1
http://lbc.msu.edu/evo-ed Peter White 1 , Merle Heidemann 2 and Jim Smith 1 Abstract Students are o6en taught evolu9on in the context of ecological systems, isolated from gene9c and cellular mechanisms. In reality, a complete understanding of evolu9on requires knowledge spanning many biological subdisciplines. To address this issue, we developed case studies that track the evolu9on of traits from the gene9c level, to protein func9on, cell biology and macroecology. These case studies help students examine the evolu9on of: (i) light fur in beach mice, (ii) seed shape and taste in peas; (iii) color vision in primates and (iv) toxin resistance in so6shell clams. The cases were piloted in an introductory biology course at Michigan State University in the spring of 2012. Students who learned evolu9on in a casestudy context were more able to (i) explain the molecular basis of muta9on, (ii) describe how muta9ons lead to phenotypic change and (iii) make mechanis9c links between genotypes and phenotypes. Case studies can be implemented within a course, within a course sequence or across an en9re biology curriculum and are available for adapta9on and use. Case Study Assessment We used an openended assessment tool to evaluate student knowledge of evolu9onary concepts at the beginning and at the end of the semester. It was designed to measure student ability to apply evolu9onary principles in ecology (natural selec9on), gene9cs (muta9on) and cell biology (the role of proteins). Valida9on of the assessment was done with student interviews. Introduc8on The primary objec9ve of this project is to develop and implement case studies that integrate evolu9onary concepts from the molecular to the popula9on level. This is a unique approach because it focuses on single study systems, in the context of case studies, with the evolu9onary process traced from its origina9on in a DNA muta9on, to the produc9on of different proteins, to the fixa9on of alternate macroscopic phenotypes in reproduc9vely isolated popula9ons. This is a radical departure from most, if not all, curricular materials in evolu9on educa9on, which typically focus on one or a few aspects of the biology of a study system that are involved in the evolu9onary process. A truly integrated framework for understanding evolu9on is rarely provided. We are addressing this gap in understanding through the development and implementa9on of case studies that explicitly link molecular and cellular processes to evolu9on by natural selec9on. Case Study 1: Mouse Fur Color Evolu8on Case Study 2: Pea Seed Shape and Taste Evolu8on Natural History: There are several subspecies of Peromyscus Beach Mice that live in the southeastern USA. Subspecies along coastal sand beaches tend to have light fur whereas inland popula9ons tend to have dark brown fur. Gene8cs: Subspecies that have light coats o6en have a muta9on in their melanocor9n 1 receptor (mc1r) gene on chromosome #16. This muta9on is a single subs9tu9on at nucleo9de #199 (of 954 nt) where a cytosine changed to a thymine. The result of this muta9on is an amino acid change from arginine to cysteine at posi9on #67 in the resul9ng MC1R protein. Cell Biology: The MC1R protein is a transmembrane protein. When MC1R binds to a melanocyte s9mula9ng hormone is starts a mul9step biosynthe9c process that results in the produc9on of the pigment eumelanin. The CT muta9on changes the MC1R protein structure, which inhibits it from effec9vely binding αMSH, ul9mately inhibi9ng effec9ve eumelanin produc9on. Ecology: Evidence suggests that furenvironment color matching is as a result of selec9ve preda9on from predators that can detect dark colored prey in a light background and viceversa. Popula8on Gene8cs: Scoring of genotypes and phenotypes of individuals from different popula9ons show a strong link between the presence of the mutated MC1R allele and light fur. Key References: (1) Barsh (1996) Trends in Gene2cs, 12 (8): 299305. (2) Hoekstra et al. (2006) Science, 313: 101104. (3) Kaufman (1974) Journal of Mammalogy, 55(2): 271283. Gene8cs: A func9onal SBE is coded for by the R allele of the sbe1 gene. A nonfunc9onal SBE is coded for by the r allele of the sbe1 gene. These alleles are iden9cal with the excep9on of an 800bp inser9on into the r allele sequence. This inser9on makes the SBE protein nonfunc9onal. Cell Biology: When pea plants have a func9onal starchbranching enzyme (SBE) they can convert sugar into starch. Without a func9onal SBE, less starch is made and excess sugars are converted into sucrose. Peas with high sugar content retain water and dry out to become wrinkly. Ecology and Popula8on Gene8cs: Selec9ve crop breeding of a homozygous recessive trait can be very effec9ve and dominant alleles can be removed from popula9ons in a maeer of genera9ons. In the case of round and wrinkled peas, humans have provided the (ar9ficial) selec9on agent that has resulted in r allele fixa9on in domes9c pea popula9ons. Key References: (1) Bhaeacharyya et al. (1990) Cell, 60: 115122. (2) Guilfoile (1997) The American Biology Teacher, 59(2): 9295. (3) Ljus9na and Mikic (2010) Field and Vegetable Crops Research, 47: 457460. 1 Lyman Briggs College. 2 Dept of Geological Sciences. Michigan State University [email protected] Case Study Implementa8on PHASE 1: SPRING 2012 LB 145 – Introductory Cell and Molecular Bio (TREATMENT: CASE STUDIES IMPLEMENTATION) Students have previously taken an introductory organismal bio course. LB144 – Introductory Organismal Bio (CONTROL) Students have not previously taken a universitylevel bio course. BS162 – Organisms and Popula8ons (CONTROL) Students have previously taken an introductory cell and molecular bio course. PHASE 2 will beginning in the Fall of 2012 where the cases will be used in addi9onal courses. Hoekstra et al., 2006 Natural History: Field peas have been grown and eaten by humans for more than 12,000 years. Ancient pea popula9ons were starchy and round; modern pea popula9ons are wrinkled and sweet. Q1. Jaguars can have an orange coat or a black coat. Orange jaguars have either two G alleles or one G allele and one g allele, whereas black jaguars have two g alleles. When a jaguar has the genotype gg, what happens so that a black coat is produced? Q2. Toxican mushrooms contain a toxin that causes vomiting when ingested. Recently, some Toxican mushrooms were found that did not produce the toxin. Describe in detail what might have happened at the molecular level so that these mushrooms no longer produce this toxin? Q3. The nonpoisonous Toxican mushroom has become more frequent in mushroom populations and poisonous Toxican mushrooms have become rare. De8ine Natural Selection and use it to explain this scenario. Q4. Considering genetic mutation – (i) Describe, at the molecular level, what a mutation is. (ii) Use your answer from part (i) to describe the process whereby a mutation results in a change at the phenotype level. 0 0.5 1 1.5 2 Q1 Q2 Q3 Q4i Q4ii PreCourse PostCourse Results 0 0.5 1 1.5 2 Q1 Q2 Q3 Q4i Q4ii 0 0.5 1 1.5 2 Q1 Q2 Q3 Q4i Q4ii Average Student Score (n = 94) Average Student Score (n = 74) Average Student Score (n = 63) LB145 LB144 Connec9ng genotypes to phenotypes. Describing the cellular mechanism of phenotypic expression. Applying natural selec9on to explain change in allele frequency. Understanding the gene9c basis of muta9on. Describing how muta9on results in a phenotype change. Ques9ons were scored on a 2point scale: 0 = response is absent, incorrect or mostly incorrect 1 = response is par9ally correct 2 = response is correct or mostly correct Students who learned evolu9on through a molecular and gene9c founda9on (LB145) had a more complete understanding of evolu9onary mechanisms than students who learned evolu9on in the tradi9onal way, from an organismal perspec9ve. BS162 Discussion Preliminary research suggests that an integra9ve case study approach to evolu9on educa9on is effec9ve for helping students learn the mechanisms of evolu9on. Successful case study implementa9on will require students to have a very basic understanding of gene9c and molecular concepts. This understanding o6en comes as a natural progression of learning in introductory cell and molecular courses but curriculum adjustment may be required to help students understand these concepts in introductory organismal courses. Addi9onal data collec9on is scheduled for the fall of 2012 to verify our pilot study results. * * * * * * * * Case Study 3: Toxin Resistance in Clams A single nucleo9de subs9tu9on muta9on in a voltage gated sodium channel gene makes so6 shell clams resistant to paraly9c shellfish poisoning. Clams without the muta9on are unable to transmit ac9on poten9al down neuron axons. Case Study 4: Trichroma8c Vision in Old World Primates The long wave sensi9ve opsin gene originated from the duplica9on and muta9on of the medium wave sensi9ve opsin gene, around 40 MYA. Trichroma9c vision makes primates more efficient foragers in fruit trees. Acknowledgements This project is funded by NSF and by Lyman Briggs College at Michigan State University. Thanks to Kathis Ellis and Joe Murray for their administra9ve assistance. The website was created with the technical exper9se of Miles Loh. We would also like to thank the following Lyman Briggs and MSU faculty for their involvement in our project: Kendra Cheruvelil, Gerry Urquhart, Chuck Elzinga, Cherryl Murphy and Alex Shingleton.

Abstract Case%Study%1:%Mouse%Fur%Color%Evolu8on Results · PeterWhite 1,"Merle"Heidemann2" and"Jim"Smith1" Abstract " " Students"are"o6en"taughtevolu9on"in"the"contextof"ecological"systems,"isolated

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Abstract Case%Study%1:%Mouse%Fur%Color%Evolu8on Results · PeterWhite 1,"Merle"Heidemann2" and"Jim"Smith1" Abstract " " Students"are"o6en"taughtevolu9on"in"the"contextof"ecological"systems,"isolated

http://lbc.msu.edu/evo-ed

Peter  White1,  Merle  Heidemann2  and  Jim  Smith1  

Abstract    

Students  are  o6en  taught  evolu9on  in  the  context  of  ecological  systems,   isolated  from  gene9c  and  cellular  mechanisms.  In  reality,  a  complete  understanding  of  evolu9on  requires  knowledge  spanning  many   biological   sub-­‐disciplines.   To   address   this   issue,   we   developed   case   studies   that   track   the  evolu9on  of  traits  from  the  gene9c  level,  to  protein  func9on,  cell  biology  and  macroecology.  These  case  studies  help  students  examine  the  evolu9on  of:  (i)   light  fur   in  beach  mice,  (ii)  seed  shape  and  taste  in  peas;  (iii)  color  vision  in  primates  and  (iv)  toxin  resistance  in  so6-­‐shell  clams.  The  cases  were  piloted  in  an  introductory  biology  course  at  Michigan  State  University  in  the  spring  of  2012.  Students  who  learned  evolu9on  in  a  case-­‐study  context  were  more  able  to  (i)  explain  the  molecular  basis  of  muta9on,   (ii)   describe   how  muta9ons   lead   to   phenotypic   change   and   (iii)  make  mechanis9c   links  between   genotypes   and   phenotypes.   Case   studies   can   be   implemented  within   a   course,   within   a  course  sequence  or  across  an  en9re  biology  curriculum  and  are  available  for  adapta9on  and  use.  

Case  Study  Assessment    

We  used  an  open-­‐ended  assessment  tool  to  evaluate  student  knowledge  of  evolu9onary  concepts  at  the  beginning  and  at   the  end  of   the  semester.   It  was  designed  to  measure  student  ability   to  apply  evolu9onary  principles  in  ecology  (natural  selec9on),  gene9cs  (muta9on)  and  cell  biology  (the  role  of  proteins).  Valida9on  of  the  assessment  was  done  with  student  interviews.  

Introduc8on    

The   primary   objec9ve   of   this   project   is   to   develop   and   implement   case   studies   that   integrate  evolu9onary  concepts  from  the  molecular  to  the  popula9on  level.  This  is  a  unique  approach  because  it   focuses   on   single   study   systems,   in   the   context   of   case   studies,   with   the   evolu9onary   process  traced  from  its  origina9on  in  a  DNA  muta9on,  to  the  produc9on  of  different  proteins,  to  the  fixa9on  of   alternate   macroscopic   phenotypes   in   reproduc9vely   isolated   popula9ons.   This   is   a   radical  departure  from  most,  if  not  all,  curricular  materials  in  evolu9on  educa9on,  which  typically  focus  on  one  or  a  few  aspects  of  the  biology  of  a  study  system  that  are  involved  in  the  evolu9onary  process.  A  truly   integrated   framework   for  understanding  evolu9on   is   rarely  provided.  We  are  addressing   this  gap   in  understanding   through   the  development  and   implementa9on  of   case   studies   that  explicitly  link  molecular  and  cellular  processes  to  evolu9on  by  natural  selec9on.    

Case  Study  1:  Mouse  Fur  Color  Evolu8on  

Case  Study  2:  Pea  Seed  Shape  and  Taste  Evolu8on  

Natural  History:   There  are  several  sub-­‐species  of  Peromyscus  Beach  Mice  that  live  in  the  southeastern  USA.  Sub-­‐species  along  coastal  sand  beaches  tend  to  have  light  fur  whereas  inland  popula9ons  tend  to  have  dark  brown  fur.  Gene8cs:   Sub-­‐species   that   have   light   coats   o6en   have   a   muta9on   in   their   melanocor9n   1  receptor  (mc1r)  gene  on  chromosome  #16.  This  muta9on  is  a  single  subs9tu9on  at  nucleo9de  #199  (of   954  nt)  where   a   cytosine   changed   to   a   thymine.   The   result   of   this  muta9on   is   an   amino   acid  change  from  arginine  to  cysteine  at  posi9on  #67  in  the  resul9ng  MC1R  protein.  

Cell  Biology:  The  MC1R  protein  is  a  transmembrane  protein.  When  MC1R  binds  to  a  melanocyte  s9mula9ng  hormone  is  starts  a  mul9step  biosynthe9c  process  that  results  in  the  produc9on  of  the  pigment  eumelanin.  The  CàT  muta9on  changes  the  MC1R  protein  structure,  which  inhibits  it  from  effec9vely  binding  α-­‐MSH,  ul9mately  inhibi9ng  effec9ve  eumelanin  produc9on.  

Ecology:   Evidence  suggests   that   fur-­‐environment  color  matching  is  as  a  result  of  selec9ve  preda9on  from  predators  that  can  detect  dark  colored  prey  in  a  light  background  and  vice-­‐versa.  

Popula8on  Gene8cs:  Scoring  of  genotypes  and  phenotypes  of  individuals   from  different   popula9ons   show  a   strong   link   between  the  presence  of  the  mutated  MC1R  allele  and  light  fur.  Key  References:    (1)  Barsh  (1996)  Trends  in  Gene2cs,  12  (8):  299-­‐305.  (2)  Hoekstra  et  al.  (2006)  Science,  313:  101-­‐104.      (3)  Kaufman    (1974)  Journal  of  Mammalogy,  55(2):  271-­‐283.    

Gene8cs:  A  func9onal  SBE  is  coded  for  by  the  R  allele  of  the  sbe1  gene.  A  non-­‐func9onal  SBE  is  coded  for  by  the  r  allele  of  the  sbe1  gene.  These  alleles  are  iden9cal  with  the  excep9on  of  an  800bp  inser9on  into  the  r  allele  sequence.  This  inser9on  makes  the  SBE  protein  non-­‐func9onal.  

Cell  Biology:  When  pea  plants  have  a  func9onal  starch-­‐branching  enzyme  (SBE)  they  can  convert  sugar  into  starch.  Without  a  func9onal  SBE,  less  starch  is  made  and  excess  sugars  are  converted  into  sucrose.  Peas  with  high  sugar  content  retain  water  and  dry  out  to  become  wrinkly.  

Ecology  and  Popula8on  Gene8cs:  Selec9ve  crop  breeding  of  a  homozygous  recessive  trait  can   be   very   effec9ve   and   dominant   alleles   can   be   removed   from   popula9ons   in   a   maeer   of  genera9ons.  In  the  case  of  round  and  wrinkled  peas,  humans  have  provided  the  (ar9ficial)  selec9on  agent  that  has  resulted  in  r  allele  fixa9on  in  domes9c  pea  popula9ons.  Key  References:    (1)  Bhaeacharyya  et  al.  (1990)  Cell,  60:  115-­‐122.  (2)  Guilfoile  (1997)  The  American  Biology  Teacher,  59(2):  92-­‐95.  (3)  Ljus9na  and  Mikic  (2010)  Field  and  Vegetable  Crops  Research,  47:  457-­‐460.    

1Lyman  Briggs  College.    2  Dept  of  Geological  Sciences.    Michigan  State  University  [email protected]  

Case  Study  Implementa8on    

PHASE  1:  SPRING  2012  LB  145  –  Introductory    Cell  and  Molecular  Bio  (TREATMENT:  CASE  STUDIES  IMPLEMENTATION)  Students  have  previously  taken  an  introductory  organismal  bio  course.    LB144  –  Introductory  Organismal  Bio  (CONTROL)  Students  have  not  previously  taken  a  university-­‐level  bio  course.  BS162  –  Organisms  and  Popula8ons  (CONTROL)  Students  have  previously  taken  an  introductory  cell  and  molecular  bio  course.    

PHASE  2  will  beginning  in  the  Fall  of  2012  where  the  cases  will  be  used  in  addi9onal  courses.  

Hoekstra  et  al.,  2006  

Natural   History:   Field   peas   have   been   grown   and   eaten   by   humans   for  more   than   12,000   years.   Ancient   pea   popula9ons   were   starchy   and   round;  modern  pea  popula9ons  are  wrinkled  and  sweet.  

Q1.  Jaguars  can  have  an  orange  coat  or  a  black  coat.                  Orange  jaguars  have  either  two  G  alleles  or  one  G  allele                  and  one  g  allele,  whereas  black  jaguars  have  two  g  alleles.      

When  a  jaguar  has  the  genotype  gg,  what  happens  so  that  a  black  coat  is  produced?  

 Q2.  Toxican  mushrooms  contain  a  toxin  that  causes  vomiting  when  ingested.  Recently,  some  Toxican  

mushrooms  were  found  that  did  not  produce  the  toxin.        

 Describe  in  detail  what  might  have  happened  at  the  molecular  level  so  that  these  mushrooms  no  longer  produce  this  toxin?  

 Q3.  The  non-­‐poisonous  Toxican  mushroom  has  become  more  frequent  in  mushroom  populations  and  

poisonous  Toxican  mushrooms  have  become  rare.        

 De8ine  Natural  Selection  and  use  it  to  explain  this  scenario.    Q4.  Considering  genetic  mutation  –  

(i)  Describe,  at  the  molecular  level,  what  a  mutation  is.  (ii)  Use  your  answer  from  part  (i)  to  describe  the  process  whereby  a  mutation  results  in  a  

change  at  the  phenotype  level.    

0  

0.5  

1  

1.5  

2  

Q1   Q2   Q3   Q4i   Q4ii  

Pre-­‐Course  

Post-­‐Course  

Results  

0  

0.5  

1  

1.5  

2  

Q1   Q2   Q3   Q4i   Q4ii  

0  

0.5  

1  

1.5  

2  

Q1   Q2   Q3   Q4i   Q4ii  

Average  Stud

ent  S

core  (n

 =  94)  

Average  Stud

ent  S

core  (n

 =  74)  

Average  Stud

ent  S

core  (n

 =  63)  

LB14

5  LB14

4  

Connec9ng  genotypes  to  phenotypes.  

Describing  the  cellular  

mechanism  of  phenotypic  expression.  

Applying  natural  selec9on  to  

explain  change  in  allele  frequency.  

Understanding  the  gene9c  basis  of  muta9on.  

Describing  how  muta9on  results  in  a  phenotype  

change.  

Ques9ons  were  scored  on  a  2-­‐point  scale:  0  =  response  is  absent,  incorrect  or  mostly  incorrect  

1  =  response  is  par9ally  correct  2  =  response  is  correct  or  mostly  correct  

Students  who  learned  evolu9on  through  a  molecular  and  gene9c  founda9on  (LB145)  had  a  more  complete  understanding  of  evolu9onary  mechanisms  than  students  who  learned  evolu9on  in  the  tradi9onal  way,  from  an  organismal  perspec9ve.  

BS162  

Discussion    

Preliminary   research   suggests   that   an   integra9ve   case   study   approach   to  evolu9on  educa9on  is  effec9ve  for  helping  students  learn  the  mechanisms  of  evolu9on.  Successful  case  study  implementa9on  will  require  students  to  have   a   very   basic   understanding   of   gene9c   and  molecular   concepts.   This  understanding   o6en   comes   as   a   natural   progression   of   learning   in  introductory  cell  and  molecular  courses  but  curriculum  adjustment  may  be  required   to   help   students   understand   these   concepts   in   introductory  organismal  courses.      

Addi9onal  data  collec9on  is  scheduled  for  the  fall  of  2012  to  verify  our  pilot  study  results.  

*  *  

*  *  

*  

*  

*  

*  

Case   Study   3:   Toxin   Resistance   in   Clams   A   single   nucleo9de  subs9tu9on  muta9on  in  a  voltage  gated  sodium  channel  gene  makes  so6  shell  clams   resistant   to   paraly9c   shellfish   poisoning.   Clams  without   the  muta9on  are  unable  to  transmit  ac9on  poten9al  down  neuron  axons.  

Case  Study  4:  Trichroma8c  Vision  in  Old  World  Primates  The   long  wave  sensi9ve  opsin  gene  originated   from  the  duplica9on  and  muta9on   of   the   medium   wave   sensi9ve   opsin   gene,   around   40   MYA.  Trichroma9c  vision  makes  primates  more  efficient  foragers  in  fruit  trees.  

Acknowledgements    

This  project   is   funded  by  NSF  and  by  Lyman  Briggs  College  at  Michigan  State  University.  Thanks  to  Kathis  Ellis  and  Joe  Murray  for  their  administra9ve  assistance.  The  website  was  created   with   the   technical   exper9se   of   Miles   Loh.   We   would   also   like   to   thank   the  following   Lyman   Briggs   and   MSU   faculty   for   their   involvement   in   our   project:   Kendra  Cheruvelil,  Gerry  Urquhart,  Chuck  Elzinga,  Cherryl  Murphy  and  Alex  Shingleton.