /(10+5)

    = 10/3 Ohms

    A

    B

    R2 = 5 Ohms

    A

    B

    A

    B

    A

    B

    VA-B (t)

    V = 24 VxR2/ ( R1 + R2)

    = 24 x 5 / 15 = 24 / 3

    = 8 V

    L = 0.4 H

    +

    V= 24 / 3 = 8 V

    R eq= 10 // 5 = 10 x 5 /(10+5)

    = 10/3 Ohms

    A

    B

    METU

    AC Circuits

  • 8/10/2019 AC Circuits - Ek

    70/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 70

    R-L-C Circuits

    Problem

    Solve the following circuit which consists of a

    resistance, an inductance and a capacitanceconnected in series for current waveform

    V(t) = R I(t) + VL(t) + VC(t)

    = R I(t) + L dI(t)/dt + (1/C)

    I(t)dt + V(0)

    Differentiating both sides wrt time once;

    dV(t)/dt = R dI(t)/dt + Ld2I(t)/dt2+(1/C)I(t)

    or

    d2I(t)/dt2 + (R/L)dI(t)/dt + (1/LC) I(t) = (1/L) dV(t)/dt

    A second order ordinary differential equation

    Writing down KVL for the circuit;

    Solution

    V(t)

    C+

    _

    + I(t)

    R

    V(0)=V0

    I(0)=I0

    +

    _

    +

    R L C

    L

    V(t)

    METU

    AC Circuits

    Initial Conditions

  • 8/10/2019 AC Circuits - Ek

    71/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 71

    Differential Equation

    VC(0) = VC0

    IL(0) = IL0

    d2I(t)/dt2 + (R/L)dI(t)/dt + (1/LC) I(t) = (1/L) dV(t)/dt

    Initial Conditions

    +

    _

    +

    R L C

    VC(0) = V(0) VL(0) VR(0)

    = V(0) L d/dt IL(0) R IL(0)

    The first initial condition may now be written as,

    or

    d/dt IL(0)= IL(0) =(1/L) [V(0) VC(0) R I L(0) ]

    1

    2Two initial conditions are needed for solution

    V(t)C

    +

    _

    + V(0)=V0

    I(t)

    R I(0) = I0L

    METU

    AC Circuits

    Example

  • 8/10/2019 AC Circuits - Ek

    72/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 72

    R-L-C Circuit

    d2I(t)/dt2 + (R/L)dI(t)/dt + (1/LC) I(t) = (1/L) dV(t)/dt

    Solve the R-L-C circuit with the given parameters

    shown on the RHS for current I(t)

    d2I(t)/dt2 + (2/1) dI(t)/dt + 401 I(t) = (1/1) dV(t)/dt

    d2I(t)/dt2+ 2 dI(t)/dt + 401 I(t) = d/dt (10 e-4t) = - 400 e-4t

    +

    C = 2.494 mF

    +I(t)

    R = 2 L = 1 H

    V(t) = 100 e- 4 t

    _

    1 / (LC) = 401

    Writing down KVL for the circuit shown on theRHS the following ODE is obtained

    METU

    AC Circuits

    Solution

  • 8/10/2019 AC Circuits - Ek

    73/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 73

    +

    _

    +

    R = 2

    I(t)

    L = 1 H

    d2I(t)/dt2 + 2 dI(t)/dt + 401 I(t) = 0

    First, obtain the homogeneous equation

    by setting the RHS function to zero

    Then, solve the characteristic equation

    s2 + 2 s + 401 = 0

    s1, s2= ( - b b2-4xaxc ) / (2 a)

    = -1 j 20

    Eigenvalues of the differential equation

    V(t) = 100 e- 4 t

    R-L-C Circuit

    a =1 b = 2 c = 401

    C = 2.494 mF

    METU

    AC Circuits

    Solution

  • 8/10/2019 AC Circuits - Ek

    74/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 74

    V(t) = 100 e- 4 t

    +

    _

    +

    R = 2

    I(t)

    L = 1 H

    Then, the solution becomes

    e j= cos+ j sin = e - t[ k1 (cos 20 tj sin 20 t )= + k2(cos 20 t + j sin 20 t ) ]

    I(t) = k1 es1 t + k2e

    s2 t

    = k1 e(-1 j20 ) t + k2e

    (-1 + j20 ) t

    = k1 e - t x e j20 t + k2 e - t x e j20 t

    = e - t(k1 e j20 t + k2 e

    j20 t) Eulers Identity

    R-L-C Circuit

    = 20 t

    C = 2.494 mF

    METU

    AC Circuits

    Eulers Identity

  • 8/10/2019 AC Circuits - Ek

    75/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 75

    Graphical Representaion

    e j= cos+ j sin

    Definition

    ^

    1.0

    cos

    sin

    e j = cos+ j sin = cos2+ sin2= 1

    x

    y

    z

    x2+ y2= z2

    z = x2 + y2

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 75

    METU

    AC Circuits

    Solution

  • 8/10/2019 AC Circuits - Ek

    76/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 76

    Rearranging the solution terms

    = e - t[ k1 (cos 20tj sin 20t )

    = + k2(cos 20t + j sin 20t ) ]

    = e

    - t

    [ (k1 + k2) cos 20t + (k2 k1) sin 20t ]

    A B

    R-L-C Circuit

    I(t) = e - t( A cos 20t + B sin 20t)

    Hence, the sinusoidal solution (decayingsinusoidal term) becomes;

    V(t) = 100 e- 4 t

    +

    _

    +

    R = 2

    I(t)

    L = 1 H

    Unknown coefficients to determined

    C = 2.494 mF

    METU

    AC Circuits

    Solution

  • 8/10/2019 AC Circuits - Ek

    77/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 77

    Nonhomogeneous Term

    Transient Term)

    Now the nonhomogeneous (transient) term in thesolution is to be determined V(t) = 100 e- 4 t

    +

    _

    R = 2

    +

    I(t)

    L = 1 H

    Definition of the Nonhomogeneous Term

    General form of the nonhomogeneous (transient)term in the solution may be expressed as

    In(t) = c e 4 t

    where, In(t) is the nonhomogeneous term in the solution,c is an unknown coefficient to be determined

    C = 2.494 mF

    METU

    AC Circuits

    Solution

  • 8/10/2019 AC Circuits - Ek

    78/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 78

    Substitute the nonhomogeneous solution;

    In(t) = c e 4 t

    to the given differential equation;

    and solve it for the unknown coefficient c

    d2I(t)/dt2 + 2 dI(t)/dt + 401 I(t) = - 400 e-4t

    Nonhomogeneous Term

    Transient Term)

    d2(ce 4 t)/dt2 + 2 d(ce 4 t)/dt + 401 ce 4 t = -400 e-4t

    16c e 4 t+ 2c(-4 e 4 t ) + 401 c e 4 t = - 40 e-4 t

    V(t) = 100 e- 4 t

    +

    _

    +

    R = 2

    I(t)

    L = 1 H

    C = 2.494 mF

    These terms cancel

    METU

    AC Circuits

    Solution

  • 8/10/2019 AC Circuits - Ek

    79/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 79

    Transient Term

    16 c - 8 c + 401 c = - 400

    409 c = - 400 or c = - 400 / 409 = - 0.97799

    Transient term then becomes;

    In

    (t) = - 0.97799 e 4 t

    d2(ce 4 t)/dt2 + 2 d(ce 4 t)/dt + 401 ce 4 t = -400 e-4t

    16c e 4 t+ 2c(-4 e 4 t ) + 401 c e 4 t = - 40 e-4 t

    These terms cancel

    V(t) = 100 e- 4 t

    +

    _

    +I(t)

    R = 2 L = 1 H

    C = 2.494 mF

  • 8/10/2019 AC Circuits - Ek

    80/98

    METU

    AC Circuits

    Solution

  • 8/10/2019 AC Circuits - Ek

    81/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 81

    V(t) = 100 e- 4 t

    +

    _

    +

    R = 2

    I(t)

    L = 1 H

    I(t) = - 0.97799 e 4 t

    + e- t

    ( A cos 2t + B sin 2t)

    Transient Term

    Determination of the Unknown

    Coefficients

    The above solution must satisfy the giveninitial conditions;

    Decaying sinosoidal Term

    C = 2.494 mF

    IL (0) = IL0= 32.5 A

    VC(0) = VC0 = 22 Volts

    METU

    AC Circuits

    Solution

  • 8/10/2019 AC Circuits - Ek

    82/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 82

    Determination of the Unknown

    Coefficients

    IL (0) = IL0= 32.5 A

    VC(0) = VC0 = 22 Volts

    Substitute the given initial conditions intothe complete solution equation and solve forthe unknown coefficients A and B;

    V(t) = 100 e- 4 t

    +

    _

    +

    R = 2

    I(t)

    L = 1 HI(t) = - 0.97799 e 4 t

    + e- t

    ( A cos 2t + B sin 2t)

    Transient Term Decaying sinosoidal TermC = 2.494 mF

    METU

    AC Circuits

    Solution

  • 8/10/2019 AC Circuits - Ek

    83/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 83

    Determination of the Unknown

    Coefficients

    Substitute the given initial conditions into thecomplete solution equation and solve for theunknown coefficients A and B;

    A = 0.97799

    IL(0) = - 0.97799 e0 + e 0( A cos 0 + B sin 0)

    = - 0.97799 + A = 0

    IL(t) = - 0.97799 e 4 t + e - t( A cos 20t + B sin 20t)

    V(t) = 100 e- 4 t

    +

    _

    +

    I L(t)

    R = 2 L = 1H

    C = 2.494 mF

    IL (0) = IL0= 32.5 A

    VC(0) = VC0 = 22 Volts

    METU

    AC Circuits

    Solution

  • 8/10/2019 AC Circuits - Ek

    84/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 84

    V(0) = 100 e- 4 t

    = 100 e- 4 x 0

    = 1000 0

    Determination of the Unknown

    Coefficients

    IL (0) = IL0= 32.5 A

    VC(0) = VC0 = 22 Volts

    IL(t) = - 0.97799 e 4 t

    + e- t

    ( A cos 20t + B sin 20t)

    d/dt IL(0) = IL(0) = (1/L) [ V(0) VC(0) R IL(0) ]

    = (1/1) (100 22 2 * 32.5)= 13 Amp/sec

    V(t) = 100 e- 4 t

    +

    _

    +

    I L(t)

    R = 2 L = 1 H

    C = 2.494 mF

    METU

    AC Circuits

    Solution

  • 8/10/2019 AC Circuits - Ek

    85/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 85

    Determination of the Unknown

    Coefficients

    d/dt IL(t) = 0.97799 x 4 e 4 t

    - e- t

    (A cos 20t +B sin 20t)+ e - t( -20 A sin 20 t + 20 B cos 20t )

    d/dt IL(0) = 0.97799 x 4 e0- e 0(A cos 0 + B sin 0)

    + e 0(-20 A sin 0 + 20 B cos 0 ) = 13

    = 0.97799 x 4 A + 20B = 13

    = 0.97799 x 4 0.97799 + 20B = 13

    B = (13 - 3 x 0.9799) / 20 = 0.5033

    V(t) = 100 e- 4 t

    +

    _

    +

    I L(t)

    R = 2 L = 1 H

    C = 2.494 mF

    METU

    AC Circuits

    Solution Terms

  • 8/10/2019 AC Circuits - Ek

    86/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 86

    IL(t) = - 0.9799 e 4 t + e - t( 0.97799 cos 20t + 0.5033 sin 20t)

    General form of the Solution

    Decaying sinosoidal TermTransient Term

    +

    _

    V(t) = 100 e- 4 t

    +

    I(t)

    R = 2 L = 1 H

    C = 2.494 mF

    METU

    AC Circuits

    Solution Terms

  • 8/10/2019 AC Circuits - Ek

    87/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 87

    Transient Term

    Transient Term

    +

    _

    V(t) = 100 e- 4 t

    +

    I(t)

    R = 2 L = 1 H

    C = 2.494 mF

    IL(t) = - 0.9799 e 4 t + e - t( 0.97799 cos 20t + 0.5033 sin 20t)

    -1,20

    -1,00

    -0,80

    -0,60

    -0,40

    -0,20

    0,000,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

    METU

    AC Circuits

    Solution Terms

  • 8/10/2019 AC Circuits - Ek

    88/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 88

    Sinosoidal Terms

    Sinusoidal Terms

    0.9779 cos 20t + 0.5033sin 20t

    0.9779 cos 20t

    0.5033 sin 20t

    +

    _

    V(t) = 100 e- 4 t

    +

    I(t)

    R = 2 L = 1 H

    C = 2.494 mF

    IL(t) = - 0.9799 e 4 t + e - t( 0.97799 cos 20t + 0.5033 sin 20t )

    -1,20

    -0,80

    -0,40

    0,00

    0,40

    0,80

    1,20

    0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

    METU

    AC Circuits

    Solution Terms

  • 8/10/2019 AC Circuits - Ek

    89/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 89

    Exponentially Decaying Sinusoidal Term

    V(t) = 100 e- 4 t

    +

    _

    +

    I(t)

    R = 2 L = 1 H

    C = 2.494 mF

    IL(t) = - 0.9799 e 4 t + e - t( 0.97799 cos 20t + 0.5033 sin 20t )

    -1,20

    -0,80

    -0,40

    0

    0,40

    0,80

    1,20

    0,5 1 1,5 2 2,5 3 3,5 4

    e - t

    METU

    AC Circuits

    Solution Terms

  • 8/10/2019 AC Circuits - Ek

    90/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 90

    Overall Solution

    V(t) = 100 e- 4 t

    +

    _

    +

    I(t)

    R = 2 L = 1 H

    C = 2.494 mF

    IL(t) = - 0.9799 e 4 t + e - t( 0.97799 cos 20t + 0.5033 sin 20t )

    -1,60

    -1,20

    -0,80

    -0,40

    0,0

    0,40

    0,80

    0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

    METU

    AC Circuits

    The Concept of RMS Value

  • 8/10/2019 AC Circuits - Ek

    91/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 91

    Definition: RMS Root Mean Square)

    Justification is based on the principle ofequating the currents calculated in both cases.

    First, calculate the power dissipated (lost asheat) in the resistance R in the DC circuitshown on the RHS

    VR = R xIDCP = VRxIDC

    = R xIDC2

    VDC

    _

    +

    IDC

    VR

    RMS value of an AC current is the value of DCcurrent that would dissipate the same amountof power as the AC current on a resistance R

    Justification

    +

    R

    METU

    AC Circuits

    The Concept of RMS Value

    I 2(t) (I i t )2I(t) I i t

  • 8/10/2019 AC Circuits - Ek

    92/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 92

    Now, calculate the power dissipated (lostas heat) in the resistance R in the AC

    circuit shown on the RHS

    V (t) = I(t) xR

    P (t) = V(t) xI(t)

    = R I(t)2

    = R (Vmax/ R sin wt )2

    = R (I maxsin wt )2

    R

    V(t) = Vmaxsin wt

    _

    +

    I(t)

    V(t)

    +

    V(t)

    I(t) = (Vmax/ R) sin wt

    Imax

    -2,0

    -1,5

    -1,0

    -0,5

    0

    0,5

    1,0

    1,5

    2,0

    2,5

    Angle (Radians)

    /2 3/2 20

    I 2(t) = (Imaxsin wt )2I(t) = Imaxsin wtMS Root Mean Square)

    METU

    AC Circuits

    The Concept of RMS Value

  • 8/10/2019 AC Circuits - Ek

    93/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 93

    Problem

    Let us now calculate the average of P(t)

    Pavg = (1/T) P(t) dt

    = (1/T)

    R I(t)2 dt

    = R (1/T)

    I(t)2dt

    = R Irms2

    where I(t)rms = ((1/T) I(t)2dt)1/2

    I(t)rms

    =

    ( 1/T ) I(t)2dt

    0

    0,5

    1,0

    1,5

    2,0

    2,5

    Angle (Radians)

    /2 3/2 20

    Irms = ( 1/T ) I(t)2dtI2(t) = ( Imaxsin wt )2

    METU

    AC Circuits

    Definition of RMS Value

    I2(t) ( I i t )2

  • 8/10/2019 AC Circuits - Ek

    94/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 94

    Problem

    RMS value of an AC current is the valueof DC current that would dissipate the

    same amount of power as AC current ona resistance R

    _

    +

    IDC

    R

    +

    VR

    _

    +

    I(t)

    V(t) +

    VR(t)

    Pavg= R IDC2 Pavg= R I(t)rms

    2=

    VDC

    R

    I2(t) = ( Imaxsin wt )2

    0

    0,5

    1,0

    1,5

    2,0

    2,5

    Angle (Radians)

    /2 3/2 20

    Irms = ( 1/T ) I(t)2dt

    METU

    AC Circuits

    RMS Value of a Sinusoidal Waveform

  • 8/10/2019 AC Circuits - Ek

    95/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 95

    RMS value of a sinusoidal waveform maybe expressed as 0.7071 multiple of thepeak value of the waveform as follows;

    I (t) = I maxsin wt

    Irms = ((1/T) I(t)2dt)1/2

    = ((1/T) (I maxsin wt)2dt)1/2

    = ((1/T) (Imax

    2 sin2w td t )1/2

    = ((1/T) Imax2 (1 cos2wt) dt )1/2

    = ((1/T) Imax2 ( d t cos2wt dt ))1/2

    = ((1/T) Imax2( T / 2 x0 ))1/2

    = ((1/T) T Imax2/ 2 )1/2

    = ( Imax2/ 2 )1/2

    = Imax/ 2 = I maxx0.7071-2,0

    -1,5

    -1,0

    -0,5

    0

    0,5

    1,0

    1,5

    2,0

    Current (Amp)

    Angle (Radians)

    /2 3

    /22

    sin2wt = 1 cos2wt

    = 1 (1 + cos 2wt) / 2

    = 1 cos 2wt

    = cos2wt

    METU

    AC Circuits

    RMS Value of a Sinusoidal Waveform

  • 8/10/2019 AC Circuits - Ek

    96/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 96

    Calculate the RMS value of thesinusoidal voltage waveform shown onthe RHS

    Vrms = Vmax/ 21/2 = V maxx0.7071

    = 312 x 0,7071 = 220 Volts

    Problem

    Domestic rms voltage level in Turkey

    312

    - 312

    0

    V

    oltage(Volts)

    Angle (Radians)

    /2 3/2 2

    Vrms = 220 Volts

    220

    METU

    AC Circuits

    Example - 8

    V = ( 1/T ) V(t)2 dt

  • 8/10/2019 AC Circuits - Ek

    97/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 97

    Problem

    Calculate the RMS value of a the voltagewaveform shown on the RHS

    Vrms = ( 1/T ) V(t)2dt

    -4

    -2

    0

    2

    4

    0,1 0,2 0,3 0,4 0,5 0,6

    Time (msec)Voltage(Volts)

    Voltage2(Volts)

    0

    8

    16

    24

    32

    0,1 0,2 0,3 0,4 0,5 0,6

    Time (msec)

    V2(t) = 16

    _

    +

    I(t)

    V(t) +

    VR(t)

    Vrms = ( 1/T ) V(t)2dt

    Vrms = ( 1/0.3) ( 42dt + (-4)2dt)0

    0.1

    0.1

    0.3

    = 4 Volts

    METU

    AC Circuits

    Any Questions Please ?

  • 8/10/2019 AC Circuits - Ek

    98/98

    EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAOLU, Page 98